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An Efficient Framework for Personalizing
EMG-Driven Musculoskeletal Models Based on

Reinforcement Learning
Joseph Berman , I-Chieh Lee , Jie Yin, and He Huang , Fellow, IEEE

Abstract— This study aimed to develop a novel frame-
work to quickly personalize electromyography (EMG)-
driven musculoskeletal models (MMs) as efferent neural
interfaces for upper limb prostheses. Our framework
adopts a generic upper-limb MM as a baseline and uses
an artificial neural network-based policy to fine-tune the
model parameters for MM personalization. The policy was
trained by reinforcement learning (RL) to heuristically
adjust the MM parameters to maximize the accuracy of
estimated hand and wrist motions from EMG inputs. Our
present framework was compared to the baseline MM and a
widely used MM parameter optimization method: simulated
annealing (SA). An offline evaluation was performed to
first quantify the time required for MM personalization and
the kinematics estimation accuracy of personalized MMs
based on data collected from non-disabled subjects. Then,
in an online evaluation, additional human subjects, includ-
ing an individual with a transradial amputation, performed
a virtual hand posture matching task using generic and
personalized MMs. Results showed that compared to the
baseline generic MM, personalized MMs estimated joint
motion with lower error in both offline (p < 0.05) and
online tests (p = 0.014), demonstrating the benefit of MM
personalization. The RL-based framework performed model
optimization in under one second on average in cases that
took SA over 13 minutes and yielded comparable kinemat-
ics estimations both offline and online. Hence, our present
personalization framework can be a practical solution for
the daily use of EMG-driven MMs in prostheses or other
assistive devices.
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I. INTRODUCTION

MUSCULOSKELETAL models (MMs) have been useful
tools in the field of biomechanics. Historically, these

models have been proposed for guiding clinical decision mak-
ing [1], [2], predicting treatment outcomes [3], and simulating
surgical techniques [4]. In several recent studies, electromyog-
raphy (EMG)-driven MMs have been explored for the purpose
of real-time prosthetic device control [5], [6], [7], [8], [9], [10].
MMs have several advantages over EMG-based prosthesis
control schemes in current commercial devices. For instance,
proportional EMG control or EMG pattern recognition are two
popular methods of upper limb prosthesis control that allow
users to control the motion of a single degree of freedom at a
time [11], [12]. In contrast, MMs allow continuous control of
multiple degrees of freedom simultaneously. This allows tasks
to be completed more efficiently with coordinated movements
of hand and wrist joints. Furthermore, it is likely that they can
generalize to new input data significantly better than black-box
machine learning approaches like linear regression or artificial
neural networks (ANNs) [13], [14]. Yet, while the potential has
been shown for MMs to enable reliable and intuitive prosthesis
control, there are still no applications of these models for
commercial prosthetic devices.

Because individuals, especially those with musculoskeletal
impairments, have differences in muscle size, strength, and/or
deficits, it is critical to personalize models to guide therapeu-
tic interventions or control assistive devices [15]. However,
as these models are often defined with high numbers of
musculotendon parameters, building even just a generic MM
has been challenging, let alone personalizing the model for
individual users. So far, the number of reported methods for
personalizing MMs, especially for upper limb models, has
been limited. One approach for model personalization is to
scale a generic model based on anthropometric measurements.
Previous efforts to develop generic MM models, such as those
described in [16], [17], [18], and [19], have used published
measurements taken from cadavers without musculoskeletal
impairments [20], [21]. Then, the anthropometric measure-
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ments taken from each user were used to scale the generic
model to a personalized one [22], [23], [24], [25]. However,
this approach may not be applicable to patients with limb
amputations.

In the field of prostheses, EMG-driven MMs have been
developed as neural-machine interfaces (NMI) for pros-
thesis operation. These models typically contain many
subject-specific model parameters that cannot be directly mea-
sured. Thus, global optimization techniques such as simulated
annealing (SA) [26] are commonly used to tailor the model
parameters such that the model can optimally estimate the
kinematics or kinetics collected from individual users [6],
[27], [28], [29], [30], [31], [32], [33], [34]. Nevertheless, tech-
niques like SA can be computationally expensive due to the
need for an extensive parameter search and repeated biome-
chanical simulations, resulting in long optimization times,
especially for more complex models with many degrees of
freedom and optimizable parameters. For example, SA opti-
mization of 22 parameters of a lumped-parameter upper
limb MM developed by our research group was reported to
take approximately 20 hours using a Dell Precision T5810
desktop computer with a 3.70 GHz processor and 32 GB
RAM [6]. Similarly, another group reported an average of
over 20 hours for SA optimization of 102 parameters of an
EMG-driven MM of the lower limb using a workstation with
an Intel i7 CPU and 8 GB RAM [29]. In addition, occasional
parameter recalibrations for these models might be needed
to account for the neurophysiological change of residual
muscles over time for reasons such as human adaptation and
muscle atrophy. Excessive optimization times of a prosthe-
sis controller can thus decrease its usability for daily use.
A new solution for the personalization of EMG-driven MMs is
needed.

