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A pervasive approach in scientific computing is to express the solution to a given
problem as the limit of a sequence of vectors or other mathematical objects. In many
situations these sequences are generated by slowly converging iterative procedures
and this led practitioners to seek faster alternatives to reach the limit. “Acceleration
techniques” comprise a broad array of methods specifically designed with this goal
in mind. They started as a means of improving the convergence of general scalar
sequences by various forms of “extrapolation to the limit”, i.e., by extrapolating the
most recent iterates to the limit via linear combinations. Extrapolation methods of
this type, the best known example of which is Aitken’s Delta-squared process, require
only the sequence of vectors as input.

However, limiting methods to only use the iterates is too restrictive. Accelerat-
ing sequences generated by fixed-point iterations by utilizing both the iterates and
the fixed-point mapping itself has proven highly successful across various areas of
physics. A notable example of these Fixed-Point accelerators (FP-Accelerators) is a
method developed by Donald Anderson in 1965 and now widely known as Anderson
Acceleration (AA). Furthermore, Quasi-Newton and Inexact Newton methods can
also be placed in this category since they can be invoked to find limits of fixed-
point iteration sequences by employing the exact same ingredients as those of the
FP-accelerators.

This paper presents an overview of these methods — with an emphasis on those,
such as AA, that are geared toward accelerating fixed-point iterations. We will
navigate through existing variants of accelerators, their implementations, and their
applications, to unravel the close connections between them. These connections were
often not recognized by the originators of certain methods, who sometimes stumbled
on slight variations of already established ideas. Furthermore, even though new
accelerators were invented in different corners of science, the underlying principles
behind them are strinkingly similar or identical.

The plan of this article will approximately follow the historical trajectory of extrapol-
ation and acceleration methods, beginning with a brief description of extrapolation
ideas, followed by the special case of linear systems, the application to self-consistent
field (SCF) iterations, and a detailed view of Anderson Acceleration. The last part of
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the paper is concerned with more recent developments, including theoretical aspects,
and a few thoughts on accelerating Machine Learning algorithms.
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1. Historical perspective and overview

Early iterative methods for solving systems of equations, whether linear or nonlin-
ear, often relied on simple fixed-point iterations of the form

Xje1 = 8(x)) (L.1)

which, under certain conditions, converge to a fixed-point x. of g, i.e., a point such
that g(x.) = x.. Here, g is some mapping from R" to itself which we assume
to be at least continuous. Thus, the iterative method for solving linear systems
originally developed by Gauss in 1823 and commonly known today as the Gauss-
Seidel iteration, see, e.g., Saad (2003), can be recast in this form. The fixed-point
iterative approach can be trivially adopted for solving a system of equations of the
form:

f@x) =0, (1.2)

where f is again a mapping from R” to itself. This can be achieved by selecting a
non-zero scalar y and defining the mapping g(x) = x + v f(x), whose fixed-points
are identical with the zeros of f. The process would generate the iterates:

Xjp1=x;+yf(xj), j=0,1,--- (L.3)

starting from some initial guess xo. Approaches that utilize the above framework
are common in optimization where f(x) is the negative of the gradient of a certain
objective function ¢(x) whose minimum is sought. The simplicity and versatility
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of the fixed-point iteration method for solving nonlinear equations are among the
reasons it has been successfully used across various fields.

Sequences of vectors, whether of the type (1.1) introduced above, or generated by
some other ‘black-box’ process, often converge slowly or may even fail to converge.
As a result practitioners have long sought to build sequences that converge faster
to the same limit as the original sequence or even to establish convergence in case
the original sequence fails to converge. We need to emphasize a key distinction
between two different strategies that have been adopted in this context. In the
first, one is just given all, or a few of the recent members of the sequence and no
other information and the goal is to produce another sequence from it, that will
hopefully converge faster. These procedures typically rely on forming a linear
combination of the current iterate with previous ones in an effort to essentially
extrapolate to the limit and for this reason they are often called ‘extrapolation
methods’. Starting from a sequence {x;}-o,1,... a typical extrapolation technique
builds the new, extrapolated, sequence as follows:

)
vi= > v (1.4)

i=[j-m]

where we recall the notation [ j —m] = max{j —m, 0} and m is a parameter, known
as the ‘depth’ or ‘window-size’, and the yE’ )°s are ‘acceleration parameters’. If the
new sequence is to converge to the same limit as the original one, the condition

J
Z Y =1 (1.5)
i=[j-m]

must be imposed. Because the process works by forming linear combinations of
iterates of the original sequences, it is also often termed a ‘linear acceleration’ pro-
cedure, see, e.g., Brezinski and Redivo-Zaglia (1991), Brezinski (2000), Forsythe
(1953) but the term ‘extrapolation’ is more common. Extrapolation methods are
discussed in Section 2.

In the second strategy, we are again given all, or a few, of the recent iterates,
but now we also have access to the fixed-point mapping g to help build the next
member of the sequence. A typical example of these methods is the Anderson/Pulay
acceleration which is discussed in detail in Sections 4.3 and 6. When presented
from the equivalent form of Pulay mixing, this method builds a new iterate as
follows

J
X = ) 67 g (1.6)
i=[j-m]
where the 91(/ N satisfy the constraint Zi:[j—m
function g is now invoked when building a new iterate. Of course having access to
g may allow one to develop more powerful methods than if we were to only use the

]91(.’.) = 1. As can be seen, the
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iterates as is done in extrapolation methods. It is also clear that there are situations
when this is not practically feasible.

The emphasis of this paper is on this second class which we will refer to as
Fixed-Point acceleration methods, or FP-Acceleration methods. Due to their broad
applicability, FP-acceleration emerged from different corners of science. Ideas
related to extrapolation can be traced as far back as the 17th century, see Brezinski
and Redivo-Zaglia (2019, sec. 6) for references. However, one can say that modern
extrapolation and acceleration ideas took off with the work of Richardson (1910)
and Aitken (1926), among others, in the early part of 20th century and then gained
importance toward the mid 1950s, with the advent of electronic computers, e.g.,
Romberg (1955), Shanks (1955).

Extrapolation FP-Acceleration  (x = g(x))
X0, X1, 5 X7 — X0s X1, 5 X7 —
;= Z{:Ufm] Y, Compute x ;1 using
Aitken, g(x)and xg, -+, X;
Shanks formula, .. e.g. Anderson-Pulay:
Xjp1 = Zf:[j,m] )’;])g(xi)

Quasi—Newton: (F(x) =0)
x—x-MT'F®)
M = approximation
of Jacobian using:
AX(),Axl, e ,ij',l
AFy, AFy,--- ,AF;

Inexact Newton:  (F(x)=0)
X < x + 0 where:
¢ =Approximate sol. of:
Jo =—-F(x)
e.g. Newton-Krylov

Figure 1.1. Four distinct classes of acceleration methods

Because acceleration and extrapolation methods are often invoked for solving
nonlinear equations, they naturally compete with “second-order type methods” such
as those based on Quasi-Newton approaches. Standard Newton-type techniques
cannot be placed in the same category of methods as those described above because
they exploit a local second order model and invoke the differential of f explicitly.
In many practical problems, obtaining the Jacobian of f is not feasible, or it may
be too expensive. However, inexact Newton and quasi-Newton methods, are two
alternatives that bypass the need to compute the whole Jacobian J of f. Therefore,
they satisfy our requirements for what can be viewed as a method for accelerating
iterations of the form (1.3), in that they only invoke previous iterates and our ability
to apply the mapping g (or f) to any given vector. There should therefore be no
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surprise that one can find many interesting connections between this class methods
and some of the FP-acceleration techniques. A few of the methods developed
in the quasi-Newton context bear strong similarities, and are in some cases even
mathematically equivalent, to techniques from the FP acceleration class.

The four classes of methods discussed above are illustrated in Figure 1.1. This
article aims to provide a coverage of these four classes of acceleration and interpol-
ation methods, with an emphasis on those geared toward accelerating fixed-point
iterations, i.e., those in the top-right corner of Figure 1.1. There is a vast amount
of literature on these methods and it would be challenging and unrealistic to try to
be exhaustive. However, one of our specific goals is to unravel the various con-
nections between the different methods. Another is to present, whenever possible,
interesting variants of these methods and details on their implementations.

Notation
e Throughout the article g will denote a mapping from R" to itself, and one is
interested in a fixed-point x, of g. Similarly, f will denote also a mapping
from R" to itself, and one is interested in a zero of f.
e {x;}j=0,1,--, denotes a sequence in R".
e Given a sequence {x;}-o,1,..., the forward difference operator A builds a new
sequence whose terms are defined by:

A.XjZXj+1—Xj,j=0,1,"', (17)

e We will often refer to an evolving set of columns where the most recent m
vectors from a sequence are retained. In order to cope with the different
indexing used in the algorithms, we found it convenient to define for any
keZ

[k] = max{k,0} (1.8)

Thus, we will often see matrices of the form X; = [x[j_m+1], X[jom+1]+1> -+ > Xj]
that have j + 1 columns when j < m and m columns otherwise.

e Throughout the paper ||.||; will denote the Euclidean norm and ||.||r is the
Frobenius norm of matrices.

2. Extrapolation methods for general sequences

Given a sequence {x;} -0 1,...,, an extrapolation method builds an auxiliary se-
quence {y;};=0,1,-.-,» Where y; is typically a linear combination of the most recent
iterates as in (1.4). The goal is to produce a sequence that converges faster to the
limit of x ;. Here m is a parameter known as the ‘depth’ or ‘window-size’, and the
yg" )5 are ‘acceleration parameters’, which sum-up to one, see (1.5). Aitken’s 6°
process Aitken (1926) is an early instance of such a procedure that had a major

impact.
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2.1. Aitken’s procedure

Suppose we have a scalar sequence {x;} fori =0, 1, - -, that converges to a limit
x,. Aitken assumed that in this situation the sequence roughly satisfies the relation
Xjgl =X« = Axj —x:) Vj 2.1

where A is some unknown scalar. This is simply an expression of a geometric
convergence to the limit. The above condition defines a set of sequences and the
condition is termed a ‘kernel’. In this particular case (2.1) is the Aitken kernel.
The scalar 4, and the limit x, can be trivially determined from three consecutive
iterates x, x 41, X j42 by writing:
Xj+l — X« Y Xj+2 — X - 2.2)

Xj =X Xjal = Xs

from which it follows by eliminating A from the two equations that

e 2
XjXj+2 = X540 (Ax;)?
Xy = =x;—

= = . 2.3
Xjwo =2 +x; 1 Ay 23)

Here A is the forward difference operator defined earlier in (1.7) and Ax i =
A(Axj). As can be expected, the set of sequences that satisfy Aitken’s kernel, i.e.,
(2.1) is very narrow. In fact, subtracting the same relation obtained by replacing
J by j — 1 from relation (2.1), we would obtain x;,; — x; = A(x; — x;_1), hence
Xjyl —Xj = AJ(x1 — x¢). Therefore, scalar sequences that satisfy Aitken’s kernel
exactly are of the form

J
Xje1 = X0+ (61 = x0) »_ AF for j > 0. 2.4)
k=0

Although a given sequence is unlikely to satisfy Aitken’s kernel exactly, it may
nearly satisfy it when approaching the limit and in this case, the extrapolated value
(2.3) will provide a way to build an ‘extrapolated’ sequence defined as follows:

()’
y] B Xj B Azx j

.j:()’la"', (2.5)

Note that to compute y; we must have available three consecutive iterates, namely,
Xj,Xj+1,Xj42, S0 y; starts with a delay relative to the original sequence.

A related approach known as Steffenson’s method is geared toward solving the
equation f(x) = 0 by the Newton-like iteration:

TED here d(ry = LEFS D= /@) (2.6)

d(x)) f(x)

One can recognize in d(x) an approximation of the derivative of f atx. This scheme
converges quadratically under some smoothness assumptions for f. In addition,

Xjyl = Xj
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it can be easily verified, that when the sequence {x;} is produced from the fixed-
point iteration x ;41 = g(x;), one can recover Aitken’s iteration for this sequence by
applying Steffensen’s scheme to the function f(x) = g(x) — x. Therefore, Aitken’s
method also converges quadratically for such sequences when g is smooth enough.

2.2. Generalization: Shanks transform and the e-algorithm

Building on the success of Aitken’s acceleration procedure, Shanks (1955) explored
ways to generalize it by replacing the kernel 2.1 with a kernel of the form:

ap(xj —x.) +a1(Xj —x) + o+ ap(Xjom — x:) = 0. (2.7)

where the scalars ag, - - - , a,, and the limit x, are unknowns. The sum of the scalars
a; cannot be equal to zero and there is no loss of generality in assuming that they
addupto 1,i.e.,

ag+ay+---+a,=1. (2.8)
In addition, it is commonly assumed that aga,, # 0, so that exactly m + 1 terms are

involved at any given step. We can set-up a linear system to compute x,. by putting
equation (2.7) and with (2.8) together into the (m + 2) X (m + 2) linear system:

O =

2.9

ao + ay + - +a,
i=0,---,m

apXj+i + A1 Xjvi+1 + 00 F AmXjyivm — Xx =

Cramer’s rule can now be invoked to solve this system and derive a formula for x,.
With a few row manipulations, we end up with the following formula known as the
Shanks (or ’Schmidt-Shanks’) Transformation for scalar sequences:

Xj Xj+l 0 Xj+m
Axj  Axjar oo Mxjm
A-x'm—lA)C‘m"'A)C‘Zm—l
Yy = ]I i* “l (2.10)

Axj  Axjer oo Axjum

A-’Cj+m—1 ij+m ij+2m—1

A more elegant way to derive the above formula, one that will lead to useful
extensions, is to exploit the following relation which follows from the kernel (2.7)

aoij +a1AXj+1+"'+amij+m:0- 2.11)

With this, we will build a new system, now for the unknowns ag, ai,- - , @, as
follows:
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{ao + a; + -+ ay =1 2.12)

aoij+,~ + Cl]A)Cj+i+1 + -0+ amA)Cj+i+m =0;i=0,---,m—1.

The right-hand side of this (m+1)x(m+1) system is the vectore; = [1,0, - -, 0] T ¢

R Using Kramer’s rule will yield an expression for a; as the fraction of 2
determinants. The denominator of this fraction is the same as that of (2.10). The
numerator is (—1)¥ times the determinant of that same denominator where the first
row and the (k + 1)-st column are deleted. Substituting these formulas for aj into
the sum aox; + a1xj41 + -+ - + @mX j4m Will result in an expression that amounts to
expanding the determinant in the numerator of (2.10) with respect to its first row.

By setting a; = ygm) we can therefore rewrite Shank’s formula in the form:

V7 = N Y X 2.13)

where each y§m) is the ratio of two determinants, as was just explained.

It can be immediately seen that the particular case m = 1 yields exactly Aitken’s
62 formula:

Xj  Xj+l
3 = Axj Axjer| _ xjAXj1 =~ Xja1Ax; :x__(ij)z.
I 11 A2x; T A
Axj Axj

As it is written, the above expressions is meant for scalar sequences, but it can be
generalized to vectors and this will be discussed later.

The generalization discovered by Shanks relied on ratios of determinants of size
of order m where m is the depths of the recurrence defined above. The non-practical
character of this technique prompted Peter Wynn in a 1956 article to explore an
alternative implementation and this resulted in an amazingly simple formula which
he dubbed the ‘e-algorithm’ Wynn (1956). This remarkable discovery spurred a
huge following among the numerical linear algebra community Cabay and Jackson
(1976), Eddy and Wang (1979), Brezinski (1980), Eddy (1979), MeSina (1977),
Sidi, Ford and Smith (1986), Wynn (1962), Brezinski (1977), Kaniel and Stein
(1974), Brezinski (1975), Jbilou (1988), Jbilou and Sadok (1991), Germain-Bonne
(1978) among many others. The article Brezinski (2000) gives a rather exhaustive
review of these techniques up to the year 2000. The more recent article Brezinski
and Redivo-Zaglia (2019) surveys these methods while also providing a wealth of
information on the history of their development.

So what is Wynn’s procedure to compute the yj.m)? The formula given above
leads to expressions with determinants that involve Hankel matrices from which
some recurrences can be obtained but these are not only complicated but also
numerically unreliable.

Wynn’s e-algorithm is a recurrence relation to compute yS.m) shown in Equa-
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tion (2.14). It defines sequences {e}m)}jzo,l,..., each indexed by an integer ! m
starting with m = —1.

The sequence {65._])}, is just the zero sequence €l

: D=o,v J, while the sequence

{6;0) }, is the original sequence e = 7, Vj. The other sequences, i.e., {ej.m)} are
then obtained recursively from as follows:
D _g. O _ . m) _ _(m-1) ! ,
€; =0; €7 =Xj; € =€, + o form,j >0. (2.14)
J+1 J

Each sequence {e;.m)}, where m is constant, can be placed on a vertical line on a grid
as shown in Figure 2.1. With this representation, the j-th iterate for the (m + 1)-st
sequence can be obtained using a simple rhombus rule from two members of the
m-th sequence and one member of the (m — 1)-st sequence as is shown in the figure.
Only the even-numbered sequences are accelerations of the original sequence. The
odd-numbered ones are just intermediate auxiliary sequences. For example, the
sequence eém) is identical with the sequence obtained from Aitken’s 62 process but
(m)
1

the sequence €, " is auxiliary.

Figure 2.1. Wynn’s rhombus rule for the e-algorithm

If we denote by 7, the transformation that maps a sequence {x;} into {t;m)},

@m) Q@m+l) _

P Nm(x;) and €

i.e., we have n,,(x;) = tﬁ.m), then it can be shown that e i

1/nm(Ax )

From a computational point of view, we would proceed differently in order not
to have to store all the sequences. The process, shown in Figure 2.2, works on
diagonals of the table. When the original sequence is computed we usually generate

X0, X1, ** ,Xj, .. in this order. Assuming that we need to compute up to the m-th
sequence {egm)} then once 65.0) = x;j becomes available we can obtain the entries

! Note that this article adopts a different notation from the common usage in the literature: the
index of the sequence is a subscript rather than a superscript. In Wynn’s notation {6},{)}]':0’1,...
denotes the m-th extrapolated sequence.
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Figure 2.2. Computational diagram of the € algorithm.

ej.l_)l, 6;.2_)2, cee, e(.’f;. This will require the entries 65.0_)1, ej.l_)z, cee, 65."_1;11)
will only need to keep the previous diagonal.

Wynn’s result on the equivalence between the e-algorithm and Shank’s formula
is stunning not only for its elegance but also because it is highly nontrivial and

complex to establish, see comments regarding this in Brezinski (1980, p. 162).

and so we

2.3. Numerical illustration

Extrapolation methods were quite popular for dealing with scalar sequences such as
those originating from numerical integration, or from computing numerical series.
The following illustration highlights the difference between fixed-point acceleration
and extrapolation.

In the example we compute 7 from the Arctan expansion:

35 7 o i 2j+1

2 7z (=1)7/z%
() =z - o+ L L oy BT 2.15
atan(z) = z 3+5 7+ 2j+1 (2.15)

Applying this to z = 1 will give a sequence that converges to /4. For an arbitrary
z, we would take the following sequence, starting with x¢ = O:

(_1)jZ2j+1

-\ j=0,1,---,n—-1. 2.16
2j+1 J " ( )

Xj+l :xj+

In this illustration, we take n = 30 and z = 1.
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10»15 b

Figure 2.3. Comparison of a few extrapolation methods for computing 7/4 with
Formula (2.16).

Figure 2.3 shows the convergence of the original sequence along with 4 extrapol-
ated sequences. In the figure, Aitken” refers to Aitken applied twice, i.e., Aitken is
applied to the extrapolated sequence obtained from applying the standard Aitken
process. Note that all extrapolated sequences are shorter since, as was indicated
above, a few iterates from the original sequence are needed in order to get the
new sequence started. The plot shows a remarkable improvement in convergence
relative to the original sequence: 15 digits of accuracy are obtained for the 6-th
order e-algorithm in 20 steps in comparison to barely 2 digits obtained with 30
steps of the original sequence.

2.4. Vector sequences

Extrapolation methods have been generalized to vector sequences in a number of
ways. There is no canonical generalization that seems compelling and natural
but the simplest consists of applying the acceleration procedure component-wise.
However, this naive approach is not recommended in the literature as it fails to
capture the intrinsic vector character of the sequence. Many of the generalizations
relied on extending in some way the notion of inverse of a vector or that of the
division of a vector by another vector. For the Aitken procedure this leads to quite
a few possible generalizations, see, e.g., Ramiere and Helfer (2015).

Peter Wynn himself considered a generalization of his scheme to vectors Wynn
(1962). Note that generalizing the recurrence formula (2.14) of the e-algorithm
only requires that we define the inverse of a vector. To this end Wynn considered
several options and ended up adopting a definition proposed by Samelson:

__r X (2.17)
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where X denotes the complex conjugate of x. This is nothing but the pseudo-inverse
of x viewed as a matrix from C' to C". It is also known as the Samelson inverse
of a vector. Recently, Brezinski et al Brezinski, Redivo-Zaglia and Salam (2023)
considered more complex extensions of the e-algorithm by resorting to Clifford
Algebra.

