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A pervasive approach in scientific computing is to express the solution to a given

problem as the limit of a sequence of vectors or other mathematical objects. In many

situations these sequences are generated by slowly converging iterative procedures

and this led practitioners to seek faster alternatives to reach the limit. “Acceleration

techniques” comprise a broad array of methods specifically designed with this goal

in mind. They started as a means of improving the convergence of general scalar

sequences by various forms of “extrapolation to the limit”, i.e., by extrapolating the

most recent iterates to the limit via linear combinations. Extrapolation methods of

this type, the best known example of which is Aitken’s Delta-squared process, require

only the sequence of vectors as input.

However, limiting methods to only use the iterates is too restrictive. Accelerat-

ing sequences generated by fixed-point iterations by utilizing both the iterates and

the fixed-point mapping itself has proven highly successful across various areas of

physics. A notable example of these Fixed-Point accelerators (FP-Accelerators) is a

method developed by Donald Anderson in 1965 and now widely known as Anderson

Acceleration (AA). Furthermore, Quasi-Newton and Inexact Newton methods can

also be placed in this category since they can be invoked to find limits of fixed-

point iteration sequences by employing the exact same ingredients as those of the

FP-accelerators.

This paper presents an overview of these methods – with an emphasis on those,

such as AA, that are geared toward accelerating fixed-point iterations. We will

navigate through existing variants of accelerators, their implementations, and their

applications, to unravel the close connections between them. These connections were

often not recognized by the originators of certain methods, who sometimes stumbled

on slight variations of already established ideas. Furthermore, even though new

accelerators were invented in different corners of science, the underlying principles

behind them are strinkingly similar or identical.

The plan of this article will approximately follow the historical trajectory of extrapol-

ation and acceleration methods, beginning with a brief description of extrapolation

ideas, followed by the special case of linear systems, the application to self-consistent

field (SCF) iterations, and a detailed view of Anderson Acceleration. The last part of
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the paper is concerned with more recent developments, including theoretical aspects,

and a few thoughts on accelerating Machine Learning algorithms.
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1. Historical perspective and overview

Early iterative methods for solving systems of equations, whether linear or nonlin-

ear, often relied on simple fixed-point iterations of the form

G 9+1 = 6(G 9) (1.1)

which, under certain conditions, converge to a fixed-point G∗ of 6, i.e., a point such

that 6(G∗) = G∗. Here, 6 is some mapping from R= to itself which we assume

to be at least continuous. Thus, the iterative method for solving linear systems

originally developed by Gauss in 1823 and commonly known today as the Gauss-

Seidel iteration, see, e.g., Saad (2003), can be recast in this form. The fixed-point

iterative approach can be trivially adopted for solving a system of equations of the

form:

5 (G) = 0, (1.2)

where 5 is again a mapping from R= to itself. This can be achieved by selecting a

non-zero scalar W and defining the mapping 6(G) ≡ G + W 5 (G), whose fixed-points

are identical with the zeros of 5 . The process would generate the iterates:

G 9+1 = G 9 + W 5 (G 9), 9 = 0, 1, · · · (1.3)

starting from some initial guess G0. Approaches that utilize the above framework

are common in optimization where 5 (G) is the negative of the gradient of a certain

objective function q(G) whose minimum is sought. The simplicity and versatility
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of the fixed-point iteration method for solving nonlinear equations are among the

reasons it has been successfully used across various fields.

Sequences of vectors, whether of the type (1.1) introduced above, or generated by

some other ‘black-box’ process, often converge slowly or may even fail to converge.

As a result practitioners have long sought to build sequences that converge faster

to the same limit as the original sequence or even to establish convergence in case

the original sequence fails to converge. We need to emphasize a key distinction

between two different strategies that have been adopted in this context. In the

first, one is just given all, or a few of the recent members of the sequence and no

other information and the goal is to produce another sequence from it, that will

hopefully converge faster. These procedures typically rely on forming a linear

combination of the current iterate with previous ones in an effort to essentially

extrapolate to the limit and for this reason they are often called ‘extrapolation

methods’. Starting from a sequence {G 9} 9=0,1,... a typical extrapolation technique

builds the new, extrapolated, sequence as follows:

H 9 =

9∑

8=[ 9−<]
W

( 9)

8
G8 (1.4)

where we recall the notation [ 9 −<] = max{ 9 −<, 0} and < is a parameter, known

as the ‘depth’ or ‘window-size’, and the W
( 9)

8
’s are ‘acceleration parameters’. If the

new sequence is to converge to the same limit as the original one, the condition

9∑

8=[ 9−<]
W

( 9)

8
= 1 (1.5)

must be imposed. Because the process works by forming linear combinations of

iterates of the original sequences, it is also often termed a ‘linear acceleration’ pro-

cedure, see, e.g., Brezinski and Redivo-Zaglia (1991), Brezinski (2000), Forsythe

(1953) but the term ‘extrapolation’ is more common. Extrapolation methods are

discussed in Section 2.

In the second strategy, we are again given all, or a few, of the recent iterates,

but now we also have access to the fixed-point mapping 6 to help build the next

member of the sequence. A typical example of these methods is the Anderson/Pulay

acceleration which is discussed in detail in Sections 4.3 and 6. When presented

from the equivalent form of Pulay mixing, this method builds a new iterate as

follows

G 9+1 =

9∑

8=[ 9−<]
\

( 9)

8
6(G8); (1.6)

where the \
( 9)

8
’s satisfy the constraint

∑ 9

8=[ 9−<] \
( 9)

8
= 1. As can be seen, the

function 6 is now invoked when building a new iterate. Of course having access to

6 may allow one to develop more powerful methods than if we were to only use the
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surprise that one can find many interesting connections between this class methods

and some of the FP-acceleration techniques. A few of the methods developed

in the quasi-Newton context bear strong similarities, and are in some cases even

mathematically equivalent, to techniques from the FP acceleration class.

The four classes of methods discussed above are illustrated in Figure 1.1. This

article aims to provide a coverage of these four classes of acceleration and interpol-

ation methods, with an emphasis on those geared toward accelerating fixed-point

iterations, i.e., those in the top-right corner of Figure 1.1. There is a vast amount

of literature on these methods and it would be challenging and unrealistic to try to

be exhaustive. However, one of our specific goals is to unravel the various con-

nections between the different methods. Another is to present, whenever possible,

interesting variants of these methods and details on their implementations.

Notation

• Throughout the article 6 will denote a mapping from R= to itself, and one is

interested in a fixed-point G∗ of 6. Similarly, 5 will denote also a mapping

from R= to itself, and one is interested in a zero of 5 .

• {G 9} 9=0,1, · · · , denotes a sequence in R=.