One concept in the field of machine learning for building
user-specific data-driven models involves first pretraining a
generic model using a large dataset collected from a group of
human subjects, followed by quick personalization when indi-
vidualized data becomes available. For example, the weights
and biases of an ANN can be predetermined from scratch
from an initial dataset of many users to obtain a model
with adequate performance for all users. Then, a select group
of these weights and biases may be slightly adjusted using
the data of an individual to optimize the model specifically
for them. This concept has been used for personalization in
multiple applications, such as speech recognition [35], speech
enhancement [36], and wearable healthcare technology [37].
The benefit of this approach is that the application always
starts with a workable generic model, which can be further
tailored toward their users for its optimal operation. Addition-
ally, personalization from a generic model is often data and
time efficient compared to learning from a naïve model. This
concept and its benefits have inspired us to investigate a new
framework for musculoskeletal model personalization, which
combines a physiologically informed musculoskeletal model
with machine learning.

By leveraging a generic musculoskeletal model, we can
use a machine learning approach to quickly achieve model
personalization by fine-tuning model parameters based on

limited user-specific data. Previously, our group developed a
generic EMG-driven upper limb MM using the data collected
from a group of non-disabled subjects [38]. We showed that
the model allowed multiple new users, including an individual
with a transradial amputation, to control a virtual hand in a
posture matching task, although this generic model might not
necessarily be optimal for each user. Using this generic MM
as a starting point, data-driven machine learning methods may
further tailor the model parameters toward each individual
user. One promising machine learning method is reinforcement
learning (RL), which can be used to train a policy to estimate
the optimal actions based on the state of the system that
most efficiently maximizes its long-term reward [39]. In our
application, RL can be used to learn a policy to tune model
parameters to maximally approximate the individualized limb
dynamics. Compared to search-based optimization algorithms
like SA that are often used in the field of biomechanics,
RL is based on the Bellman optimality equation [39] and is
potentially more robust and time efficient.

Therefore, in this study, we aimed to implement and
evaluate our proposed new framework for efficient personal-
ization of EMG-driven MM-based neural-machine interfaces.
This framework included our previously developed generic
EMG-driven MM of wrist and metacarpophalangeal (MCP)
joints [38] and an RL-based policy for MM personalization
(RL MM). MMs personalized with our framework were com-
pared with the baseline generic MM and MMs personalized
with SA (SA MM) in both offline and online tests. The
outcome of this study may inform a novel framework for fast
and accurate personalization of EMG-driven MMs as effective
NMIs for rehabilitation or assistive device control in the future.

II. METHODS

A. Subjects
Ten non-disabled (ND) subjects (6 male, 4 female, ages

19-37, right-hand dominant) were first recruited for the col-
lection of training data that were used to pretrain the RL
policy. An additional set of six separate ND subjects (5 male,
1 female, ages 21-35, right-hand dominant) and one subject
with a transradial amputation (TRA) (male, age 46) were then
recruited to complete a virtual hand posture matching task
for further evaluation of our optimization method. The TRA
subject sustained a left transradial amputation following a
traumatic injury. He underwent a targeted muscle reinnervation
(TMR) procedure and had used a myoelectric prosthesis with
a pattern recognition control scheme for daily activities. The
experimental protocol was approved by the North Carolina
State University Internal Review Board (protocol number
20882). All subjects provided informed consent prior to their
participation.

B. Training Data Collection
In training data collection sessions, EMG signals and

the flexion and extension angles of the wrist joint and
metacarpophalangeal (MCP) joint of the middle finger were
simultaneously recorded at 1000Hz with a K800 amplifier
(Biometrics Ltd., U.K.). Subjects were instructed to move
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Fig. 1. Locations of EMG electrodes for each of the four targeted
muscles for an non-disabled subject (a) and the transradial amputee
subject (b).

all five fingers of the hand simultaneously to perform hand
open and close motions during all data collection sessions.
We assumed that the motions of MCP, proximal interpha-
langeal (PIP), and distal interphalangeal (DIP) joints were
coupled. Therefore, only the MCP angle was measured. Four
bipolar dry surface electrodes (SX230, Biometrics Ltd., U.K.)
were placed over four muscles in the forearm: the extensor
carpi radialis longus (ECRL), extensor digitorum communis
(EDC), flexor carpi radialis (FCR), and flexor digitorum super-
ficialis (FDS) (Fig. 1). Each muscle was initially identified via
palpation and adjusted using visual inspection of the corre-
sponding EMG channel to obtain optimal signal magnitudes.
For ND subjects, electric goniometers (SG series and F35,
Biometrics Ltd., U.K.) were fixed on the right hand across
the MCP joint of the third digit and across the wrist on the
posterior side of the forearm. For the TRA subject, the electric
goniometers were placed on the intact limb, and they were
asked to perform mirrored bilateral movements.

Subjects first performed the maximum voluntary contraction
(MVC) of the flexion and extension of each joint. Following
this, EMG and joint position data were recorded. During
data collection, subjects performed multiple cycles of joint
motions, each consisting of an extension and flexion of the
wrist followed by extension and flexion of the MCP within a
10s period. For each subject, nine data cycles were recorded
and saved for use, totaling 1.5 minutes of data. To regulate the
timing of the joint movements, subjects were asked to mirror
the motion of a virtual hand displayed on a computer screen
during data collection.

C. Musculoskeletal Model
In this study, a previously developed lumped-parameter

musculoskeletal model (MM) was used [6]. The model con-
sists of four Hill-type muscle models representing a wrist
extensor and flexor (ECRL and FCR) and a MCP extensor and
flexor (EDC and FDS). The Hill-type models each contain a
contractile element and parallel elastic element with six total
parameters: optimal contractile element length, lopt , maximum
isometric contractile element force, FC E

0 , wrist moment arm,
mawrist , MCP moment arm, maMC P , contractile element
length in the neutral posture, lθ=0, and passive elastic element
stiffness, K P E E . The wrist extensor and flexor muscles do not

TABLE I
LOWER AND UPPER BOUNDS FOR EACH MODEL PARAMETER

cross the MCP joint, and thus for those muscles, maMC P was
set to 0. Thus, the model contained a total of 22 optimizable
parameters. The values of each model parameter were bound
to the ranges listed in Table I.

