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Abstract— Pedestrian safety is one primary concern in
autonomous driving. The under-representation of vulnerable
groups in today’s pedestrian datasets points to an urgent need
for a dataset of vulnerable road users. To help train well-
rounded self-driving visual detectors and subsequently drive
research to improve the accuracy of vulnerable pedestrian
detection, we first introduce a new dataset in this paper:
the Bowling Green Vulnerable Pedestrian (BGVP) dataset.
The dataset includes four classes, i.e., Children without Dis-
ability, Elderly without Disability, With Disability, and Non-
Vulnerable. This dataset consists of images collected from
the public domain and manually-annotated bounding boxes.
In addition, on the proposed dataset, we have trained and
tested five classic or state-of-the-art object detection models, i.e.,
YOLOv4, YOLOv5, YOLOX, Faster R-CNN, and EfficientDet.
Our results indicate that YOLOX and YOLOv4 perform
the best on our dataset, with YOLOv4 scoring 0.7999 and
YOLOX scoring 0.7779 on the mAP 0.5 metric, while YOLOX
outperforms YOLOv4 by 3.8% on the mAP 0.5:0.95 metric.
Overall, all five detectors do well in predicting the With
Disability class and perform poorly in the Elderly without
Disability class. YOLOX consistently outperforms all other
detectors on the mAP 0.5:0.95 per class metric, obtaining
0.5644, 0.5242, 0.4781, and 0.6796 for the Children without
Disability, Elderly without Disability, Non-vulnerable, and With
Disability categories, respectively. Our dataset and codes are
available at https://github.com/devvansh1997/BGVP.

I. INTRODUCTION

The demand for pedestrian safety has surged in the era of
autonomous vehicles and advanced driver assistance systems
(ADAS). According to a Brookings Institution survey, 61
percent of adult users say they feel “uneasy” in autonomous
vehicles [1]. A self-driving Uber car hit a pedestrian crossing
the street in 2018, resulting in the death of the victim. The
vehicle failed to react swiftly enough to avoid the crash
because the software had incorrectly labeled the pedestrian
as a “False-Positive” [2]. Since 2018, there have been 11
documented instances of Tesla Autopilot causing collisions,
and approximately 37 test car crashes involving Uber, re-
sulting in four fatalities [3]. In the US, 104,000 instances of
pedestrian-related non-fatal accidents were documented in
2020 [4]. People over the age of 65 made up 20 percent of
all pedestrian fatalities in 2020, while 1 in 5 children under
the age of 15 who died in collisions were pedestrians [4].
These incidents underscore the critical need for well-trained
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object detectors that not only cater to average pedestrians but
also to more vulnerable groups.

“Pedestrian” usually refers to a person walking along a
road or in a nearby area. Visual detection of pedestrians
is crucial in autonomous driving. However, deep visual
detectors are at risk of bias and inaccuracies when it comes to
vulnerable groups, as these road users are often underrepre-
sented in popular pedestrian datasets today. The bias against
vulnerable pedestrians stems more from the training data than
from the model architecture itself. While there is a growing
body of works focused on improving model architectures,
few studies address the issue from a data perspective.

Most datasets overlook the vulnerability of pedestrians.
Vulnerable pedestrians are less frequently encountered on
the roads and differ significantly in size and motor abilities.
Many existing datasets fail to acknowledge the differences
and often categorize vulnerable road uses improperly. People
frequently neglect the bias that can arise when using these
datasets to train object detection frameworks. However, it
is those vulnerable groups who need more of our attention.
In light of this, we make two contributions in this work.
A vulnerable pedestrian dataset will be introduced as the
initial contribution, giving the community the resources they
need to work on and enhance the effectiveness of object
detection algorithms for vulnerable pedestrians. Our dataset,
which includes underrepresented vulnerable road users, can
also be utilized as a supplement to current general pedestrian
datasets. The second contribution is that we examine and
benchmark the performance of various cutting-edge detectors
on our new dataset, including YOLOv4 [5], YOLOv5 [6],
YOLOX [7], Faster R-CNN [8], and EfficientDet [9].

II. RELATED WORK

We have observed a rise in datasets targeting specific
categories of objects due to the growing use of object
detection in various automation and security industries. Re-
searchers use these datasets to optimize model performance,
ensuring it performs well on both a wide range of generic
object classes and specific subclasses within these classes.
Pedestrians are one such category relevant to the autonomous
driving industry, where the ability to detect different types of
pedestrians is a critical component of effective self-driving
software.

