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ABSTRACT The glassy-winged sharpshooter, Homalodisca vitripennis Germar, is an
invasive xylem-feeding leafhopper with a devastating economic impact on California
agriculture through transmission of the plant pathogen, Xylella fastidiosa. While studies
have focused on X. fastidiosa or known symbionts of H. vitripennis, little work has
been done at the scale of the microbiome (the bacterial community) or mycobiome
(the fungal community). Here, we characterize the mycobiome and the microbiome
of H. vitripennis across Southern California and explore correlations with captivity and
host insecticide resistance status. Using high-throughput sequencing of the riboso-
mal internal transcribed spacer 1 region and the 16S rRNA gene to profile the myco-
biome and microbiome, respectively, we found that while the H. vitripennis mycobiome
significantly varied across Southern California, the microbiome did not. We also observed
a significant difference in both the mycobiome and microbiome between captive and
wild H. vitripennis. Finally, we found that the mycobiome, but not the microbiome,
was correlated with insecticide resistance status in wild H. vitripennis. This study serves
as a foundational look at the H. vitripennis mycobiome and microbiome across South-
ern California. Future work should explore the putative link between microbes and
insecticide resistance status and investigate whether microbial communities should be
considered in H. vitripennis management practices.

IMPORTANCE The glassy-winged sharpshooter is an invasive leafhopper that feeds on
the xylem of plants and transmits the devastating pathogen, Xylella fastidiosa, resulting
in significant economic damage to California’s agricultural system. While studies have
focused on this pathogen or obligate symbionts of the glassy-winged sharpshooter,
there is limited knowledge of the bacterial and fungal communities that make up its
microbiome and mycobiome. To address this knowledge gap, we explored the composi-
tion of the mycobiome and the microbiome of the glassy-winged sharpshooter across
Southern California and identified differences associated with geography, captivity, and
host insecticide resistance status. Understanding sources of variation in the microbial
communities associated with the glassy-winged sharpshooter is an important consider-
ation for developing management strategies to control this invasive insect. This study
is a first step toward understanding the role microbes may play in the glassy-winged
sharpshooter’s resistance to insecticides.
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HostListCommon.pdf). GWSS is the primary vector in California of the bacterial
pathogen, Xylella fastidiosa Wells, the causal agent of several important diseases
in economically important agricultural plants including grapes, peaches, citrus, and
almonds (1). Like many xylem-feeding insects, GWSS relies on two obligate bacterial
symbionts, Candidatus Sulcia muelleri and Candidatus Baumannia cicadellinicola, for
biosynthesis of essential amino acids, which are limited in its xylem-based diet (2-8).
Additionally, the facultative symbiont, Wolbachia sp., has been reported as abundant
in GWSS (2, 8-13). Despite detailed investigations into the obligate bacterial symbionts
of GWSS and its association with X. fastidiosa, comparatively little is known about the
overall microbiome of GWSS, and little has been reported about the composition of the
mycobiome.

Native to southeastern USA and northeastern Mexico, GWSS was introduced to
California in the 1990s (14-16). Since its introduction, area-wide treatments of insec-
ticides, particularly the systemic neonicotinoid insecticides, imidacloprid and acetami-
prid, have been used to control these invasive insects with some success (17, 18).
However, starting in 2012 the effectiveness of population control by these insecticides
appeared substantially weakened (19, 20), with documented instances of neonicotinoid
applications leading to high levels of insecticide resistance in some Southern California
populations resulting in GWSS population resurgence (21, 22). Insecticide resistance
usually involves multiple coexisting mechanisms spanning behavioral (e.g., avoidance)
and physiological processes (e.g., cuticle modifications and detoxification) (23-25),
and studies have proposed a novel role for symbionts and other associated microbes
in detoxification of insecticides for their associated hosts (26-31). Recent studies on
Southern California GWSS populations have identified both trade-offs in host reproduc-
tive fitness associated with resistance (32) as well as host genes that may play a role in
conferring resistance (33). However, the possible role of the microbiome and mycobiome
in the resistance of these GWSS populations has yet to be fully explored.