A previous study with this MM resulted in a set of generic
model parameters. A full description of the procedure used
to accomplish this can be found in [38]. The generic model
parameters were used as the initial values for both optimization
methods described in this paper.

Each Hill-type model was driven by a corresponding EMG
channel. The recorded EMG signals were first enveloped using
the mean absolute value of a sliding window. The sliding
window had a length of 200ms and was incremented in 10ms
steps, resulting in 100Hz enveloped EMG data. The enveloped
data was normalized by the MVC, and for each of the 4 EMG
channels, the muscle activation was calculated following the
methods used in [13]:

u (t) = αe (t − d) − β1u (t − 1) − β2u (t − 2) (1)

a (t) =
eAu(t)

− 1
eA − 1

(2)

where e(t) is the normalized enveloped EMG signal at time
t , d is the electromechanical delay set to 40 ms following
the methods in [40], α, β1, β2, and A are constant values as
described in [13], and a(t) is the muscle activation value at
time t .

Wrist and MCP joint moments estimated by the Hill-type
models were used as inputs to drive a user-generic planar
link-segment forward dynamics model to obtain the resulting
wrist and MCP joint kinematics. The full details of the
implementation of the MM are described in [6].

D. RL-Based Framework
Using reinforcement learning, we formulated a framework

to iteratively update the parameters of the MM. Our goal was
to use data collected from the first 10 ND subjects to pretrain
a single policy, represented by an ANN, which would then be
used to quickly optimize the model parameters for any new
subject. For each update step of the optimization procedure,
the MM was first used to obtain estimated wrist and MCP
joint positions for an entire 10s training data cycle. Features
were then extracted from the joint position estimation errors
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to be used as input to the ANN, which was trained to reduce
those estimation errors by outputting a vector of updates for
the 22 optimizable model parameters.

1) State Definition: To define the input state vector at each
update step, we considered eight separate timesteps within
each 10s cycle of training data consisting of the timesteps
of the maximum and minimum values of the measured wrist
and MCP joint angles and the midpoints between each of those
timesteps. At each of these eight timesteps, the average signed
error between the measured and estimated wrist and MCP joint
positions, normalized by the approximate joint range of motion
(wrist: −75◦,75◦, MCP: −10◦,90◦), was calculated in a 500ms
window centered at the timestep as follows:

ew
i,m =

1
L

Ti+
L
2∑

n=Ti−
L
2

(
θw

n − θ̂w
n

)
(3)

eMC P
i,m =

1
L

Ti+
L
2∑

n=Ti−
L
2

(
θ MC P

n − θ̂ MC P
n

)
(4)

where Ti is the i th of the eight previously determined
timesteps, ew

i,m and eMC P
i,m are the average normalized signed

error values of the wrist and MCP joint position estimations
respectively around Ti for update step, m, θw

n and θ MC P
n

are the normalized measured wrist and MCP joint positions
respectively at the nth timestep of the cycle of training data,
θ̂w

n and θ̂ MC P
n are the normalized estimated wrist and MCP

joint positions respectively at the nth timestep of the cycle
of training data, and L is the number of timesteps equivalent
to 500ms (i.e., 50). A 16-element state vector, S, was then
formed by concatenating the eight average signed error values
for the wrist joint and the eight average signed error values
for the MCP joint.

2) Action Definition: The output action of the ANN at each
update step, Am , was a vector containing 22 elements, each
corresponding to one of the 22 model parameters. The values
of Am were bound to the range [−1, 1] by a hyperbolic tangent
(tanh) activation function at the output of the ANN. A vector of
parameter updates, 1Pm , was obtained by scaling the output
of the ANN as follows:

1Pm = k (BU − BL) ∗ Am (5)

where k is a scaling factor set to 0.05, BU and BL are the upper
and lower bounds of the optimizable parameters shown in
Table I, and the “∗” symbol represents elementwise multipli-
cation. Thus, in each update step, the ANN was able to update
each optimizable parameter by up to a maximum magnitude
equivalent to 5% of the total range of that parameter.

3) Reward Function: The reward value in each update step,
m, was calculated from the average signed error values as
follows:

rm = −∥Sm∥1 = −

8∑
i=1

(∣∣ew
i,m

∣∣ + ∣∣∣eMC P
i,m

∣∣∣) (6)

4) Deep Deterministic Policy Gradient: The deep determin-
istic policy gradient (DDPG) RL algorithm [41] was used for

training. The DDPG algorithm utilizes an agent consisting
of an actor ANN with an input state vector, µ(S), to obtain
the action vector, A, and a critic ANN with input state and
action vectors, Q(S, A), to obtain an estimate of the long-term
discounted reward given by the Bellman equation. The actor
and critic were designed and trained using the Reinforcement
Learning Toolbox in MATLAB 2023a (Mathworks, USA). The
actor ANN consisted of an input layer with 16 nodes for the
state input, a hidden layer with 100 nodes and rectified linear
unit (ReLU) activation function, and an output layer with
22 nodes for the action output and tanh activation function.
The critic ANN consisted of an input layer with 16 nodes
for the state input and an input layer with 22 nodes for
the action input, each followed by a separate hidden layer
with 100 nodes. The outputs of these 2 hidden layers were
combined with an elementwise addition layer and followed
by a 1 node output layer with no activation function. For
simplicity, the parameters of the ANNs consisted of only
weights with no biases.