The various generalizations of the e-algorithm to vectors based on extending
the inverse of a vector were not too convincing to practitioners. For this reason,
Brezinski (1977, 1975) adopted a different approach that essentially introduced
duality as a tool. We start with the simple case of Aitken’s acceleration for which
we rewrite the original ansatz (2.1) as follows:

Xe = Xj + ulx;

where u = 1/(1 — 1) is a scalar. In the scalar case, it can be readily seen from (2.3),
that u is given by:
Ax;

_ A 2.18
T (2.18)

M=
In the vector case, we need u to be a scalar, and so a natural extension to vector
sequences would entail taking inner products of the numerator and denominator in
(2.18) with a certain vector w:

(w, Ax;)
H=—-————7 " (2.19)
(w, A%x;)
This leads to the formula,
Xj Xj+1
(W, A-xj) _ (W7 A)C/) (W’ij+1)

o o 2.20
Yi= (w,A2x;) ! 1 1 (220)

(W9 ij) (W’ ij+1)

We need to clarify notation. The determinant in the numerator of the right-hand
side in (2.20) now has the vectors x; and x4 in its first row, instead of scalars.
This is to be interpreted with the help of the usual expansion of this determinant
with respect to this row. Thus, this determinant is evaluated as:

W, Axj)xj — (W, Axj)xjer = (W, Axjyr — Axj)xj + (W, Axj)(x; — Xj41)
= (w, A%xj)x; — (w, Ax;)Ax;.
This establishes the second equality in (2.20) by noting that the denominator in the
last expression of (2.20) is just (w, Azxj).
The vector w can be selected in a number of ways but it is rather natural to take
w = A%x ; and this leads to
(Axj, A%xj)

— L P Ax;. (2.21)
A2

yj=Xj
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Our aim in showing the expression on the right of (2.20) is to unravel possible
extensions of the more general Shanks formula (2.10). It turns out that the above
formulation of Aitken acceleration for vector sequences is a one-dimensional ver-
sion of the RRE extrapolation method, see Section 2.6 for details.

The vector version of Aitken’s extrapolation described above can easily be exten-
ded to a vector form of Shanks formula (2.10) by selecting a vector w and replacing
every difference Ax;,; in (2.10) by (w, Ax;,;). The first row of the determinant in
the numerator will still have the vectors x;,; and the resulting determinant is to be
interpreted as was explained above. Doing this would lead the following extension
of Shanks formula (2.10):

X; Xjel ot Xjam
w,Ax;) (W, Axjy1) -+ (W, Axjym)
o _ 00 o) 00 &) - O Apne)|

(W,A)C]) (W’ij+l) T (W’ Ax]+m)

(Wanj+m—1) (WanJ+m) e (W’A-xj+2m—l)

This generalization was advocated in Brezinski (1975).

However, there is a missing step in our discussion so far: Although we now
have a generalized Shanks formula we still need an effective way to evaluate the
related expressions, hopefully with something similar to the e-algorithm, that avoids
determinants. This is not an issue for Aitken’s procedure which corresponds to
the case m = 2 as the corresponding determinants are trivial. For the cases where
m is larger, a different approach is required. This was examined by Brezinski
(1975, 1977) who proposed a whole class of techniques referred to Topological
€-algorithm, see also, Brezinski and Redivo-Zaglia (2019), Brezinski (1980).

2.5. The projection viewpoint and MMPE

Another way to extend extrapolation methods to vector sequences is to invoke a
projection approach. We return to equations (2.12) where the second equation is
taken with i = 0 and eliminate the first equation by settingag = 1—a;—as—---—a;,
which leads to

m
Axj + Z ai(Ax i — Axj) = 0. (2.23)

i=1
Making use of the simple identity u;,; —u; = Au ;1 +Au ;i _o+- - -+Au; will show
that the term Ax;,; — Ax; is the sum of the vectors Nxpfork=jtok=j+i—1
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and this leads to the following reformulation of the left-hand side of (2.23):

m J+i—1 Jj+m—1
2 2
Ax; +Za,~ Z Axp = Axj+ Z [Ar—js1 +ar—js2 + -+ am] A"xg
i=1 k=j k=j
j+m—1
_ 2
k=j
where we set Bx_j+1 = ag—ji1 +ag—js2 + -+ ap. Thus, equation (2.23) becomes
m
2
Axj+ ) Bik*x i1 =0 (2.24)

i=1

where 8; = a; + a;+1 + - - - + a,,. Itis convenient to define:

AXJ = [ij’ij+1’ e ,ij+m—l] (225)
A’X; = A%, Axjst, - 5 A%X et ] (2.26)
ﬁ= [ﬁl?ﬂz’”' aﬁm]T~ (227)

With this notation the system (2.23) takes the matrix form:
Axj+A*X; B =0, (2.28)

This is an over-determined system of equations with m unknowns. Taking a
projection viewpoint, we can select a set of vectors W € R™ and extract a
solution to the projected system

WT (Ax; +A*X; B) = 0. (2.29)

Assuming that the m X m matrix W7 [A%X ;] is nonsingular then the accelerated
iterate exists and is given by

yj=xj—AX; B where f=[W'A2X;|" (W7 Ax)). (2.30)

A number of methods developed in Brezinski (1975) were of the type shown above
with various choices of the set W. Among these, one approach in particular is
worth mentioning due do its connection with other methods.

This approach starts with another natural extensions of (2.22) which is to use a
different vector w for each of the rows of the determinants but apply these to the
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same Axj on the same column:

Xj Xj+1 Xj+m
Wi, Axy) (Wi, Axjer) -0 (W1, AXjym)

ym = 1 o 1 It 1“’" . 2.31)

(Wlanj) (Wlan_j+1) (Wmanj+m)

(Wi, ij) (Wi, ij+1) ot (Wi, ij+m)

It was first discussed in Brezinski (1975) and essentially the same method was
independently published in the Russian literature in Pugachév (1977). The method
was later rediscovered by Sidi et al. (1986) who gave it the name Modified Minimal
Polynomial Extrapolation (MMPE) by which it is commonly known today. Because
there is some freedom in the selection of the set W, MMPE represents more than
just one method. We will discuss it further in Section 2.6.

It is rather interesting that the above determinant can be expressed in the same
form as (2.30). To see this, we need to process the numerator and denominator
of (2.31) as follows. Starting from the last column and proceeding backward, we
subtract column k — 1 from column &, and this is done for k = m + 1, m,--- ,2.
With this, the first row of the determinant in the denominator will be a one followed
by m zeros. The first row of the determinant in the numerator will be the vector
x; followed by Axj,Axjii,Axjim—1. The entries in the first columns of both
denominators are unchanged. The block consisting of entries (2 : m+1)X(2 : m+1)
of both denominators will have the entries (w;, A%x j+k—-1) in its k-th column, with
k = 1,---,m. This block is nothing but the matrix W7 A%2X j. To expand the
resulting determinant in the numerator, we utilize the following relation where 7 is
a scalar and S is an invertible m X m matrix:

2 § = det(S)[7 — £S~'b]. (2.32)

This relation is also true in the case when 7 is a vector in R**! and f is in R*™
with the interpretation of such determinants seen earlier. After transforming the
numerator of (2.31) as discussed above, we will obtain a determinant in the form
of the left-hand side of (2.32) in which f = AX;, b = WwTAX jand § = WTAZX e
Applying the above formula to this determinant results in the expression (2.30).

Vector acceleration algorithms were also defined as processes devoted solely
to vector sequences generated from linear iterative procedures. The next section
explores this framework a little further.
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2.6. RRE and related methods

The difficulties encountered in extending Aitken’s method and the e-algorithm to
vector sequences led researchers to seek better motivated alternatives, by focusing
on vector sequences generated from specific linear processes. Thus, Cabay and
Jackson (1976) introduced a method called the Minimal Polynomial Extrapolation
(MPE) which exploits the low rank character of the set of sequences in the linear
case. At about the same time, Eddy (1979) and MeSina (1977) developed a method
dubbed ‘Reduced Rank Extrapolation’ (RRE) which was quite similar in spirit to
MPE. Our goal here is mainly to link these methods with the ones seen earlier and
developed from a different viewpoint.

We begin by describing RRE by following the notation and steps of the original
paper MeSina (1977). RRE was initially designed for vector sequences generated
from the following fixed-point (linear) iterative process:

Xjp1 =Mx;+f. (2.33)
The author chose to express the extrapolated sequence in the form:
m
Ym =0+ ) Bl (2.34)
i=1
where B;,i =1, --- , m are scalars to be determined.

With the notation (2.25 —2.27) we can write y,,, = xo+AXoS. For the sequences
under consideration, i.e., those defined by (2.33), the relation Ax j=—U—-M)Ax;
holds, and therefore we also have A>Xy = —(I — M)AXy. Furthermore, since we
are in effect solving the system (I — M)x = f the residual vector associated with x
isr = f — (I — M)x. Consider now the residual r,, for the vector y,,:

rm=f—U=Mym=f-U-M)[xo+AXop]
= f+M)C0 — X0 +A2X0ﬁ
= Axo + A2 Xop. (2.35)

Setting the over-determined system Axo + A2Xo/3 = 0 yields the exact same system
as (2.24) with j = 0.

The idea in the original paper was to determine S so as to minimize the Euclidean
norm of the residual (2.35). It is common to formulate this method in the form
of a projection technique: the norm ||Axg + A>Xof|» is minimized by imposing
the condition that the residual » = Axq + A”Xyf3 be orthogonal to the span of the
columns of A?Xj, i.e., to the second order forward differences A2x;:

(A2X0)T [Axo + A%XpB] = 0. (2.36)

This is the exact same system as in (2.29) with j = 0 and W = A?X,. Therefore,
RRE is an instance of the MMPE method seen earlier where we set W to be
W = A’X,. The case m = 1 is interesting. Indeed, when m = 1 equations (2.34)
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and (2.36) yield the same extrapolation as the vector version of the Aitken process
shown in Formula (2.21) for the case j = 0. One can therefore view the vector
version of the Aitken process (2.21) as a particular instance of RRE with a projection
dimension m equal to 1.

In the early development of the method, the idea was to exploit a low-rank
character of A2Xy. If A2X, has rank m then vy Will be an exact solution of
the system (I — M)x = f since r,, will be zero. Let us explain this in order to
make a connection with Krylov subspace methods to be discussed in Section 3.3.
From (2.33) it follows immediately that x;,; —x; = M(x; — x;_1) and therefore

Ax; =xj+1—xj=Mj(x1—xo):Mjro. (2.37)

Therefore, the accelerated vector y,, is of the form y,, = xo + gn-1(M)ryo where
gm-1 is a polynomial of degree < m — 1. The residual vector r,, is f — (I — M)y,
and thus:

rm =10 = = M)gm-1(M)ro = pm(M)ro (2.38)

where p,,,(t) = 1-(1-1)g;,-1(¢) is adegree m polynomial such that p,,,(1) = 1. The
polynomial g,,—; and therefore also the residual polynomial p,, is parameterized
with the m coefficients §;,i = 1,--- , m. The minimization problem of RRE, can
be translated in terms of polynomials: find the degree m polynomial p,, satisfying
the constraint p,,(1) = 1 for which the norm of the residual p,,,(M)rq is minimal.
If the minimal polynomial for M is m then the smallest norm residual is zero. This
was behind the motivation of the method. Note that the accelerated solution y,,
belongs to the subspace

K,(M, ro) = Span{ro, Mro, - - , M™ 'ry}

which is called a Krylov subspace. This is the same subspace as the one, more
commonly associated with linear systems, in which M is replaced by the coefficient
matrix [ — M.

In the scenario where the minimal polynomial is of degree m, the rank of M is also
m hence, the term ‘Reduced Rank Extrapolation’ given to the method. Although the
method was initially designed with this special case in mind, it can clearly be used
in a more general setting. Note also that although the RRE acceleration scheme was
designed for sequences of the form (2.33), the process is an extrapolation method,
in that it does not utilize any other information than just the original sequence itself.
All we need are the first and second order difference matrices AXy and A%2X; and
the matrix M is never referenced. Furthermore, nothing prevents us from using
the procedure to accelerate a sequence produced by some nonlinear fixed-point
iteration.

The MPE method mentioned at the beginning of this section is closely related
to RRE. Like RRE, MPE expresses the extrapolated solution in the form (2.34)
and so the residual of this solution also satisfies (2.35). Instead of trying to
minimize the norm of this residual, MPE imposes a Galerkin condition of the form
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WT (Axg + AZXO,B) = 0, but now W is selected to be equal to AXy. As can be seen
this can again be derived from the MMPE framework discussed earlier. Clearly, if
M is of rank m then y,, will again be the exact solution of the system. Note also
that RRE was presented in difference forms by Eddy (1979) and MeSina (1977),
and the equivalence between the two methods was established in Smith, Ford and
Sidi (1987).

2.7. Alternative formulations of RRE and MPE

In formula (2.34) the accelerated vector y,, is expressed as an update to xg, the
first member of the sequence. It is also possible to express it as an update to x,,,
its most recent member. Indeed, the affine space xo + Span{AXp} is identical with
Xm + Span{AXj} because of the relation:

Xm = X0+ Axo+ Axy; + -+ Axpo1 = x0 + AXpe

where e is the vector of all ones. If we set y,, = x,, + AXoy then the residual in
(2.35) becomes Ax;, + AXyy and so we can reformulate RRE as:

Ym = Xm +AXgy where vy = argminyllem + AXoy|>. (2.39)

A similar formulation also holds for MPE. The above formulation will be useful
when comparing RRE with the Anderson acceleration to be seen later.

In another expression of MPE and RRE the x;’s are invoked directly instead of
their differences in (2.34). We will explain this now because similar alternative
formulations will appear a few times later in the paper. Equation (2.34) yields:

Ym = X0 + B1(x1 —x0) + Bo(x2 —x1) + -+ + Bt — Xm—1)

=1 =Bxo+(B1—Bo)x1 +- -+ (Bi — Bir1)Xi + -+ BinXm.

This can be rewritten as Zlﬁo a;x; by setting @; = 8; — Biy1 fori =0,--- ,m, with
the convention that 5,,,+; = 0, and Sy = 1. We then observe that the @;’s sum up to
one. Thus, we can reformulate (2.34) in the form

m m
ym= Y aixi with Y ;=1 (2.40)
i=0 i=0

The above setting is a quite common alternative to that of (2.34) in acceleration
methods. It is also possible to proceed in reverse by formulating an accelerated
sequence stated as in (2.40) in the form (2.34) and this was done previously, see
Section 2.5.

2.8. Additional comments and references

It should be stressed that extrapolation algorithms, of the type discussed in this
section, often played a major role in providing a framework for the other classes of
methods. They were invented first, primarily to deal with scalar sequences, e.g.,
those produced by quadrature formulas. Later, they served as templates to deal with



ACCELERATION METHODS 19

fixed-point iterations, where the fixed-point mapping g was brought to the fore to
develop effective techniques. While ‘extrapolation’-type methods were gaining in
popularity, physicists and chemists were seeking new ways of accelerating compu-
tationally intensive, and slowly converging, fixed-point-iterations. The best known
of these fixed-point techniques is the Self-Consistent Field (SCF) iteration which
permeated a large portion of computational chemistry and quantum mechanics. As
a background, SCF methods, along with the acceleration tricks developed in the
context of the Kohn-Sham equation, will be summarized in Section 4. Solving lin-
ear systems of equations is one of the most common practical problems encountered
in computational sciences, so it should not be surprising that acceleration methods
have also been deployed in this context. The next section addresses the special case
of linear systems.

We conclude this section with a few bibliographical pointers. Extrapolation
methods generated a rich literature starting in the 1970s and a number of surveys
and books have appeared that provide a wealth of details, both historical and
technical. Among early books on the topic, we mention Brezinski (1980), Brezinski
and Redivo-Zaglia (1991). Most of the developments of extrapolation methods
took place in the 20th century and these are surveyed by Brezinski (2000). A
number of other papers provide an in-depth review of extrapolation and acceleration
methods, see, e.g., Higham and Strabi¢ (2016), Jbilou and Sadok (2000), Sidi
(2012). A nicely written more recent survey of extrapolation and its relation to
rational approximation is the volume by Brezinski and Redivo Zaglia (2020) which
contains a large number of references while also discussing the fascinating lives of
the main contributors to these fields.

3. Accelerators for linear iterative methods

Starting with the work of Gauss in 1823, see Forsythe (1951), quite a few iterative
methods for solving linear systems of equations were developed. The idea of
accelerating these iterative procedures is natural and it has been invoked repeatedly
in the past. A diverse set of techniques were advocated for this purpose, including
Richardson’s method, Chebyshev acceleration, and the class of Krylov subspace
methods. It appears that acceleration techniques were first suggested in the early
20th century with the work of Richardson, and reappeared in force a few decades
later as modern electronic computers started to emerge.

3.1. Richardson’s legacy
Consider a linear system of the form
Ax = b, (3.1)

where A € R™" and b € R". Adopting the point of view expressed in
Equation (1.3) with the function f(x) = Ax — b we obtain the iteration

Xjp1 =xj—y(Axj; —b) =xj+yr; (3.2)
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where x; is the current iterate and r; = b — Ax; the related residual. This simple
“first-order’ scheme was proposed by Richardson (1910). Assuming that the
eigenvalues of A are real and included in the interval [, 8] with @ > O, it is
not difficult to see that the scheme will converge to the solution for any y such
that 0 <y < 2/ and that the value of y that yields the best convergence rate is
Yopt = 2/[a + B], see, e.g., Saad (2003).

Richardson also considered a more general procedure where the scalar y changed
at each step:

Xjyl = Xj+y,rj. 3.3)

If x. is the exact solution, he studied the question of selecting the best sequence of
¥;’s to use if we want the error norm ||x; — x.||> at the j-th step to be the smallest
possible. This will be addressed in the next section.

A number of procedures discovered at different times can be cast into the general
Richardson iteration framework represented by (3.3). Among these, two examples
stand out. The first example is the Minimal Residual iteration (MR) where y; is
selected as the value of y that minimizes the next residual norm: [|b—A(x;+yr;)||.
The second is the steepest descent algorithm where instead of minimizing the
residual norm, we minimize ||x — x.||a where ”V”,%x = (Av,v). Both methods are
one-dimensional projection techniques and will be discussed in Section 3.3.1.

3.2. The Chebyshev procedure

Richardson (1910) seems to have been the first to consider a general scheme given
by (3.3), where the y;’s are sought with the goal of achieving the fastest possible
convergence. From (3.3) we get

7‘j+1=b—A(Xj+’}/j}’j)=I"j—’y]‘Arj=(1—’y]'A)I’j (34)
which leads to the relation
rist = =y;A)U —vyj-1A) - (I =yoA)ro = pjr1(A)rg (3.5)

where p,1(¢) is a polynomial of degree j + 1. Since p;;1(0) = 1 then p, is of
the form p ;,1() = 1 —1q (1), with deg (g;) = j. Therefore,

rix1 = = Aqj(A)ro = (b — Axg) — Aqj(A)ro = b — Alxo + q;(A)ro],
which means that
Xj1 = X0+ q(A)ro. (3.6)

Richardson worked with error vectors instead of residuals. Defining the error
uj = x,—x; where x, is the exact solution, and using the relation Au; = b—Ax; =r;
we can multiply (3.5) by A~! to obtain the relation

Ujrl = pj+l(A)MO (3.7)

for the error vector at step j + 1, where p ;4 is the same polynomial as above. He
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formulated the problem of selecting the y;’s in (3.7) with a goal of making the
error u ;41 as small as possible. The 7y;’s in his formula were the inverses of the
ones above - but the reasoning is identical. Such a scheme can be viewed as an
‘acceleration’ of the first-order Richardson method (3.2) seen earlier. Richardson
assumed only the knowledge of an interval [, 8] containing the eigenvalues of A.
When A is Symmetric Positive Definite (SPD) then there exists «, 8, with @ > 0
such that A(A) C [a, B].

If we wish to minimize the maximum deviation from zero in the interval then the
best polynomial can be found from a well-known and simple result in approximation
theory. We will reason with residuals, recall equation (3.5), and denote by P19
the set of Polynomials p of degree j + 1 such that p(0) = 1. Thus, p;4; in (3.5)
and (3.7) is a member of P, o and our problem is to find a polynomial p € P, o
such that max; ¢ [4,g] |[P(4)| is minimal. In other words we seek the solution to the
min-max problem:

L L o
The polynomial T4 that realizes the solution to (3.8) is known and it can be
expressed in terms of the Chebyshev polynomials of the first kind C;(#) :

1 +a-2t +a

If the polynomial 7, is set to be the same as p ;41 in (3.5) then clearly the inverses
of its roots will yield the best sequence of y;’s to use in (3.3). Richardson seems
to have been unaware of Chebyshev polynomials. Instead, his approach was to
select the roots 1/v; by spreading them in an ad-hoc fashion in [, 8]. One has to
wait more than four decades before this idea, or similar ones based on Chebyshev
polynomials, appeared.

A few of the early methods in this context computed the roots of the modified
Chebyshev polynomial (3.9) and used the inverses of these roots as the y;’s in (3.3)
Shortley (1953), Sheldon (1955), Young (1954). These methods were difficult to
use in practice and prone to numerical instability. A far more elegant approach is
to exploit the 3-term recurrence of the Chebyshev polynomials:

Cjs1(1) = 20Cj(1) = Cj1(t), j=1. (3.10)

starting with Co(t) = 1, C((¢) = t. A 1952 article by Lanczos (1952) suggested a
process for preprocessing a right-hand side of a linear system prior to solving it with
what was then a precursor to a Krylov subspace method. The residual polynomials
related to this process are more complicated than Chebyshev polynomials as was
noted by Young (1954). However they too rely on Chebyshev polynomials and
Lanczos does exploit the 3-term recurrence in his 1952 article while Shortley,
Sheldon, and Young do not.

The first real acceleration scheme based on the Chebyshev polynomials that
exploits the 3-term recurrence seems to be the 1959 paper by Blair, Metropolis,
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von Neumann, Taub and Tsingou (1959). The article included two appendices
written by von Neumann and the second of these discussed the method. The
method must have been developed around the year 1956 or earlier by von Neumann
who died on Feb 8, 1957. Two years after the von Neumann article Golub and
Varga (1961) published a very similar technique which they named ‘semi-iterative
method’. The authors included a footnote in their article acknowledging the von
Neumann earlier contribution.

The arguments of the von Neumann contribution were rooted in acceleration
techniques with a goal of producing a process for linearly combining the previous
iterates of a given sequence, in order to achieve faster convergence. Specifically,
the new sequence is of the form y ; = Z{:o n:,jx; where the 17’s satisfy the constraint
that };; ; = 1. Though this may seem different from what was done above, it
actually amounts to the same idea.