Bacteria can have critical functional roles that affect host insect fitness, ranging
from pathogenicity to positive benefits such as enhancing nutrient acquisition (e.g.,
obligate symbionts) and protection from pathogens or other stressors via detoxifica-
tion of phytotoxins and insecticides (34, 35). Previous GWSS microbiome studies have
reported bacterial communities dominated by obligate symbionts, followed by members
of the genera, Wolbachia, Xylella, Cardiobacterium, Pectobacterium, Serratia, Pseudomo-
nas, Pantoea, Ralstonia, Bacillus, Pedobacter, Methylobacterium, and Curtobacterium (11—
13, 36, 37). While the functional role of many of these taxa has yet to be elucidated,
these foundational studies suggest major factors affecting the composition of the GWSS
microbiome may include geography, host plant, and insect developmental stage (12, 36).

In contrast to bacteria, fungi are an underappreciated part of insect-associated
microbial communities (35) and there have been no studies profiling the GWSS
mycobiome using culture-independent approaches. Instead, previous studies have
focused on identification of entomopathogenic fungi that can infect GWSS for use
in population management through biocontrol including Hirsutella homalodiscae,
Pseudogibellula formicarum, Metarhizium anisopliae, Sporothrix sp., Beauveria bassiana,
and Isaria poprawskii (38-43). Fungi can inhabit multiple ecological niches, and not all
insect-associated fungi are pathogens (44, 45). For example, yeast-like symbionts (YLS)
have been previously identified in the fat body of other Hemipteran insects includ-
ing cicadas, scales, and planthoppers (46-50). These YLS can even provide nutritional
benefits to planthoppers given their nutritionally limited diets (51). While YLS have not
been reported yet in GWSS, it is possible that fungal community members are capable of
forming similarly important and complex roles in association with GWSS.

Given what little is known about the factors shaping the microbial communities of
this invasive pest insect, we characterized the taxonomic composition of the mycobiome
and the microbiome of GWSS in Southern California using high-throughput ampli-
con sequencing. We addressed three ecological questions related to these microbial
communities: (i) do these communities vary across geographic regions, (ii) does captivity
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correlate with a shift in these communities, and (iii) can we detect a microbial signal
correlated with host insecticide resistance status in wild GWSS that might be useful for
understanding and identifying resistance of the host insect population?

RESULTS
Taxonomic composition of the myco- and microbiome of GWSS

The mycobiome was largely dominated by Ascomycota, particularly members of the
genera Cladosporium, Alternaria, Fusarium, Acremonium, Ramularia, and Neodidymel-
liopsis (Fig. 1A). Amplicon sequence variants (ASVs) that were unable to be taxonom-
ically classified into genera were also prevalent in the mycobiome. Additionally,
one captive line [Kern County (RES)] showed evidence of a possible enrichment
of Golovinomyces, while three of the captive lines had low relative abundance of
Basidiobolus sp.

Overall, the microbiome had significantly lower Shannon alpha diversity compared
with the mycobiome (K-W test; P < 0.01) and was dominated by known obligate
symbionts, Ca. Baumannia cicadellinicola and Ca. Sulcia muelleri, and the facultative
symbiont Wolbachia sp. (Fig. 1B). While facultative, Wolbachia spp. were detected in
96.6% of sampled GWSS microbiomes. Despite symbiont dominance, we still observed
other bacterial genera at lower relative abundances in the microbiome including
Limnobacter, Acinetobacter, Methylophilus, and Pseudomonas.

Only the mycobiome differs across Southern California

Mycobiome beta diversity was significantly different between populations and regions
across Southern California as well as over time (Fig. STA; PERMANOVA, P < 0.01). Pairwise
contrasts found all regional comparisons to be significantly different from each other
with two exceptions, San Diego versus Riverside and Kern County versus Tulare (Table S1;
P > 0.05). Additionally, we found significant differences in dispersion between popula-
tions, regions, and time (betadisper, P < 0.01). These were driven by most regions having
higher variance than San Diego and Ventura, possibly due to the smaller sample sizes of
those regions (Table S2; Tukey, P > 0.05). No significant differences were found in alpha
diversity across populations or regions (Fig. S2A; Kruskal-Wallis, P > 0.05).

While we found differences in the mycobiome that correlated with the geographic
region, we did not find significant differences in beta diversity across populations,
regions, or time in the microbiome (Fig. S1B; PERMANOVA, P > 0.05). There were also
no significant differences in dispersion across populations, regions, or time (betadisper,
P > 0.05). Similar to the mycobiome, we did not find any differences in alpha diversity
across populations or regions for the microbiome (Fig. S2B; Kruskal-Wallis, P > 0.05).