At the start of the initial training process, the weights of the
actor and critic ANNs, µ and Q, were randomly initialized,
and a target actor and target critic ANN, µ′ and Q′, were cre-
ated with identical structures and weights. Training consisted
of a total of 1,000 episodes. At the start of each episode, a new
subject from the training data set was selected and the MM
was initialized with the generic parameter values. The training
procedure cycled through the sets of data collected from each
of the initial 10 subjects in a loop such that each subject’s data
was used in 100 total episodes. A fixed number of 20 update
steps were executed for each episode. Throughout the episode,
the training procedure cycled through each provided data cycle
of the currently selected subject in a loop, with a new data
cycle selected for each new update step. At the start of each
update step, the EMG and measured joint position data for the
next data cycle of the currently selected subject were loaded.
Estimated wrist and MCP joint positions for the data cycle
were then obtained from the MM. For update step m, the state
vector, Sm , was calculated using (3) and (4), and the current
reward, rm , was calculated using (6). The action vector, Am ,
was then obtained from the actor ANN following:

Am = µ (Sm) +Nm (7)

where Nm is a vector of noise sampled from an Ornstein-
Uhlenbeck (OU) process [42] to allow for exploration during
training. The values of parameter updates were then obtained
from (5), and the optimizable parameters, P , were updated as:

Pm+1 = Pm + 1Pm (8)

The next cycle of data for the current subject was then
loaded and a new state vector, Sm+1, was calculated from
the resulting joint position estimations made by the updated
MM. A transition, defined as (Sm , Am , rm , Sm+1), was stored
in a first-in-first-out buffer, D. Following this, to update the
weights of the ANNs, a minibatch containing N transitions
randomly sampled from D was obtained. The weights of the
critic were first updated by backpropagation to minimize the
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TABLE II
HYPERPARAMETERS FOR THE DDPG ALGORITHM

loss function:

L Q =
1
N

N∑
i=1

(yi − Q (Si , Ai ))
2 (9)

where yi is a target value based on the Bellman equation and
defined as:

yi = ri + γ Q′(Si+1, µ
′ (Si+1)) (10)

and γ is the discount factor. Next, the weights of the actor
were updated by backpropagation to maximize the long-term
discounted reward estimated by the critic by maximizing the
policy gradient:

∇θµ J =
1
N

N∑
i=1

∇A Q(Si , µ(Si ))∇θµµ(Si ) (11)

where θµ represents the weights of the actor. Finally, the
weights of the target actor and target critic were updated to
track the weights of the actor and critic using:

θ Q′

= τθ Q
+ (1 − τ)θ Q′

(12)

θµ′

= τθµ
+ (1 − τ)θµ′

(13)

where θ Q′

, θµ′

, θ Q , and θµ are the weights of the target
critic, target actor, critic, and actor respectively, and τ is
the target smoothing factor. A full explanation of the DDPG
algorithm can be found in [41]. The hyperparameters used in
our implementation of DDPG are listed in Table II.

5) Personalization Procedure: Following the training proce-
dure, the actor ANN, µ, was saved to be used as a policy to
optimize the parameters of the MM for new subjects. During
the optimization procedure for each new subject, the weights
of µ were not updated. Similar to the pretraining procedure,
the MM was initialized with the generic parameter values
at the beginning of optimization. The optimization procedure
again cycled through the total number of provided data cycles
in a loop, with a new data cycle selected for each new update
step. For each update step, m, an action vector was directly
obtained from the actor ANN without added noise as follows:

Am = µ (Sm) (14)

The model parameters were then updated by again using (5)
and (8). Finally, instead of using a fixed number of 20 update

Fig. 2. A block diagram of the RL framework. During pretraining, the
weights of the actor and critic are updated by the DDPG algorithm.
During use, the weights are fixed and only the actor is used to update
model parameters until the reward converges.

steps, optimization was stopped when convergence in perfor-
mance was detected. The reward value, rm , was calculated at
each update step, m, using (3), (4), and (6). The change in
reward was tracked as:

1rm = rm − rm−1 (15)

and the average change in reward was calculated using a
sliding window with a length of 3 values. The performance
was considered to have converged when this average change
in reward was nonpositive.

A block diagram outlining the RL framework is shown in
Fig. 2.

E. Simulated Annealing
To provide a baseline comparison, we considered the sim-

ulated annealing (SA) optimization method. At each step of
the SA optimization procedure, joint positions were estimated
by the MM for the entirety of the provided training data.
The measured and estimated joint positions were then each
normalized by the approximate joint range of motion, and an
objective function was defined as the sum of squares of the
normalized estimation errors. At the start of the SA optimiza-
tion procedure, the MM was initialized with the generic model
parameters. Then in each step, the 22 model parameters were
normalized to the range [0 1] for input to the SA algorithm.
To maximize the speed of the optimization procedure, all
code implementing the MM, including the Hill-type muscle
models and forward dynamics, were converted to a MEX file.
The SA algorithm was implemented using “simulannealbnd”
with default settings in the Global Optimization Toolbox with
default settings in MATLAB 2023a.