In [10], Kumar et al. present the P-DESTRE dataset that
uses UAV video surveillance data for pedestrian detection
and tracking. Richly Annotated Pedestrian (RAP) [11] is
an extensive dataset that provides pedestrian data from an
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uncontrolled scene with various viewpoints of the same area.
Aimed at object tracking, [12] provides pedestrian data com-
prised of pedestrians’ and cyclists’ trajectories. OpenPTDS
[13] follows a similar approach where they introduced a
dataset created from real-life experiments. They target the
problem of pedestrian detection from the viewpoint of safety
and security around metropolitan buildings.

The Caltech Pedestrian Dataset [14], which was released
in 2009, is regarded as one of the most popular pedestrian
datasets to date. It includes an annotation tool and a sub-
stantial amount of video footage with annotated frames. In
addition to evaluating the models that were popular at the
time on their dataset, it also provides a new standard for
testing object detection algorithms on pedestrian data. In
[15], a new pedestrian dataset is introduced along with a
per-frame methodology for analyzing scale and occlusion.
Utilizing the thermal channel offers a unique approach to
pedestrian detection in low-light environments, and [16] pro-
vides a dataset of color-thermal paired images. Most existing
datasets focus on ordinary pedestrians, while vulnerable
pedestrians do not receive the necessary attention.

Existing research on vulnerable pedestrian detection pri-
marily focuses on developing systems, algorithms, or models.
Song et al. explore safety advancements and introduce an
action character deduction and analysis module for video
streams that concentrate on vulnerable pedestrians in [17].
Another example is the Pedestrian-Oriented Forewarning
System (POFS) [18], which uses smartphone communication
to detect potential accidents. The paper identifies pedestrians
distracted by their mobile phones as vulnerable and proposes
a system to adaptively alert them.

In summary, existing research in pedestrian detection
either overlooks vulnerable pedestrians or disregards the
impact of data. The lack of a dataset centered on vulnerable
road users leads to biases against vulnerable groups such as
children, the elderly, and individuals with disabilities. In this
paper, we address this issue with a data-centric approach. We
introduce a new dataset BGVP that focuses on vulnerable
pedestrians or road users, rather than average pedestrians.
Our focus is on the vulnerability related to a road user’s age
and physical disability. We hope this new benchmark dataset
will inspire further research in this specific area.

III. BG VULNERABLE PEDESTRIAN (BGVP) DATASET

Vulnerable pedestrians require more attention from self-
driving vehicles. However, their under-representation in most
of today’s pedestrian datasets leads to unfair and discrimina-
tory treatment. This bias has motivated us to create a dataset
specifically focusing on vulnerable pedestrians, namely the
Bowling Green Vulnerable Pedestrian (BGVP) dataset.

Most accidents are caused by human errors, which could
be significantly reduced if autonomous driving becomes
the norm. However, this requires object detectors on self-
driving vehicles to rapidly and accurately detect not only
regular pedestrians but also vulnerable ones, categorizing
them by their type of vulnerability. There is a stark difference
between an elderly disabled pedestrian and a young adult in

their early 20s crossing the road. The vulnerability type is
crucial as it can help estimate a pedestrian’s actions in a
traffic scenario or emergency. For instance, the actions of
a 5-6 year-old child, even when accompanied by an adult,
can be considered unpredictable and risky. Detecting the
child quickly is essential to control speed and predict the
child’s future positions relative to the vehicle. This desirable
behavior necessitates autonomous driving models to train on
a dataset where such vulnerable groups have a significant
presence.

Over the years, many pedestrian datasets have been pub-
lished, but none of them is dedicated to or mention the
vulnerability of pedestrians [15] [10] [19] [11] [20]. We
provide a new dataset that fills this gap and meets this critical
demand. It will enable testing of future object detection
models against it to determine how well a particular model
can learn pedestrian vulnerability.

Before diving into the dataset details, it is essential to
understand the various classes in our dataset and the criteria
for classifying each pedestrian. The bounding box instances
in our dataset are categorized into four groups: “Children
without Disability,” “Elderly without Disability,” “With Dis-
ability,” and “Non-vulnerable.”

• Children without Disability: This vulnerable pedes-
trian class encompasses any pedestrian between 1 to 16
years of age. Most children are considered vulnerable
because their behavior is potentially erratic, and they
may not understand traffic laws. Some early teens can
also be considered a risk to a self-driving car, which
is why we include them in the same category. Children
without a physical disability are considered to fall into
this category.

• Elderly without Disability: Elderly pedestrians are
particularly at risk. Even though the Elderly may be
well versed with traffic laws, their age may restrict
many physical motions, and on average, they tend to
need more time to complete the same action compared
to a non-vulnerable pedestrian. The minimum age of
the elderly demographic is subjective and varies across
cultures. In this paper, this group is determined by the
first author to be people who appear in the age group
of 50 or older. People from this age group without any
physical disability are deemed eligible for this class.