Indeed, the residual of the ‘accelerated’ sequence is:

J J J
b-Ayj=0b- Z Ni,jAXi = Z’Yi,j[b - Ax;] = Z’]i,jpi(A)Vo
i=0 i=0 i=0

where p;(t) is the residual polynomial of degree i associated with the original
sequence, i.e., itis defined by (3.5). As was already seen, the polynomial p; satisfies
the constraint p;(0) = 1. Because Zf:o 7;;pi(0) = X m;; = 1, the new residual
polynomial p;(¢) = Z{ZO n;,jpi(t) also satisfies the same condition p;(0) = 1.
Therefore, we can say that the procedure seeks to find a degree j polynomial,
expressed in the form Z{zo ni,jpi(t), whose value at zero is one and which is
optimal in some sense.

We now return to Chebyshev acceleration to provide details on the procedure
discovered by John von Neumann and Golub and Varga. Letting:

B+a p—a
0= , 0= , 3.11
5 5 (3.11)
we can write T; defined by (3.9) as:
1 06—t ) 0
The three-term recurrence for the Chebyshev polynomials leads to
0
0']-+1:250'j—0'j_1, j=1L2..., with: op=1, o :5. (3.13)

We combine the recurrence (3.10) and (3.12) into a 3-term recurrence for the
polynomials 7}, for j > 1:

60—t
1T (1) =2 T(ijj(f) —0j-1Tj-1 (1) (3.14)

starting with To(r) = 1, T1(1) = 1 - 5.
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We now need a way of expressing the sequence of iterates from the above
recurrence of the residual polynomials. There are at least two ways of doing this.
Oneideaistonote thatrj,  —r; = —A(xj41 —x;) = Tj11(A)ro—T;(A)rg. Therefore
we need to find a recurrence for (741(t) — T;(t))/(~t). Going back to (3.14) and
exploiting the recurrence (3.13) we write for j > 1:

06—t 0
O'J'+1Tj+1 - O'j+1Tj =2 TO’jTj - <2—0'j - O'j_1> Tj - O-j—lTj—l

0
t
=-2 go_jTj + O'j—l(Tj - Tj—l) g
Tiy—T; 1 o o1 -T;-
ARELF A N A et il By (3.15)

When translated into vectors of the iterative scheme, T';(¢) will give r;, and (T4 (1)—
T;(1))/(=t) will translate to x ;.1 —x; and if we set d; = x ;1 —x; then (3.15) yields:

2 O o
=2 e (3.16)
0 Oj+1 Oj+1
We can set: p; = T j = 1,2,..., and invoke the relation (3.13) to get

pj=1/[201 — pj-1] and then (3.16) becomes d; = %rj + %dj_l. This leads to
Algorithm 1.

A second way to obtain a recurrence relation for the iterates x; is to write the
error as X1 — X« = Tj41(A)(xo — x,) and then exploit (3.14):

01 - A

Oj+1(Xj41 — Xi) = 2 TU_;'(X_/ —Xi) = 01 (X1 — Xa) (3.17)
0 20’j
= 250'j(xj — X))+ Trj —ojo1(xjo1 = Xs) (3.18)

From the relation (3.13), we see that the terms in x. cancel out and we get:

20’j
Oj+1Xj+1 =250'J-xj+7rj—0'j_1xj_1. (319)

Finally, invoking (3.13) again we can write 2%0’1- = 041 + 01 and hence:

20
J
Oj+1Xj+1 :0_j+1xj+0—j—1(xj_xj—l)+Trj . (320)

Note that Lines 4 and 7 of the algorithm, can be merged in order to rewrite the
iteration as follows:

2
Xjyl =Xj+p; pj_l(xj—xj_1)+5(b—ij) (321)

which is a ‘second order iteration’, of the same class as momentum-type methods
seen in optimization and machine learning, to be discussed in the next section. This
is a common form used in particular by Golub and Varga (1961) in their seminal
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Algorithm 1 Chebyshev Acceleration
1: Input: System A, b, initial guess xo and parameters 9, 6
2: Setrg=b— Axy, 01 =6/6; po=1/01 and dy = %ro;
3: for j =0,1,- -, until convergence: do

4 Xj+l = Xj + dj

5 Tjyl =Tj— Adj

6: pjs1 = Qo —py)7!

7

8

_ 2pj+1
djy1 = —5 T+l +pjrpjd;
: end for

work on “semi-iterative methods”. A major advantage of the Chebyshev iterative
method is that it does not require any inner products. On the other hand, the scheme
requires estimates for the extremal eigenvalue in order to set the sequence of scalars
necessary for the iteration.

It is easy to see that the iteration parameters p; used in the algorithm converge
to a limit. Indeed, the usual formulas for Chebyshev polynomials show that

2 / 2 -
0] 1][e 0 0 0
_/Ch 5 :E 5+ 5 -1 + 5+ 5 -1

As a result, we have

0'j=Ch

-1

2 2
o 0 6 0 0
li i J |24 i | == — -] =1=p. (3.22
j1—>n<}op] ]1—>ngo Oj+1 0 <6> 0 <5> Pt :

One can therefore consider replacing the scalars p ; by their limit in the algorithm.
This scheme, which we will refer to as the Stationary Chebyshev iteration, typically
results in a small reduction in convergence speed relative to the standard Chebyshev
iteration Kerkhoven and Saad (1992).

3.3. An overview of Krylov subspace methods

Polynomial iterations of the type introduced by Richardson lead to a residual of the
form (3.5) where p ;4 is a polynomial of degree j + 1, see Section 3.1. The related
approximate solution at step j + 1 is given in Equation (3.6). The approximate
solution x; at step j, is of the form x¢ + ¢ where 6 belongs to the subspace

K (A, ro) = Span{rg, Arg,- -+ , AT 'ro}. (3.23)

This is the j-th Krylov subspace. As can be seen, K (A, rp) is nothing but the
space of all vectors of the form g(A)rg where g is an arbitrary polynomial of degree
not exceeding j — 1. When there is no ambiguity we denote K (A, ro) by K;.

Krylov subspace methods for solving a system of the form (3.1), are projection
methods on the subspace (3.23) and can be viewed as a form of optimal polynomial
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acceleration implemented via a projection process. We begin with a brief discussion
of projection methods.

3.3.1. Projection methods
The primary objective of a projection method is to extract an approximate solution
to a problem from a subspace. Suppose we wish to obtain a solutionx € R to a
given problem (P). The problem is projected into a problem (P) set in a subspace
KC of R” from which we obtain an approximate solution X. Typically, the dimension
m of K is much smaller than n, the size of the system.

When applied to the solution of linear systems of equations, we assume the
knowledge of some initial guess xq to the solution and two subspaces XC and £ both
of dimension m. From these the following projected problem is formulated:

Find X=xp+6, 6 € L suchthat b-Ax L L. (3.24)

We have m degrees of freedom (dimension of K) and m constraints (dimension of
L), and so (3.24) will result in an m X m linear system which is nonsingular under
certain mild conditions on C and £. The Galerkin projection process just described
satisfies important optimality properties that play an essential role in their analysis.
There are two important cases.

Orthogonal Projection (OP) methods. This case corresponds to the situation where
the subspaces K and £ are the same. In this scenario the residual b—AX is orthogonal
to /C and the corresponding approximate solution is the closest vector from affine
space xo + K to the exact solution x,, where distance is measured with the A norm:
Vlla = (Av, )2,

Proposition 3.1. Assume that A is Symmetric Positive Definite and £ = K. Then
a vector ¥ is the result of an (orthogonal) projection method onto /C with the starting
vector xq if and only if it minimizes the A-norm of the error over xo + K, i.e., if and
only if
E(X) = min E(x),
XEX)HK

where
E(x) = (A(x, — x), x, — x)'/2.

The necessary condition means the following:

L=K and ASPD — |x. —X||la= min ||x, —x]||a.
XExQ+K

It is interesting to note that Richardson’s scheme shown in Equation (3.3) can
be cast to include another prominent one-dimensional projection method namely
the well-known steepest descent algorithm. Here, A is assumed to be symmetric
positive definite and at each step the algorithm computes the vector of the form
X = xj +yrj where r; = b — Ax;, that satisfies the orthogonality condition
b—Ax L r;. This leads to selecting at each step y = y; = (r;,r;)/(Arj,r;) which,



26 Y. SaAD

according to the above proposition, minimizes ||x — x.||4 over y. Another method
in this category is the Conjugate Gradient method which will be covered shortly.

Minimal Residual (MR) methods. This case corresponds to the situation when
L = AK. It can be shown that if A is nonsingular, then ¥ minimizes the Euclidean
norm of the residual over the affine space xq + K.

Proposition 3.2. Let A be an arbitrary square matrix and assume that £ = AK.
Then a vector % is the result of an (oblique) projection method onto K orthogonally
to £ with the starting vector xo if and only if it minimizes the 2-norm of the residual
vector b — Ax over x € xg+ K, i.e., if and only if

R(X) = min R(x),

XExQ+K
where R(x) = ||b — Ax||.
The necessary condition now means the following:

L=AK and A nonsingular — ||b — AX|p = min ||b — Ax|)>.
XEXxQ+K

Methods in this category include the Conjugate Residual (CR) method, the Gen-
eralized Conjugate Residual (GCR) method, and GMRES among others, see Sec-
tion 3.3.3.

Another instance of Richardson’s general iteration of the form (3.3) is the Min-
imal Residual iteration (MR) where 7 is selected as the value of y that minimizes
the next residual norm: ||b — A(x; + yr;)[l>. A little calculation will show that
the optimal y is y; = (r, Ar;)/(Arj, Ar;), where it is assumed that Ar; # 0, see,
e.g., Saad (2003). MR is a one-dimensional projection method since it computes a
vector of the form x j+d where d € X = Span{r;} which satisfies the orthogonality
condition b — Ax L AX.

3.3.2. OP-Krylov and the Conjugate Gradient method

One particularly important instance in the OP class of projection methods is the
Conjugate Gradient algorithm (CG) algorithm, a clever implementation of the
case where KL = L is a Krylov subspace of the form (3.23) and A is SPD. This
implementation is shown in Algorithm 2.

The discovery of CG Hestenes and Stiefel (1952) was a major breakthrough in the
early 1950s. The original CG article was co-authored by Magnus Hestenes [UCLA]
and Eduard Stiefel [ETH], but these authors made the discovery independently and,
as they learned of each other’s work, decided to publish the paper together, see Saad
(2022) for a brief history of Krylov methods.

Nowadays the CG algorithm is often presented as a projection method on Krylov
subspaces, but in their paper Hestenes and Stiefel invoked purely geometric argu-
ments as their insight from the 2-dimensional case and knowledge of ‘conics’ led
them to the notion of ‘conjugate directions’. The goal is to find the minimum of
fx) = %(Ax,x) — (b, x). In R? the contour lines of f(x), i.e., the sets {x| f(x) = k}
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Algorithm 2 Conjugate Gradient
1: Compute ry := b — Axg, po := ro.
2: for j =0,1,..., until convergence Do: do
3 @ =0r)/(Aps,py)
4. Xj+1 ‘=Xj+@;pj
5: Tj+l ::rj—ajApj
6: Bj =1,/ (rj, 7))
7.
8

- Dj+l ==Tjs1 +Bip;
: end for

where « is a constant, are con-focal ellipses the center of which is x. the desired
solution.

Figure 3.1. Illustration of the construction of conjugate gradient directions. This
illustration is based on the reference Hestenes and Todd (1991)

Figure 3.1 provides an illustration borrowed from Hestenes and Todd (1991).
The minimum of f(x) on a given chord of the ellipse is reached in the middle of
the chord. The middles x;, y, of two given parallel chords Li, L,, will define a
line L3 that passes through the center x. of the ellipse. The minimum of f(x)
along L3 will be at the center, i.e., at the exact solution. If x, = x| + @ py, is an
iterate and y; = x; + s, an intermediate iterate, the line L,: y(t) = y; + tpy, is
parallel to L. Its minimum is reached at a point y, = y; + 81 p1, and the direction
P2 = Y2 — X3 = p1 + B152 is conjugate to p;. In the CG algorithm, the direction s,
is taken to be the residual r; of x,.

At the same time as the CG work was unfolding, Cornelius Lanczos, who also
worked at the INA, developed a similar method using a different notation and
viewpoint Lanczos (1952). This was a minimal residual approach (MR method
discussed below), implemented with the use of what we now call a Lanczos basis
Lanczos (1950) for solving eigenvalue problems, another major contribution to
numerical linear algebra from the same era.
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The Conjugate Gradient algorithm was not too well received initially. It was
viewed as an unstable direct solution method and for this reason it laid dormant for
about two decades. Two important articles played a role in its revival. The first one
was by John Reid (1971) who discovered that the method could be rather effective
when used as an iterative procedure. At the same time, work by Paige (1971, 1980),
analyzed the Lanczos process for eigenvalue problems from the point of view of
inexact arithmetic, and this work gave a much better understanding of how the loss
of orthogonality affected the process. The same loss of orthogonality affected the
CG method and lead to its initial rejection by numerical analysts.

3.3.3. MR-Krylov methods, GCR, GMRES

Quite a few projection methods on the Krylov subspaces K ;(A, r9) were developed
starting in the late 1970s, with the objective of minimizing the residual norm. As
was seen earlier this optimality condition is equivalent to the property that the
approximate solution ¥ € KC;(A, rp) be orthogonal to the subspace AK;(A, rp).

Implementations with orthonormal basis of K,,, lead to the Generalized Minimal
Residual (GMRES) method Saad and Schultz (1986), a procedure based on the
Arnoldi process. Other implementations included Axelsson’s GCG-LS method
Axelsson (1980), ORTHOMIN (Vinsome Vinsome (1976)), ORTHODIR (Young
and Jea, Jea and Young (1980)), the Generalized Conjugate Residual Method
(GCR) of Eisenstat, Elman and Schultz (1983), among others. A rather exhaustive
treatise on this work can be found in the book by Meurant and Tebbens (2020). We
now briefly discuss the Generalized Conjugate Residual (GCR) method for solving
the system (3.1), since this approach will be exploited later.

The original GCR algorithm Eisenstat e al. (1983) for solving (3.1) exploits an
orthogonal basis of the subspace AK;(A, rg). The j-th step of the procedure can be
described as follows. Assume that we already have vectors po, po, - - - , p; that are
AT A-orthogonal, i.e., such that (Ap;, Apy) = 0 if i # k for i, k < j. Thus, the set
{pi}i=o,...,j forms an AT A -orthogonal basis of the Krylov subspace K j+1. In this
situation the solution x;, at the current iteration, i.e., the one that minimizes the

residual norm in xo + K ;41 = xo + Span{po, p1,--- , pj} becomes easy to express.

It can be written as follows, see, Saad (2003, Lemma 6.21) and Lemma 3.1 below:
r .’A .

Xjo1 =X . Apj) (3.25)

. + —p .,
" (Apj. Apj)T

where x; is the current iterate, and r; the related residual r; = b — Ax;.

Once x4 is computed, the next basis vector, i.e., p 41, is obtained from AT A-
orthogonalizing the residual vector 7,1 = b — Axj against the previous p;’s by
the loop:

J
Pj+l =Tjp1 — Zﬁijpi where S := (Arjs1,Api)/(Api, Api). (3.26)
i=0

The above describes in a succinct way one step of the algorithm. Practically it is
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necessary to keep a set of vectors for the p;’s and another set for the Ap;’s. We
will set v; = Ap; in what follows. In the classical (‘full’) version of GCR, these
sets are denoted by

PJ':[pO>p1>“'ij]; Vj:[VO,V1,“',V]’]. (327)

Note here are that all previous search directions p; and the corresponding v;’s must
be saved in this full version.

We will bring two modifications to the basic procedure just described. The first
is to introduce a “truncated” version of the algorithm whereby only the most recent
min{m, j + 1} vectors {p;} and {Ap;} are kept. Thus, the summation in (3.26)
starts at i = [j —m + 1] instead of i = 0, i.e., it starts at i = O for j < m and at
i = j —m+ 1 otherwise. The sets P;,V; in (3.27) are replaced by:

Pi=[pij-m+11> >l Vi=[Vijmm+i]> vl (3.28)
The second change is to make the set of v;’s orthonormal, i.e., such that (v ;, v;) =
0;j. Thus, the new vector v, is made orthonormal t0 v 41, Vj—ms2, ", V],
when j —m+1 > 0ortovg,vy,---,v; otherwise.
Algorithm 3 TGCR(m)

1: Input: Matrix A, Right-hand side b, initial guess xg.
2: Setrg=b— Axg; v = Arg;

3: vo = v/|[vll; po = ro/lIvils

4: for j =0,1,2,---, Until convergence do

5: aj = <I‘j,Vj>

6: Xj+1 =Xj+a;p;

7. Fjt] =TFj—@jvj

8: D =Tj+ls v =Ap;

9: if j> O then [with: V;, P; defined in (3.28)]
10: Compute s = Vv

11: Computev=v-V;sand p = p - P;s
12: end if

13: piv1=pllvizs virr = v/ vl

14: end for

Regarding notation, it may be helpful to observe that the last column of P;
(resp. V;) is always p; (resp. v;) and that the number of columns of P; (and
also V;) is min{m, j + 1}. Note also that in practice, it is preferable to replace
the orthogonalization steps in Lines 10-11 of the algorithm by a modified Gram-
Schmidt procedure.

The following lemma explains why the update to the solution takes the simple
form of Equation 3.25. This result was stated in a slightly different form in Saad
(2003, Lemma 6.21).
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Lemma 3.1. Assume that we are solving the linear system Ax = b and let
{Pi, vi}i=[j-m+1]:j be a paired set of vectors with v; = Ap;,i = [j —m+1],---, .
Assume also that the set V; is orthonormal. Then the solution vector of the affine
space x; + Span{P;} with smallest residual norm is x; + P;y; where y; = V].T rj.
In addition, only the bottom component of y;, namely v]T. rj, is nonzero.

Proof. The residual of x = x; + Pjyisr =r; — AP;y = r; — V;y and its norm
is smallest when VJ.Tr = (. Hence the 1st result. Next, this condition implies that

the inner products viT rj+1 are all zero wheni < j, so the vector y ;41 = V].T+ \Tj+1 at
the next iteration will have only one nonzero component, namely its last one, i.e.,

vJT.Hr j+1. This proves the second result for the index j + 1 replaced by ;. 0

It follows from the lemma that the approximate solution obtained by a projection
method that minimizes the residual norm in the affine space x; + Span{P;} can
be written in the simple form x;,; = x; + a;p; where a; = vJT. rj. This explains
formula (3.25) shown above and Lines 5-6 of Algorithm 3 when we take into
consideration the orthonormality of the v;’s.

We will call the ‘full-window’ case of the algorithm the situation when there
is no truncation. This is equivalent to setting m = oo in the algorithm. The
truncated variation to GCR (m < o0), which we will call Truncated GCR (TGCR)
was first introduced in Vinsome (1976) and was named ‘ORTHOMIN’. Eisenstat
et al. (1983) established a number of results for both the full window case (m = o)
and the truncated case (m < oo0) including, a convergence analysis for the situation
when A is positive real, i.e., when its symmetric part is positive definite. In addition
to the orthogonality of the vectors Ap;, or equivalently the AT A-orthogonality of
the p;’s, another property of (full) GCR is that the residual vectors that it produces
are ‘semi-conjugate’ in that (r;, Ar;) = 0 fori > j.

Note that when j > m in TGCR (m < o0), then the approximate solution x; no
longer minimizes the residual norm over the whole Krylov subspace xo + K ;(A, o)
but only over x;_,, + span{p j_, - - p;}, see Eisenstat et al. (1983, Th. 4.1).

3.4. Momentum-based techniques

The Chebysheyv iteration provides a good introduction to the notion of momemtum.
It is sufficient to frame the method for an optimization problem, where we seek
to minimize the quadratic function ¢(x) = 3x7 Ax — bTx where A is SPD. In this
case Vg(x) = Ax — b which is the negative of the residual. With this we see that
Chebyshey iteration (3.21) can be written as:

Xj+l =Xj+T]jA)Cj_1 —VjV¢(Xj) (3.29)
where n; = p;pj-1 and v; = 2p; /6. Recall the notation: Ax; | = x; —x;_j.
3.4.1. The ‘heavy-ball’ method

Equation (3.29) is the general form of a gradient-type method with momentum,
whereby the next iterate x j;1 is a combination of the term x; —v;Vé(x ), which can
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be viewed as a standard gradient-type iterate, and the previous increment, i.e., the
difference x; — x;_;. This difference Ax;_; is often termed ‘velocity’ and denoted
by v;_1 in the literature. Thus, a method with momentum takes the gradient iterate
from the current point and adds a multiple of velocity. A comparison is often made
with a mechanical system representing a ball rolling downhill. Often the term
heavy-ball method is used to describe the iteration (3.29) in which the coefficients
nj, 1 ; are constant. An illustration is provided in Figure 3.2.

Itis common to rewrite Equation (3.29) by explicitly invoking a momentum part.
This can be done by defining v; = Ax; = x;41 — x;. Then the update (3.29) can be
written in two parts as

vji  =mvj-1 = viVé(x)) (3.30)
Xj+l ZXj+Vj . ’

However, often the velocity v; is defined with the opposite sign 2,i.e.,v; = —Ax; =
Xj — Xxj4+1, in which case the update (3.29) becomes

{VJ njvj_1+vjV¢5(xj) (3.31)
)CJ'+1 = Xj - VJ'.

Both of expressions (3.30) and (3.31) can be found in the literature but we will
utilize (3.31) which is equivalent to a form seen in Machine Learning (ML). In
ML, the scalar parameters of the sequence are constant, i.e., n; = n,v; = v and
the velocity vector v is often scaled by v, i.e., we set v; = vw; upon which (3.31)
becomes

{wj = nwj-1 + V(x;) (3.32)

Xj+1 ZXj—VWj .

In this way, w; is just a damped average of previous gradients where the damping
coefficient is a power of 1 that gives more weight to recent gradients. In Deep
Learning, the gradient is actually a sampled gradient corresponding to a ‘batch’ of
functions that make up the final objective function, see, Section 8.