F. Offline Evaluation
To compare the offline performance of the MMs optimized

by the RL policy and SA algorithm, as well as determine
the effect of the length of the training data provided to each
optimization method, an offline cross-validation evaluation
was performed. We considered three different amounts of input
training data: one, three, and six data cycles (equivalent to 10,
30, and 60 seconds). For each of the three lengths of training
data, a 10-fold cross-validation was conducted.



BERMAN et al.: EFFICIENT FRAMEWORK FOR PERSONALIZING EMG-DRIVEN MUSCULOSKELETAL MODELS 4179

For each fold, an RL policy was pretrained with data from
a different combination of nine subjects, and the resulting
policy was used to optimize the MM with the training data
from the remaining subject. The length of training data used
for each optimization with the remaining subject was equal
to the length of training data used to pretrain the given
policy. The average optimization time for each method as well
as the average time taken to pretrain each RL policy with each
length of training data were recorded. SA was then used to
optimize a separate MM with the same training data from the
remaining subject. Using a separate set of testing data from
the remaining subject containing three data cycles, estimated
joint positions were obtained from the MMs optimized with
each method using each length of training data, as well as
the MM with the generic model parameters. The normalized
root mean square error (NRMSE) between the measured and
estimated joint positions was calculated by normalizing the
root mean square error by the approximate joint ranges of
motion. The offline NRMSE was averaged across both joints
and all subjects for each optimization method and number
of data cycles used. Finally, for each optimization method,
we considered the average change in model parameters from
their initial values across all lengths of training data, measured
as the absolute difference of the value of each model parameter
before and after optimization, normalized by its respective
range.

Both optimization methods were executed on a laptop
computer (2.20GHz Intel i7 processor, NVIDIA GeForce
RTX 3070 GPU, 16GB RAM).

G. Virtual Hand Posture Matching Task
To evaluate the real-time task performance of subjects using

the optimized MMs, we used a real-time virtual posture match-
ing task similar to what was used in previous studies [14], [38],
[43], [44]. Six ND subjects and the TRA subject, whose data
were not used to pretrain the RL policy, were recruited for a
data collection session involving this task.

At the beginning of each session, the EMG electrodes
and electric goniometers were placed, and EMG signals were
recorded while subjects performed the MVC for the flexion
and extension of each joint following the methods described in
Section II-B. Following this, training data were collected from
each subject. For the purpose of the real-time task performance
evaluation, a single RL policy was pretrained using three
data cycles from each of the 10 initial ND subjects and
three training data cycles were collected from each additional
subject in the online evaluation for use in both optimization
methods. After optimization with each method, the resulting
set of model parameters was saved for use in the task.

For this task, a black-colored virtual 2-DOF planar
link-segment hand visualizing the wrist and MCP joint angles
was displayed with a 20Hz refresh rate on a computer screen
on table in front of subjects. In a single trial of the task, 8 gray-
colored target postures representing various combinations of
joint flexion and extension positions were given to the subject
in a random order. While each target posture was displayed,
muscle activations were computed in real time from recorded
EMG signals and the resulting joint angles estimated by

Fig. 3. The 8 target postures (gray), representing various combinations
of flexion and extension positions of the wrist and MCP joints, and the
base posture (blue), used as the starting position for each attempt to
match a posture.

the MM were used to continuously update the virtual hand.
Subjects were given 10 seconds to match the position of
the virtual hand to each target posture. A target posture was
considered completed when the virtual hand was held within a
tolerance of ±5% of the approximate range of motion of each
joint (wrist: ±7.5◦, MCP: ±5◦) for 0.5 consecutive seconds.
The color of the virtual hand changed to green when it was
within this range. To reset the position of their physical hand
before the start of each new target posture matching attempt,
subjects matched the virtual hand – updated with joint angles
measured by the electric goniometers - to a base posture (wrist:
0◦, MCP: 45◦). The base posture was considered complete
using the same criteria as for the target postures, but the
10 second time limit was not enforced. The positions of the
8 target postures and base posture are visualized in Fig. 3.

Subjects completed a series of trials using each of 3 different
MMs: the generic MM, the RL MM, and the SA MM. The
order in which the MMs were given was randomized for each
subject. For each MM, similar to the methods used in [43],
[44], subjects were first asked to perform 5 practice trials
to allow them to adapt to the task with the given MM. The
number of target postures successfully completed was recorded
as a measure of task performance in each trial, and after the
first 5 practice trials, a line was fitted to these values. An F-
test was used to determine if the slope of the fitted line was
statistically different from 0, indicating that the subject’s task
performance was still changing, or statistically similar to 0,
indicating that the subject’s task performance had converged.
If task performance was determined to be still changing,
an additional practice trial was given, and a new line was fitted
to the last 5 trials to recheck for convergence in the subject’s
task performance. If task performance was determined to be
converged, the subject proceeded to complete 5 evaluation
trials with the given MM.

While ND subjects attempted to complete each target pos-
ture, the joint angles measured by the electric goniometers
and the joint angles estimated by the MM were simultaneously
recorded and saved. The NRMSE between these measured and
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estimated joint positions was averaged across both joints and
all ND subjects as a measure of the accuracy of the real-time
joint angle estimations made by the MM. Task performance of
ND subjects was quantified by the averaged completion rate
of target postures in each evaluation trial for each MM was
used.

