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Abstract—The concept of utilizing computer vision to aid in
the control of prosthetic limbs has been explored in recent
studies. However, many computer vision systems are challenged
by noisy and cluttered backgrounds in realistic scenarios. In this
study, we investigated the feasibility of using a state-of-the-art
object detection model (YOLOv8) to identify objects grasped
by a myoelectric prosthetic hand. A custom model was trained
to recognize various types of cups and was integrated with an
EMG-based prosthesis controller. The classification accuracy of
the model during an object grasping task with a human subject
was approximately 93%. Predictions of grasped objects will be
used in future work to adjust the parameters of a grip force
controller for a prosthetic hand based on the detected object’s
properties.

I. INTRODUCTION

The human hand has characteristically high levels of dex-
terity, allowing stable grasping of various types of objects to
be achieved. In the planning phase of object grasping, visual
perception of the properties of an object (e.g., shape, size,
orientation, density, etc.) allows a person to optimally preshape
their hand [1] and apply an anticipatory initial grip force [2].
Following a successful initial grasp, mechanoreceptors in the
skin provide feedback of information such as pressure and
slip [3], which enable continuous corrective adjustments in
grip force. However, these capabilities are disrupted when an
upper limb amputation takes place.

Several advancements in this field have been made toward
reliable and intuitive prosthetic devices. Conventional robotic
upper-limb prostheses are controlled by activating motors
in the device proportional to electromyography (EMG) sig-
nals produced by residual muscles [4]. EMG-based pattern
recognition, focused on decoding discrete movements such
as hand open/close gestures [5, 6], represents the current
state-of-the-art control of these devices. Furthermore, machine
learning [7, 8] and neuromusculoskeletal modeling [9, 10]
have been explored in recent studies for decoding intended
joint kinematics. However, the latency and estimation errors of
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EMG-decoding algorithms make fine force control for object
grasping tasks challenging.

In recent years, the concept of applying autonomous sensing
and control to enhance myoelectric control has gained promi-
nence. The integration of computer vision into upper limb
prosthetics seeks to provide prosthetic arms with a sense of
perception and enable visual context-based decision-making.
Some past studies have incorporated cameras in prosthesis
control and implemented machine learning classification mod-
els to predict grasp patterns from images of targeted objects
[11-14]. The prediction of grasp patterns can be directly ap-
plied to prosthesis control schemes to reduce the physical and
cognitive efforts of planning for object grasping. Furthermore,
it may be possible to estimate additional information from the
predicted object type such as surface material, object weight,
and overall fragility. Although this concept is promising for
improving robotic grasping capabilities, a significant challenge
of many computer vision models is background clutter and
noise. For example, a convolutional neural network designed
to predict a single object class from each image may have
unexpected behavior when multiple object types are simulta-
neously in view of the camera.

In this study, we investigated the capabilities of a modern
object detection model for predicting intended grasping targets
for an upper-limb prosthesis. The model is capable of detecting
multiple objects in a single image and output the predicted
class and location in the image of each. We first trained the
model to detect various types of common cups and imple-
mented a simple strategy for selecting the most probable target
object class at the time of grasping. Next, we integrated the
model with an EMG-based prosthesis controller in a complete
grasped object classification system, which was implemented
by mounting a webcam on a prosthetic hand. Finally, we
evaluated the capability of the system in predicting the types
of grasped cups with experiments with a human subject. This
system will be used in our future work to select optimal
parameters for a grip force controller based on predicted object
material and fragility.20
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II. METHODS

A. Object Detection Model

Various object recognition systems have been developed
in recent years. This study uses the You Only Look Once
(YOLO) model, which is capable of object detection and
classification. This model was chosen because of its ability
to output classifications of multiple objects in a single image,
apply bounding boxes to each detected object, and provide a
confidence score for each detected object at a speed sufficient
for real-time video processing. The main details of the model
implementation can be found in the original publication [15].
In this study, we used YOLOv8 released by Ultralytics [16].