3.4.2. Convergence

The convergence of Chebyshev iteration for linear problems is well understood,
see, e.g., Saad (2011). Here we consider, more generally, the momentum scheme
(3.29) but we restrict our study to the particular case where the scalars 7;, v; are
constant, denoted by 1, v respectively. We also make the same assumption as for
the Chebysheyv iteration that the eigenvalues of A are real and located in the interval
[a@, B] with @ > 0. Equation (3.29) becomes

Xjy1 =Xj+n(x; —xj-1) — v(Ax; — b)
2 The motivation here is that when n = 0, which corresponds to the gradient method without

momentum, the vector v; in the update x4 = x; + v; should be a negative multiple of the
gradient of ¢, so changing the sign makes v ; a positive multiple of the gradient.
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Figure 3.2. Illustration of the gradient method with momentum

=[(1+mI -vA]x; —nx;_1 +vb (3.33)

To analyze the convergence of the above iteration we can write it in the form

1 I —vA|-nl
(x,-+1> _ (L+mI —vA|-n <Xj ) . (vb) | 334
x]- )i | 0 XJ'_l 0

It is helpful to introduce two matrices:

B= %(A —9I) and C= % [(1+m)] — vA] (3.35)

where we recall that ¢, 8 are defined in (3.11) and that the eigenvalues A;(B) are in
the interval [—1, 1]. Then the iteration matrix in (3.34) is

_(2C -nl
G—<I 0). (3.36)

If u; j=1,---,n, are the eigenvalues of C, then those of G are

Ajzyji,/;@—n. (3.37)

This expression can help determine if the scheme (3.29) will converge. As a
particular case, a sufficient condition for convergence is that 0 < < 1 and all y;’s
be less that 4/ in magnitude. In this case y? —n is negative and the modulus of 4
is a constant equal to 4/, which is independent of ;.

As an example, we will look at what happens in the case of the stationary
Chebysheyv iteration defined earlier.

Proposition 3.3. Consider the stationary Chebysheyv iteration in whichn; =n =
p2 and v; = v = 2(p/d), where p was defined in (3.22). Then each of the
eigenvalues u; of the matrix C in (3.35) satisfies the inequality |u;| < p. In
addition, if p < 1 the stationary Chebyshev iteration converges and its convergence
factor, i.e., the spectral radius of the matrix G in (3.36), is equal to p.
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Proof. The eigenvalues u; of C are related to those of B as follows

1 1
u,:§[1+n—mj(A)] :5[1+n—v(9+5/1j(3))]. (3.38)
Substituting = p? and v = 2p/4, leads to:
1 2 1 6
pi=5|1 +p? - ?p(m(mj(B))} =3 [pz —2zp+ 11 =pli(B).  (339)

It can be observed that p in (3.22) is a root of the quadratic term in the brackets in
the second part, i.e., p*> — 2%,0 +1=0,and so u; = —pA;(B). Since |1;(B)| < 1,
it is clear that |u;| < p and therefore the term u? -n = ,u? — p?in (3.37) is
non-positive. Hence, the eigenvalues A; are of the form A; = u; £i,/p? - y? and
they all have the same modulus p. Ul

It may seem counter intuitive that a simple fixed-point iteration like (3.34) can
be competitive with more advanced schemes but we note that we have doubled
the dimension of the problem relative to a simple first order scheme. The strategy

of moving a problem into a higher dimension to achieve better convergence is
common.

3.4.3. Nesterov acceleration

A slight variation of the momentum scheme discussed above is Nesterov’s iteration
Nesterov (2014). In this approach the gradient is evaluated at an intermediate point
instead of the most recent iterate:

Xj4l = Xj +77jAXj_] — VjV¢(Xj +T]jA)Cj_1). (3.40)
Using earlier notation where v;_; = —Ax;_; this can also be re-written as:

vio =i+ v Ve - nvion) (3.41)
Xjr1 = Xj =V |

To analyze convergence in the linear case, we need to rewrite (3.40) in a block
form similar to (3.34). Setting n; =n,v; = v and V¢(x) = Ax — b in (3.40) yields:

Xjg1 =Xj+n(xj—xj_1) =V [A(xj +n(x; —xj-1) — b]
= +mxj—nxj—1 —v(l +n)Ax; +vnAx;j_ +vb
=(l+nU -vAx;—n[l -vA]xj_1 +vb

which leads to:

1 I —vA)|-n(I-vA
(XJH) _ A+ —vA)| =l —vA) (xf ) + (Vb) (3.42)
)Cj I | 0 xj—l 0

The scheme represented by (3.40) and its matrix form (3.42) can be viewed as
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a way of accelerating a Richardson-type scheme, see, (3.2), with the parameters
v; set equal to v for all j. The corresponding iteration matrix (3.4) is the matrix
B=1-vA. Ifu;,j=1,---,n are the eigenvalues of B, those of the iteration
matrix in (3.42) are roots of the equation A2 — (1 + 1)y jA+nu; =0 and they can
be written as follows:

+ l+n 1+7\> 7
A= | — a4 —L) - L 4

with the convention that when p; = 0 both roots are zero. Assume that the
eigenvalues of B are real and such that

— 0, < ;<0 (3.44)
where 61, 6, are non-negative. It is convenient to define
n
= (3.45)
(1 +n)?

The simplest scenario to analyze is when v and 5 are selected such that §; = 0
and 8, = ... For example, we can first set v = 1/4,,,4x(A) to satisfy the requirement
6, = 0 since in this case

A
ui=1-v4;(A) > 1- "= =0.
max
Then with v set to the value just selected, we will find n so that 6, = 6,, i.e.,

m = 6, which yields the quadratic equation:
2

2
n2—2(——1>n+1=0- (3.46)
02

Note that if the eigenvalues of A are positive, then 6, < 1 and the discriminant

A= (%2 - 1) — 1 is non-negative so the roots are real. It is important to also note

that the product of the two roots of this equation is one, and we will select 7 to be
the smallest of the two roots so we know it will not exceed one.

In this scenario, the eigenvalues yu; are in the interval [0, 6.] and will yield a
negative value inside the square root in formula (3.43) for /lf. The squared modulus

.
of/ljls
2 2
2l () (L
7\ 2 1j 2

So each of these eigenvalues is transformed into a complex conjugate pair of
eigenvalues with modulus /u;, but since p; < 6, the maximum modulus is
< 2n/(1 + 1) which is less than one when y is selected to be the smallest root

=nu;. (3.47)
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of (3.46) as discussed above. In this situation the scheme will converge with a
convergence factor 2n/(1 + 7).
It is also possible to analyze convergence in a more general scenario when

-0, <0<6,<0,

In this situation we would need to distinguish between 3 different cases correspond-
ing to the intervals [0, 0), [0, 6.), and [6., 62]. The analysis is more complex
and is omitted.

4. Accelerating the SCF iteration

The Schrodinger’s equation HY = EY was the result of a few decades of excep-
tionally productive research starting in the late 19th century that revolutionized
our understanding of matter at the nanoscale, see Gamov (1966). In this equa-
tion E is the energy of the system and ¥ = ¥Y(ry,r2,...,rn, R1, Ra, ..., Ry) the
wavefunction which depends on the positions R;, r; of the nuclei and electrons
respectively. This dependence makes the equation intractable except for the smal-
lest cases. Thus, in 1929, Dirac famously stated that (paraphrasing) ‘The physical
laws necessary for understanding a large part of physics and the whole chemistry
are now completely known and what remains is to develop practical methods to
solve the related equations’. It took about four additional decades to develop such
methods, a good representative of which is Density Functional Theory (DFT).

4.1. The Kohn-Sham equations and the SCF iteration

DFT manages to obtain a tractable version of the original equation by replacing
the many-particle wavefunction ¥ with one that depends on one fictitious particle
which will generate the same charge density as that of the original interacting
multi-particle interacting system. The foundation of the method is a fundamental
result by Kohn and Sham (1965), namely that observable quantities are uniquely
determined by the ground state charge density. The resulting Kohn-Sham equation
can be written as follows:

2

Vol | W) = EW) @.1)
2m

where the total potential V;,, is the sum of three terms:
th = Vion + VH + ch- (42)

Both the Hartree potential Vg and the Exchange-Correlation V. depend on the
charge density (or electron density) which is defined from ‘occupied’ wavefunc-

tions:
occup

p(ry= > W) (4.3)
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Thus, the Hartree Potential Vy is solution of the Poisson equation: ViVy =
—4np(r) on the domain of interest while the Exchange-Correlation potential de-
pends nonlinearly on p under various expressions that depend on the model. Once
discretized, Equation (4.1) yields a large eigenvalue problem, typically involving
Noceup €igenvalues and associated eigenvectors. For additional details, see Saad,
Chelikowsky and Shontz (2009).

The basic SCF iteration would start from a guessed value of the charge density
and other variables and obtain a total potential from it. Then the eigenvalue problem
is solved to give a new set of wavefunctions y; from which a new charge density p
is computed and the cycle is repeated until self- consistence is reached, i.e., until
the input p;;, and output p,,, are close enough. One can capture the process of
computing p in this way by a fixed-point iteration:

pj+1 = g(p;) (4.4)

where g is a rather complex mapping that computes a new charge density from the
old one. This mapping involves solving an eigenvalue problem, a Poisson equation,
and making some other updates.

Convergence of this process can be slow in some specific situations. In addi-
tion, the cost of each iteration can be enormous. For example, one could have a
discretized eigenvalue problem with a size in the tens of millions, and a number of
occupied states, i.e., eigenpairs to compute, in the tens of thousands. It is therefore
natural to think of employing procedures that accelerate the process and this can
be done in a number of ways.

4.2. Simple mixing

The idea of acceleration used in the context of DFT is different from that of
extrapolation discussed earlier. Here, researchers invoke the idea of ‘mixing’ a
current p with older ones. The most basic of these is known as ‘simple mixing’
and it defines a new p from an old one as follows, where 7y is a scalar parameter:

pj+1 =8+ (1 =y)p; (4.5)

=pj+v@&p)=pj) (4.6)

It may be helpful to link the above acceleration scheme with other methods that
have been developed in different contexts and to this end a proper notation is key

to unraveling these links. We will replace p by a more general variable x, so (4.4)
becomes

Xjr1 = 8(x;) 4.7)
and we will denote by f the function:

f) = gx) - x. (4.8)
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With this, the ‘simple mixing’ iteration (4.6) becomes:
Xj+1 = X5 +y[f(x)). 4.9)

The first link that will help set the notation and terminology is with Richarson’s
iteration, see Equation (3.2), for solving linear systems of the form Ax = b. In this
case g(x) =x+vy(b—Ax)and f(x) = b— Ax. So, Richardson’s iteration amounts to
the simple mixing scheme above where f(x) is the residual b — Ax. We will refer
to the general scheme defined by (4.9) as Richardson’s iteration, or ‘linear mixing’,
in order to avoid the term ‘simple mixing’ which is proper to the physics literature.
Often, linear iterations are expressed in the form x ;1 = Mx; + b. In this case we
seek to solve the system (I — M)x = b and f(x) = (I — M)x — b, is the negative of
the residual.

The next link is with gradient descent algorithms for minimizing a scalar function
¢(x). Assuming that the function is convex and differentiable, the iteration reads:

Xjr1 =x; —yVp(x;) (4.10)

where vy is a positive scalar selected to ensure a decrease of the function ¢(x). In the
special case where ¢(x) = %xT Ax — b x and A is symmetric then Vg (x) = Ax — b
which is the negative of the residual, i.e., V¢(x) = —(b — Ax). This leads to the
gradient method for minimizing ¢(x), and thereby solving the system Ax = b, when
A is SPD.

4.3. Anderson mixing

The article Anderson (1965) presented what the author called an ‘extrapolation
algorithm’ for accelerating sequences produced by fixed-point iterations. The
method became well-known in the physics literature as “Anderson mixing” and
later as “Anderson Acceleration” (AA) among numerical analysts. The following
description of the algorithm introduces minimal changes to the notation adopted
in the original paper. Anderson’s scheme aimed at generalizing the simple mixing
discussed earlier. It also starts with a mapping g that takes an input x into some
output y, so that y = g(x). The pair x, y is ‘self-consistent’ when the output and
input values are the same, i.e., when ||y — x|l» = 0, or small enough in practice.
In the following we define f to be the residual f(x) = g(x) — x. First, Anderson
considered a pair consisting of an intermediate iterate X; and an associated ‘linear
residual’ fj

)EJ' =x; + Hi(xi—xj), (411)

fi=rfi+ 0:(fi = f))- (4.12)
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Since fj can be viewed as a linearized residual for X ;, the idea is to determine the
set of 6;’s so as to minimize the 2-norm of f;:

j-1
min | + Z 0ifi = 1) - (4.13)
i=[j-m] 5
Once the optimal § = [6(;_,,,}, - - -, Hj_l]T is found, the vectors X ;, fj are computed
according to (4.11 — 4.12) and the next iterate is then defined as:
Xj+l :)EJ‘ +ﬁf_J (414)

In the original article, S was dependent on j, but we removed this dependence for
simplicity, as this also reflects common practice.

When comparing the Anderson scheme to Pulay mixing discussed in the next
section, it becomes useful to rewrite equations (4.11 — 4.12) by defining 6; =

1- Z{:_[]j_m] ;. This leads to the mathematically equivalent equations:
J
F= ) O (4.15)
i=[j-m]

(4.16)

h
I
M-
>
=

j J
{6;} = argmin Z 0;f; subject to: Z 0; =1 4.17)

i=lj-ml ||, i=[j-m]

Formulation (4.11 —4.13) leads to a standard (unconstrained) least-squares prob-
lem to solve, see (4.13). It can be viewed as a straightforward alternative to the for-
mulation (4.15 — 4.17) which requires solving a constrained optimization problem.
The first formulation is still not an efficient one from the implementation point of
view —mainly because the sets of vectors f;— fj andx;—x; fori = [j—-m],--- , j—1]
must computed at each step. An equivalent algorithm that avoids this will be seen
in Section 6.

4.4. DIIS (Pulay mixing)

The “Direct Inversion in the Iterative Subspace” (DIIS) is a method introduced by
Pulay (1980) to address the same acceleration needs as Anderson’s method. It is
well-known as ‘Pulay mixing’ and widely used in computational chemistry. The
method defines the new iterate in the following form:
J
Xp= Y 0ig(), (4.18)

i={j=m]
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where the 6;’s are to be determined parameters such that le.:[j_m] 0; = 1. Defining
the residual for iteration i as f; = g(x;) — x;, the 6;’s are selected to minimize
the norm of the linearized residual, i.e., they result from solving the following
optimization problem

J J
min Z 0; f; subject to: Z 6;,=1. (4.19)
i=[j-m] 5 i=[j-m]

In the original paper, the above problem was solved by using standard techniques
based on Lagrange multipliers. However, an alternative approach is to invoke the
constraint and express one of the 6;’s in term of the others. Specifically, we can
define

0;=1- > 6 (4.20)
i=[j-m]
When this is substituted in the optimization problem (4.19) we obtain the same
optimization problem (4.13) as for AA. In addition, assume that DIIS is applied to
an iteration of the form (4.9) with y replaced by S. In this case g(x;) = x; + Bf(x;)
and therefore the next iterate defined in (4.18) can be re-written as

J J J
Xje1 = Z] 0i(xi + B () = [Z ]eixl- +h [Z | 0,f(x) = %; + Bfj, (4.21)
= i=[j-m i=|j—-m

which is identical with Anderson’s update in Eq. (4.14). Note also that the vectors
f; defined above are now x; — g(x;) = Bf; and so the solution to the problem
(4.19) is unchanged. So the two schemes are equivalent when both are used to
accelerate an iteration of the Richardson type (4.9). For this reason, the common
term “Anderson-Pulay mixing” is often used to refer to either method.

Later Pulay published another paper Pulay (1982) which considered improve-
ments to the original scheme discussed above. This improved scheme consisted
mainly in introducing a new SCF iteration, i.e., an alternative to the function g
in our notation, which leads to better convergence. In other words the method is
specifically targeted at SCF iterations. Pulay seemed unaware of Anderson’s work
which preceded his by approximately 15 years. Indeed, neither of the two articles
just mentioned cites Anderson’s method.

The article Chupin, Dupuy, Legendre and Séré (2021) discusses the conver-
gence of variable depth DIIS algorithms and shows that these can lead to superior
convergence and computationally more effective schemes.

5. Inexact and Quasi Newton approaches

Among other technique that have been successfully applied to accelerate fixed-
point iterations such as the one in DFT, are those based on Quasi-Newton (QN)
approaches. One might argue whether or not it is legitimate to view these as
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‘acceleration techniques’. If the only restriction we put on acceleration methods
is that they utilize a few of the previous iterates of the sequence, and that they
apply the fixed-point mapping g, to one of more vectors, then inexact Newton and
Quasi-Newton methods satisfy these requirements.

5.1. Inexact Newton

Many of the approaches developed for solving (1.2) are derived as approximations
to Newton’s approach which is based on the local linear model around some current
approximation x;:

SO+ Ax) = f(x))+J(x))Ax, (5.1)

where J(x;) is the Jacobian matrix at x;. Newton’s method determines 6 = Ax; =
Xjy1 — Xx;j at step j, to make the right-hand side on (5.1) equal to zero. This is
achieved by solving the Newton linear system J(x;)d + f(x;) = 0. Inexact Newton
methods, see e.g., Kelley (1995), Dembo, Eisenstat and Steihaug (1982), Brown and
Saad (1990) among many references, compute a sequence of iterates in which the
above Newton systems are solved approximately, typically by an iterative method.
Starting from an initial guess xo, the iteration proceeds as follows:

Solve J(x;)0; = —f(x;) 5.2)
Set Xjt] = X5+ 5j (5.3)

The right-hand side of the Newton system is — f(x;) and this is also the residual
for the linear system when ¢; = 0. Therefore, in later sections we will define the
residual vector r; = — f(x;).

Suppose that we invoke a Krylov subspace method for solving (5.2). If we set
J = J(x;) then the method will usually generate an approximate solution that can
be written in the form

where V; is an orthonormal basis of the Krylov subspace
K; = Span{r;, Jrj,- -, J" 'r;}. (5.5)

The vector y; represents the expression of the solution in the basis V;. For example,
if GMRES or, equivalently Generalized Conjugate Residual (GCR) Eisenstat ef al.
(1983), is used, then y; becomes y; = (JVj)T(—f(xj)). In essence, the inverse
Jacobian is locally approximated by the rank m matrix:

Bjomres = Vi(JV)'. (5.6)

In inexact Newton methods the approximation just defined can be termed ‘local’,
since it is only used for the j-th step: once the solution is updated, the approximate
inverse Jacobian (5.6) is discarded and the process will essentially compute a new
Krylov subspace and related approximate Jacobian at the next iteration. This ‘lack
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of memory’ can be an impediment to performance. Herein lies an important distinc-
tion between these methods and Quasi-Newton methods whose goal is to compute
approximations to the Jacobians, or their inverses, by an accumulative process,
which utilizes the most recent iterates to gradually update these approximations.

5.2. Quasi-Newton

Standard quasi-Newton methods build a local approximation J; to the Jacobian
J(x;) progressively by using previous iterates. These methods require the relation
(5.1) to be satisfied by the updated J ;1 which is built at step j. First the following
secant condition, is imposed:

JinAxj = Afj, (5.7

where Af; := f(xj+1) — f(x;). Such a condition will force the new approximation
to be exact on the pair Ax;, Af; in the sense that the mapping J ;| must transform
Ax; into A f; exactly. A second common requirement is the no-change condition:

Jisiq=J;q, Vq suchthat ¢"Ax;=0. (5.8)

In other words, there should be no new information from J; to J;4; along any
direction ¢ orthogonal to Ax;. Broyden showed that there is a unique matrix J ;4
that satisfies both conditions (5.7) and (5.8) and it can be obtained by the update

formula:
T

T =J;+ (Af; = JjAx ;) —2—. 5.9
J+l j+(Af; J ")AxJT.ij (5.9)
Broyden’s second method approximates the inverse Jacobian directly instead of
the Jacobian itself. If G; denotes this approximate inverse Jacobian at the j-th
iteration, then the secant condition (5.7) becomes:

G jvAfj = Ax;. (5.10)

By minimizing E(G j+1) = (|G 41 — Gj||12F with respect to G j41 subject to (5.10),
one finds this update formula for the inverse Jacobian:
Af; r
Gis1 =G+ (Ax; - GiAfj) ———, (5.11)
J J J i i ij Af;
which is also the only update satisfying both the secant condition (5.10) and the
no-change condition for the inverse Jacobian:

(Gjs1-Gj)g=0, YqLAf;. (5.12)

AA can be viewed from the angle of multi-secant methods, i.e., block forms of the
secant methods just discussed, in which we impose a secant condition on a whole
set of vectors Ax;, Af; at the same time, see 6.7.1.
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6. A detailed look at Anderson Acceleration

In the original article Anderson (1965) the author hinted that he was influenced by
the literature on ‘extrapolation methods’ of the type presented by Richardson and
Shanks and in fact he named his method the “extrapolation method”, although more
recent terminology reserves this term to a different class of methods. There were
several rediscoveries of the method, as well as variations in the implementations. In
this section we will take a deeper look at AA and explore different implementations,
variants of the algorithm, as well as theoretical aspects.

6.1. Reformulating Anderson’s method

We begin by making a small adjustment to the notation in order to rewrite AA in a
form that resembles that of extrapolation methods. This variation requires a simple
change of basis. As was seen in Section 4.3 Anderson used the basis vectors

di=fi—fi, for i=[j-m]:j-1 6.1)
to express the vector added to f; to obtain f_] as shown in (4.12) which becomes
j-1
fi=fi= > 6. (6.2)
i=[j-m]
We assume that the d;’s do indeed form a basis. It is common in extrapolation
methods to use forward differences, e.g., Af; = fir1 — f; and Ax; = x;41 —x;. These

can be exploited to form an alternate basis consisting of the vectors A f;_1 = fi— fi-1
fori = [j —m] : j — 1 instead of the d;’s. Note that the simple relations:

Afi=(fi—fi)-(fi-f)=di=dix1, i=[j-m],---,j-1 (63)
Ji—=fi=U;— im0+ fis = fi-a) + -+ (firr = f2)
=Afj +Afjo++Af i=[j-m],- -1, (6.4)

allow to switch from one basis representation to the other. Note that the linear
independance of one of these two sets of vectors implies the linear independance of
the other. A simliar transformation can also applied to express the vectors x; — x;
in terms of Ax;’s and vice-versa.