• Given a sequence {G 9} 9=0,1, · · · , the forward difference operator Δ builds a new

sequence whose terms are defined by:

ΔG 9 = G 9+1 − G 9 , 9 = 0, 1, · · · , (1.7)

• We will often refer to an evolving set of columns where the most recent <

vectors from a sequence are retained. In order to cope with the different

indexing used in the algorithms, we found it convenient to define for any

: ∈ Z
[:] = max{:, 0} (1.8)

Thus, we will often see matrices of the form - 9 = [G [ 9−<+1] , G [ 9−<+1]+1, · · · , G 9]
that have 9 + 1 columns when 9 < < and < columns otherwise.

• Throughout the paper ‖.‖2 will denote the Euclidean norm and ‖.‖� is the

Frobenius norm of matrices.

2. Extrapolation methods for general sequences

Given a sequence {G 9} 9=0,1, · · · ,, an extrapolation method builds an auxiliary se-

quence {H 9} 9=0,1, · · · ,, where H 9 is typically a linear combination of the most recent

iterates as in (1.4). The goal is to produce a sequence that converges faster to the

limit of G 9 . Here < is a parameter known as the ‘depth’ or ‘window-size’, and the

W
( 9)

8
’s are ‘acceleration parameters’, which sum-up to one, see (1.5). Aitken’s X2

process Aitken (1926) is an early instance of such a procedure that had a major

impact.
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2.1. Aitken’s procedure

Suppose we have a scalar sequence {G8} for 8 = 0, 1, · · · , that converges to a limit

G∗. Aitken assumed that in this situation the sequence roughly satisfies the relation

G 9+1 − G∗ = _(G 9 − G∗) ∀ 9 (2.1)

where _ is some unknown scalar. This is simply an expression of a geometric

convergence to the limit. The above condition defines a set of sequences and the

condition is termed a ‘kernel’. In this particular case (2.1) is the Aitken kernel.

The scalar _, and the limit G∗ can be trivially determined from three consecutive

iterates G 9 , G 9+1, G 9+2 by writing:

G 9+1 − G∗
G 9 − G∗

= _,
G 9+2 − G∗
G 9+1 − G∗

= _ (2.2)

from which it follows by eliminating _ from the two equations that

G∗ =
G 9G 9+2 − G2

9+1

G 9+2 − 2G 9+1 + G 9
= G 9 −

(ΔG 9)
2

Δ2G 9
. (2.3)

Here Δ is the forward difference operator defined earlier in (1.7) and Δ2G 9 =

Δ(ΔG 9). As can be expected, the set of sequences that satisfy Aitken’s kernel, i.e.,

(2.1) is very narrow. In fact, subtracting the same relation obtained by replacing

9 by 9 − 1 from relation (2.1), we would obtain G 9+1 − G 9 = _(G 9 − G 9−1), hence

G 9+1 − G 9 = _ 9(G1 − G0). Therefore, scalar sequences that satisfy Aitken’s kernel

exactly are of the form

G 9+1 = G0 + (G1 − G0)

9∑

:=0

_: for 9 ≥ 0. (2.4)

Although a given sequence is unlikely to satisfy Aitken’s kernel exactly, it may

nearly satisfy it when approaching the limit and in this case, the extrapolated value

(2.3) will provide a way to build an ‘extrapolated’ sequence defined as follows:

H 9 = G 9 −
(ΔG 9)

2

Δ2G 9
9 = 0, 1, · · · , (2.5)

Note that to compute H 9 we must have available three consecutive iterates, namely,

G 9 , G 9+1, G 9+2, so H 9 starts with a delay relative to the original sequence.

A related approach known as Steffenson’s method is geared toward solving the

equation 5 (G) = 0 by the Newton-like iteration:

G 9+1 = G 9 −
5 (G 9)

3(G 9)
where 3(G) =

5 (G + 5 (G)) − 5 (G)

5 (G)
. (2.6)

One can recognize in 3(G) an approximation of the derivative of 5 at G. This scheme

converges quadratically under some smoothness assumptions for 5 . In addition,
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it can be easily verified, that when the sequence {G 9} is produced from the fixed-

point iteration G 9+1 = 6(G 9), one can recover Aitken’s iteration for this sequence by

applying Steffensen’s scheme to the function 5 (G) = 6(G) − G. Therefore, Aitken’s

method also converges quadratically for such sequences when 6 is smooth enough.

2.2. Generalization: Shanks transform and the n-algorithm

Building on the success of Aitken’s acceleration procedure, Shanks (1955) explored

ways to generalize it by replacing the kernel 2.1 with a kernel of the form:

00(G 9 − G∗) + 01(G 9+1 − G∗) + · · · + 0<(G 9+< − G∗) = 0. (2.7)

where the scalars 00, · · · , 0< and the limit G∗ are unknowns. The sum of the scalars

08 cannot be equal to zero and there is no loss of generality in assuming that they

add up to 1, i.e.,

00 + 01 + · · · + 0< = 1. (2.8)

In addition, it is commonly assumed that 000< ≠ 0, so that exactly < + 1 terms are

involved at any given step. We can set-up a linear system to compute G∗ by putting

equation (2.7) and with (2.8) together into the (< + 2) × (< + 2) linear system:
{
00 + 01 + · · · + 0< = 1

00G 9+8 + 01G 9+8+1 + · · · + 0<G 9+8+< − G∗ = 0 8 = 0, · · · , <. (2.9)

Cramer’s rule can now be invoked to solve this system and derive a formula for G∗.
With a few row manipulations, we end up with the following formula known as the

Shanks (or ’Schmidt-Shanks’) Transformation for scalar sequences:

H
(<)
9

=

���������

G 9 G 9+1 · · · G 9+<
ΔG 9 ΔG 9+1 · · · ΔG 9+<
...

...
...

...

ΔG 9+<−1 ΔG 9+< · · · ΔG 9+2<−1

���������
���������

1 1 · · · 1

ΔG 9 ΔG 9+1 · · · ΔG 9+<
...

...
...

...

ΔG 9+<−1 ΔG 9+< · · · ΔG 9+2<−1

���������

(2.10)

A more elegant way to derive the above formula, one that will lead to useful

extensions, is to exploit the following relation which follows from the kernel (2.7)

00ΔG 9 + 01ΔG 9+1 + · · · + 0<ΔG 9+< = 0. (2.11)

With this, we will build a new system, now for the unknowns 00, 01, · · · , 0<, as

follows:
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{
00 + 01 + · · · + 0< = 1

00ΔG 9+8 + 01ΔG 9+8+1 + · · · + 0<ΔG 9+8+< = 0 ; 8 = 0, · · · , < − 1.
(2.12)

The right-hand side of this (<+1)×(<+1) system is the vector 41 = [1, 0, · · · , 0]) ∈
R
<+1. Using Kramer’s rule will yield an expression for 0: as the fraction of 2

determinants. The denominator of this fraction is the same as that of (2.10). The

numerator is (−1): times the determinant of that same denominator where the first

row and the (: + 1)-st column are deleted. Substituting these formulas for 0: into

the sum 00G 9 + 01G 9+1 + · · · + 0<G 9+< will result in an expression that amounts to

expanding the determinant in the numerator of (2.10) with respect to its first row.