For the TRA subject, joint angles were not recorded by
the electric goniometers while attempting to complete the
target postures to avoid excess mental burden from completing
mirrored bilateral movements during the task. Additionally,
to account for the difference from ND subjects in task
performance, we considered two metrics. The first was the
average number of target postures in which the virtual hand
was held within a tolerance of ±10% of the approximate
range of motion of each joint (wrist: ±15◦, MCP: ±10◦) for
0.5 consecutive seconds. The second – identical to the criteria
used for ND subjects – was the average number of target
postures in which the virtual hand was held within ±5% of the
approximate range of motion of each joint for 0.5 consecutive
seconds.

H. Statistics
Before running the statistical comparison, the Shapiro-Wilk

normality test was performed. If the dataset used for the
statistical test was not normally distributed, a non-parametric
test was applied. For offline evaluations, to compare the offline
NRMSE values, a two-way repeated measures ANOVA was
applied (3 types of MM: generic MM, RL MM, and SA MM
× 3 training cycles: 1, 3, and 6 data cycles). To compare the
absolute changes in parameter values, a three-way repeated
measures ANOVA was applied (3 types of MM: generic,
RL MM, and SA MM × 3 training cycles: 1, 3, and 6 data
cycles × 22 model parameters).

For the online evaluation, to compare the numbers of target
postures completed, a one-way repeated measures ANOVA
was applied using the three types of MMs. Online NRMSE
values were not normally distributed, so a non-parametric
Friedman test was used to compare the three types of MMs
(generic, RL MM, and SA MM).

For all post-hoc analyses, the Bonferroni correction was
applied. Since the online NRMSE values were not normally
distributed, Wilcoxon signed-rank tests were conducted for the
post-hoc analysis with Bonferroni correction. The significance
level for all tests was set at α = 0.05.

III. RESULTS

A. Offline Evaluation Results
For the offline cross-validation evaluation, RL policies

were pretrained using one, three, and six data cycles taking
888.5±100.1s, 906.7±99.4s, and 901.9±107.9s respectively.
The generic MM achieved an average NRMSE value of
0.24±0.06 when evaluated with the testing data. The MMs
optimized by the RL policies using one, three, and six
training data cycles achieved average NRMSE values of
0.12±0.03, 0.13±0.02, and 0.13±0.02 respectively. The MMs
optimized by SA using one, three, and six training data cycles
achieved average NRMSE values of 0.12±0.02, 0.12±0.03,

Fig. 4. The average NRMSE values achieved by the generic muscu-
loskeletal model (left), the RL policy-optimized musculoskeletal model
(middle), and the SA-optimized musculoskeletal model (right). The
values for each optimization method represent the average NRMSE
achieved after training with 1 data cycle (blue), 2 data cycles (orange),
or 3 data cycles (yellow). Error bars represent standard deviation.

TABLE III
AVERAGE OPTIMIZATION TIMES FOR EACH LENGTH OF TRAINING DATA

TABLE IV
AVERAGE NUMBER OF UPDATE STEPS EXECUTED FOR EACH LENGTH

OF TRAINING DATA

and 0.10±0.02 respectively. There was no interaction effect
between the optimization method and data cycles (p = 0.414).
The main effect showed that the type of MM reached a
significant difference (p < 0.05), but the number of training
data cycles did not (p = 0.631). Post-hoc showed that both
the RL MM and the SA MM were significantly lower than
generic (p < 0.05). However, no significant differences were
found between the RL MMs and the SA MMs (p = 0.067).
The average NRMSE values are shown in Fig. 4. Additionally,
the average optimization time taken, and average number of
updates steps executed by the pretrained RL policies and SA
using each length of training data are shown in Table III and
Table IV respectively.

The average absolute change in the value of each model
parameter from the initial generic model parameter values after
optimization by the RL policies and SA across all lengths
of training data, normalized by the respective range of each
parameter, is shown in Fig. 5. Significance was found for the
effects of optimization method (p < 0.01), the number of
training cycles (p < 0.01), and the model parameter (p < 0.01)
on the absolute change in model parameter value. Post-hoc
analysis showed that the RL polices resulted in significantly
lower changes in parameter values than SA (p < 0.05).
Optimizations performed using six data cycles also resulted
in smaller changes in parameter values than using one data
cycles (p < 0.05), while there was no significant difference in
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Fig. 5. The magnitudes of change in model parameters from the generic
musculoskeletal model, normalized by their respective ranges, for each
of the four Hill-type models after optimization with an RL Policy (green)
and SA (purple) using three training data cycles. Error bars represent
standard deviation. Stars indicate statistically significant differences.

the changes in parameter values between optimizations using
one and three data cycles (p = 0.142). Additionally, there was
a significant interaction between the optimization method and
model parameter (p < 0.05). The post hoc analysis showed
that changes in parameter values made by RL policies were
significantly lower for 16 out of the 22 model parameters
compared to changes in parameter values made by SA (p <

0.046) as shown in Fig. 5.
Fig. 6 shows an example visualization of the change in

model parameters, as well as the resulting reward values,
at each step of the optimization procedure with an RL policy
using 3 training data cycles collected from an ND subject.
The optimization procedure is stopped at the detection of
the convergence of the reward (Fig. 6b). The joint position
estimations made by MMs with the generic model parameters,
model parameters optimized by the RL policy with 3 training
data cycles, and model parameters optimized by SA with
3 training data cycles for the testing data collected from the
same ND subject and testing data collected from the TRA
subject, are shown in Fig. 7.