With this new notation at hand, we can rewrite AA as follows. Starting with an
initial xg and x; = g(xg) = xo + Bfo, where 8 > 0 is a parameter, we define blocks
of forward differences

Xj = [Axpjom) - Axjal, Fp=I[Afjemy - Afjal (6.5)

We will define m; = min{m, j} which is the number of columns in &’; and ;.
The least-squares problem (4.13) is translated to the new problem:

y = argmin,, cgm; || f5 = Fiy - (6.6)
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from which we get the vectors in Equations (4.11), (4.12), and (4.14):

)Ej IXj—Xj )/(j), (67)
fi=rfi=Fir", (6.8)
X1 =X+ Bf. (6.9)

We show this as Algorithm 4.

Algorithm 4 Anderson-Acceleration AA (m)
1: Input: Function f(x), initial xo.

2: Set fo = f(x0);

3: x1 = x0 + Bo fo;

4. f] = f(X]).

5: for j =1,2,---, until convergence do

6 Avjr=x;—xp Afjar == fi-

7 Set X; = [Ax[j-m1s - Axja], Fi=[Afj=m1> - Afj-1]
8 Compute y) = argmin, || f; = F |2

9:  Compute xj41 = (x; — X;¥Y) + B(fj — FjyW)
10: end for

It is clear that the two methods are mathematically equivalent, as they both
express the same underlying problem in two different bases. To better see the
correspondance between the two in the simplest case when m = oo (in which case
[/ —m] = 0) we can expand f; — F;7y and exploit (6.3):

j-1
fi=Fiy=Fi= ) vin(fis1 = £i)

i=0

j-1
=1 Z Yis1[di —dir1]  (Note: d; = 0)
i=0

j-1
=i~ Z(%‘H —vi)d; (with: yg = 0).
i=0

Thus, a comparison with (6.2) shows that the optimal 8;’s in the original Anderson
algorithm can be obtained from the y;’s of the variant just presented by using the
relation 8; = y;41 —y; fori =0, -- -, j — 1 with the convention that yg = 0. It is also
easy to go in the opposite direction and express the y;’s from the 6;’s of the original
algorithm. In fact, a simple induction argument using the relations 6; = y;+1 — ¥
for i > 0 with yy = 0, will show that y;;; = Zz':o 0 fori > 0.

The intermediate solution X; in (6.7) can be interpreted as the minimizer of the
linear model:

fxj =Xy = f(x;)— Fiy (6.10)
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where we use the approximation f(x; — y;Ax;) ~ f(x;) — v;Af;. The method
computes the minimizer of the linear model (6.10) and the corresponding optimal
Xj. The vector f] is the corresponding linear residual. Anderson’s method obtains
this intermediate solution X; and proceeds to perform a fixed-point iteration using
the linear model represented by the pair X, f] as shown in (6.9).

From an implementation point of view, to compute the new iterate x ;1 as defined
in (6.36) we need the pair x;, f;, the pair of arrays X;, 7, and 5. We may write this
as xj41 = AA(x;, B, Xj, F;). The algorithm would first obtain y(j ) from solving
(6.6), then compute X, f] and finally obtain the next iterate x;.1 from (6.9). In
the restarted version of the algorithm X;, F; are essentially reset to empty arrays
every, say, k iterations. The case where all previous vectors are used, called the
‘full-window AA’ (or just ‘full AA’), corresponds to setting m = co in Algorithm 4.
The ‘finite window AA’ or ‘truncated AA’ corresponds Algorithm 4 where m is
finite. The parameter m is often termed called the ‘window-size’ or ‘depth’ of the
algorithm .

6.2. Classical Implementations

In the classical implementation of AA the least-squares problem (6.6) or (4.13) are
solved via the normal equations:

FTFoy D = FT f; (6.11)

where it is assumed that F; has full rank. When the iterates near convergence, the
column vectors of F; will tend to be close to zero or they may just become linerarly
dependent to within the available working accuracy. Solving the normal equations
(6.11) in these situations will fail or be subject to severe numerical issues. In spite of
this, the normal equation approach is rather common, especially when the window-
size m is small. The ideal solution to the problem from a numerical point of view is
to resort to the Singular Value Decomposition (SVD) and apply the truncated SVD
Golub and Van Loan (2013, sec. 5.5). However, this ‘gold-standard’ approach is
expensive and has been avoided by practitioners. An alternative is to regularize the
least-equares problem, replacing (6.11) by

(}—IT]_—J + TI)’)/(j) — ]:ijJ (6.12)

where 7 is a regularization parameter. This compromise works reasonably well
in practice and has the advantage of being inexpensive in terms of arithmetic and
memory. Note that the memory cost of an approach based on normal equations
is modest, requiring mainly to keep the sets F;, X}, i.e., a total of 2m vectors of
length n.

6.3. Implementation with “Downdating QR”

A numerically effective alternative to the normal equations is based on exploiting
the QR factorization. Here we will focus on Problem (6.6) of the formulation of
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AA discussed above. In principle the idea of using QR is straightforward. Start
with a QR factorization of F;, which we write as 7; = QR with Q € R where
we recall the notation m; = min{m, j} and R € R™>™i. Then obtain y) by
simply solving the triangular system Ry"Y) = QT f 7. Such a trivial implementation
runs into a practical difficulty in that recomputing the QR factorization of F; at
each step is wasteful as it ignores the evolving nature of the block F;.

Assume at first that j < m — 1. Then at the end of the j-th step represented in
the main loop of Algorithm 4, one column is added to F; (which has j columns)
to obtain F ;1 (which has j + 1 < m columns). If ; = QR and the new column
v = Af; is added then we just need to carry out one additional step of the Gram-
Schmidt process whereby this v is orthonormalized against the existing columns of
Q. i.e., we write § = v — Qh where h = QT v and then qj+1 =4 /p where p = ||4]>.
Hence, the new factorization is

OR. (6.13)

Fiv1 = [Fj.v] = [0, qj+1] (g z>

Assume now that j > m — 1. Then, to form F},; in the next step, a column v
is added to F; while the oldest one, A fmj, must be discarded to create room for
the new vector. Recall that the number of columns must stay < m. This calls for a
different strategy based on ‘downdating’ the QR factorization, i.e., updating a QR
factorization when a column of the original matrix is deleted.

To simplify notation in describing the process, we will remove indices and write
our current F; simply as F' = [vq,V2,+-+, V] (m columns) and assume that F
was previously factorized as F = QR. The aim is to build the QR factorization of
[v2,v3,- -+, v, from the existing factors Q, R of F. Once this is done we will
be in the same situation as the one where j < m — 1 which was treated above,
and we can finish the process in the same way as will be seen shortly. We write
F=1[vi,vy,- ,vm],R=[r1,r2, -, rm] and denote the same matrices with their
Ist columns deleted by:

Foy=[va,v3, - ,vml, H=1[ryr3, - ,rml. (6.14)

The matrix H is of size m X (m — 1) and has an upper Hessenberg form, i.e., ;; = 0
fori > j+ 1. The matrix F(_), satisfies

Fo, =QH (6.15)

and our goal is to obtain a QR factorization of F{_) from this relation. For this we
need to transform H into upper triangular form with the help of Givens rotation
matrices Golub and Van Loan (2013) as is often done. Givens rotations are matrices
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of the form:

G(i,k,0) =

0...0 . 1
with ¢ = cos@ and s = sin#. This matrix represents a rotation of angle —6 in
the span of e; and e;. A rotation of this type is usually applied to transform
some entry in the k-th row of a matrix A to zero by an appropriate choice of 8. If
H = {h;j}i=1.m, j=1:m-1 we can find arotation G| = G(1, 2, 6;)sothat (G1H),; = 0.
The values of ¢ and s for this 1st rotation are

hi hia

C= ——, S = —-.
/ 2 2 [1,2 2
hll + h12 hll + hlZ

This is then followed by applying arotation G, = G(2, 3, 63) sothat (G2(G1H))3 2 =
0, etc. Let € be the composition of these rotation matrices:
Q=Gn-1Gp-2 -GGy,

The process just described transforms H to an m X (m — 1) upper triangular matrix

with a zero last row:
R
ai = ().

Defining O = QQ7 = [§1,42,- -, Gm] and OO = [§1,- -+ , Gm-1], We see that:
Fy=QH =(0Q") (QH) = 0 x (5) = QU)R, (6.16)

which is the factorization we were seeking. Once the factorization in (6.16) is
available, we can proceed just as was done in the full window case (j < m — 1)
seen earlier to add a new vector v to the subspace, by updating the QR factorization
of [F-),v] from that of F(_), see equation (6.13). Computing the downdated QR
factors in this way is much less expensive than recomputing a new QR factorization.

This procedure yields a pair of matrices Q;, R; such that 7; = Q;R; at each
step j. The solution to the least-squares problem in Line 8 is y/) = R;ln(f ) where

n) = QJT. fj- Then, clearly in Line 9 of Algorithm 4, we have

i =Fy = fi = @Ry = f; = Q;R)R; 'Y = fi =, (6.17)
J
and so Lines 8-9 need to be replaced by:
(8a) n(j) — Q]Tfl’ y(j) — Rfln(j) (6.18)
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(9a) X1 = (5 = XyD) + B(f; — Q). (6.19)

It is clear that the matrix Q ; can be computed ‘in-place’ in the sense that the new
Q; can be computed and overwritten on the old one without requiring additional
storage. Also, it is no longer necessary to store J; in Line 7. Instead, we will
perform a standard factorization where the vector v = Af;_; is orthonormalized
against those previous g;’s that are saved. When j > m — 1 a downdating QR
factorization is performed to prepare the matrices Q'~, R from which the updated
QR is performed.

We will refer to this algorithm as AA-QR if there is need to specifically emphasize
this particular implementation of AA. It will lead us to an interesting variant of AA
to be discussed in Section 6.5.

6.4. Simple downdating

We now briefly discuss an alternative method for downdating the QR factorization.
Returning to (6.15) we split the Hessenberg matrix H into its (m — 1) X (m — 1)
lower block which is triangular and which we denote by R and its first row which
we denote by hT. With this (6.15) can be rewritten as follows:

Foy=qihl +192.92. ,qm]R
= [0 +q1h{ R'IR
= [0 +q1s" IR (6.20)

where we have set s = h]T R~!. From here, there are two ways of proceeding. We
can either get a QR factorization of Q(—y + ¢1s? which can then be retrofitted into
(6.20) or we can provide some other orthogonal factorization that can be used to
solve the least-squares problem effectively.

Consider the first approach. One way to get the QR factorization of Q(_)+q1s’ is
via the Cholesky factorization of the matrix [Q(-)+q1s” |7 [Q(-)+q1sT |. Observing
that the columns of Q(-) are orthonormal and orthogonal to g, we see that

[0 +q1s" 1T Q) +q1sT | =T +ssT. (6.21)

As it turns out matrices of the form I + ss” lead to an inexpensive Cholesky
factorization due to a nice structure that can be exploited 3. From this factorization,
say, [ + ssT = GGT where G is lower triangular we get the updated factorization:

Foy=(Q+qis")R (6.22)
=@y +qi1s7)GT] [GTR] = OR. (6.23)
N——
o) R

3 In a nutshell, the entries below the main diagonal of the j-th column of the L matrix in the LDLT
decomposition of the matrix /+ss? are a constant times the entries j+1 : n of s. This observation
leads to a Cholesky factorization that is inexpensive and easy to compute and to exploit.
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The Q-factor defined above can be verified to be indeed an orthogonal matrix
while the R factor is clearly upper triangular. Implementation and other details are
omitted.

The second approach is a simplfied, possibly more appealing, procedure. Here
we no longer rely on a formal QR factorization, but a factorization that nonetheless
exploits an orthogonal factor. Starting from (6.22) we now write:

Foy = [(Qcy +qisHU +ssT) V2] (1 +ssT)V?R] = 0S. (6.24)

0 s

Note in passing that the product Q(I +ss” )!/? is just the polar decomposition Golub
and Van Loan (2013) of the matrix Q- + ;s . Here too the structure of I + ss”
leads to simplifications, in this case for the terms in the fractional powers of I +ss” .

Indeed, if we set 1 = 1 + s” s, then it can be shown that

1
T\1/2 _ T . _
Y/ e =I+ass with a= (6.25)
1+Va

(I+ssT)y V2= — BssT with B = ! .
A+
Noting that Q7 Q = I, we wind up with a factorization of the form F-y = OS where
Q has orthonormal columns but § = (I + ss” )!/2R is not triangular. It is possible
to implement this by keeping the matrix $ as a square matrix or in factored form in
order to exploit its inverse which is S~! = R™1(I — BssT ) where S is given in (6.26).
The next step, adding a vector to the system, can be processed as in a standard QR
factorization, see eq. (6.13) where the block R is to be replaced by S.

These two simple alternatives to the Givens-based downdating QR do not seem
to have been considered in the literature. Their main merit is that they focus more
explicitly on the consequence of deleting a column and show what remedies can
be applied. The deletion of a column leads to the QR-like factorization (6.22) of
F(_). This resembles a QR factorization but the Q-part, namely, Q) + ¢1sT is not
orthogonal. The standard remedy is to proceed with a downdating QR factorization
which obtains QR factors from (6.15) instead of (6.20). Instead, the remedies
outlined above proceed from (6.20) from which either the QR factorization of this
matrix or its polar decomposition are derived. In both cases, the results are then
retrofitted into (6.22) to obtain a corrected decomposition, with an orthogonal Q
factor.

(I+ss

(6.26)

6.5. The Truncated Gram-Schmidt (TGS) variant

There is an appealing alternative to AA-QR worth considering: bypass the downd-
ating QR, and just use the orthogonal factor Q ; obtained from a Truncated Gram-
Schmidt (TGS) orthogonalization. This means that a new vector ¢ is obtained by
orthonormalizing A f;_| against the previous g;s that are saved, and when we delete
a column we just omit the adjustment consisting of the downdating QR process.
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Without this adjustment the resulting factors Q ;, R; are no longer a QR factoriza-
tion of X; when a truncation has taken place, i.e., when j > m. The solution to the
least-squares problem now uses Q; instead of F;, i.e., we minimize || f; — Q¥|,
ending with y{) = QJT. fj. In the limited window case, the resulting least-squares

approximation to f;, i.e., Q jy(f), is no longer equal to the one resulting from the
Downdating QR approach which solves the original LS problem (4.13) with the set
F; by exploiting its QR factorization. In Anderson Acceleration with Truncated
Gram-Schmidt (AA-TGS), the resulting matrix Q ; is not required to be the Q-factor
of Fj and so the range of F; is different from that of Q j. Therefore the method is
not equivalent to AA in the finite window case.

We can write the orthogonalization process at the j-th step as

i—1
1 J
g =— A= D> siai| - (6.27)
5 i=[j-m+1]
Here the scalars s;;,i = [j —m + 1],---,j — 1 are those utilized in a modified

Gram-Schmidt process, and s, is a normalizing factor so that ||g;]l» = 1.

With m; = min{m, j + 1} define the m; X m; upper triangular matrix §; =
{Sik Yi=[j-m+1]:j k=[ j—m+1]:; resulting from the orthogonalization process in (6.27).
Having selected what set of columns to use in place of 7}, the question now is how
do we compute the solution x 1, i.e., how do we change Line 9 of Algorithm 47
One is tempted to take equations (6.18-6.19) of AA-QR as a model where the
matrix R; in (6.18) is replaced by # §;. However, the relation 7; = Q;R; is only
valid in the full-window case, so the relation f; — F jR_;l v = fi—-0 jn(f )in (6.17)
no longer holds, and so we cannot write X; in the form X; = x; — X jRJ‘.ln(j ). The
solution is to make use of the basis U; that is defined from the set of Ax;’s in the
same way that Q ; is defined from the A f;’s. Thus, we compute the j-th column of
U; by the same process we applied to obtain ¢ ; namely:

1 &
I/tj = - AXj_l - Z S,'jl/ti s (628)
8 i=[j-m+1]

where the scalars s;; are the same as those utilized to obtain ¢; in (6.27). With
this, the relations (6.7-6.9) are replaced by

)fj =XJ'—UJ'I7(J.), f_‘j=fj—Qj7](j), Xj+1=)fj +:8.fj (629)
The procedure is sketched as Algorithm 5. Let us examine the algorithm and
compare it with the downdating QR version seen in Section 6.3. When j < m (full

window case), the i loop starting in Line 6, begins at i = 0, and the block in Lines
6-12 essentially performs a Gram-Schmidt QR factorization of the matrix F;,

4 Recall that for convenience the indexing of the columns in Q and other arrays in Section 6.3 start
at 1 instead of 0.
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while also enforcing identical operations on the set X’;. A result of the algorithm
is that

]:j:Qij; XjZUij. (6.30)

The above relations are not valid when j > m. In particular, the subspace spanned
by Q; is not the span of F; anymore. We saw how to deal with this issue in
Section 6.3 in order to recover a QR factorization for ; from a QR downdating
process. AA-TGS provides an alternative solution by relaxing the requirement of
having to use a QR factorization of X;.

Algorithm 5 AA-TGS(m)
1: Input: Function f(x), initial guess xo, window size m

2: Set fo = f(xo0), x1=x0+Bofo, f1=[f(x1)

3: for j =1,2,---, until convergence do
4 u:=~A=x;j—-xj

5 g =Af=fi—fi-1

6: fori=[j-m+1],...,j—1do
7 sij =(q,4q)

8 U:i=Uu-—Siju;

9: q:=q~—Sijqi

10: end for

1 555 =gl

12: q; = q/Sjj, uj = u/sjj

13: SetQj:[q[j_m+1],...,qj], sz[u[j_m+1],...,uj]

14 Compute n'/) = Q7 f;
15: Xj+1 = (xj - Uj'ﬁ('i)) +Bj(fj - an(j))
16: Sie1 = fxjs1)

17: end for

To better understand the process, we examine what happens specifically when
Jj = m + 1, focussing on the set of g;’s. We adopt the same lightened notation as
in Section 6.3, and in particular the indexing in arrays Q and § start at 1 instead of
zero. Before the orthogonalization step we have the QR factorization F,;, = O, Si,-
Dropping the oldest (first) column is captured by equations (6.14) and (6.15). We
rewrite (6.15) as follows:

Foy=QH=[q1,92 s qmlH = 11| + (92,43, , qm]S).

As before H is m X (m — 1) Hessenberg matrix obtained from the upper triangular
matrix S, by deleting its first column. The row vector th is the first row of H
(1st row of S,,, omitting its first entry). The matrix S is the (m — 1) X (m — 1)
upper triangular matrix obtained from §,, by deleting its first row and its first
column. Thus, if we let Q) = [¢2,43, - ,qm] as before, we obtain a reduced
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QR factorization but it is for a different matrix, i.e.,

F(_) - qﬂl{ = Q(_)S(_). (6.31)
After the truncation, the new vector v,.; = Af, is orthonormalized against
42,93, , qm, leading to the next vector g,,+1. Then we can write:

[Fo) = qiht ,vime1] = [Q <), gms1] X

S©) $2:m,m+1 ]

0 Sm+1,m+1
= Om+1Sme1- (6.32)

Therefore, at step j = m + 1 the pair of matrices Q,,+1,Sm+1 produce a QR
factorization of a rank-one perturbation of the matrix Fp41.

Herein lies the only difference between the two methods: the Downdating QR
enforces the relation F; = Q;R; by correcting the relation (6.31) into a valid
factorization of F_y before proceeding. We saw in Sections 6.3 and 6.4 how this
can be done. This ensures that we obtain the same solution as with AA. In contrast,
AA-TGS simplifies the process by not insisting on having a QR factorization of
F;. Instead, it exploits a QR factorization of a modified version of F;, see (6.32)
for the case j = m + 1. Note that when j > m + 1 the rank-1 modification on the
left-hand side of (6.32) becomes a sum of rank-one matrices.

Let us now consider the full window case, i.e., the situation j < m. It is easy
to see that in this case the subspaces spanned by F; and Q; are identical and in
this situation the iterates x ;,1 resulting from AA and AA-TGS will be the same. In
particular, when m = oo this will always be the case. We will state this mathematical
equivalence of the two algorithms in the following proposition.

Proposition 6.1. Assuming that they start from the same initial guess xo, AA-
TGS (o) and AA(o0) return the same iterates at each iteration, in exact arithmetic.
In addition, they also break down under the same condition.

The proof is straightforward and relies on the equality Span{Q;} = Span{X;} for
all j. Though rather trivial this property is worth stating explicitly because it will
help us simplify our analysis of AA in the full-window case. It is clear that we can
also state a more general result for the restarted versions of the algorithms >.

We end this section with an important addition to the AA-TGS algorithm whose
goal is to circumvent some numerical stability issues. The two recurrences induced
by Equations (6.27-6.28) are linear recurrences that can lead to instability. A
mechanism must be added to monitor the behavior of the above sequence with
the help of a scalar sequence whose numerical behavior imitates that of the vector

5 Restarting can be implemented for any of the algorithms seen in this article. By restarting we
mean that every k iterations, the algorithm starts anew with x( replaced by the most recent
approximation computed. The parameter k is called the ‘restart dimension’, or ‘period’. Other
restarting strategies are not periodic and restart instead when deemeed necessary by the numerical
behavior of the iterates.
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sequences. This will help prevent excessive growth of rounding errors by restarting
the process when deemed necessary. A process of this type was developed in Tang,
Xu, He, Saad and Xi (2024). Readers are referred to the article for details.

6.6. Numerical Illustration

We will illustrate a few of the methods seen in this paper so far with two examples.
The first example is usually viewed as an easy problem to solve because its level of
nonlinearity can be characterized as mild. The second is an optimization problem
in molecular physics with highly nonlinear coefficients.

6.6.1. The Bratu problem

The Bratu problem appears in modeling thermal combustion, radiative heat transfer,
thermal reaction, among other applications, see, e.g., Mohsen (2014), Jacobsen and
Schmitt (2002) for references. It consists in the following nonlinear elliptic Partial
Differential Equation (PDE) with Dirichlet boundary conditions on an open domain
Q:

Au+2e" =0 in Q
u(x,y) =0 for (x,y) € 0Q.