By setting 08 ≡ W(<)
8

we can therefore rewrite Shank’s formula in the form:

H
(<)
9

= W
(<)

0
G 9 + W(<)

1
G 9+1 + · · · + W(<)

< G 9+< (2.13)

where each W
(<)
9

is the ratio of two determinants, as was just explained.

It can be immediately seen that the particular case < = 1 yields exactly Aitken’s

X2 formula:

H
(2)
9

=

����
G 9 G 9+1

ΔG 9 ΔG 9+1

����
����

1 1

ΔG 9 ΔG 9+1

����

=
G 9ΔG 9+1 − G 9+1ΔG 9

Δ2G 9
= G 9 −

(ΔG 9)
2

Δ2G 9
.

As it is written, the above expressions is meant for scalar sequences, but it can be

generalized to vectors and this will be discussed later.

The generalization discovered by Shanks relied on ratios of determinants of size

of order< where< is the depths of the recurrence defined above. The non-practical

character of this technique prompted Peter Wynn in a 1956 article to explore an

alternative implementation and this resulted in an amazingly simple formula which

he dubbed the ‘n-algorithm’ Wynn (1956). This remarkable discovery spurred a

huge following among the numerical linear algebra community Cabay and Jackson

(1976), Eddy and Wang (1979), Brezinski (1980), Eddy (1979), Mes̆ina (1977),

Sidi, Ford and Smith (1986), Wynn (1962), Brezinski (1977), Kaniel and Stein

(1974), Brezinski (1975), Jbilou (1988), Jbilou and Sadok (1991), Germain-Bonne

(1978) among many others. The article Brezinski (2000) gives a rather exhaustive

review of these techniques up to the year 2000. The more recent article Brezinski

and Redivo-Zaglia (2019) surveys these methods while also providing a wealth of

information on the history of their development.

So what is Wynn’s procedure to compute the H
(<)
9

? The formula given above

leads to expressions with determinants that involve Hankel matrices from which

some recurrences can be obtained but these are not only complicated but also

numerically unreliable.

Wynn’s n-algorithm is a recurrence relation to compute H
(<)
9

shown in Equa-
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tion (2.14). It defines sequences {n (<)
9

} 9=0,1, · · · , each indexed by an integer 1 <

starting with < = −1.

The sequence {n (−1)
9

}, is just the zero sequence n
(−1)
9

= 0,∀ 9 , while the sequence

{n (0)
9
}, is the original sequence n

(0)
9

= G 9 ,∀ 9 . The other sequences, i.e., {n (<)
9

} are

then obtained recursively from as follows:

n
(−1)
9

= 0; n
(0)
9

= G 9 ; n
(<+1)
9

= n
(<−1)

9+1
+ 1

n
(<)

9+1
− n (<)

9

for <, 9 ≥ 0. (2.14)

Each sequence {n (<)
9

}, where< is constant, can be placed on a vertical line on a grid

as shown in Figure 2.1. With this representation, the 9-th iterate for the (< + 1)-st

sequence can be obtained using a simple rhombus rule from two members of the

<-th sequence and one member of the (<−1)-st sequence as is shown in the figure.

Only the even-numbered sequences are accelerations of the original sequence. The

odd-numbered ones are just intermediate auxiliary sequences. For example, the

sequence n
(<)

2
is identical with the sequence obtained from Aitken’s X2 process but

the sequence n
(<)

1
is auxiliary.

ε ε

εε

j

j−1

m−1 m m+1

j+1

j−1

jj

j+1

(m+1) (m)

j+1
(m)(m−1)

Figure 2.1. Wynn’s rhombus rule for the n-algorithm

If we denote by [< the transformation that maps a sequence {G 9} into {C(<)
9

},
i.e., we have [<(G 9) = C

(<)
9

, then it can be shown that n
(2<)
9

= [<(G 9) and n
(2<+1)
9

=

1/[<(ΔG 9).

From a computational point of view, we would proceed differently in order not

to have to store all the sequences. The process, shown in Figure 2.2, works on

diagonals of the table. When the original sequence is computed we usually generate

G0, G1, · · · , G 9 , .. in this order. Assuming that we need to compute up to the <-th

sequence {n (<)
9

} then once n
(0)
9

= G 9 becomes available we can obtain the entries

1 Note that this article adopts a different notation from the common usage in the literature: the

index of the sequence is a subscript rather than a superscript. In Wynn’s notation {n ( 9)
< } 9=0,1, · · ·

denotes the <-th extrapolated sequence.
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Figure 2.2. Computational diagram of the n algorithm.

n
(1)

9−1
, n

(2)

9−2
, · · · , n (<)

9−<. This will require the entries n
(0)

9−1
, n

(1)

9−2
, · · · , n (<−1)

9−< and so we

will only need to keep the previous diagonal.

Wynn’s result on the equivalence between the n-algorithm and Shank’s formula

is stunning not only for its elegance but also because it is highly nontrivial and

complex to establish, see comments regarding this in Brezinski (1980, p. 162).

2.3. Numerical illustration

Extrapolation methods were quite popular for dealing with scalar sequences such as

those originating from numerical integration, or from computing numerical series.

The following illustration highlights the difference between fixed-point acceleration

and extrapolation.

In the example we compute c from the Arctan expansion:

atan(I) = I − I3

3
+ I

5

5
− I7

7
+ · · · =

∞∑

9=0

(−1) 9 I2 9+1

2 9 + 1
. (2.15)

Applying this to I = 1 will give a sequence that converges to c/4. For an arbitrary

I, we would take the following sequence, starting with G0 = 0:

G 9+1 = G 9 +
(−1) 9 I2 9+1

2 9 + 1
, 9 = 0, 1, · · · , = − 1. (2.16)

In this illustration, we take = = 30 and I = 1.
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Figure 2.3. Comparison of a few extrapolation methods for computing c/4 with

Formula (2.16).