B. Virtual Hand Posture Matching Task Results
The average online NRMSE between measured and

estimated joint positions from the generic MM, RL
policy-optimized MMs, and SA-optimized MMs across

Fig. 6. Results from the optimization of model parameters by an RL
policy using data collected from an non-disabled subject. (a) The values
of model parameters, normalized by their respective ranges, for each
of the four Hill-type models at each update step. The musculoskeletal
model is initialized with the generic model parameters at step 0. (b) The
reward value resulting from the parameter updates applied at each step.
The optimization procedure finished when convergence of the reward
was detected.

eight target postures were 0.30±0.05, 0.16±0.04, and
0.16±0.02 respectively (Fig. 8a). The type of optimization
method used had a significant effect on the online NRMSE
(p = 0.011). Compared to the generic MM, online NRMSE
was significantly lower for both the RL MMs (p = 0.014)
and SA MMs (p = 0.014). However, online NRMSE was not
significantly different between RL MMs and SA MMs (p =

0.753).
Additionally, ND subjects using the generic MM,

RL policy-optimized MM, and SA-optimized MM were able
to complete 5.1±2.1, 6.4±1.2, and 5.7±1.3 target postures
respectively during the virtual hand posture matching task
(Fig. 8b). The type of optimization method used had a sig-
nificant effect on the number of target postures completed
(p < 0.05). However, the post hoc analysis showed that no
significant differences were found between the generic MM,
RL MM, or SA MM (p >0.069).
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Fig. 7. Measured and estimated wrist (left) and MCP (right) joint angles for the testing data collected from an non-disabled subject (a) and
transradial amputee subject (b). The estimated joint angles shown were obtained from musculoskeletal models with generic model parameters
(top), model parameters optimized by the RL policy with 3 training data cycles (middle), and model parameters optimized by SA with 3 training data
cycles (bottom).

TABLE V
AVERAGE TASK PERFORMANCE OF THE TRANSRADIAL

AMPUTEE SUBJECT

Finally, the average task performance achieved by the TRA
subject using each MM, quantified as the number of postures
considered complete using both the ±10% and ±5% tolerance
in the range of motion criteria, is shown in Table V.

IV. DISCUSSION

In this study, we introduced a novel framework for efficient
personalization of EMG-driven MMs used as neural-machine
interfaces for prostheses. For this framework a reinforcement
learning (RL) algorithm was used to establish a policy to
fine-tune parameters of a generic MM using data collected
from a group of ND subjects. The learned policy was then
evaluated with additional ND subjects and a subject with
a transradial amputation (TRA) not included in the training
data. Using the generic MM as a baseline for comparisons,
we evaluated the benefits of personalization by our RL-based
framework and a popular global optimization algorithm: simu-
lated annealing (SA). The generic and personalized MMs were

compared in terms of performance in an offline evaluation
and online evaluation using a virtual hand posture matching
task. Additionally, we considered the differences in required
optimization time between our framework and SA to evaluate
the practicality of each method for personalizing EMG-driven
MMs for prostheses and assistive devices.

Compared to the baseline generic MM, the MMs personal-
ized by either method achieved significantly better kinematics
estimation accuracy for the offline evaluation (Fig. 4). For
the online virtual hand posture matching task, personalized
MMs also yielded significantly lower errors in estimating joint
kinematics and a slightly higher task completion rate (Fig. 8).
This result has strong implications of the benefits of person-
alizing MMs used as neural-machine interfaces. Although the
generic MM was functional with new users, as we observed in
the previous study [38], the personalized MM was shown to
more closely match the intended motions of users, which can
potentially improve the ability of users to adapt to the NMI
and reduce muscle efforts while using the NMI for real-time
task performance [43], [44]. Our future work will test more
human subjects and real-time tasks to quantify the benefit of
personalizing MM-based neural-machine interfaces in terms
of users’ physical and cognitive functions.

While personalization of MMs with either our RL-based
framework or SA resulted in similar performance for the
offline and online tests, our framework yielded much faster
MM parameter personalization than the SA algorithm,
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Fig. 8. The average virtual posture matching task results for
non-disabled subjects using musculoskeletal models with generic model
parameters (orange), model parameters optimized by the RL policy
(green), and model parameters optimized by SA (purple). (a) The
average NRMSE between measured and estimated joint positions while
attempting to complete postures with each musculoskeletal model. (b)
Task performance quantified as the average number of target postures
successfully completed. Error bars represent standard deviation. Stars
indicate statistically significant differences.

as shown in Table III. The reason is that the policies were
able to form more efficient parameter tuning strategies by
pretraining using RL with the data collected from multiple
previous subjects. In the RL pretraining procedure, poli-
cies learn to make parameter adjustments that maximize the
long-term value of reward for many different possible model
states. Therefore, the final trained policies may not need to
extensively explore the entire parameter space for every new
user, but they can instead more efficiently adjust parameter
values based on previous experience. By contrast, traditional
search-based global optimization algorithms like SA must
sufficiently search through the entire parameter space every
time an MM is personalized to a new user to ensure that
the global optimum is found. It is likely for this reason
that although both personalization methods were initialized
with the same generic model parameters, the changes made
to most parameter values were significantly smaller when
using our RL-based framework than when using SA (Fig. 5).
This result shows that the RL MMs by fine-tuning the ini-
tial generic parameters, while SA may find much different
solutions for each user. Because the performance of the per-
sonalized MMs was similar regardless of the method used, the
lumped-parameter MM used in this study likely had multiple

combinations of model parameter values for each subject
that could result in optimal performance for our specific
offline and online tests. Potentially, the solution can be further
limited when including additional constraints, such as tighter
parameter ranges, or more complex testing tasks, such as
operating prosthetics to perform functional tasks. This can
be investigated in our future work. Finally, the ability of
the RL-based framework to personalize EMG-driven MMs
significantly faster than traditional methods can also greatly
improve the adaptability and usability of MMs as NMIs for
day-to-day assistive device operation. Users can potentially
run a quick MM parameter personalization each time they use
their prosthesis for optimal operation.