Here A is a parameter and there is a solution only for values of A in a certain
interval. We set A to the value 4 = 0.5 and define the domain € to be the square
Q = (0, 1)x (0, 1). Discretization with centered finite differences using 100 interior
points in each direction results in a system of nonlinear equations f(x) = 0 where
f is a mapping from R" to itself, with » = 10, 000.

The first step in applying acceleration techniques to solve the problem is to
formulate an equivalent fixed-point iteration of the form

gx) =x — pf(x). (6.33)

The reader may have noted the negatve sign used for u instead of the positive
sign seen in earlier formulas for the mixing scheme (4.9). In earlier notation
f(x) represented the ‘residual’, i.e., typically the negative of the gradient of some
function ¢, instead of the gradient as is the case here. What value of u should we
use? Noting that the Jacobian of g is
% w=1-ulw

a rule of thumb, admitedly a vague one, is that a small value is needed only when
we expect the Jacobian of f to have large values. For all experiments dealing with
the Bratu problem, we will set u = 0.1.

6.6.2. Molecular optimization with Lennard-Jones potential
The goal of geometry optimization is to find atom positions that minimize total
potential energy as described by a certain potential. The Lennard-Jones (LJ)
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potential has a long history and is commonly used is computational chemistry, see
Kittel (1986, p. 61). Its aim is to represent both attration and repulsion forces
between atoms by the inclusion of two terms with opposite signs:

i-1

N
1 1
E:ZZ4>< — - (6.34)
llxi —x;ll,

i=1 j=1 llc; = x;119

Each x; is a 3-dimensional vector whose components are the coordinates of the
location of atom i. A common problem is to start with a certain configuration and
then optimize the geometry by minimizing the potential starting from that position.
Note that the resulting position is not a global optimum but a local minimum around
some initial configuration. In this particular example, we simulate an Argon cluster
by taking the initial position of the atoms to consist of a perturbed initial Face-
Cented-Cubic structure Meyer, Barrett and Haasen (1964). We took 3 cells per
direction, resulting in 27 unit cells. FCC cells include 4 atoms each and so we
end up with a total of 108 atoms. The problem can be challenging due to the high
powers in the potential.

Instead of a nonlinear system equations as was the case for the Bratu problem, we
now need to minimize E({x;}). The gradient of E with respect to atom positions can
be readily computed. If we denote by x the vector that concatenates the coordinates
of all atoms, we can call f(x) this gradient: f(x) = VE(x). The associated
fixed-point mapping is again of the form (6.33) but this time we will need to take
a much smaller value for g, namely ¢ = 0.0001. Larger values of u often result
in unstable iterates, overflow, or convergence to a non-optimal configuration. Note
that we are seeking a local minimum and as such we do need to verify for each run
that the scheme being tested converges to the correct optimal configuration, in this
case a configuration that thas the potential E,,,; = —579.4639..

6.6.3. Gradient Descent, RRE, Anderson, and Anderson-TGS

We will illustrate four algorithms for the two problems discussed above. The first is
a simple adaptive gradient descent algorithm of the form x;,; = x; — u f(x;, where
 is set adaptively by a very simple scheme: if the norm of f(x;) increases multiply
u by .3 and if it decreases multiply u by 1.05. The initial u is as defined earlier:
u = 0.1 for Bratu and u = 0.0001 for LJ. We will call this scheme adaptGD.
The second scheme tested is a restarted version of the RRE algorithm seen in
Section 2.6. If m is the restart dimension then the scheme computes an accelerated
solution y,, using xg, - - - , X;+1 and then sets xg to be equal to y,,, and the algorithm
is continued from this xg. It is interesting to note that we use xg, - -+ , X, Xn41 tO
compute y,, which is an update to x,,, not x,,+1, see (2.39). Thus, in effect x4
is only used to obtain the optimal vy in (2.39). Anderson acceleration takes care of
this by the extra approximate fixed-point step (6.9). We can perform a similar step
for RRE, and it will translate to

Xm+l = Ym +ﬁfm (635)
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where f_m = Ax,;, + AXpy is the linear residual. This modificiation is implemented
with § = 1 in the experiments that follow. In addition to the baseline Adaptive GD,
we test RRE(3), RRE(S), and Anderson(5,10) for both problems. We also tested
Anderson-TGS(5,.) with the automatic restarting strategy briefly mentioned at the
end of Section 6.5 and described in detail in Tang er al. (2024). We should point
out that RRE(5), Anderson(5,10), and Anderson-TGS(5,.) all use roughly the same
amount of memory.

108 ; ‘ :
________ 10° ——AdaptGD |1
S \ES—— RRE(3)
L - N RRE(5)
'''' -+-AA(5,10)
108 1100k B —&—ATGS(5,.) | | -
10— AdaptGD =
————— RRE(3) 108
jo-10 L RRE(5)
-+-AA(5,10)
—8—AA-TGS(5,.)
-12 L L L L n L L L L L L
10 100 200 300 400 500 0 50 100 150 200 250 300
# Func. evaluations # Func. evaluations

Figure 6.1. Comparison of 5 different methods for the Bratu problem (left) and the
Lennard-Jones optimization problem (right).

Figure 6.1 shows the results obtained by these methods for both problems. Here
AA(5,10) stands for AA with a window size of 5, and a restart dimension of
k = 10. RRE(m) is the restarted RRE procedure described above with a restart
dimension of m, where m = 3 in the first experiment with RRE and m = 5 in
the second. The plots show the norm of the residual (for Bratu) and the norm of
the gradient (for LJ) versus the number of function evaluations. All methods start
from the same random initial guess and are stopped when either the residual norm
decreases by tol = 107! or the number of function evaluations exceeds a certain
maximum (500 for the Bratu problem, 300 for Lennard-Jones). As can be been, for
the Bratu problem, Anderson and its TGS variant both yield a good improvement
relative to the simpler RRE schemes. In contrast, for the Lennard Jones problem,
the performance of AA(5,10) is close to that of RRE. Surprisingly, RRE(3) which
uses much less memory does quite well for this example. In both test problems,
AA-TGS outperforms the standard Anderson algorithm by a moderate margin. The
standard Anderson scheme discussed in these experiments is based on the AA-QR
(AA with QR downdating) implementation discussed in 6.3.
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6.7. Theory

Around the year 2009, Anderson Acceleration started to be noticed in the linear
algebra community, no doubt owing to its simplicity and its success in dealing with
a wide range of problems. The article Fang and Saad (2009) discussed multisecant
methods, first introduced as ‘Generalized Broyden methods’ in article Vanderbilt
and Louie (1984). These methods can be called block secant methods in which
rank-1 updates of the form (5.9) or (5.11) are replaced by rank-m updates. As it
turns out, AA is a multisecant method and this specific link was first unraveled
in Eyert (1996) and discussed further in Fang and Saad (2009). A number of
other results were subsequently shown. Among these is an equivalence between
Krylov methods and Anderson in the linear case as well as convergence studies for
nonlinear sequences. This goal of this section is to summarize these results.

6.7.1. AA as a multi-secant approach

Acceleration methods, such as AA, do not aim at solving a system like (1.2) directly.
As was seen in Section 4.3 their goal is to accelerate a given fixed-point iteration of
the form (4.4). The method implicitly expresses an approximation to the Jacobian
via a secant relation which puts F; in correspondence with X’;. Roughly speaking,
AA develops some approximation to a Jacobian J that satisfies a secant condition of
the form F; ~ JX;. The classic text by Ortega and Rheinbolt already mentions AA
as a form of quasi-Newton approach Ortega and Rheinbolt (1970, pp. 204-205).
However, at the time the method was viewed negatively by these authors, possibly
due to its potential for numerically unstable behavior.

As seen in Section 5 Broyden-type methods replace Newton’s iteration: x;,1 =
x;—Jx j)‘l f; with something like x;+1 = x; — G f; where G; approximates the
inverse of the Jacobian J(x;) at x; by the update formula G, = G; + (Ax; -
G;A fj)v]T. in which v; is defined in different ways see Fang and Saad (2009) for
details. AA belongs to the related class of multi-secant methods. Indeed, the
approximation (6.9) can be written as:

Xji1 = xj+Bf; = (X + BF) 6 (6.36)
=xj = =B+ (X; + BFF; F Fj 1 (6.37)
=x;—G,f; with G;=—BI+(X;+BF)F F)) ' F|.  (6.38)

Thus, G; can be seen as an update to the (approximate) inverse Jacobian G [;_,,) =
—p1 by the formula:

Gj=Gljm) +Xj = Gljom) F)(F; F)~ F] (6.39)

It can be shown that the approximate inverse Jacobian G ; is the result of minimizing
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|G ; + BI||F under the multi-secant condition of type II ©
G;Fj=4;. (6.40)

This link between AA and Broyden multi-secant type updates was first unraveled
by Eyert Eyert (1996) and expanded upon in Fang and Saad (2009). Thus, the
method is in essence what we might call a ‘block version’ of Broyden’s second
update method, whereby a rank m, instead of rank 1, update is applied at each step.
In addition, we also have a multi-secant version of the no-change condition
(5.12). This is just a block version of the no-change condition Equation (5.12) as
represented by Equation (15) in Fang and Saad (2009), which stipulates that

(G;j—Gj-m))g=0 Vg L Span{F;} (6.41)

provided we define G;_,,,) = 0.

The essence of AA is that it approximates f(x; — AX; y) by f(x;) — AF; y. If
Jj is the Jacobian at x;, we are approximating J; AX; by AF; and aim at making
f(xj — AX; y) small by selecting y so that its linear approximation f(x;) — AF; y
has a minimal norm. Thus, just like quasi-Newton approaches, the method also
aims at exploiting earlier iterates in order to approximate J, or its action on a vector
or a set of vectors. The main approach relies of two sets of vectors - which we call

Pj = [pljmms11s Pj-m+1]+1> - > Pjl and V; = [V[j_pme1], V[j—me1]+1> -+ > V] in
this paper with the requirement that
J(xp)pj = vj. (6.42)

These ‘secant’ conditions establish a correspondence between the range of P; and
the range of V; and are at the core of any multi-secant method.

6.7.2. Interpretations of AA

Anderson’s original algorithm can be interpreted from a number of different per-
spectives. The author acknowledged being inspired the work on extrapolation
methods similar to those discussed in Section 2. However, the method he intro-
duced does not fit the definition of an extrapolation technique according to the
terminology we use in this paper.

Equation (6.9) resembles a simple Richardson iteration, see (3.2), applied to the
intermediate iterate X; and its (linear) residual f, Therefore, the first question
we could address is what do x; and f_, represent? AA starts by computing an
intermediate approximation solution which is denoted by X;. The approximation
Xj is just a member of the affine space x; + Span{X;}. (In the equivalent initial
presentation of AA, it was of the form given by Eq. (4.11).) We would normally
write any vector on this space as x; + Xjy where 7y is an arbitrary vector in R/,

6 Type I Broyden conditions involve approximations to the Jacobian, while type Il conditions deal
with the inverse Jacobian.
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where m; = min{j, m} is the number of columns of X;. Anderson changed the
sign of the coefficient y so instead he considered vectors of the form

x(y) =xj - &jy. (6.43)

Ideally, we would have liked to compute a coefficient vector y that minimizes the
norm || f(x(y))l|l2. This is computable by a line-search but at a high cost, so instead,
Anderson exploits the linear model around x;:

J&) = fxj = Xy) = fx)) = Fjy = fi = Fjv- (6.44)

The above expression is therefore the linear residual at x ; for vectors of the form
(6.43). The optimal y which we denoted by y is precisely what is computed in
(6.6). Therefore, X; is just the vector of the form (6.43) that achieves the smallest
linear residual.

An important observation here is that we could have considered the new sequence
{¥;};=0,1,-.. by itself. Remarkably, each vector X, is just a linear combination of
the previous x;’s so it represents an extrapolated sequence of the form (2.13). In
fact the vector X; can be seen to be identical with the vector produced by the RRE
algorithm seen in Section 2.6. Computing this extrapolated sequence by itself,
without mixing it with the original iterates will be identical with applying the RRE
procedure to the x;’s. It gets us closer to the solution by combining previous
iterates but we can do better. Since X; is likely to be a better approximation than
x; areasonable option would be to define the next iterate as a fixed-point iteration
from it:

X0 =%+ B, (6.45)
This, however, would require an additional function evaluation. Therefore, AA
replaces f(x;) = f(x; - X jy(j )) by its linear approximation given in (6.44) which
is just f}, resulting in the Anderson update given by (6.9). Thus, Anderson
Acceleration can be viewed as a process that intermingles one step of RRE applied
to previous iterates with one linearized gradient descent of the form: (6.9). An
alternative would be to restart - say every kK RRE steps - and reset the next iterate to
be the linearized update (6.9). We tested a technique of this type in the experiment
shown in Section 6.6.

6.7.3. Linear case: Links with Krylov subspace methods

In this section we consider the case when the problem is linear and set f(x) = b—Ax
(note the sign difference with earlier notation). We assume that A is nonsingular.
In this situation we have

Fi=-AX;. (6.46)
The following lemma shows that that the matrix U; resulting from Algorithm 5 is

a basis of the Krylov subspace K;(A, f) and that under mild conditions, Q;, U;
satisfy the same relation as F;, X; in (6.46) for AA-TGS(c0).
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Lemma 6.1. Assume A is invertible and f(x) = b — Ax. If Algorithm 5 applied
to solve f(x) = 0 with m = oo does not break down at step j, then the system
U; forms a basis of the Krylov subspace (A, fp). In addition, the orthonormal
system Q ; built by Algorithm 5 satisfies Q; = —AU;.

Proof. We first prove Q; = —AU; by induction. When j = 1, we have ¢ =
(fi = fo)/s11 = —Auy. Assume Q;_1 = —AU;_;. Then we have

J=1 J-1
87045 = (5 = =0 = D sijdi = =AG; =x;-0) = ) sij(=Auy)
i=1 i=1
J-1
=—-A[(xj —xj-1) — Z sijui]
i=1

= sjj(—Auj).

Thus, since s;; # 0 we get g; = —Au; and therefore Q; = —AU;, completing the
induction proof.

Next, we prove by induction that U; forms a basis of K;(A, fp). It is more
convenient to prove by induction the property that for each i < j, U; forms a basis
of IC;(A, fp). Theresultistrue for j = 1 since wehaveu; = (x;—xo)/s11 = Bofo/s11-
Now let us assume the property is true for j —1, i.e., that foreachi = 1,2,--- , j—1,
U; is a basis of the Krylov subspace /C;(A, fp). Then we have

Jj-1

sy = (6 =X = ) st (6.47)
i=1

i—1

=-Uj18j-1 + Bj-1(fj-1 = Qj-10-1) = ) sijui

4

~

1l
—_

-1
=-Uj10;1+Bj-1fi-1 = Bj-10j-10-1 — Z Sijl

-
j—1

~.

~

=Bj-1fj-1 —Uj10;-1 + Bj-1AU; 10,1 — ) siju;.

i=1

The induction hypothesis shows that ~U;_16;_1 + 8,_1AU;_16;_1 — Z{:_I] siju; €

K;(A, fo). It remains to show that f;_; = b — Ax;_1 € K (A, fo). For this, expand
b—Ax;_yas

b—AXj_1 Zb—AXj_l +AXj_2—AXj_2+...—AX1 +AXO—A)C0

j-1
= —AGi = xi) + fo.
i=1

From the relation (6.47) applied with j replaced by i, we see that x; —x;_ is a linear
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combination of uy,us,- - - ,u;, i.e., it is a member X; by the induction hypothesis.
Therefore —A(x; —x;_1) € K41 - butsince i < j — 1 this vector belongs to K ;. The
remaining term fj is clearly in ;. Because U; = -A71Q j has full column rank
and u; € Kj(A, fo)fori=1,...,j, U, forms a basis of K (A, fy). This completes
the induction proof. Ul

From (6.29), we see that in the linear case under consideration the vector f] is
the residual for X;:

fi=1i—0Q0;=b-Axj) - 0,0,
=(b—AXj)+AUj0j=b—A(Xj—Uj9j)=b—A)Ej. (648)

The next theorem shows that X; minimizes ||b — Ax||, over the affine space x¢ +
KCi(A, fo).

Theorem 6.1. The vector X ; generated at the j-th step of AA-TGS(c0) minimizes
the residual norm ||b — Ax||, over all vectors x in the affine space xo + K ;(A, fo). It
also minimizes the same residual norm over the subspace xi + K ;(A, fp) for any k
suchthat 0 < k < j.

Proof.  Consider a vector of the form x = x; — 6 where 6 = U;y is an arbitrary
member of K (A, fy). We have
b—Ax:b—A(xj—ij)zfj+Aij=fj—ij. (649)

The minimal norm || — Ax||; is reached when y = QJT. f; and the corresponding
optimal x is X ;. Therefore, X; is the vector x of the affine space x; + K ;(A, fo) with
the smallest residual norm. We now write x as:

x=x;-U,
=x0 + (X1 = x0) + (x2 — x1) + (03 = x2) + - - - (w41 — X))+
st (xj—xjo1) - Uy (6.50)
=x0+Axg+Ax; +---+Axj = Ujy. (6.51)

We now exploit the relation obtained from the QR factorization of Algorithm 5,
namely X; = U;S; in (6.30): If e is the vector of all ones, then Axg + Axy +--- +
Axj_y = Xje =U;Sje. Define t; = S;e. Then, from (6.51) we obtain

x=x;-0=x0-U;ly—1t]. (6.52)
Hence, the set of all vectors of the form x; — 6 = x; — U;y is the same as the set of
all vectors of the form xo — 6" where 6’ € KC;(A, fo). As aresult, X; also minimizes
b — Ax over all vectors in the affine space xo + K;(A, fo).

The proof can be easily repeated if we replace xo by xx for any k between 0 and
Jj. The expansion (6.50 —6.51) becomes

X —Ujy = X + (X1 — Xk) + (X2 — Xpr1)+
s (X = x) (g = xjo) = Uy (6.53)
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:xk+Axk+Axk+1 +'--+ij_1 —ij. (6.54)
The rest of the proof is similar and straightforward. U

Theorem 6.1 shows that i is the j-th iterate of the GMRES algorithm for solving
Ax = b with the initial guess x¢ and that fj is the corresponding residual. The
value of x; is independent of the choice of B; fori < j. Now consider the residual
fj+1 of AA-TGS(co) at step j + 1. From the relations x4 = X; + ; f_] and (6.48)
we get:

fis1=b=A[X;+B;fi1=b-Ax; - B;Af; = fj - BjAfj = - BjA) f;. (6.55)
This imElies that the vector f;.; is the residual for x;,; obtained from x;,; =
Xj + Bjfj - which is a simple Richardson iteration starting from the iterate ;.

Therefore, x;,; in Line 15 of Algorithm 5 is nothing but a Richardson iteration
step from this GMRES iterate. This is stated in the following proposition.

Proposition 6.2. The residual f;,; of the iterate x;,; generated at the j-th step
of AA-TGS(c0) is equal to (1 — 3;A) f, where f, = b — AX; minimizes the residual
norm ||b — Ax||, over all vectors x in the affine space xo+ K ;(A, fo). In other words,
the (j + 1)-st iterate of AA-TGS(c0) can be obtained by performing one step of a
Richardson iteration applied to the j-th GMRES iterate.

A similar result has also been proved for the standard AA by Walker and Ni (2011)
under slightly different assumptions, see Section 6.7.5.

Convergence in the linear case can be therefore analyzed by relating the resid-
ual of full AA-TGS with that of GMRES. The following corollary of the above
proposition shows a simple but useful inequality.

Corollary 1. If AA-TGS(e0) is used to solve the system (3.1), then the residual

norm of the iterate xﬁéf_TGS) satisfies the inequality:
AA-TGS GMRES
16— Ax O < I = BA2 16 — Ax ', (6.56)

where xE.GMRES )||2 is the iterate obtained by j steps of full GMRES starting with
the same initial guess xg.

Proof.  According to Proposition 6.2: rj.1 = = f(x41) = —(I—-BA) f; = I-BA)r;
where r; is the residual obtained from j steps of GMRES starting with the same
initial guess x¢. Therefore:

16 = AxS TP = 1A = BAYD = AT EED | = 1|7 = pATHEED|
< It = B IFCHRED . (6.57)
U

Thus, essentially all the convergence analysis of GMRES can be adapted to AA-
TGS when it is applied to linear systems. The next section examines the special
case of linear symmetric systems.
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6.7.4. The linear symmetric case

A simple experiment will reveal a remarkable observation for the linear case when
the matrix A is symmetric. Indeed, the orthogonalization process (Lines 6-10 of
Algorithm 5) simplifies in this case in the sense that §; consists of only 3 non-zero
diagonals in the upper triangular part when A is symmetric. In other words, when A
is symmetric we only need to save ¢; 2, q ;-1 and u; >, u ;1 in order to generate g ;
and u; in the full-depth case, i.e., when m = co. This is similar to the simplification
obtained by a Krylov method like FOM or GMRES when the matrix is symmetric.
We first examine the components of the vector Q,T. fj in Line 14 of Algorithm 5.

Lemma 6.2. When f(x) = b — Ax where A is a real non-singular symmetric

matrix then the entries of the vector §; = or fj in Algorithm 5 are all zeros except
J

the last two.

Proof. Leti < j— 1. From (6.55), we have
(f+qi) = (fj=1 = Bj=1Afi-1. i) = (fj-1.qi) = Bj—1(Afj-1, qi).
The first term on the right-hand side vanishes because:
(fj-1590) = (fi-1 = Qj-10j-1,40) = (I = Q;-10%_ ) fi-1,4:) = 0.