Figure 2.3 shows the convergence of the original sequence along with 4 extrapol-

ated sequences. In the figure, Aitken2 refers to Aitken applied twice, i.e., Aitken is

applied to the extrapolated sequence obtained from applying the standard Aitken

process. Note that all extrapolated sequences are shorter since, as was indicated

above, a few iterates from the original sequence are needed in order to get the

new sequence started. The plot shows a remarkable improvement in convergence

relative to the original sequence: 15 digits of accuracy are obtained for the 6-th

order n-algorithm in 20 steps in comparison to barely 2 digits obtained with 30

steps of the original sequence.

2.4. Vector sequences

Extrapolation methods have been generalized to vector sequences in a number of

ways. There is no canonical generalization that seems compelling and natural

but the simplest consists of applying the acceleration procedure component-wise.

However, this naive approach is not recommended in the literature as it fails to

capture the intrinsic vector character of the sequence. Many of the generalizations

relied on extending in some way the notion of inverse of a vector or that of the

division of a vector by another vector. For the Aitken procedure this leads to quite

a few possible generalizations, see, e.g., Ramière and Helfer (2015).

Peter Wynn himself considered a generalization of his scheme to vectors Wynn

(1962). Note that generalizing the recurrence formula (2.14) of the n-algorithm

only requires that we define the inverse of a vector. To this end Wynn considered

several options and ended up adopting a definition proposed by Samelson:

G−1
=

Ḡ

(Ḡ, G)
=

Ḡ

‖G‖2
2

(2.17)
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where Ḡ denotes the complex conjugate of G. This is nothing but the pseudo-inverse

of G viewed as a matrix from C1 to C=. It is also known as the Samelson inverse

of a vector. Recently, Brezinski et al Brezinski, Redivo-Zaglia and Salam (2023)

considered more complex extensions of the n-algorithm by resorting to Clifford

Algebra.

The various generalizations of the n-algorithm to vectors based on extending

the inverse of a vector were not too convincing to practitioners. For this reason,

Brezinski (1977, 1975) adopted a different approach that essentially introduced

duality as a tool. We start with the simple case of Aitken’s acceleration for which

we rewrite the original ansatz (2.1) as follows:

G∗ = G 9 + `ΔG 9
where ` = 1/(1−_) is a scalar. In the scalar case, it can be readily seen from (2.3),

that ` is given by:

` = −
ΔG 9

Δ2G 9
. (2.18)

In the vector case, we need ` to be a scalar, and so a natural extension to vector

sequences would entail taking inner products of the numerator and denominator in

(2.18) with a certain vector F:

` = −
(F,ΔG 9)

(F,Δ2G 9)
. (2.19)

This leads to the formula,

H 9 = G 9 −
(F,ΔG 9)

(F,Δ2G 9)
ΔG 9 =

����
G 9 G 9+1

(F,ΔG 9) (F,ΔG 9+1)

����
����

1 1

(F,ΔG 9) (F,ΔG 9+1)

����

. (2.20)

We need to clarify notation. The determinant in the numerator of the right-hand

side in (2.20) now has the vectors G 9 and G 9+1 in its first row, instead of scalars.

This is to be interpreted with the help of the usual expansion of this determinant

with respect to this row. Thus, this determinant is evaluated as:

(F,ΔG 9+1)G 9 − (F,ΔG 9)G 9+1 = (F,ΔG 9+1 − ΔG 9)G 9 + (F,ΔG 9)(G 9 − G 9+1)

= (F,Δ2G 9)G 9 − (F,ΔG 9)ΔG 9 .

This establishes the second equality in (2.20) by noting that the denominator in the

last expression of (2.20) is just (F,Δ2G 9).

The vector F can be selected in a number of ways but it is rather natural to take

F = Δ2G 9 and this leads to

H 9 = G 9 −
(ΔG 9 ,Δ

2G 9)

‖Δ2G 9 ‖2
2

ΔG 9 . (2.21)
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Our aim in showing the expression on the right of (2.20) is to unravel possible

extensions of the more general Shanks formula (2.10). It turns out that the above

formulation of Aitken acceleration for vector sequences is a one-dimensional ver-

sion of the RRE extrapolation method, see Section 2.6 for details.

The vector version of Aitken’s extrapolation described above can easily be exten-

ded to a vector form of Shanks formula (2.10) by selecting a vector F and replacing

every difference ΔG 9+8 in (2.10) by (F,ΔG 9+8). The first row of the determinant in

the numerator will still have the vectors G 9+8 and the resulting determinant is to be

interpreted as was explained above. Doing this would lead the following extension

of Shanks formula (2.10):

H
(<)
9

=

���������

G 9 G 9+1 · · · G 9+<
(F,ΔG 9) (F,ΔG 9+1) · · · (F,ΔG 9+<)

...
...

...
...

(F,ΔG 9+<−1) (F,ΔG 9+<) · · · (F,ΔG 9+2<−1)

���������
���������

1 1 · · · 1

(F,ΔG 9) (F,ΔG 9+1) · · · (F,ΔG 9+<)
...

...
...

...

(F,ΔG 9+<−1) (F,ΔG 9+<) · · · (F,ΔG 9+2<−1)

���������

(2.22)

This generalization was advocated in Brezinski (1975).

However, there is a missing step in our discussion so far: Although we now

have a generalized Shanks formula we still need an effective way to evaluate the

related expressions, hopefully with something similar to the n-algorithm, that avoids

determinants. This is not an issue for Aitken’s procedure which corresponds to

the case < = 2 as the corresponding determinants are trivial. For the cases where

< is larger, a different approach is required. This was examined by Brezinski

(1975, 1977) who proposed a whole class of techniques referred to Topological

n-algorithm, see also, Brezinski and Redivo-Zaglia (2019), Brezinski (1980).

2.5. The projection viewpoint and MMPE

Another way to extend extrapolation methods to vector sequences is to invoke a

projection approach. We return to equations (2.12) where the second equation is

taken with 8 = 0 and eliminate the first equation by setting 00 = 1−01−02−· · ·−0<
which leads to

ΔG 9 +
<∑

8=1

08(ΔG 9+8 − ΔG 9) = 0. (2.23)

Making use of the simple identity D 9+8−D 9 = ΔD 9+8−1+ΔD 9+8−2+· · ·+ΔD 9 will show

that the term ΔG 9+8 − ΔG 9 is the sum of the vectors Δ2G: for : = 9 to : = 9 + 8 − 1
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and this leads to the following reformulation of the left-hand side of (2.23):

ΔG 9 +
<∑

8=1

08

9+8−1∑

:= 9

Δ
2G: = ΔG 9 +

9+<−1∑

:= 9

[0:− 9+1 + 0:− 9+2 + · · · + 0<]Δ2G:

≡ ΔG 9 +
9+<−1∑

:= 9

V:− 9+1Δ
2G:

where we set V:− 9+1 ≡ 0:− 9+1 + 0:− 9+2 + · · · + 0<. Thus, equation (2.23) becomes