• With Disability: The most vulnerable group of all con-
sists of pedestrians who have a physical impairment and
may require some form of assistance. The pedestrian
could be of any age group, but if they have a physical
disability, they are categorized into this class because
their age-related constraints are overshadowed by the
disability. In our dataset, physical disability aids that
we consider are wheelchairs, mobility walkers, scooters,
crutches, and walking canes.

• Non-Vulnerable: This group of pedestrians comprises
of people that do not fall into any of the classes
mentioned above, and it is safe to say that they are
less vulnerable in traffic situations than other categories.
These pedestrians do not have any physical (or visible)
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Fig. 1: Simple traffic scenes in our BGVP dataset

disability. They are supposed to act/respond quickly, and
understand the situation better than vulnerable pedestri-
ans. This is not to say that these pedestrians are not
at all vulnerable; rather, their level of vulnerability in
a traffic situation is lower than that of the categories
mentioned above.

Fig. 1 displays a small sample of images, with each
row featuring images from a single class. Fig. 2 presents
a random selection of images from our database featuring
complex traffic scenes, along with our annotations overlaid
on them (category labels are not shown for clarity). Fig. 2
images have various class combinations, and some cover all
classes. Our dataset comprises 2,000 images with a total
of 5,932 bounding box annotations. On average, there are
three annotations in each image and the median image size
is 600 × 408 pixels. The dataset contains an assortment
of images with different dimensions. The dimension of the
largest image is 6000 × 4000 and the smallest is 99 ×
159. All images that we have collected are from the public
domain (mainly the Internet). “Children without Disability”
is the most prominent vulnerable pedestrian class, with 1,646
bounding box annotations. “Elderly without Disability” has
815 bounding box instances, “With Disability” has 942
instances, and “Non-vulnerable” has 2,529 instances. Fig.
3 visualizes the distribution of bounding box categories in
the dataset. Our dataset is divided into 1,405 images as
the training set, 399 images as the validation set, and 196
images as the testing set. The vast majority of the images
we have gathered show these vulnerable people in traffic

situations, which should help provide the detection models
with pertinent contextual information beneficial for training.
The contextual information typically includes traffic lights,
zebra crossings, vehicles, and other pedestrians (vulnerable
or non-vulnerable).

Finding the right balance in annotations is crucial for
helping the model learn effectively rather than causing con-
fusion, and our annotations support this goal. We annotate all
pedestrians whose categories are easily recognizable to the
human eye. Over-annotation can lead to incorrect results, so
in our dataset, we avoid annotating those that are too small
to be identifiable in the background. This ensures we do not
label them incorrectly and mislead the detectors.

IV. MODELS FOR VULNERABLE PEDESTRIAN
DETECTION

In this paper, we experiment with a variety of state-of-the-
art object detection models on our introduced benchmark. We
cover both single-stage and two-stage visual detectors, i.e.,
YOLOv4 [5], YOLOv5 [6], YOLOX [7], EfficientDet [9],
and Faster R-CNN [8].

A. Single-stage detectors

Due to their high speed and efficiency, single-stage de-
tectors are usually preferable in time-sensitive scenarios like
autonomous driving. This is also the reason why most of the
detectors tested in this paper belong to this category.

A well-known one-stage detector family that has shown
notable promise in the autonomous driving community is
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Fig. 2: Complicated traffic scenes in our BGVP dataset

Model Backbone Input Size Params GFLOPs mAP 0.5 mAP 0.5:0.95

EfficientDet-D0 Efficient-B0 512 3.9 M 2.5 0.7048 0.4512
Faster R-CNN Resnet-50 640 42 M 180 0.7330 0.4860

YOLOv4 CSPDarknet-53 640 27.6 M 90.2 0.7999 0.5231
YOLOv5-s Modified CSP v5 640 7.2 M 16.9 0.7000 0.4800
YOLOX-s Modified CSP v5 640 8.94 M 26.8 0.7779 0.5616

TABLE I: Model Description and mAP Scores on our BGVP dataset

Model Children w/o Disability Elderly w/o Disability Non-vulnerable With Disability

EfficientDet-D0 0.4996 0.2932 0.3650 0.6469
Faster R-CNN 0.5194 0.3889 0.3970 0.6371
YOLOv4 0.5360 0.4764 0.4494 0.6304
YOLOv5-s 0.5120 0.3880 0.4040 0.6140
YOLOX-s 0.5644 0.5242 0.4781 0.6796