For the second term we write (A fj_l,ql-) =( fj_l,Aqi) and observe that since
u; € IC;(A, fo), then g; = —Au; belongs to the Krylov subspace KC;11(A, fo) which
is the same as Span{U;,;} according to Lemma 6.1. Thus, it can be written as
q; = —Au; = U,y for some y and hence, Aq; = AU;+1y = —Qi41), i.e., Ag; is in

the span of g1, - - - , gi+1. Therefore, recalling that fj_l L Span{Q;_1}, we have:
(fi-1,Aqi) =0 for i<j-2. (6.58)
In the end, we obtain (fj,¢;) = 0fori < j —2. U

Lemma 6.2 indicates that the computation of x4 in Line 15 of Algorithm 5 only
depends on the two most recent ¢;’s and u;’s. In addition, as is shown next, the
vectors ¢g; and u; in Line 12 can be computed from g; 5,¢g;-1 and u; o, u;_|
instead of all previous ¢;’s and u;’s.

Theorem 6.2. When f(x) = b — Ax where A is a real non-singular symmetric
matrix, then the upper triangular matrix S; produced in Algorithm 5 is banded with
bandwidth 3, i.e., we have s;; = 0fori < k — 2.

Proof. It is notationally more convenient to consider column k + 1 of §; where
k+1<j. Let Afx = fie1 — fr, and Axg = xg41 — xx. The inner product s; 41 in
Algorithm 5 is the same as s; x+1 = (Afk, g;) that would be obtained by a classical
Gram-Schmidt algorithm. We note that for i < k we have s; x+1 = —(AAxg, ;).
Exploiting the relation:

Axg = (Xk + Brfr) — Xk = xx — UkOk + Bi fe — xk = —UrO + Br fr,
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we write
AAxy = —AUbk + BrAfic = Ok + BrAfi
= —(fi = Qkbi) + fi + BrA S
= —fk + fx + BiA S,
and hence,
(AAxi, qi) = =(fi i) + (fi» 4i) + Br(A f 1) (6.59)

to Lemma 6.2 the inner prod_uct (fk>qi) is zero for i < k — 2. In the proof of
Lemma 6.2 we showed that (f;-1, Ag;) = 0 fori < j — 2, see (6.58), which means
that (fx, Ag;) =0fori < k —1. Inthe end s; g4+1 = —(AAxg,q;) =0fori < k-1

which is equivalent to the desired result. U

The first term on the right-hand side, (fx,q;), vanishes since i < k. According

Lemma 6.2 and Theorem 6.2 show that when AA-TGS(c0) is applied to solving
linear symmetric problems, only the two most recent ¢;’s and u;’s, i.e., g2, ¢ -1
and u;_»,u;_ are needed to compute the next iterate x ;1. In other words, the for
loop in Line 6 of the algorithm needs only to be executed fori = j—2,andi = j — 1
which means that AA-TGS(3) is equivalent to AA-TGS (o) in the linear symmetric
case. Practically, this leads to a significant reduction in memory and computational
cost.

We saw earlier that in all cases, the full AA-TGS algorithm is equivalent to
the full-window Anderson, at least in exact arithmetic. AA-TGS is just a different
implementation of AA in this case. In the linear case, Proposition 6.2 states that the
full AA-TGS is equivalent to (full) GMRES followed by a Richardson step. This
led to Corollary 1 which enables us to establish convergence results by exploiting
already known theory. One specific such result is an analysis of the special case
when the problem is linear and symmetric.

Theorem 6.3. Assume that A is symmetric positive definite and that a constant
B is used in AA-TGS. Then the iterate x;‘if_T G5) obtained at the (j + 1)-st step of
AA-TGS(o0) satisfies :

_ 16— Axoll>
16— Ax( OV < I = BAl——
T;C=)
\/E—l)j
<21 - BA|||b — Ax
TN o||2(\/;+1

where T is the Chebyshev polynomial of first kind of degree j, and x = «x(A) is the
2-norm condition number of A.

Proof. We start from inequality (6.56) of Corollary 1. An analysis similar to that
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in Saad (2003, sec. 6.11.3) for the CG method, will show that

||rJC.;MRES||2 < ll7oll2

T T;(1+2n)
in which 1 = Apin/(Amax — Amin) = 1/(k = 1). Noting that 1 + 25 = (k + 1)/(x —
1) establishes the first inequality. The second one follows from using standard

expressions of the Chebyshev polynomials based on the hyperbolic cosine Saad
(2003, p. 204-205), which shows that

1 (Ve + 1)’
2 \Vk(A) -1
This completes the proof. Ul

6.7.5. Other links between AA and Krylov methods in linear case

The analysis shown above establishes strong connections between full-depth AA-
TGS and GMRES. Since AA-TGS is equivalent to standard AA in the full-window
case, these results are also valid for AA. Such connections were established well
before the recent article Tang et al. (2024).

Specifically, in 2011, Walker and Ni (2011) studied the algorithm and showed a
form of equivalence between AA and GMRES in the linear case. Another study
along the same lines, discussed at the end of this section, is the 2010 article by
Haelterman, Degroote, Heule and Vierendeels (2010) which is concerned with a
slightly different version of AA.

Because the Walker and Ni result is somewhat different from the one of Propos-
ition 6.2 seen in Section 6.7.3, we will now summarize it. The paper makes the
following set of assumptions.

Assumption (A):

e AA is applied for the fixed-point mapping g(x) = Ax +b

e Anderson acceleration is not truncated, i.e., m = o

e (I — A) is nonsingular.

o GMRES is applied to solve (I — A)x = b with the same initial guess x¢ as for
AA.

The main result of the article is stated for the formulation of AA that follows
the notation of Pulay mixing seen in Section 4.4. Accounting for this change of
notation, their result is stated below.

Theorem 6.4. Suppose that Assumption (A) holds and that, for some j > 0,

rffu RES) % 0 and also that ||rf1MRES)||2 > ||r§GMRES)||2 for each i such that
0<i<j. Then, x; = xE.GMRES) and xj41 = g(xE.GMRES)).

The article by Degroote, Bathe and Vierendeels (2009) described a method
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called QN-ILS (‘Quasi-Newton Inverse Least-Squares’) which resembles AA al-
though it is presented as a Quasi-Newton approach (hence its name). The authors
seemed unaware of the Anderson article and the related literature but the spirit of
their method is quite close to that of AA. In fact, the authors even use the same
formulation for their method as that of the original AA in that they invoke the basis
(6.1) to formulate their method, instead of the bases using forward differences.
Their algorithm is viewed from the angle of a quasi-Newton method with updates
of type-1I, where the inverse Jacobian is approximated. Using our notation, the
only difference with AA is that in their case the update (6.9) for the new iterate
becomes:

Xje1 =%+ f. (6.60)

Thus, relative to the update equation (6.9) of AA, S is set to one and fj is replaced
by f; in QN-ILS. In the linear case, and full window case, the two methods
are mathematically equivalent since f; = f; — F;¥"Y) and the two methods will
produce the same space of approximants in the projection process, at each step. In
the nonlinear case, the two methods will not generate the same iterates in general.

From an implementation point of view, QN-ILS is more expensive than AA. As
described in Degroote et al. (2009) the algorithm recomputes a new QR factoriz-
ation each time, and does not exploit any form of downdating. The main reason
for this is that, as already mentioned, QN-ILS relies on a basis of the form (6.1),
which changes entirely at each new step j. This also means that each of the vectors
di = fj— fifori = ([j—m]),---,j—1and the related differences x; — x;, must be
recomputed at every step j leading to a substantial added cost when compared to
modern implementations of AA. Indeed, the basis of the Ax;’s used in the modern
version of AA, requires only that we compute the most recent pair Af;_1, Ax;_;
since the other needed pairs were computed in earlier steps. In AA, one column is
computed and added to JF; and one is dropped from it (when j > m). Similarly for
X;.

The article Haelterman et al. (2010) studied the method in the linear case, and
established that it is equivalent to GMRES in this situation. This result is similar
to that of Walker and Ni (2011), but we need to remember that AA and QN-ILS
are different in the nonlinear case.

6.7.6. Convergence properties of AA

Toth and Kelley (2015) proved that AA is locally r-linearly convergent under the
condition that the fixed point map g is a contraction mapping and the coefficients
in the linear combination remain bounded. A number of other results were proved
under different assumptions.

The article Toth and Kelley (2015) starts by considering the linear case in which
g(x) = Mx + b and shows that when M is contracting with |M|| = ¢ < 1 then
the iterates of Anderson acceleration applied to g will converge to the fixed-point
x* = (I = M) 'b. In addition, the residuals converge g-linearly to zero, i.e., if
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f(x) = g(x) — x then || fOer+DI < cllf(xr)ll- This is used as a starting point for
proving a result in the nonlinear case.

Consider the situation where AA is applied to find the fixed-point of a function g
and let f(x) = g(x) — x. The authors invoke formulation (4.15-4.17) because their
results require to make assumptions on the coefficients 6;. With this in mind, their
main result can be stated as follows.

Theorem 6.5 (Toth and Kelley (2015), Theorem 2.3). Assume that:

1 There is constant u¢ such that Z{:jfjm |6;| < pg forall j > 0.

2 There is an x* such that f(x*) = g(x*) —x* = 0.

3 gisLipschitz continuously differentiable in the ball B(p) = {x | [[x—x*|| < p}.
4 Thereisac € (0,1) such that ||g(u) — gW)|| < c||lu —v|| for all u, v in B(p).

Let ¢ < ¢ < 1. Then if xq is sufficiently close to x*, the Anderson iteration
converges to x* r-linearly with r-factor no greater than ¢. Specifically:

Fxe) < & fxo), 6.61)
and
* + c A *
lbeie = u'll < 1= Cc"llxo —u’. (6.62)

Not that the result is valid for any norm not just for the case when the 2-norm
minimization is used in (4.13). The first condition only states that the coefficients
0; resulting from the constrained least-squares problem (4.17) (or equivalently the
unconstrained problem (4.13)) all remain bounded in magnitude. It cannot be
proved that this condition will be satisfied and the ill-conditioning of the least-
squares problem may lead to large values the the 8;’s. However, the authors of the
paper show how to modify the standard AA scheme to enforce the boundedness of
the coefficients in practice.

In addition, Toth and Kelley (2015) consider the particular case when the window
size is m = 1 and show that in this situation the coefficients 6; are bounded if ¢ is
small enough that ¢ = ((3¢ — c?)/(1 = ¢)) < 1. If this condition is satisfied and if
xo € B(p) then they show that AA(1) with least-squares optimization converges
g-linearly with g-factor é.

Even though these results are proved under somewhat restrictive assumptions
they nevertheless establish strong theoretical convergence properties. In particular,
the results show that under certain conditions, the AA-accelerated iterates will
converge to the solution at least as fast as the original fixed-point sequence.

The theory in the Toth-Kelley article does not prove that the convergence of
an AA accelerated sequence will be faster than that of the original fixed-point
iteration. The article Evans, Pollock, Rebholz and Xiao (2020) addresses this
issue by showing theoretically that Anderson acceleration (AA) does improve the
convergence rate of contractive fixed-point iterations in the vicinity of the fixed-
point. Their experiments illustrate the improved linear convergence rates. However,
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they also show that when the initial fixed-point iteration converges quadratically,
then its convergence is slowed by the AA scheme.

In another paper Pollock and Rebholz (2021) discuss further theoretical aspects
of the AA algorithm and show a number of strategies to improve convergence.
These include techniques for adapting the window-size m dynamically, as well
as filtering out columns of F; when linear dependence is detected. Along the
same lines, building on work by Rohwedder (2010), Brezinski, Cipolla, Redivo-
Zaglia and Saad (2022) present a stabilized version of AA which examines the
linear independence of the latest Af; from previous differences. The main idea
is to ensure that we keep a subset of the differences that are sufficiently linearly
independent for the projection process needed to solve the least-squares problem.
Local convergence properties are proved under some assumptions.

It has been observed that AA works fairly well in practice especially in the
situation when the underlying fixed-point iteration that is accelerated has adequate
convergence properties. However, without any modifications, it is not possible
to guarantee that the method will converge. A few papers address this ‘global
convergence’ issue. Zhang, O’Donoghue and Boyd (2020) consider ‘safeguarding
strategies’ to ensure global convergence of type-I AA methods. Their technique
assumes that the underlying fixed-point mapping g is non-expansive and, adopting
a multisecant viewpoint, develop a Type-I based AA update whereby the focus is to
approximate the Jacobian instead of its inverse as is done in AA. Their main scheme
relies on two ingredients. The first is to add a regularization of the approximate
Jacobian to deal with the potential (near)-singularity of the approximate Jacobian.
The second is to interleave the AA scheme with a linear mixing scheme of the form
(4.9). This is done in order to ‘safeguard the decrease in the residual norms.’

7. Nonlinear Truncated GCR

Krylov accelerators for linear systems, which were reviewed in Section 3.3, can be
adapted in a number of ways for nonlinear problems. We already noted that AA
can be viewed as a modified Krylov subspace method in the linear case. We also
showed strong links between Krylov methods and a few extrapolation techniques
in Section 2. One way to uncover generalizations of Krylov methods for nonlinear
equations, is to take a multisecant viewpoint. The process begins with a subspace
spanned by a set of vectors {p[j_m+1], P[j-m+1]+1," -+ » Pj} — typically related to a
Krylov subspace — and finds an approximation to the Jacobian or its inverse, when
it is restricted to this subspace. This second step can take different forms but it
is typically expressed as a multisecant requirement, whereby a set vectors v; are
coupled to the vectors p;’s such that

vi = J(x;)pi, (7.1)

where J(x;) is the Jacobian of f atx;. Observe that a different Jacobian is involved
for each index i. There are a number of variations to this scheme. For example,
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J(x;) can be replaced by a fixed Jacobian at some other point, €.g., X[ j_m+1] OF Xo
as in Inexact Newton methods.
We will say that the two sets:

Pj=[plj-ms1]s Plj—ms1]+1> " > Djl, Vi = [Vijeme1 ] Vjmmel]+1 0 > V]

(7.2)
are paired. This setting was encountered in the linear case, see equations (3.28), and
in Anderson Acceleration where P; was just the set X; and V; was F;. Similarly,
in AA-TGS these two sets were U; and Q; respectively. It is possible to develop a
broad class of multi-purpose accelerators with this general viewpoint. One of these
methods He, Tang, Zhao, Saad and Xi (2024), named the NonLinear Truncated
Generalized Conjugate Residual (NLTGCR), is built as a nonlinear extension of
the Generalized Conjugate Residual method seen in 3.3.3. It is discussed next.

7.1. nlTGCR

Recall that in the linear case, where we solve the system linear Ax = b, the main
ingredient of GCR is to build two sets of paired vectors {p;}, {Ap;} where the
p;’s are the search directions obtained in earlier steps and the Ap;’s are orthogonal
to each other. At the j-th step, we introduce a new pair p .1, Ap 4 to the set in
which p;, is initially set equal to the most recent residual, See, Lines 7-12 of
Algorithm 3. This vector is then AT A-orthogonalized against the previous p;’s.
We saw that this process leads to a simple expression for the approximate solution,
using a projection mechanism, see Lemma 3.1.

The next question we address is how to extend GCR or its truncated version
TGCR, to the nonlinear case. The simplest approach is to exploit an inexact
Newton viewpoint in which the GCR algorithm is invoked to approximately solve
the linear systems that arise from Newton’s method. However, this is avoided for a
number of reasons. First, unlike quasi-Newton techniques, inexact Newton methods
build an approximate Jacobian for the current iterate and this approximation is used
only for the current step. In other words it is discarded after it is used and another
one is build in the next step. This is to be contrasted with quasi-Newton, or
multisecant approaches where these approximations are built gradually. Inexact
Newton methods perform best when the Jacobian is explicitly available or can be
inexpensively approximated. In such cases, it is possible to solve the system in
Newton’s method as accurately as desired leading to superlinear convergence.

An approach that is more appealing for fixed-point iterations is to exploit the
multisecant viewpoint sketched above, by adapting it to GCR. At a given step j
of TGCR, we would have available the previous directions p(;_m+1],- - , pj along
with their corresponding (paired) v;’s, fori = [j —m+1],-- -, j. In the linear case,
each v; equals Ap;. In the nonlinear case, we would have, instead, v; = J(x;)p;.
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The next pair p .1, v 41 is obtained by the update

J J
Djl =Tj41 — Z Bijpi» Vi1 =J(&xjs)rja — Z Bijvi  (1.3)
i=[j-m+l1] i=[j-m+1]
where the §;;’s are selected so as to make v ;1 orthonormal to the previous vectors
V[j-m+1]» " »Vj. One big difference with the linear case, is that the residual vector
rj+1 is now the nonlinear residual, which is 741 = —f(x;41).
This process builds a pair (p;4+1,v;4+1) such that v;,; is orthonormal to the

previous vectors V[j_m+1],* -+ ,V;j. The current ‘search’ directions {p;} for i =
[j—m+1],-- -, jare paired with the vectors v; = J(x;)p;, fori = [j—-m+1],--- , ],
see, (7.2).

Another important difference with TGCR is that the way in which the solution
is updated in Line 6 of Algorithm 3 is no longer valid. This is because the second
part of Lemma 3.1 no longer holds in the nonlinear case. Therefore, the update
will be of the form x; + P;y; where y; = VJ.T rj. Putting these together leads to the
nonlinear adaptation of GCR shown in Algorithm 6.

Algorithm 6 nITGCR(m)
Input: f(x), initial xo.
Set rg = —f(xp).
Compute v = J(xo)ro; > Use Frechet
vo =Vv/lIvll2, po = ro/lIvil2;
for j=0,1,2,---, do
yi=Vir
Xjs1 =Xx;+Pjy; > Scalar a; becomes vector'y ;
ris1 = —f(xj41) > Replaces linear update: rjy =r; —V;y;
Set: p :=rj41; and compute v = J(xj41)p > Use Frechet
Compute ;= Vv
v=v-=Vif;,  p=p-PiB
pj+1:=p/lvil2; vis = v/|vll2 s
: end for

_ =
S 2 e R AR N S ey

—_
won

The relation with Newton’s method can be understood from the local linear
model which is at the foundation of the algorithm:

fl+Piy)= f(xj)+V;y, (7.4)

which follows from the following approximation where the v;’s are the components
of y and the sum is overi = [j —m + 1] to J:

Faj+Py) = FOe)+ D yid Gppi = fep)+ ) il (pi = () +Vjy.

The method essentially minimizes the residual norm of the linear model (7.4) at the
current step. Recall that Anderson exploited a similar local relation represented by
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(6.10) and the intermediate solution X in (6.7) is a local minimizer of the linear
model. We will often use the notation

to express the relation represented by Equation 7.1.

7.2. Linear updates

The reader may have noticed that Algorithm 6 requires two function evaluations
per step, one in Line 8 where the residual is computed and one in Line 9 when
invoking the Frechet derivative to compute J(x;41)p using the formula:

Jop ~ flx+ 612) - f(x) ,

(7.6)

where € is some carefully selected small scalar. It is possible to avoid calculating
the nonlinear residual by simply replacing it with its linear approximation given by
expression (7.4) from which we get,

rist=—fxj+Pjy)) = —fx;)=Viyj=r;—Vjyj.

Therefore, the idea of this “linearized update version” of nITGCR is to replace 71
in Line 8 by its linear approximation r; — V;y.

8a: rjp=r;—Vy;

This is now a method that resembles an Inexact Newton approach. It will be
equivalent to it if we add one more modification to the scheme namely that we omit
updating the Jacobian in Line 9, when computing v. In other words, the Jacobian
J(xj41) invoked in Line 9 is constant and equal to J(xp) and Line 9 becomes:

9a. Set: p :=rj;1; and compute v = J(xo)p

In practice, this means that when computing the vector v in Line 9 of Algorithm 6
with equation 7.6, the vector x is set to xo. This works with restarts, i.e., when
the number of steps reaches a restart dimension, or when the linear residual has
shown sufficient decrease, xg is reset to be the latest iteration computed and a new
subspace and corresponding approximation are computed.

All this means is that with minor changes to Algorithm 6 we can implement a
whole class of methods which have been thoroughly studies in the past, see, e.g.,
Dembo et al. (1982), Brown and Saad (1990, 1994), Eisenstat and Walker (1994)
among others. Probably the most significant disadvantage of inexact Newton
methods, or to be specific Krylov-Newton methods, is that a large number of
function evaluations may be needed to build the Krylov subspace in order to
obtain a single iterate, i.e., the next (inexact) Newton iterate. After this iterate
is computed, all the information gathered at this step, specifically Py, and Vi,
is discarded. This is to be contrasted with quasi-Newton techniques where the



70 Y. SaAaD

most recent function evaluation contributes to building an updated approximate
Jacobian. Inexact Newton methods are most successful when the Jacobian is
available, or inexpensive to compute, and some effective preconditioner can readily
be computed.

Nevertheless, it may still be cost-effective to reduce the number of function
evaluations from two to one whenever possible. We can update the residual norm
by replacing Line 8 of Algorithm 6 with the liner form (8a) when it is deemed safe,
i.e., typically after the iteration reaches a region where the iterate is close enough
to the exact solution that the linear model (7.4) is accurate enough. A simple
strategy to employ linear updates and move back to using nonlinear residuals, was
implemented and tested in in He er al. (2024). It is based on probing periodically
how far the linear residual 7,1 = r; — V;y; is from the actual one. Define:

(Fj,rj)

di=1-— .
! 7112117 1l

(7.7)

The adaptive nITGCR switches the linear mode on when d; < 7 and returns to
the nonlinear mode if d; > 7, where 7 is a small threshold parameter. In the

experiments discussed in Section 7.5 we set 7 = 0.01.

7.3. Nonlinear updates

We now consider an implementation of Algorithm 6 in which nonlinear residuals
are computed at each step. We can study the algorithm by establishing relations
with the linear residual

Fist=rj=Vjyj, (7.8)

and the deviation between the actual residual 7, and its linear version 7, at the
J + 1th iteration:

Zj4l = Tjal — Fjsl (7.9)

To analyze the magnitude of z;,, we define

wi =) =Jx)pifori=[j-—m+1],---,j; and W; = [w[j_m1], -, Ww;]
(7.10)
sj = f(xje1) = fO) = J0e) (X e — x5). (7.11)

Observe that
J(Xj)pi = J(x,-)pl- +w; =v; +w;. (712)

Recall from the Taylor series expansion that s; is a second order term relative to
llxj+1 — x;|l2. Then it can be shown He ez al. (2024) that the difference 741 — 741
satisfies the relation:

fj+1 —rjy1 = ijj t+s5; = WjV]T}’j +s5, (713)
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and therefore that:
17 je1 =7yl < W5l Nl7jllz + sl (7.14)

When the process nears convergence, |W;||2[|7;l> is the product of two first
order terms while s; is a second order term according to its definition (7.11). Thus,
Zj+1 is a quantity of the second order.