ΔG 9 +
<∑

8=1

V8Δ
2G 9+8−1 = 0 (2.24)

where V8 = 08 + 08+1 + · · · + 0<. It is convenient to define:

Δ- 9 = [ΔG 9 ,ΔG 9+1, · · · ,ΔG 9+<−1] (2.25)

Δ
2- 9 = [Δ2G 9 ,ΔG 9+1, · · · ,Δ2G 9+<−1] (2.26)

V = [V1, V2, · · · , V<]) . (2.27)

With this notation the system (2.23) takes the matrix form:

ΔG 9 + Δ
2- 9 V = 0. (2.28)

This is an over-determined system of equations with < unknowns. Taking a

projection viewpoint, we can select a set of vectors , ∈ R=×< and extract a

solution to the projected system

,)
(

ΔG 9 + Δ
2- 9 V

)

= 0. (2.29)

Assuming that the < × < matrix ,) [Δ2- 9] is nonsingular then the accelerated

iterate exists and is given by

H 9 = G 9 − Δ- 9 V where V =
[
,)

Δ
2- 9

]−1
(,)

ΔG 9). (2.30)

A number of methods developed in Brezinski (1975) were of the type shown above

with various choices of the set , . Among these, one approach in particular is

worth mentioning due do its connection with other methods.

This approach starts with another natural extensions of (2.22) which is to use a

different vector F for each of the rows of the determinants but apply these to the
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same ΔG: on the same column:

H
(<)
9

=

���������

G 9 G 9+1 · · · G 9+<
(F1,ΔG 9) (F1,ΔG 9+1) · · · (F1,ΔG 9+<)

...
...

...
...

(F<,ΔG 9) (F<,ΔG 9+1) · · · (F<,ΔG 9+<)

���������
���������

1 1 · · · 1

(F1,ΔG 9) (F1,ΔG 9+1) · · · (F<,ΔG 9+<)
...

...
...

...

(F<,ΔG 9) (F<,ΔG 9+1) · · · (F<,ΔG 9+<)

���������

. (2.31)

It was first discussed in Brezinski (1975) and essentially the same method was

independently published in the Russian literature in Pugachëv (1977). The method

was later rediscovered by Sidi et al. (1986) who gave it the name Modified Minimal

Polynomial Extrapolation (MMPE) by which it is commonly known today. Because

there is some freedom in the selection of the set , , MMPE represents more than

just one method. We will discuss it further in Section 2.6.

It is rather interesting that the above determinant can be expressed in the same

form as (2.30). To see this, we need to process the numerator and denominator

of (2.31) as follows. Starting from the last column and proceeding backward, we

subtract column : − 1 from column : , and this is done for : = < + 1, <, · · · , 2.

With this, the first row of the determinant in the denominator will be a one followed

by < zeros. The first row of the determinant in the numerator will be the vector

G 9 followed by ΔG 9 ,ΔG 9+1,ΔG 9+<−1. The entries in the first columns of both

denominators are unchanged. The block consisting of entries (2 : <+1)×(2 : <+1)

of both denominators will have the entries (F8 ,Δ
2G 9+:−1) in its :-th column, with

: = 1, · · · , <. This block is nothing but the matrix ,)Δ2- 9 . To expand the

resulting determinant in the numerator, we utilize the following relation where g is

a scalar and ( is an invertible < × < matrix:

����
g 5

1 (

���� = det(()[g − 5 (−11] . (2.32)

This relation is also true in the case when g is a vector in Ra×1 and 5 is in Ra×<

with the interpretation of such determinants seen earlier. After transforming the

numerator of (2.31) as discussed above, we will obtain a determinant in the form

of the left-hand side of (2.32) in which 5 = Δ- 9 , 1 = ,)Δ- 9 and ( = ,)Δ2- 9 .

Applying the above formula to this determinant results in the expression (2.30).

Vector acceleration algorithms were also defined as processes devoted solely

to vector sequences generated from linear iterative procedures. The next section

explores this framework a little further.
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2.6. RRE and related methods

The difficulties encountered in extending Aitken’s method and the n-algorithm to

vector sequences led researchers to seek better motivated alternatives, by focusing

on vector sequences generated from specific linear processes. Thus, Cabay and

Jackson (1976) introduced a method called the Minimal Polynomial Extrapolation

(MPE) which exploits the low rank character of the set of sequences in the linear

case. At about the same time, Eddy (1979) and Mešina (1977) developed a method

dubbed ‘Reduced Rank Extrapolation’ (RRE) which was quite similar in spirit to

MPE. Our goal here is mainly to link these methods with the ones seen earlier and

developed from a different viewpoint.

We begin by describing RRE by following the notation and steps of the original

paper Mešina (1977). RRE was initially designed for vector sequences generated

from the following fixed-point (linear) iterative process:

G 9+1 = "G 9 + 5 . (2.33)

The author chose to express the extrapolated sequence in the form:

H< = G0 +
<∑

8=1

V8ΔG8−1 (2.34)

where V8 , 8 = 1, · · · , < are scalars to be determined.

With the notation (2.25 – 2.27) we can write H< = G0+Δ-0V. For the sequences

under consideration, i.e., those defined by (2.33), the relation Δ2G 9 = −(� −")ΔG 9
holds, and therefore we also have Δ2-0 = −(� − ")Δ-0. Furthermore, since we

are in effect solving the system (� − ")G = 5 the residual vector associated with G

is A = 5 − (� − ")G. Consider now the residual A< for the vector H<:

A< = 5 − (� − ")H< = 5 − (� − ")[G0 + Δ-0V]
= 5 + "G0 − G0 + Δ

2-0V

= ΔG0 + Δ
2-0V. (2.35)

Setting the over-determined system ΔG0 +Δ2-0V = 0 yields the exact same system

as (2.24) with 9 = 0.

The idea in the original paper was to determine V so as to minimize the Euclidean

norm of the residual (2.35). It is common to formulate this method in the form

of a projection technique: the norm ‖ΔG0 + Δ2-0V‖2 is minimized by imposing

the condition that the residual A = ΔG0 + Δ2-0V be orthogonal to the span of the

columns of Δ2-0, i.e., to the second order forward differences Δ2G8:

(Δ2-0)) [ΔG0 + Δ
2-0V] = 0. (2.36)

This is the exact same system as in (2.29) with 9 = 0 and , = Δ2-0. Therefore,

RRE is an instance of the MMPE method seen earlier where we set , to be

, = Δ2-0. The case < = 1 is interesting. Indeed, when < = 1 equations (2.34)
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and (2.36) yield the same extrapolation as the vector version of the Aitken process

shown in Formula (2.21) for the case 9 = 0. One can therefore view the vector

version of the Aitken process (2.21) as a particular instance of RRE with a projection

dimension < equal to 1.