Both the myco- and microbiomes are altered during captivity

We observed significant differences in beta diversity in terms of mean centroids and
mean dispersion between captive and wild populations in both the mycobiome and
microbiome (Fig. 2; PERMANOVA, P < 0.01). However, we found no significant differen-
ces in alpha diversity associated with captivity for either (Fig. S3; Kruskal-Wallis, P >
0.05). When looking for ASVs that significantly differed with captivity using DESeq2, we
found 21 fungal ASVs and 1 bacterial ASV that significantly decreased in abundance
in captive individuals compared with their wild counterparts (Fig. 3; Table 1). Fungal
ASVs with the largest log,fold changes include members of the genera Neodidymelliop-
sis, Aureobasidium, Neosetophoma, Dioszegia, Metschnikowia, Cladosporium, Buckleyzyma,
and an unclassified Cystobasidiomycetes species. For those ASVs with predicted fungal
trophic modes, the majority were saprotrophic, with only a few ASVs having insect- or
plant-pathotrophic predictions. The single bacterial ASV with a moderate decrease in
abundance represents Staphylococcus aureus. We identified no ASVs in the mycobiome or
microbiome with increased abundance in captive individuals.
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FIG 1 Mean relative abundance of genera associated with captive and wild GWSS populations. Stacked bar charts displaying the mean relative abundance

of (A) ITS1 and (B) 16S rRNA gene ASVs for each population (collection site) colored by predicted genera. Genera representing less than 5% mean relative

abundance across the data set are collapsed for visualization purposes into a single group labeled “Other”. The number of insects summarized per population is

as follows: Kern County (RES): nirs = 5, n1¢s = 6; Kern County (SUS): nits = 3, n1es = 5; Riverside (SUS): nits = 5, n16s = 4; Riverside (G1): nits = 5, n1¢s = 6; San Diego:

nits = 3, N1gs = 3; Temecula: nits = 12, nqgs = 13; Riverside: nits = 7, n1gs = 4; Ventura: nits = 6, n1gs = 6; Kern County (General Beale): niys = 11, nqgs = 9; Kern

County (Edison): nirs = 5, n1gs = 6; Kern County (Urban Site): nits = 4, n1gs = 2; Tulare (RES): ni1s = 3, n1gs = 3; and Tulare (SUS): njts = 6, n1gs = 7.
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Possible evidence of microbial signal of host insecticide resistance in myco-
or microbiomes

When testing for an association between community structure and host insecticide
resistance status, we found significant differences in beta diversity for the mycobiome
(Fig. S4; PERMANOVA, P = 0.02) but not the microbiome (P > 0.05). Host insecticide
resistance status explained a smaller proportion of mycobiome variation (R* = 0.05)
compared with the variation explained by the geographic region (R* = 0.15) or collection
year (R? = 0.12). Further, for both the myco- and microbiomes, we found no differences
in dispersion (betadisper, P > 0.05) or alpha diversity associated with host insecticide
resistance status (Fig. S5; Kruskal-Wallis, P > 0.05).

While we only detected a possible association with host insecticide resistance status
in the overall community structure of the mycobiome, we still attempted to identify
specific ASVs in both the microbiome and mycobiome that might correlate with host
insecticide resistance status using DESeq2. We identified significant log,fold change
differences that were associated with host insecticide resistance status in 13 ASVs in
the mycobiome and 3 ASVs in the microbiome (Fig. 4; Table 1). Seven fungal ASVs
were higher in abundance on resistant individuals, with the largest log,fold changes
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FIG 2 Community structure differs across geography and captivity. Principal-coordinate analysis (PCoA) visualization of Hellinger distances of (A) fungal and

(B) bacterial communities. Individual GWSS are colored by population (collection site), with wild populations ordered by latitude and followed by captive

populations, and have shapes based on captivity status.
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FIG 3 Differentially abundant ASVs associated with captivity status. Log,fold changes of significantly differentially abundant ASVs associated with captivity

status, colored by logsfold change, and labeled by ASV and putative genera. For ITS1 ASVs, predicted trophic modes from FUNGuild are shown as shapes.