The following properties of Algorithm 6 are easy to establish, see He er al.
(2024) for the proof and other details. We denote by m; the number of columns in
Vjand P;,i.e, m; = min{m, j + 1}

Proposition 7.1. The following properties are satisfied by the vectors produced
by Algorithm 6:

1 (Fjr1,vi) =0 for [j-m+1] <i<jie, Vi =0;

2 |7l = miny || = f(x;) + [J1P;yll2 = miny || = f(x;) + Viylls

3 (viets Py = (Vi1 .7 )s

4 y;= V].Trj =(vj,Fj)em; —VJ.sz where e,,; = [0,0, - 117 e R,

Property (4) and equation (7.14) suggest that when z; is small, then y; will have
small components everywhere except for the last component. This happens when
the model is close to being linear or when it is nearing convergence,

7.4. Connections with multisecant methods
The update at step j of nITGCR can be written as follows:
Xjl = Xj +PjVJTI‘j =Xj +PjV]T(—f()Cj)),

showing that nITGCR is a multisecant-type method in which the inverse Jacobian
at step j, is approximated by

Gjy=P;V]. (7.15)
This approximation satisfies the multisecant equation
G]'+1Vi:pi for [j—m+1]§i£j. (716)

Indeed, Gj1v; = PV vi = pi = J() v for [j—m+1] <i < j.In other
words G j, inverts J(x;) exactly when applied to v;.

If we substitute p; with of Ax; and v; with Af; we see that equation (7.16) is
just the constraint (5.10) we encountered in Broyden’s second update method. In
addition, the update G j; also satisfies the ‘no-change’ condition:

Gjy1ig=0 Vg Lv; for [j-m+1]<i<]j. (7.17)

The usual no-change condition for secant methods is of the form (G j 11 =G [ j_n+1))g =
0 for ¢ L Af; which in our case would become (G i1 — G[j_ms+11)g = O for
gL v; for [j—m+1] <i < j. This means that we are in effect updating
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Gj-m+1] = 0. Interestingly, G ;4 satisfies an optimality result that is similar to that
of other secant-type and multisecant-type methods. This is stated in the following
proposition which is easy to prove, see He et al. (2024).

Proposition 7.2. The unique minimizer of the following optimization problem:
min{||G||r, G € R™" subjectto: GV, = P} (7.18)
is the matrix G .1 = P,V].

The condition G j41V; = P; is the same as the multisecant condition G ; F; = X
of Equation (6.40) discussed when we characterized AA as a multisecant method.
In addition, recall that the multisecant version of the no-change condition, as
represented by Equation (6.41) is satisfied. This is the same as the no-change
condition seen above for nITGCR.

Therefore we see that the two methods are quite similar in that they are both
multisecant methods defined from a pairing of two sets of vectors, V;, P; for
nITGCR on the one hand and F;, X; for AA on the other. From this viewpoint,
the two methods differ mainly in the way in which the sets F;/V; , and X;/P; are
defined. Let us use the more general notation V;, P; for both pairs of subspaces.

In both cases, a vector v; is related to the corresponding p ; by the fact that

Looking at Line 9 of Algorithm 6 indicates that, before the orthogonalization step
in nITGCR (Lines 10-12), this relation becomes an equality, or aims to be close to
an equality, by employing a Frechet differentiation. Thus, the process introduces a
pair p, v; to the current paired subspaces where p; is accurately mapped to v ; by
J(xj), see (7.19). In the case of AA, we have v; = Af;_1 = f; — f;-1 and write

fj X fj—l +J()Cj_1)(Xj _xj—l) — Afj—l X J(xj_l)ij_l, (720)

which is an expression of the form (7.19) for index j — 1.

An advantage of nITGCR is that relation (7.19) is a more accurate representation
of the Jacobian than relation (7.20), which can be a rough approximation when x
and x;_; are not close to each other. This advantage comes at the extra cost of an
additional function evaluation, but this can be mitigated by an adaptive scheme as
was seen at the end of Section 7.2.

7.5. Numerical illustration: nlTGCR and Anderson

We now return to the numerical examples seen in Section 6.6 to test nlTGCR along
with Anderson acceleration. As mentioned earlier we can run nITGCR in different
modes. We can adopt a ‘linear’ mode which is nothing but an inexact Newton
approach where the Jacobian systems are solved with a truncated GCR method.
It is also possible to run an ‘adaptive’ algorithm, as described earlier - where we
switch between the linear and nonlinear residual modes with the help of a simple
criterion, see the end of Section 7.2. Figure 7.1 reproduces the curves of RRE(5)
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and AA(5,10), and AA-TGS(5,.) shown in Section 6.6 and add results with
nlTGCR_Ln(5, .),n1TGCR_AA(5, .), the linear and adaptive versions of nITGCR
respectively. As before the parameter 5 for these 2 runs represents the window
size. What is shown is similar to what we saw in Section 6.6 and the parameters,
such as residual tolerance maximum number of iterations, etc., are identical. One
difference is that, because the methods perform very similarly at the beginning, we
do not plot the initial part of the curves, i.e., we omit points for which the number
of function evaluations is less than 100.

102 . . .
“-\ —— RRE(5)
g '\_‘ --6--AA(5,10)
E Q\ nITGCR_Ln(5,.)
04l N -+-nITGCR_Ad(5,.) |]
B o, —8—AA-TGS(5,.)
g =
107 1 >
—RRE(5) \ 10 1=
--AA(5,10) *
nITGCR_Ln(5,) | ~,
-+ -nITGCR_Ad(5,.) -
—8—AA-TGS(5,.) AN .
10715 L= ‘ ‘ ‘ ~l108E ‘ + C ‘
100 200 300 400 500 100 150 200 250 300
# Func. evaluations # Func. evaluations

Figure 7.1. Comparison of 5 different methods for the Bratu problem (left) and the
Lennard-Jones optimization problem (right).

Because n1TGCR_Ln is in effect an inexact Newton method, one can expect a
superlinear convergence if a proper strategy is adopted when solving the Jacobian
systems. These systems are solved inexactly by requiring that we reduce the (linear)
residual norm by a certain tolerance 7 where 7 is adapted. Table 7.1 illustrates the
superlinear convergence of the Linear, i.e., inexact Newton version of nITGCR, as
observed for the Lennard-Jones problem. The algorithm takes 10 outer (Newton)
iterations to converge but we only show the last four iterations (as indicated by the
column ’its’). The second column shows the progress of the norm of the gradient,
which is nearly quadratic as can be seen. The 3rd column shows the number of
inner steps needed to reduce the residual norm by 7 at the given Newton step, where
n is shown in the 4th column. This tolerance parameter 7, is determined according
to the Eisenstat-Walker update, see Kelley (1995) for details. This update scheme
works by trying to produce a quadratically decreasing residual based on gains made
in the previous step.

8. Acceleration methods for machine learning

We conclude this article with a few preliminary thoughts on how acceleration
methods might be put to work in a world that is increasingly driven by Machine
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its IVE]||» inner n

7| 1.894e+00 | 10 | 4.547e-02
8| 6.376e-02 | 22 | 1.337e-02
9| 3.282e-04 | 47 | 1.020e-03
10 | 7.052e-09 | 59 | 2.386e-05

Table 7.1. The superlinear convergence of nIlTGCR_Ln for the Lennard-Jones
example.

Learning (ML) and Artificial Intelligence (AI). Training deep neural networks
models is accomplished with one of a number of known iterative procedures.
What sets these procedures apart from their counterparts in physical simulations is
their reliance on stochastic approaches that exploit large datasets. This presents a
completely new landscape for acceleration methods, one for which they were not
originally designed. It is too early to definitively say whether or not acceleration
methods will be broadly adopted for ML/AI optimization, but it is certainly time to
start investigating what modifications to traditional acceleration approaches might
be required to deploy them successfully in this context.

Training an Al model is highly demanding, both in terms of memory and com-
putational power. The idea of resorting to acceleration in deep learning is a rather
natural one when considering that standard approaches may require tens of thou-
sands of iterations to converge. Anderson acceleration for deep learning tasks
was discussed in a number of recent articles, see, e.g. Pasini, Yin, Reshniak and
Stoyanov (2021, 2022), Sun, Wang, Liu, Pan, Jui, Jiang, Kong ef al. (2021), Shi,
Song, Wu, Hsu, Wu and Huang (2019), among others. Most of these papers ad-
vocate some form of regularization to cope with the varying/ stochastic nature of
the optimization problem.

Before reviewing the challenges posed by stochastic techniques to acceleration
methods we briefly describe the Stochastic Gradient Descent (SGD) algorithm, one
of the simplest methods employed to train DNN models. In spite of its simplicity,
SGD is a good representative of iterative optimization algorithms in deep learning,
because its use is rather widespread and because it shares the same features as those
of the more advanced algorithms.

8.1. Stochastic Gradient Descent

The classical (deterministic) gradient descent (GD) method for minimizing a convex
function ¢(w) with respect to w, was mentioned in Section 4.2, see Equation (4.10).
If ¢ is differentiable the method consists of taking the iterates:

Wisl =wj —1;Vo(w)), (8.1)

where n; is a scalar termed the step-size or learning rate in machine learning.
The above algorithm is well understood for functions ¢ that are convex. In this
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situation, the step-size 7, is usually determined by performing a line search, i.e.,
by selecting the scalar 7 so as to minimize, or reduce in specific ways, the cost
function ¢(w; — nVeé(w ;)) with respect to n. It was Cauchy (1847) who invented
the method for solving systems of equations; see also Petrova and Solov’ev (1997)
for additional details on the origin of the method.

In data-related applications w is a vector of weights needed to optimize a process.
This often amounts to finding the best parameters to use, say in a classification
method, so that the value of ¢ at sample points matches some given result across
items of a dataset according to a certain measure. Here, we simplified notation by
writing ¢(w) instead of the more accurate ¢(x|w), which is to be read as “the value
of ¢ for x given the parameter set w”.

In the specific context of Deep Learning, ¢(w) is often the sum of a large number
of other cost functions, i.e., we often have

N N
s =D Giw) = Ve(w)= > Vei(w). (8.2)
i=1 i=1
The index i here refers to the samples in the training data. In the simplest case

where a ‘Mean Square Error’ (MSE) cost function is employed, we would have

n
o) = > 119i = pw I3 (8.3)
i=1
where y; is the target value for item x; and y; = ¢,,(x;) is the result of the model
for x; given the weights represented by w.

Stochastic Gradient Descent (SGD) methods are designed specifically for the
common case where ¢(w) is of the form (8.2). It is usually expensive to compute
V¢ but inexpensive to compute a component V¢;(w). As a result, the idea is to
replace the gradient V¢é(w) in the gradient descent method by Vé;;(w ;) where i;
is drawn at random at step j. The result is an iteration of the type:

Wwisl =w; —1; Vi, (wj) . (8.4)

The step-size 1}, called the ‘learning rate’ in this context, is rarely selected by a
linesearch but it is determined adaptively or set to a constant. Convergence results
for SGD have been established in the convex case Bubeck (2015), Robbins and
Monro (1951), Hardt, Recht and Singer (2016), Gower, Loizou, Qian, Sailanbayev,
Shulgin and Richtdrik (2019). The main point, going back to the seminal work by
Robbins and Monro (1951), is that when gradients are inaccurately computed, then
if they are selected from a process whose noise has a mean of zero then the process
will converge in probability to the root.

A straightforward SGD approach that uses a single function ¢;; at a time is
seldom used in practice because this typically results in a convergence that is too
slow. A common middle ground solution between the one-subfunction SGD and
the full Gradient Descent algorithm is to resort to mini-batching. In short the idea
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consists of replacing the single function ¢;; by an average of few such functions,
again drawn at random from the full set.

Thus, mini-batching begins with partitioning the set {1,2,--- , N} into ng ‘mini-
batches’ Bj,j =1,--- ,np where

np
| JBi=(1.2,-- N} with B;(|Bc=0 for j#k.
j=1

Here, each B; C {1,2,---,n}is asmall set of indices. Then instead of considering
a single function ¢; we will consider
1
b5, (W) = T2 D Biw). (8.5)
| ‘]l kEBj

We will cycle through all mini-batches B; of functions at each time performing a
group-gradient step of the form:

Wi =W, — Vs, (w)) j =12, ,np. (8.6)

If each set B; is small enough computing the gradient will be manageable and
computationally efficient. One sweep through the whole set of functions as in (8.6)
is termed an ‘epoch’. The number of iterations of SGD and other optimization
learning in Deep Learning is often measured in terms of epochs. It is common to
select the partition at random at each new epoch by reshuffling the set {1,2,--- , N}
and redrawing the batches consecutively from the resulting shuffied set. Models
can be expensive to train: the more complex models often require thousands or
tens of thousands of epochs to converge.

Mini-batch processing in the random fashion described above is advantageous
from a computational point of view since it typically leads to fewer sweeps through
each function to achieve convergence. It is also mandatory if we wish to avoid
reaching local minima and overfitting. Stochastic approaches of the type just
described are at the heart of optimization techniques in deep learning.

8.2. Acceleration methods for deep learning: The challenges

Suppose we want to apply some form of acceleration to the sequence generated by
the batched gradient descent iteration (8.6). There is clearly an issue in that the
function changes at each step by the nature of the stochastic approach. Indeed, by
the definition (8.5), it is as if we are trying to find the minimum of a new function at
each new step, namely the function (8.5) which depends on the batch ;. We could
use the full gradient which amounts to using a full batch, i.e., the whole data set, at
each step. However, it is often argued that in deep learning an exact minimization
of the objective function using the full data-set at once is not only difficult but also
counter productive. Indeed, mini-batching serves other purposes than just better
scalability. For example, it helps prevent ‘overfitting’: Using all the data samples
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at once is similar to interpolating a function in the presence of noise at all the data
points. Randomization also helps the process escape from bad local minima.

This brings us to the second problem namely the lack of convexity of the objective
functions invoked in deep learning. This means that all methods that feature a
second order character, such as a Quasi-Newton approach, will have both theoretical
and practical difficulties. As was seen earlier, Anderson Acceleration can be viewed
as a secant method similar to a Quasi-Newton approach. These methods will
potentially utilize many additional vectors but result in no or little acceleration, if
not in a breakdown caused by the non SPD nature of the Hessian. The lack of
convexity and the fact that the problem is heavily over-parameterized means that
there are many solutions to which the algorithms can converge. Will acceleration
lead to a better solution than that of the baseline algorithm being accelerated? If
we consider only the objective function as the sole criterion, one may think that the
answer is clear: the lower the better. However, practitioners in this field are more
interested in ‘generalization’ or the property to obtain good classification results
on data that is not among the training data set. The problem of generalization has
been the object of numerous studies, see, e.g., Zhang, Bengio, Hardt, Recht and
Vinyals (2021), Li, Xu, Taylor, Studer and Goldstein (2018), Wu, Zhu and E (2017),
Zhou, Feng, Ma, Xiong, Hoi and E (2020) among many others. The paper Zhang
et al. (2021) shows by means of experiments that looking at DL from the angle of
minimizing the loss function fails to explain generalization properties. The authors
show that they can achieve a perfect loss of zero in training models on well-known
datasets (MNIST, CIFAR10) that have been modified by randomly changing all
labels. In other words one can obtain parameters whose loss function is minimum
but with the worst possible generalization since the resulting classification would
be akin to assigning a random label to each item. A number of other papers explore
this issue further Zhou et al. (2020), Neyshabur, Tomioka and Srebro (2015), Li
etal. (2018), Wu et al. (2017) by attempting to explain generalization with the help
of the ‘loss landscape’, the geometry of the loss function in high dimensional space.
What can be understood from these works is that the problem is far more complex
than just minimizing a function. There are many minima and some are better than
others. A local minimum that has a smaller loss function will not necessarily lead
to better inference accuracy and the random character of the learning algorithms
plays a central role in achieving a good generalization. This suggests that we should
study mechanisms that incorporate or encourage randomness. An illustration will
be provided in the next section.

The third challenge is that acceleration methods tend to be memory intensive,
requiring to store possibly tens of additional vectors to be effective. In deep learning
this is not an affordable option. For example, a model like Chat-GPT3 has 175B
parameters while the more recent Llama3 involves 450B parameters. This is the
main reason why simple methods like SGD or Adam Kingma and Ba (2015) are
favored in this context.
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8.3. Adapting Acceleration methods for ML

Given the discussion of the previous section one may ask what benefits can be
obtained by incorporating second-order information in stochastic methods? Indeed,
the article Bottou, Curtis and Nocedal (2018) discusses the applicability of second
order methods for machine learning and, citing previous work, points out that
the convergence rate of a Quasi-Newton-type “... stochastic iteration (..) cannot
be faster than sublinear”. However, Bottou and Le Cun (2005) state that if the
Hessian approximation converges to the exact Hessian at the limit then the rate
of convergence of SGD is independent of the conditioning of the Hessian. In
other words, second order information makes the method “better equipped to
cope with ill-conditioning than SGD”. Thus, careful successive rescaling based on
(approximate) second-order derivatives has been successfully exploited to improve
convergence of stochastic approaches.

The above discussion may lead the potential researcher to dismiss all acceleration
methods for deep learning tasks. There are a few simple variations to acceleration
schemes to cope with some of issues raised in Section 8.2. For example, if our goal
is to accelerate the iteration (8.6) with a constant learning rate 7, then we could
introduce inner iterations to “iterate within the same batch”. What this means is
that we force the acceleration method to act on the same batch for a given number
of inner iterations. For example, if we use RRE (see Section 2.6) we could decide
to restart every k iterations, each of which is with the same batch B;. When the
next batch is selected, we replace the latest iterate with the result of the accelerated
sequence. We found with simple experiments that a method like RRE will work
very poorly without such a scheme.

On the other hand, if we are to embrace a more randomized viewpoint, we could
adopt a mixing mechanism whereby the subspaces used in the secant equation
evolve across different batches. In other words we no longer force the accelerator
to work only on the same batch. Thus, the columns of the X, ; in (6.5) of
Anderson acceleration are now allowed to be associated with different batches. In
contrast with RRE, our preliminary experiments show that for AA and AA-TGS
this in fact works better than adding an inner loop.

Here is a very simple experiment carried out with the help of the PyTorch library
Paszke, Gross, Massa, Lerer, Bradbury, Chanan, Killeen, Lin, Gimelshein, Antiga
et al. (2019). We train a small Multilayer Perceptron (MLP) model, see, e.g.,
Murphy (2022), with two hidden layers to recognize handwritten images from
the dataset MNIST (60,000 samples of images of handwritten digits for training,
10,000 samples for testing). We tested 4 baseline standard methods available in
PyTorch: SGD, Adam, RMSprop, and Adagrad. Each of these is then accelerated
with RRE (RRE), Anderson Acceleration (AAc), or Anderson-TGS (TGS). Here
we show the results with SGD only. AA and AA-TGS use a window size of 3
and a restart dimension of 10. Both implement the batch-overlapping subspaces
discussed above (no inner loop). In contrast RRE incorporates an inner loop of 5
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steps (without which it performs rather poorly). The restart dimension for RRE is
also set to 5, to match the number of inner steps. We train the model 5 times using a
different randomly drawn subset of 2000 items (out of the 60,000 MNIST training
set) each time. With each of the 5 runs we draw a test sample of 200 to (out of the
10,000 MNIST test set) to test the accuracy of the trained model. The accuracy
is then averaged across the 5 runs. For each run the accuracy is measured as just
100 times the ratio of the number of correctly recognized digits over the total in
the test set (200). We show the loss function for each of the training algorithms on
the left side of Figure 8.1. Two versions of the baseline algorithm (SGD) are tested
both of which use the same learning rate 17 = 0.001. The first one labeled SGD_bas
is just the standard SGD while the second SGD_inn incorporates the same inner
iteration scheme as RRE (5 inner steps). This performs slightly better than the
original scheme sometimes markedly better with the other optimizers.
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Figure 8.1. Comparison of various techniques for a simple MLP model on the set
MNIST.

One can see a big improvement in the convergence of all the accelerated al-
gorithms. Other tests indicated that adding an inner loop to avoid mixing the sub-
spaces from different batches is detrimental to both AA and AA-TGS, especially
when comparing the accuracy. While the improvement in accuracy is significant,
we should point out that SGD has not yet fully converged as we limited the number
of epochs to 150. In other tests, e.g., with Adam, we often saw a small improvement
in accuracy but not as pronounced. However in all cases, the accelerated algorithms
reach a higher precision much earlier than the baseline methods.

The second remedy addresses the issue of memory. When training Al models,
we are limited to a very small number of vectors that we can practically store. So
methods like a restarted RRE, or Anderson, must utilize a very small window size.
Note that a window size of m will require a total of = 2m vectors for most methods
we have seen. This is the reason why a method like AA-TGS or nITGCR can be
beneficial in deep learning. For both methods, there is a simplification in the linear
symmetric case as was seen earlier. This means that in this special situation a very
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small window size (m = 3 for AA-TGS, m = 2 for nITGCR) will essentially be
equivalent to a window size of m = oo, potentially leading to a big advantage. In
a general nonlinear optimization situation the Hessian is symmetric so when the
iterates are near the optimum and a nearly linear regime sets in, then the process
should benefit from the short-term recurrences of AA-TGS and nITGCR. In fact
this may explain why AA-TGS does so much better at reducing the loss than AA
with the same parameters in the previous experiment, see Figure 8.1. From this
perspective, any iteration involving short-term recurrence is worth exploring for
Machine Learning.

What is clear is that acceleration methods of the type discussed in this paper have
the potential to emerge as powerful tools for training AI models. While adapting
them to the stochastic framework poses challenges, it also offers a promising
opportunity for future research.
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