B. Dataset

To implement the proposed system, we focused on a foun-
dational set of everyday objects: cups. The chosen dataset
consisted of plastic cups, paper cups, foam cups, metal cans,
and water bottles. The image data used to train the model
were collected from two sources: 1662 images were gathered
through manual capture (1188) and web scraping from Google
(474). This dataset was duplicated and random adjustments,
including gamma correction (with gamma values of 0.3 or
3) and random tinting, were applied to enhance dataset ro-
bustness, minimizing color reliance. The total dataset, post-
augmentation, totaled to 3324 images. The dataset was split
into an 80/20 ratio for training (2724 images) and validation
(600 images). Annotation focused on the original dataset,
utilizing Intel’s Computer Vision Annotation Tool for manual
annotation. The augmented dataset annotations were auto-
generated preserving the original bounding box locations.

The YOLOv8m model was implemented using Ultralytics
YOLOv8.0.199, Python 3.11.3, and torch 2.1.2 with CUDA
support on an NVIDIA RTX 3070 Laptop with 8092MiB
VRAM. The training process spanned 200 epochs with a batch
size of 16, taking 5.33 hours to completion.

C. Selection of Target Object

As a new frame was loaded into the model for object detec-
tion, each prediction underwent thresholding at a confidence
level of 0.9. For predictions over the threshold, the object’s
bounding boxes and corresponding centers were also created.
For the prediction with the center of its bounding box was
closest to the center of the image, a counter for that object
type would be incremented. Once a material counter reached
15 frames ( 0.5 seconds), the computer would set the predicted
target object to that object type and reset counters for all
other objects to zero. If no object was detected for 60 frames
( 2 seconds) all counters would reset and the predicted target
object would be set as “unknown.”

D. Integration with Myoelectric Prosthetic

1) Hardware and Setup: To demonstrate how the object
detection model can be used to predict the type of object last
grasped by a robotic hand, we utilized a 1 degree of freedom
prosthetic gripper (Ottobock, Germany). A miniature load cell
(LLB130, FUTEK Advanced Sensor Technology, Inc., U.S.)

Fig. 1. The hardware used for live testing

was mounted to the thumb of the hand with a 3D-printed
enclosure, and was used to detect object contact signify the
start of object grasping and regulate constant grip force on
grasped objects. A webcam (C920, Logitech) was mounted on
the underside of the wrist and streamed images in at 30 frames
per second to be used as input to the object detection model.
The webcam was connected to a laptop running the object
detection model via USB. An adapter was used to mount the
prosthesis to the upper limb of a subject. This setup can be
seen in Fig. 1.

2) Integration of Object Detection with Prosthesis Control:
To allow a human subject to control the prosthetic hand for
an object grasping task, a simple “on/off” myoelectric control
scheme was implemented. In this controller, two dry bipolar
surface electrodes are placed on the forearm over muscles
that activate during the flexion and extension of the fingers
respectively. Raw EMG signals are recorded at 1000Hz on
an Arduino Due. Muscle activations are then estimated by
calculating the mean absolute value of EMG signals using
a sliding window with a length of 200ms and increment of
10ms and normalizing by the maximum voluntary contractions
(MVC), producing values in the range [0 1]. Three possible
control commands (open hand, close hand, and no movement)
were selected from using the following conditions. If the
flexion muscle activation was simultaneously greater than
the extension muscle activation and 25% of the MVC, the
hand was closed at a constant speed. If the extension muscle
activation was simultaneously greater than the flexion muscle
activation and 25% of the MVC, the hand was opened at a
constant speed. Otherwise, the hand remained stationary.