A positive logofold change indicates the ASV had higher abundance in captive individuals, while a negative log,fold change indicates it was higher in wild

individuals. Full taxonomy for each ASV can be found in Table 1.

observed from ASVs representing the genera Alternaria and Pseudopithomyces, while
six fungal ASVs were higher in abundance on susceptible individuals with the largest
log,fold changes in the genera Lophiostoma, Filobasidium, and Paramyrothecium. For
ASVs with predicted fungal trophic modes, the majority were animal or plant patho-
trophs, with some having saprotroph predictions. One bacterial ASV, representing the
genus Enterococcus, was enriched in abundance on resistant individuals, while two
bacterial ASVs, representing the genus Limnobacter and an unclassified member of the
Micromonosporaceae family, were enriched on susceptible individuals.

DISCUSSION

This study is the first to characterize the mycobiome of GWSS, and the first to profile
both the microbiome and mycobiome across Southern California. We found that the
mycobiome was dominated by putative plant pathogens and saprotrophs, while the
microbiome was dominated by obligate and facultative symbionts. While the structure
of the mycobiome varied across Southern California, the structure of the microbiome
did not. Further, we observed a correlation between captivity and the structure of both
the mycobiome and microbiome and identified specific ASVs that were enriched in wild
individuals versus their captive counterparts. Finally, we found that the structure of the
mycobiome, but not the microbiome, was correlated with host insecticide resistance
status in wild GWSS, and we were able to identify members of both the mycobiome
and microbiome that significantly varied in relative abundance with host insecticide
resistance status.

The microbiome is dominated by obligate and facultative symbionts and is
less diverse than the mycobiome

Obligate symbionts, Ca. Baumannia cicadellinicola and Ca. Sulcia muelleri, and the
facultative symbiont Wolbachia sp. were the most abundant bacteria in the microbiome
(Fig. 1B). Given their importance to host metabolism, obligate symbionts have unsur-
prisingly been reported to dominate the bacterial community in other GWSS micro-
biome studies (12, 37). While GWSS is known as a vector of X. fastidiosa, no ASVs
representing Xylella were detected in the microbiome here, possibly due to our choice to
sample whole insects. Our results are similar to other work from whole insects (11) but
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FIG 4 Differentially abundant ASVs associated with host insecticide resistance status. Log,fold changes of significantly differentially abundant ASVs associated

with host insecticide resistance status of wild sharpshooters, colored by log,fold change, and labeled by ASV and putative genera. For ITS1 ASVs, predicted

trophic modes from FUNGuild are shown as shapes. A positive log,fold change indicates the ASV had higher abundance in insecticide resistant hosts, while a

negative log,fold change indicates it was higher in insecticide-susceptible hosts. Full taxonomy for each ASV can be found in Table 1.

contrast with results from dissected foregut tissues (13). Despite being only a facultative
symbiont, Wolbachia spp. were detected in the majority (96.6%) of insects, which is
similar to the high prevalence reported in other studies (12, 13). Given the impact of
Wolbachia sp. on reproductive fitness of insects in other species, its prevalence here in
invasive GWSS in Southern California may be worth taking into account when consider-
ing GWSS biocontrol (52, 53).

While symbionts dominated the bacterial community, we also observed low
abundances of other genera including Limnobacter, Acinetobacter, Methylophilus, and
Pseudomonas, many of which have been reported in association with GWSS previously
(12, 13, 36). It has been suggested that these other taxa may be locally acquired through
travel to and feeding on local plant hosts (12). For example, Pseudomonas has been
proposed as a core member of the grape endosphere (54). However, we found no
evidence of an association between the geographic region and microbiome structure
here similar to what has been found in studies of other invasive GWSS in California
(13), but different from what has been reported for native GWSS in Texas (12). We also
found that the microbiome was less diverse than the mycobiome, which is consistent
with descriptions from other insects including planthoppers and caterpillars (55, 56).
Even so, these findings may in part be due to the dominance of obligate and faculta-
tive symbionts, which are vertically transmitted, masking our ability to detect patterns
occurring with locally acquired genera. Additionally, we did not surface sterilize insects
as it has been previously reported to not affect microbiome analysis (57); however, it is
not clear how or if this might affect mycobiome analysis. Follow-up work should consider
testing the effect of surface sterilization on the insect mycobiome and consider the use
of gut dissections or whole-body swabs to potentially avoid sequencing of symbionts.