Personalization of the MM with either optimization method
also appeared to slightly improve the TRA subject’s perfor-
mance in the virtual hand posture matching task (Table V).
However, his overall average task performance was lower than
that of ND subjects. This may be partly due to the mirror
bilateral movements during training data collection, in which
his intent for moving the amputated arm was approximated by
the intact limb motion. Another potential reason is a significant
variation in the lengths and locations of residual muscles,
which presented an additional challenge in determining EMG
electrode placements to record isolated activity from each
targeted muscle. It was observed that during each attempt
to match a target posture, the TRA subject was able to
consistently move each joint in the direction they desired but
had difficulty holding the virtual hand still near the target
posture for the required time period. Thus, the number of
target postures successfully completed was much higher when
considering the higher tolerance for each. However, in our
further work with this MM, it may be possible to improve
prosthesis control for amputee subjects by utilizing techniques
such as filtering the estimated joint motions or preventing
movement of the prosthetic device for any sufficiently small
estimated joint movement. Additionally, it should be noted that
this performance was achieved after only a limited number
of practice trials. Daily use may allow subjects to further
improve their performance with personalized MMs. Future
work with the RL framework should incorporate amputee data
in the training datasets for policies to improve robustness
to input EMG signal variations and include more individu-
als with amputations in both offline and online evaluations.
Nonetheless, the promising initial results in this present study
imply that our framework may in the future be applicable to
prosthetic device users with muscle deficits.

There are also several limitations from this study that
should be considered. First, because our proposed framework
involves fine-tuning existing generic model parameters rather
than searching through the entire parameter space, it is not
guaranteed to find the true global optimal solution every
time. For example, our results showed that many model
parameters found by the RL framework were significantly
different from SA. In this case, the resulting performance of
models personalized by either method was similar, suggesting
that multiple globally optimal solutions may exist for each
subject. However, future work focusing on more complex
models with larger solution spaces should consider the risk
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that solutions are a local rather than global minima. This
risk can be mitigated by ensuring an adequately performing
initial generic model, allowing the RL policy to sufficiently
explore the parameter search space during pretraining, and
carefully designing the convergence detection for personal-
ization. Second, for this proof of concept of our proposed
framework, we collected a small pretraining dataset from
only 10 ND subjects. While our framework was successful
for the evaluations in this study, including more training data
from more subjects, especially those with transradial amputa-
tions, will likely improve the robustness of the framework to
variations in EMG signals. Additionally, it may be possible to
explore data augmentation methods to modify the collected
EMG and joint kinematics data to artificially expand the
dataset used to pretrain policies. Next, the online evaluation
conducted for this study was limited. Although the error of
joint position estimations made in real time during the virtual
hand posture matching task was significantly reduced with
model personalization, the number of successfully completed
postures was not significantly different. This may be because
the chosen task and performance metric were not sufficient
to fully highlight the benefits of MM personalization. Many
additional metrics, such as cognitive load and user adaptation
rate, can be used to quantify the real-time task performance
of users of an EMG-based NMI. More online tasks can be
explored, and more subjects, including patients with transra-
dial amputations, can be included in the evaluation. Finally, the
lumped-parameter MM used in this study is relatively simple,
containing only two degrees of freedom and 22 optimizable
model parameters. A model with only two DOF does not
account for multiple finger movements. Future work may
explore the benefits of our framework with more complex
MMs that consider the motion of individual fingers separately.
Additionally, MMs of the lower limb that require higher
numbers of muscle models capable of greater magnitudes of
force can be considered. More complex EMG-driven MMs
with more degrees of freedom, muscle models, and parameters
will likely require a larger amount of data for effective person-
alization. To accurately describe the state of the model, this
work may additionally need to implement extensive feature
extraction methods, or if appropriate for the available training
data, apply machine learning methods like convolution neural
networks.

V. CONCLUSION

In this study, we presented a novel framework to quickly
personalize EMG-driven musculoskeletal models (MMs) for
use as neural-machine interfaces. The framework combines
a previously developed generic musculoskeletal model (MM)
with a machine learning-based method of fine-tuning model
parameters for individual users. To investigate the benefits of
this new framework, we compared the initial generic MM with
MMs personalized by either our RL-based framework or a tra-
ditional optimization technique used for MM personalization:
simulated annealing (SA). Our evaluation included an offline
analysis of the accuracy of hand and wrist motions estimated
by MMs using data collected from non-disabled (ND) subjects,
followed by an online virtual hand posture matching task

with additional ND subjects and a subject with a transradial
amputation. Our results suggest that personalizing a generic
MM, either with our RL MM or SA MM, can improve offline
and online performance by similar amounts. However, the
RL personalized MMs significantly faster than SA. Thus, this
proposed framework may be considered as a potential option
for efficient personalization of EMG-driven MMs designed for
prosthesis control in daily practice. This concept of using a
machine learning agent can be implemented with a variety
of possible training algorithms and feature extraction methods
and applied to a range of different MMs including both upper
and lower limb models. In the future, this framework may be
also extended to other rehabilitation applications of MMs in
which model personalization is essential.
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