TABLE II: Per-class mAP 0.5:0.95 of the models on our BGVP dataset

the YOLO family [21], [22]. Redmon and his colleagues in-
troduced the first three versions of YOLO [23]–[25], making
important advancements along the way. YOLOv4 [5] uses the
CSPDarknet53 backbone, the SPP additional module, and the
PANet path-aggregation neck. The detector head is similar to
that of YOLOv3. YOLOv4 also introduces new data augmen-
tation methods such as Mosaic and Self-Adversarial Train-
ing(SAT). YOLOv5 was released shortly after YOLOv4 by
Ultralytics via GitHub [6]. YOLOv5 is similar to YOLOv4,
but one difference is that YOLOv5 leverages auto-learning
bounding box anchors. YOLOv5 also has different sizes,
ranging from YOLOv5-S to YOLOv5-X, with S indicating
the smallest width and depth while X denoting the largest.
YOLOX [7] starts with YOLOv3 as its base and makes major

changes, including (1) a decoupled head for classification,
regression and localization, (2) dropping the use of anchors,
(3) SimOTA advanced label assignment strategy, and (4)
more advanced data augmentations techniques.

EfficientDet [9], developed by Google AI, is another
single-stage detector, which is highly scalable and fast. Effi-
cientDet uses EfficientNet [26] as its backbone and a newly
introduced BiFPN feature network. BiFPN enables easy and
fast feature fusion and allows bi-directional information flow.

B. Two-stage Detectors

Compared to single-stage detectors, two-stage detectors
are usually slow due to the extra stage of regions of interest
(ROI) proposal. Faster R-CNN [8], developed by Facebook
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Fig. 3: Distribution of annotations among the four categories in
our BGVP dataset

AI Research (FAIR), is among the most well-known two-
stage detectors. It is faster than its predecessor, Fast R-CNN
[27] because it replaces the slow external region proposal
methods with a Region Proposal Network (RPN) that gen-
erates proposals more quickly and efficiently. It also shares
convolutional features between the RPN and the detection
network, streamlining the process.

V. EXPERIMENTS AND DISCUSSION

In this section, we benchmark the previously mentioned
models on our introduced BGVP dataset and report their
results.

A. Experimental Setup

We follow the hyper-parameter settings recommended by
each model’s authors. All selected models were pre-trained
on the MS-COCO dataset, ensuring a fair comparison of
their performance on our dataset. Subsequently, we train the
five models on our proposed BGVP dataset using Google
Colab and the Ohio Supercomputer Center (OSC) clusters.
We present our results using Mean Average Precision (mAP),
specifically mAP 0.5 and mAP 0.5:0.95, as our primary
metrics for evaluating model performance.

B. Experimental Results

Table I shows the details of the different models and
their respective mAP scores. As we can see, YOLOX and
YOLOv4 perform the best among all. YOLOv4 has the
highest score on mAP 0.5, scoring 0.7999 and YOLOX is
closely behind scoring 0.7779. YOLOX achieves the best
mAP 0.5:0.95 score (0.5616), outperforming YOLOv4 by
3.8%. Faster R-CNN, a two-stage detector, also performs
reasonably well and scores 0.7330 for mAP 0.5 and 0.4860
for the mAP 0.5:0.95 metric.

In Table II, we report the per-class scores for the mAP
0.5:0.95 metric. It is evident that all models achieve higher
mAP scores for the class “With Disability”. This may
be attributed to the presence of regular forms, such as
wheelchairs and walking canes, that constitute physical walk-
ing aids. Relatively speaking, the models do not perform

well in “Elderly without Disability” and “Non-vulnerable”
classes. This is perhaps due to the unavoidable ambiguity
and subjectivity when determining whether a subject meets
the criteria for belonging to the senior age demographic.
This uncertainty can also be seen in Fig. 4, which shows
the confusion matrix results of all models. EfficientDet and
YOLOv5 often incorrectly predict elderly pedestrians as
non-vulnerable. The YOLOX performs much better than
other detectors in this regard. Performance for the class
“Children without Disability” appears more consistent across
all models, averaging 0.5262 (mAP 0.5:0.95), whereas for the
“Elderly without Disability” class, the average is 0.4141. We
also observe that all detectors struggle with images that have
a darker background, often failing to detect a pedestrian at
all, regardless of the category.

VI. CONCLUSION

In this paper, we introduced a new object detection
dataset called BGVP, specifically designed for vulnerable
pedestrians. We collected 2,000 images and annotated 5,932
bounding box instances from four categories, i.e., “Chil-
dren without Disability”, “Elderly without Disability”, “With
Disability”, and “Non-Vulnerable”. After collection and an-
notation, we trained and tested five state-of-the-art visual
detectors and compared their results. We hope that this
dataset can serve the community and motivate/facilitate more
future research in this area. The dataset can also be utilized
to fine-tune existing object detectors for more precise and
less biased detection of vulnerable pedestrians, helping pave
the way for safer and fairer autonomous driving.
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