Mycobiome varies across regions and may reflect local environment

In contrast with the microbiome, we found that the structure of the mycobiome was
variable across geographic regions. A similar pattern has previously been reported for
invasive beetles, where the local habitat was found to strongly correlate with mycobiome
structure (58), as well as for planthopper mycobiomes, which have been reported to
vary across sampling sites (56). The taxonomic composition of the mycobiome appears
dominated by putative plant- and soil-associated pathogens and saprotrophs, similar
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to findings from planthoppers where it has been suggested that the mycobiome is
acquired from the environment (59). In support of this, a majority of the fungal genera
found associated with GWSS here have also been previously reported in association
with plants and rhizosphere soil in vineyards and orchards (54, 60-66), and the vineyard
mycobiome has been found to also vary with geography (67). Thus, the prevalence
of putative plant-associated fungi in the GWSS mycobiome suggests a possible role
for diet as a critical origin source for the fungal community of insects (59); however,
a study comparing the caterpillar-gut mycobiome to leaf communities found them to
be distinctly structured, as compared with the caterpillar microbiome which has been
reported to mirror its diet, indicating that diet alone may not fully explain mycobiome
acquisition in pest insects (55, 68). Other factors might contribute to differences across
geographic regions, for example, local environmental conditions (e.g., temperature,
humidity, and elevation) or host genetics. Though in GWSS, host genetics may only
play a small role as no population structure has been detected in Southern California
populations possibly due to their relatively recent introduction (33). Future studies
should incorporate local environmental data, as well as collect possible dietary sources,
to help identify the most important factors driving these regional patterns.

Captivity may lead to differences in both the myco- and microbiomes

Many studies have reported microbial community differences related to captivity in
mammals (69, 70), birds (71, 72), amphibians (73, 74), and also insects including beetles
(75), armyworms (76), and fruit flies (77). Often, these studies report a reduction of
alpha diversity (78, 79), which we did not observe here; instead, we found a reduction
of specific ASVs associated with captivity (Fig. 3). Captivity involves changes in many
factors which likely impact microbial communities, including dietary restrictions, habitat
changes (e.g., enclosed space, stable temperature, and constant light), reduced species
interactions, and exposure to human-associated microbes. Associations between the
microbiome and captivity have been suggested to be due to the changes in diet,
behavior, and environment compared with wild individuals (78-80). Given our findings
on the possible link between the mycobiome and local habitat, it is possible the fungal
taxa observed to be less abundant here are simply missing from the captive diet or
habitat, which is limited in comparison to their wild counterparts. Most of the fungal
genera identified as having lower abundance in the captive populations have been
reported as putative plant saprotrophs (81, 82), insect pathogens (83), plant surface
associated (84, 85), or phytopathogens, including roses (82, 86), citrus (87), and other
flowering plants (88). Therefore, it is certainly possible that captive GWSS are not being
exposed to these fungal sources, and thus, that is the reason these specific ASVs are
lower in abundance in captive GWSS. Future work could test the effect of altered diet
on fungal community assembly in GWSS through dietary manipulations in captivity to
assess the utility of GWSS as a possible indicator species of plant fungal disease in wild
populations.

In the microbiome of captive individuals, we saw only a significant, but relatively
small, reduction in Staphylococcus, which has been previously part of the natural
microbiome of the sharpshooter, Acrogonia citrina (89). In contrast to our findings,
Staphylococcus was found to be higher in abundance in captive beetles compared with
their wild counterparts (75). While it is unclear why Staphylococcus is lower in abundance
in captive GWSS, it is possible that similar to the mycobiome, this change relates to a
captive diet or environment. Given the changes in the myco- and microbiomes between
captive and wild populations, future work should consider these microbial communities
in any future GWSS biocontrol strategies and investigate possible benefits of “rewilding”
these communities with environmentally acquired microbes prior to release (90, 91).
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Members of the myco- and microbiomes are correlated with host insecticide
resistance status

Here, we found evidence of a link between mycobiome structure and host insecticide
resistance status and were able to identify specific ASVs in both the bacterial and fungal
communities that correlated with host insecticide resistance status. Similar correlations
between host insecticide resistance and the microbiome has been previously reported
in the brown planthopper (92), the cotton bollworm (93, 94), mosquitoes (95), and
cockroaches (96). Many of the fungal ASVs that correlated here with host insecticide
resistance status are predicted to be plant associated or phytopathogens (66, 86, 97,
98), again indicating the possible importance of environmental acquisition through
shared space or diet. Given that historical use of insecticides against GWSS in Southern
California has involved area-wide treatments (17, 18), the plant-associated microbes in
these regions are also being subjected to these insecticides; thus, it is possible that these
microbes are more abundant on leaves in these regions given their own ability to resist
or detoxify these compounds, and GWSS may just be acquiring them from the local
environment.