In the early development of the method, the idea was to exploit a low-rank

character of Δ2-0. If Δ2-0 has rank < then H< will be an exact solution of

the system (� − ")G = 5 since A< will be zero. Let us explain this in order to

make a connection with Krylov subspace methods to be discussed in Section 3.3.

From (2.33) it follows immediately that G 9+1 − G 9 = "(G 9 − G 9−1) and therefore

ΔG 9 = G 9+1 − G 9 = " 9(G1 − G0) = " 9A0. (2.37)

Therefore, the accelerated vector H< is of the form H< = G0 + @<−1(")A0 where

@<−1 is a polynomial of degree ≤ < − 1. The residual vector A< is 5 − (� − ")H<
and thus:

A< = A0 − (� − ")@<−1(")A0 ≡ ?<(")A0 (2.38)

where ?<(C) ≡ 1−(1−C)@<−1(C) is a degree< polynomial such that ?<(1) = 1. The

polynomial @<−1 and therefore also the residual polynomial ?< is parameterized

with the < coefficients V8 , 8 = 1, · · · , <. The minimization problem of RRE, can

be translated in terms of polynomials: find the degree < polynomial ?< satisfying

the constraint ?<(1) = 1 for which the norm of the residual ?<(")A0 is minimal.

If the minimal polynomial for " is < then the smallest norm residual is zero. This

was behind the motivation of the method. Note that the accelerated solution H<
belongs to the subspace

 <(", A0) = Span{A0, "A0, · · · , "<−1A0}

which is called a Krylov subspace. This is the same subspace as the one, more

commonly associated with linear systems, in which " is replaced by the coefficient

matrix � − " .

In the scenario where the minimal polynomial is of degree<, the rank of" is also

< hence, the term ‘Reduced Rank Extrapolation’ given to the method. Although the

method was initially designed with this special case in mind, it can clearly be used

in a more general setting. Note also that although the RRE acceleration scheme was

designed for sequences of the form (2.33), the process is an extrapolation method,

in that it does not utilize any other information than just the original sequence itself.

All we need are the first and second order difference matrices Δ-0 and Δ2-0 and

the matrix " is never referenced. Furthermore, nothing prevents us from using

the procedure to accelerate a sequence produced by some nonlinear fixed-point

iteration.

The MPE method mentioned at the beginning of this section is closely related

to RRE. Like RRE, MPE expresses the extrapolated solution in the form (2.34)

and so the residual of this solution also satisfies (2.35). Instead of trying to

minimize the norm of this residual, MPE imposes a Galerkin condition of the form
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,) (ΔG0 + Δ2-0V) = 0, but now, is selected to be equal to Δ-0. As can be seen

this can again be derived from the MMPE framework discussed earlier. Clearly, if

" is of rank < then H< will again be the exact solution of the system. Note also

that RRE was presented in difference forms by Eddy (1979) and Mešina (1977),

and the equivalence between the two methods was established in Smith, Ford and

Sidi (1987).

2.7. Alternative formulations of RRE and MPE

In formula (2.34) the accelerated vector H< is expressed as an update to G0, the

first member of the sequence. It is also possible to express it as an update to G<,

its most recent member. Indeed, the affine space G0 + Span{Δ-0} is identical with

G< + Span{Δ-0} because of the relation:

G< = G0 + ΔG0 + ΔG1 + · · · + ΔG<−1 = G0 + Δ-04

where 4 is the vector of all ones. If we set H< = G< + Δ-0W then the residual in

(2.35) becomes ΔG< + Δ-0W and so we can reformulate RRE as:

H< = G< + Δ-0W where W = argminW ‖ΔG< + Δ-0W‖2. (2.39)

A similar formulation also holds for MPE. The above formulation will be useful

when comparing RRE with the Anderson acceleration to be seen later.

In another expression of MPE and RRE the G8’s are invoked directly instead of

their differences in (2.34). We will explain this now because similar alternative

formulations will appear a few times later in the paper. Equation (2.34) yields:

H< = G0 + V1(G1 − G0) + V2(G2 − G1) + · · · + V<(G< − G<−1)

= (1 − V1)G0 + (V1 − V2)G1 + · · · + (V8 − V8+1)G8 + · · · + V<G<.
This can be rewritten as

∑<
8=0 U8G8 by setting U8 ≡ V8 − V8+1 for 8 = 0, · · · , <, with

the convention that V<+1 = 0, and V0 = 1. We then observe that the U8’s sum up to

one. Thus, we can reformulate (2.34) in the form

H< =

<∑

8=0

U8G8 with

<∑

8=0

U8 = 1. (2.40)

The above setting is a quite common alternative to that of (2.34) in acceleration

methods. It is also possible to proceed in reverse by formulating an accelerated

sequence stated as in (2.40) in the form (2.34) and this was done previously, see

Section 2.5.

2.8. Additional comments and references

It should be stressed that extrapolation algorithms, of the type discussed in this

section, often played a major role in providing a framework for the other classes of

methods. They were invented first, primarily to deal with scalar sequences, e.g.,

those produced by quadrature formulas. Later, they served as templates to deal with
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fixed-point iterations, where the fixed-point mapping 6 was brought to the fore to

develop effective techniques. While ‘extrapolation’-type methods were gaining in

popularity, physicists and chemists were seeking new ways of accelerating compu-

tationally intensive, and slowly converging, fixed-point-iterations. The best known

of these fixed-point techniques is the Self-Consistent Field (SCF) iteration which

permeated a large portion of computational chemistry and quantum mechanics. As

a background, SCF methods, along with the acceleration tricks developed in the

context of the Kohn-Sham equation, will be summarized in Section 4. Solving lin-

ear systems of equations is one of the most common practical problems encountered

in computational sciences, so it should not be surprising that acceleration methods

have also been deployed in this context. The next section addresses the special case

of linear systems.

We conclude this section with a few bibliographical pointers. Extrapolation

methods generated a rich literature starting in the 1970s and a number of surveys

and books have appeared that provide a wealth of details, both historical and

technical. Among early books on the topic, we mention Brezinski (1980), Brezinski

and Redivo-Zaglia (1991). Most of the developments of extrapolation methods

took place in the 20th century and these are surveyed by Brezinski (2000). A

number of other papers provide an in-depth review of extrapolation and acceleration

methods, see, e.g., Higham and Strabić (2016), Jbilou and Sadok (2000), Sidi

(2012). A nicely written more recent survey of extrapolation and its relation to

rational approximation is the volume by Brezinski and Redivo Zaglia (2020) which

contains a large number of references while also discussing the fascinating lives of

the main contributors to these fields.