The Arduino Due simultaneously sampled the values output
from the load cell at 1000Hz. Contact with an object, and thus
the start of object grasping, was detected by a measured force
on the load cell exceeding a threshold of 1N. In the timestep
that object contact was initially detected, the Arduino Due sent
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Fig. 2. Flowchart highlighting the controller used.

a signal to the laptop, which triggered the currently predicted
target object to be saved and the prosthesis controller to
switch to grasping mode in which constant force was applied
by the hand. The object detection model was temporarily
disabled during grasping mode. The prosthesis switched back
to myoelectric control and re-enabled the object detection
model when an “open hand” command was selected by the
subject via EMG signal modulation. A flow chart outlining
the control procedure can be seen in Fig. 2.

E. Human Subject Experiment

Our system was tested with one human subject (male,
age 27, right-hand dominant). The experimental protocol was
approved by the Institutional Review Board at North Car-
olina State University and informed consent was obtained
from the subject for their participation. At the start of the
experiment, the two electrodes were placed on the forearm
over an agonist/antagonist muscle pair located using muscle
palpation, and EMG signals were recorded during the MVC

Fig. 3. Setup of the experiment. Cups used for the grasping task were placed
on the black table. The number and location of background objects behind
the table were randomized in each trial.

Fig. 4. Example frame of what is captured by the webcam during the test.
The numbers under the label indicate the confidence level of that prediction.
The lines represent the distance to each detected object from the center of the
frame. The predicted target object is paper cup.

for normalization. The prosthesis was then mounted to the
subject’s upper limb using the adapter.

The subject then performed five trials of an object grasping
task. Before each trial, five random cups (one from each of the
previously described classes) were placed on a table in front of
the subject. Additionally, to create a cluttered background to
test the robustness of the object detection system, other cups
were placed in the background behind the table. The number,
type, and location of cups in the background were randomized
before each trial. During trials, the subject was asked to briefly
grasp and release cups with the prosthesis. For each trial, each
cup was grasped three times for a total of 15 grasps per trial
and 75 grasps total for all five trials. The order in which cups
were grasped was randomized and read to the subject by a
researcher during each trial. The setup of the experiment is
shown in Fig. 3. The predictions of grasped cups made by the
object detection model were saved and compared to the actual
grasped cups to quantify the performance of the system.
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Fig. 5. Confusion matrix showing the predictions made during the cup
grasping task.

III. RESULTS/DISCUSSION

An example frame captured by the webcam with predictions
made by the object detection model is shown in Fig. 4.
The custom YOLOv8 model trained on our cup dataset was
able to accurately detect the types and locations of cups
in a realistically cluttered environment. Notably, it can be
seen that the model was capable of distinguishing between
foam and paper cups of similar shapes and colors. This is
due in part to the data augmentation procedures described
previously. Additionally, while both the actual targeted cup
and cups placed in the background are accurately detected,
the bounding boxes produced by the object detection model
enable a simple distance-based method of method of selecting
correct predictions.

The ability of the system to predict the types of grasped cups
across all trials is shown by the confusion matrix in Fig. 5. The
overall real-time classification accuracy was approximately
93%. This result is comparable to the classification accuracy
reported by a related study which used a convolutional neural
network to predict one of four possible grasping patterns for a
myoelectric hand from webcam images of household objects
[11].

This study was intended as a proof of concept for a com-
puter vision system that can be used in myoelectric prostheses.
The limitations of the methods presented in this paper include
the low number of cup types that our custom object detection
model was trained on. However, the original paper introducing
YOLO included 20 classes [15]. Thus it is likely that it will be
possible to implement a model capable of detecting a larger
number of types of grasped objects going beyond the cups
included in this study, but will require a much larger image
data collection effort.

CONCLUSION

In this study, we evaluated the feasibility of a state-of-the-
art computer vision object detection model for predicting the

object grasped by a myoelectric prosthetic hand. In our future
work, we intend to use the predictions of currently grasped
objects in the grip force controller for the myoelectric hand.
One possible approach is setting an anticipatory initial grip
force based on the material of the object detected. This robust
approach signifies a jump toward seamless human-machine
interaction, making prosthetics more efficient, intuitive, and
versatile.
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