While the overall microbiome structure was not correlated with host insecticide
resistance status, we did identify a few bacterial ASVs with differential abundance
between resistant and susceptible GWSS. Of these, most have been previously reported
in insect guts (99-101). However, only Enterococcus was found to be in higher abundance
in insecticide resistant GWSS microbiomes. In diamondback moths, Enterococcus spp.
were found to enhance insecticide resistance, which the authors hypothesized was due
to gut bacteria preventing or restoring damage done to the host immune system by
insecticides (27). It is possible that Enterococcus has a similar beneficial role here for
GWSS. While only a subset of insects in this study was directly assayed for insecticide
resistance, it is possible that the insecticide application itself may have an unappreciated
effect on the GWSS myco- and microbiomes of those individuals. Therefore, future work
should isolate the bacteria and fungi from GWSS and host plants from insecticide-resist-
ant locations and assess whether these microbes confer resistance in vitro and then
whether they confer resistance after inoculation into sharpshooters in vivo.

Conclusion

Overall, this study surveys the microbiome and mycobiome associated with invasive
GWSS from across Southern California, serving as the first characterization of the fungal
community associated with GWSS. We identified significant differences in community
structure between locations for the mycobiome, but not the microbiome, indicating
environmental acquisition, possibly through diet, of the GWSS fungal community. We
also found that captivity is correlated with changes in the structure of the fungal and
bacterial communities associated with GWSS, with some members of the communities
found to be less abundant in captive populations. We found a potential association
with host insecticide resistance status and mycobiome structure in wild GWSS and
were able to identify specific ASVs correlated with host insecticide resistance status in
both the microbiome and mycobiome. This study provides foundational insight into
the mycobiome and microbiome of GWSS across Southern California and serves as
additional support for a growing body of literature surrounding the effects of captivity
on host-associated microbial communities. The differences in the microbial communities
between field and laboratory-reared GWSS will be an important consideration in genetic
control-based strategies in which gene-edited, laboratory-reared GWSS should not be at
a competitive disadvantage to the target field population. Finally, this work identifies a
possible link between members of both the bacterial and fungal communities and host
insecticide-resistance status which should be explored further.
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MATERIALS AND METHODS
Sample collection

Wild-caught GWSS were collected between 2017 and 2022 during insecticide resistance
monitoring work [i.e., (21)] from nine populations spanning six geographic regions across
Southern California (Fig. S6). Captive lines representing GWSS collected from three of
these populations were maintained, and individuals from these lines were sacrificed in
2022 for use here. In total, 87 GWSS were sampled, representing 63 opportunistically
caught wild GWSS and 24 captive GWSS (Table 2). In addition to captive GWSS from the
three long-term captive lines, we also sampled members of a newly established line of
first-generation (G1) offspring from a wild-caught individual from Riverside. GWSS were
sexed during collection or prior to processing (female = 49, male = 38). The imidacloprid
resistance status is known for 53 of these GWSS including individuals from five wild
populations (representing three geographic regions) and individuals from three captive
lines (Table 2). Imidacloprid status assays were performed as described in Ettinger et al.
(33). Imidacloprid-resistance assays were carried out directly on all GWSS from Tulare
(RES) and GWSS collected in 2020 from Kern County (General Beale); briefly, GWSS
were treated with 500 ng imidacloprid to confirm resistance, and healthy survivors
(resistant GWSS) were used here. While for all other populations with individuals of
known imidacloprid-resistance status [Tulare (SUS), Kern County (Urban Site), individuals
collected in 2019 from Temecula and Kern County (General Beale), and all captive lines],
a proportion of collected GWSS were tested with imidacloprid to confirm susceptibility
levels and untreated GWSS from the same collections were used here. Insects were
stored in RNAlater (ThermoFisher Scientific, Waltham, MA, USA) or 200 proof ethanol and
kept at —20°C prior to processing.