3. Accelerators for linear iterative methods

Starting with the work of Gauss in 1823, see Forsythe (1951), quite a few iterative

methods for solving linear systems of equations were developed. The idea of

accelerating these iterative procedures is natural and it has been invoked repeatedly

in the past. A diverse set of techniques were advocated for this purpose, including

Richardson’s method, Chebyshev acceleration, and the class of Krylov subspace

methods. It appears that acceleration techniques were first suggested in the early

20th century with the work of Richardson, and reappeared in force a few decades

later as modern electronic computers started to emerge.

3.1. Richardson’s legacy

Consider a linear system of the form

�G = 1, (3.1)

where � ∈ R
=×= and 1 ∈ R

=. Adopting the point of view expressed in

Equation (1.3) with the function 5 (G) ≡ �G − 1 we obtain the iteration

G 9+1 = G 9 − W(�G 9 − 1) = G 9 + WA 9 (3.2)



20 Y. Saad

where G 9 is the current iterate and A 9 = 1 − �G 9 the related residual. This simple

‘first-order’ scheme was proposed by Richardson (1910). Assuming that the

eigenvalues of � are real and included in the interval [U, V] with U > 0, it is

not difficult to see that the scheme will converge to the solution for any W such

that 0 <W < 2/V and that the value of W that yields the best convergence rate is

W>?C = 2/[U + V], see, e.g., Saad (2003).

Richardson also considered a more general procedure where the scalar W changed

at each step:

G 9+1 = G 9 + W 9A 9 . (3.3)

If G∗ is the exact solution, he studied the question of selecting the best sequence of

W 9’s to use if we want the error norm ‖G 9 − G∗‖2 at the 9-th step to be the smallest

possible. This will be addressed in the next section.

A number of procedures discovered at different times can be cast into the general

Richardson iteration framework represented by (3.3). Among these, two examples

stand out. The first example is the Minimal Residual iteration (MR) where W 9 is

selected as the value of W that minimizes the next residual norm: ‖1−�(G 9 +WA 9)‖2.

The second is the steepest descent algorithm where instead of minimizing the

residual norm, we minimize ‖G − G∗‖� where ‖E‖2
�
= (�E, E). Both methods are

one-dimensional projection techniques and will be discussed in Section 3.3.1.

3.2. The Chebyshev procedure

Richardson (1910) seems to have been the first to consider a general scheme given

by (3.3), where the W 9’s are sought with the goal of achieving the fastest possible

convergence. From (3.3) we get

A 9+1 = 1 − �(G 9 + W 9A 9) = A 9 − W 9�A 9 = (� − W 9�)A 9 (3.4)

which leads to the relation

A 9+1 = (� − W 9�)(� − W 9−1�) · · · (� − W0�)A0 ≡ ? 9+1(�)A0 (3.5)

where ? 9+1(C) is a polynomial of degree 9 + 1. Since ? 9+1(0) = 1 then ? 9+1 is of

the form ? 9+1(C) = 1 − C@ 9(C), with deg (@ 9) = 9 . Therefore,

A 9+1 = (� − �@ 9(�))A0 = (1 − �G0) − �@ 9(�)A0 = 1 − �[G0 + @ 9(�)A0],

which means that

G 9+1 = G0 + @ 9(�)A0. (3.6)

Richardson worked with error vectors instead of residuals. Defining the error

D 9 = G∗−G 9 where G∗ is the exact solution, and using the relation �D 9 = 1−�G 9 = A 9
we can multiply (3.5) by �−1 to obtain the relation

D 9+1 = ? 9+1(�)D0 (3.7)

for the error vector at step 9 + 1, where ? 9+1 is the same polynomial as above. He
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formulated the problem of selecting the W8’s in (3.7) with a goal of making the

error D 9+1 as small as possible. The W8’s in his formula were the inverses of the

ones above - but the reasoning is identical. Such a scheme can be viewed as an

‘acceleration’ of the first-order Richardson method (3.2) seen earlier. Richardson

assumed only the knowledge of an interval [U, V] containing the eigenvalues of �.

When � is Symmetric Positive Definite (SPD) then there exists U, V, with U > 0

such that Λ(�) ⊂ [U, V].
If we wish to minimize the maximum deviation from zero in the interval then the

best polynomial can be found from a well-known and simple result in approximation

theory. We will reason with residuals, recall equation (3.5), and denote by P 9+1,0

the set of Polynomials ? of degree 9 + 1 such that ?(0) = 1. Thus, ? 9+1 in (3.5)

and (3.7) is a member of P 9+1,0 and our problem is to find a polynomial ? ∈ P 9+1,0

such that maxC ∈ [U,V ] |?(_)| is minimal. In other words we seek the solution to the

min-max problem:

min
?∈P 9+1,0

max
C ∈[U,V ]

|?(C)|. (3.8)

The polynomial )9+1 that realizes the solution to (3.8) is known and it can be

expressed in terms of the Chebyshev polynomials of the first kind � 9(C) :

)9+1(C) ≡ 1

f9+1

� 9+1

(

V + U − 2C

V − U

)

with f9+1 ≡ � 9+1

(

V + U
V − U

)

. (3.9)

If the polynomial )9+1 is set to be the same as ? 9+1 in (3.5) then clearly the inverses

of its roots will yield the best sequence of W8’s to use in (3.3). Richardson seems

to have been unaware of Chebyshev polynomials. Instead, his approach was to

select the roots 1/W8 by spreading them in an ad-hoc fashion in [U, V]. One has to

wait more than four decades before this idea, or similar ones based on Chebyshev

polynomials, appeared.

A few of the early methods in this context computed the roots of the modified

Chebyshev polynomial (3.9) and used the inverses of these roots as the W 9’s in (3.3)

Shortley (1953), Sheldon (1955), Young (1954). These methods were difficult to

use in practice and prone to numerical instability. A far more elegant approach is

to exploit the 3-term recurrence of the Chebyshev polynomials:

� 9+1(C) = 2C� 9(C) − � 9−1(C), 9 ≥ 1. (3.10)

starting with �0(C) = 1, �1(C) = C. A 1952 article by Lanczos (1952) suggested a

process for preprocessing a right-hand side of a linear system prior to solving it with

what was then a precursor to a Krylov subspace method. The residual polynomials

related to this process are more complicated than Chebyshev polynomials as was

noted by Young (1954). However they too rely on Chebyshev polynomials and

Lanczos does exploit the 3-term recurrence in his 1952 article while Shortley,

Sheldon, and Young do not.