Molecular methods and sequence generation

DNA was extracted from GWSS and control samples (ngwss = 79, Ncontrol = 6) Using
a DNeasy PowerSoil DNA Isolation Kit (Qiagen, Germany) with minor changes to the
manufacturer’s protocol as follows. To improve fungal lysis, samples were heated at 70°C
for 10 min after adding C1 solution. Instead of bead beating, samples were vortexed for
10 min following manufacturer instructions. Finally, samples were eluted in only 50 pL of
C6 solution. Insects were removed from 1.5-mL tubes using flame-sterilized tweezers and
sexed, and entire insect bodies were placed directly into DNeasy PowerSoil bead tubes
prior to DNA extraction. No surface sterilization was performed as it has been previously
reported to not affect insect microbiome community structure (57). Samples were placed
into four randomized blocks prior to DNA extraction using a random number generator.
DNA extraction was also performed on three no-sample added (negative) and three
ZymoBIOMICS Microbial Community Standard (positive) controls (Zymo Research, Irvine,
CA, USA). DNA from an additional eight GWSS had been previously extracted using the
Blood and Tissue Kit (Qiagen) according to the manufacturer instructions.

Using a random number generator, DNA extracts were randomly assigned places in
a 96-well plate. Three wells for PCR-negative controls (no DNA added) were included
in the 96-well plate design. The ribosomal internal transcribed spacer 1 (ITS1) region
was amplified using the fungus-specific Earth Microbiome Project (EMP) IT1F and ITS2
primer set (102, 103), and the 16S ribosomal RNA (rRNA) gene was amplified using
the EMP 515F (Parada) and 806R (Apprill) primer set (104, 105). PCRs were performed
using Platinum Hot Start PCR Master Mix (2x) (ThermoFisher Scientific). For the ITS1
amplicon, duplicate PCRs for each sample were performed in 96-well plate format using
the following EMP protocol conditions: 94°C for 1 min, 35 cycles at 94°C for 30 s, 52°C
for 30 s, 68°C for 30 s, and a final extension at 68°C for 10 min. For the 16S rRNA
amplicon, duplicate PCRs for each sample were performed in 96-well plate format using
modified EMP protocol conditions: 94°C for 3 min, 35 cycles at 94°C for 45 s, 78°C for
10 s, 50°C for 60 s, 72°C for 90 s, and a final extension at 72°C for 10 min. PCR conditions
of the 16S rRNA gene were modified from the EMP protocol to enable inclusion of
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a clamping step with mitochondrial PNA (PNABio, Newbury Park, CA, USA) to reduce
GWSS mitochondrial amplification. Duplicate PCRs were combined prior to clean up and
normalization with a SequalPrep Normalization Plate kit (ThermoFisher Scientific)
following the manufacturer’s instructions using 25 pL of PCR product per sample. After
clean up and normalization, 5 pL from each well was pooled to make the final library for
sequencing. Libraries were sequenced at the University of California, Riverside Genomics
Core Facility on an lllumina MiSeq (lllumina, San Diego, CA, USA). The ITST amplicon
library was sequenced to produce 250-bp paired-end reads, and the 16S rRNA gene
amplicon library was sequenced to produce 300-bp paired-end reads.

Sequence processing

Primer sequences were removed using cutadapt v. 2.3 (106). Figaro was run to inform
optimal values for max error and truncation parameters prior to running DADA2 in
R (107-109). For the ITS1 amplicon, reads were processed with maxEE=c (3, 3) and
truncQ=10 but were not truncated further due to ITS1 length variation. For the 16S
rRNA gene amplicon, reads were processed with maxEE=c (1, 2), truncLen=c(240,111),
and truncQ=10. Reads were then denoised and merged using DADA2 to generate
count tables of amplicon sequence variants. Chimeric sequences were removed using
removeBimeraDenovo (1.35% of ASVs for ITS1 region, 1.58% of ASVs for 16S rRNA gene).

After chimera removal, samples had an average read depth of 24,600 (range: O-
76,922) for the ITS1 region and an average read depth of 35,947 (range: 855-84,253) for
the 16S rRNA gene amplicon data. Taxonomy was inferred using the RDP Naive Bayesian
Classifier algorithm with the UNITE (v. 9 “fungi”) database for ITS1 region amplicons
which was modified to include host sequences and the SILVA (v. 138) database for 16S
rRNA gene amplicons (110-113).

To identify possible contaminants, we used decontam’s prevalence method with a
threshold of 0.5, which will identify ASVs with a higher prevalence in negative controls
than in true samples (114). This threshold identified 36 and 318 possible contaminants
in the ITS1 region amplicon and 16S rRNA gene amplicon data, respectively. These
contaminant ASVs were removed from the final data sets, and negative and positive
controls were subsequently removed at this point in the analysis. Further, for the ITS1
region amplicons, all ASVs taxonomically assigned as nonfungal at the domain level were
removed. While, for the 16S rRNA gene amplicons, all ASVs assigned as chloroplasts and
mitochondria were removed. The resulting count tables contained 1,812 ASVs represent-
ing 86 GWSS samples for the ITST amplicons and 2971 ASVs representing 87 GWSS
samples for the 16S rRNA gene amplicons. One sample (GW007) was dropped when
analyzing ITS1T amplicons as it contained 0 reads after processing.

For relative abundance and alpha and beta diversity analyses, count tables were
normalized for sequencing depth by subsetting without replacement to 2,000 and
6,000 sequences per sample for ITST and 16S rRNA gene amplicons, respectively. This
resulted in 11 and 10 samples for the ITS1 and 16S rRNA gene data sets, respectively,
being excluded from rarified analyses. Rarefaction depths were chosen after examining
rarefaction curves and library sizes to balance maintaining the maximum number of
sequences per sample while also minimizing the number of removed samples. When
testing hypotheses about biogeography, the amplicon data sets were subset to only
samples from wild GWSS (njs = 57, n1gs = 56). When testing hypotheses about captivity
and sex, all GWSS were included (njts = 75, n1gs = 77). Finally, when testing hypotheses
about resistance status, only wild GWSS with a known resistance status were used (nts =
30, Nyes = 28).

Relative abundance

To visualize community composition across captivity and populations, we transformed
rarified read counts from all GWSS samples to proportions and collapsed ASVs into
taxonomic genera using the tax_glom function in the phyloseq package (115). For
visualization, we agglomerated genera with a mean proportion of less than 5% into a
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single “Other” category. For visualization, color palettes from the microshades R package
were used (116).

Diversity analyses

Alpha diversity was calculated for the Shannon index using the estimate_richness
function in the phyloseq R package. To test for significant differences in alpha diversity
across biogeography, captivity, sex, and resistance status, we used Kruskal-Wallis tests
with 9,999 permutations. Post hoc Dunn tests were performed when the Kruskal-Wallis
test resulted in a rejected null hypothesis (P < 0.05). All P-values were corrected for
multiple comparisons using the Benjamini-Hochberg method. Alpha and beta diversity
analyses were visualized using tidyverse (117), ggplot2 (118), vegan (119), and phyloseq
(115) packagesin R.

Beta diversity was calculated for the Hellinger distance using the avgdist function in
the vegan R package by providing the unrarefied data and the desired rarefaction depth
to calculate an average dissimilarity matrix based on 100 random iterations. The ordinate
function in the phyloseq R package was then used to generate principle coordinate
analysis plots from the resulting dissimilarity matrices. To test for significant differences
in beta diversity centroids (i.e, means of each group) across biogeography, captivity,
sex, and resistance status, we performed permutational multivariate analyses of variance
(PERMANOVASs) with 9,999 permutations and by = “margin” using the adonis2 function in
the vegan R package. Collection region and year were included as covariates in models
testing captivity and resistance, while year was included in models testing biogeography.
For significant PERMANOVA results, post hoc pairwise PERMANOVAs were performed
using the pairwise.adonis function from the pairwiseAdonis package in R (120). Further,
since PERMANOVA results have been reported to be sensitive to dispersion (i.e., variance)
differences for unbalanced designs (121), we also used the betadisper and permutest
functions from the vegan package in R with 9,999 permutations to test for significant
differences in dispersion. Post hoc Tukey’s honestly significant difference (HSD) tests
were used to assess which pairwise differences drove significant betadisper results. All
P-values were corrected using the Benjamini-Hochberg method.

Differential abundance analysis using DESeq2

For differential abundance analyses, unrarefied data sets were used. For questions about
captivity, amplicon data sets included all GWSS (njs = 86, nygs = 87), while for questions
about resistance status, only wild GWSS with a known resistance status were used
(mTs = 34, n1gs = 35). To identify specific ASVs correlated with captivity or resistance
status, we used the DESeq2 package on raw read counts to calculate the differential
abundance (log,fold change) of ASVs in both data sets (122). Collection region and
year were included as covariates in both models. All P-values were corrected using the
Benjamini-Hochberg method. ASVs that differed in abundance were visualized using
tidyverse (117), ggplot2 (118), and phyloseq (115) packages in R. We also used FUNGuild
v.1.1 to assign trophic guilds to ITS1 ASVs whose abundance significantly correlated with
captivity or host insecticide resistance status (123).
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