The first real acceleration scheme based on the Chebyshev polynomials that

exploits the 3-term recurrence seems to be the 1959 paper by Blair, Metropolis,
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von Neumann, Taub and Tsingou (1959). The article included two appendices

written by von Neumann and the second of these discussed the method. The

method must have been developed around the year 1956 or earlier by von Neumann

who died on Feb 8, 1957. Two years after the von Neumann article Golub and

Varga (1961) published a very similar technique which they named ‘semi-iterative

method’. The authors included a footnote in their article acknowledging the von

Neumann earlier contribution.

The arguments of the von Neumann contribution were rooted in acceleration

techniques with a goal of producing a process for linearly combining the previous

iterates of a given sequence, in order to achieve faster convergence. Specifically,

the new sequence is of the form H 9 =
∑ 9

8=0
[8, 9G8 where the [’s satisfy the constraint

that
∑
[8, 9 = 1. Though this may seem different from what was done above, it

actually amounts to the same idea.

Indeed, the residual of the ‘accelerated’ sequence is:

1 − �H 9 = 1 −
9∑

8=0

[8, 9�G8 =

9∑

8=0

[8, 9 [1 − �G8] =
9∑

8=0

[8, 9 ?8(�)A0

where ?8(C) is the residual polynomial of degree 8 associated with the original

sequence, i.e., it is defined by (3.5). As was already seen, the polynomial ?8 satisfies

the constraint ?8(0) = 1. Because
∑ 9

8=0
[8 9 ?8(0) =

∑
[8 9 = 1, the new residual

polynomial ?̃ 9(C) =
∑ 9

8=0
[8, 9 ?8(C) also satisfies the same condition ?̃ 9(0) = 1.

Therefore, we can say that the procedure seeks to find a degree 9 polynomial,

expressed in the form
∑ 9

8=0
[8, 9 ?8(C), whose value at zero is one and which is

optimal in some sense.

We now return to Chebyshev acceleration to provide details on the procedure

discovered by John von Neumann and Golub and Varga. Letting:

\ ≡ V + U
2

, X ≡ V − U
2

, (3.11)

we can write )9 defined by (3.9) as:

)9(C) ≡
1

f9

� 9

(

\ − C
X

)

with f9 ≡ � 9

(

\

X

)

. (3.12)

The three-term recurrence for the Chebyshev polynomials leads to

f9+1 = 2
\

X
f9 − f9−1, 9 = 1, 2 . . . , with: f0 = 1, f1 =

\

X
. (3.13)

We combine the recurrence (3.10) and (3.12) into a 3-term recurrence for the

polynomials )9 , for 9 ≥ 1:

f9+1)9+1(C) = 2
\ − C
X
f9)9(C) − f9−1)9−1(C) (3.14)

starting with )0(C) = 1, )1(C) = 1 − C
\
.
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We now need a way of expressing the sequence of iterates from the above

recurrence of the residual polynomials. There are at least two ways of doing this.

One idea is to note that A 9+1−A 9 = −�(G 9+1−G 9) = )9+1(�)A0−)9(�)A0. Therefore

we need to find a recurrence for ()9+1(C) − )9(C))/(−C). Going back to (3.14) and

exploiting the recurrence (3.13) we write for 9 ≥ 1:

f9+1)9+1 − f9+1)9 = 2
\ − C
X
f9)9 −

(

2
\

X
f9 − f9−1

)

)9 − f9−1)9−1

= −2
C

X
f9)9 + f9−1()9 − )9−1) →

)9+1 − )9
−C = 2

1

X

f9

f9+1

)9 +
f9−1

f9+1

)9 − )9−1

−C . (3.15)

When translated into vectors of the iterative scheme,)9(C) will give A 9 , and ()9+1(C)−
)9(C))/(−C) will translate to G 9+1−G 9 and if we set 3 9 = G 9+1−G 9 then (3.15) yields:

3 9 =
2

X

f9

f9+1

A 9 +
f9−1

f9+1

3 9−1. (3.16)

We can set: d 9 ≡ f 9

f 9+1
, 9 = 1, 2, . . . , and invoke the relation (3.13) to get

d 9 = 1/[2f1 − d 9−1] and then (3.16) becomes 3 9 =
d 9

X
A 9 +

d 9

d 9−1
3 9−1. This leads to

Algorithm 1.

A second way to obtain a recurrence relation for the iterates G 9 is to write the

error as G 9+1 − G∗ = )9+1(�)(G0 − G∗) and then exploit (3.14):

f9+1(G 9+1 − G∗) = 2
\� − �
X

f9(G 9 − G∗) − f9−1(G 9−1 − G∗) (3.17)

= 2
\

X
f9(G 9 − G∗) +

2f9

X
A 9 − f9−1(G 9−1 − G∗) (3.18)

From the relation (3.13), we see that the terms in G∗ cancel out and we get:

f9+1G 9+1 = 2
\

X
f9G 9 +

2f9

X
A 9 − f9−1G 9−1. (3.19)

Finally, invoking (3.13) again we can write 2 \
X
f9 = f9+1 + f9−1 and hence:

f9+1G 9+1 = f9+1G 9 + f9−1(G 9 − G 9−1) +
2f9

X
A 9 . (3.20)

Note that Lines 4 and 7 of the algorithm, can be merged in order to rewrite the

iteration as follows:

G 9+1 = G 9 + d 9

[
d 9−1(G 9 − G 9−1) + 2

X
(1 − �G 9)

]
(3.21)

which is a ‘second order iteration’, of the same class as momentum-type methods

seen in optimization and machine learning, to be discussed in the next section. This

is a common form used in particular by Golub and Varga (1961) in their seminal
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Algorithm 1 Chebyshev Acceleration

1: Input: System �, 1, initial guess G0 and parameters X, \

2: Set A0 ≡ 1 − �G0, f1 = \/X; d0 = 1/f1 and 30 =
1
\
A0;

3: for 9 = 0, 1, · · · , until convergence: do

4: G 9+1 = G 9 + 3 9

5: A 9+1 = A 9 − �3 9

6: d 9+1 = (2f1 − d 9)
−1

7: 3 9+1 =
2d 9+1

X
A 9+1 + d 9+1d 93 9

8: end for

work on “semi-iterative methods”. A major advantage of the Chebyshev iterative

method is that it does not require any inner products. On the other hand, the scheme

requires estimates for the extremal eigenvalue in order to set the sequence of scalars

necessary for the iteration.

It is easy to see that the iteration parameters d 9 used in the algorithm converge

to a limit. Indeed, the usual formulas for Chebyshev polynomials show that

f9 = ch

[
9ch−1 \

X

]
=

1

2







\

X
+

√
(

\

X

)2

− 1





9

+





\

X
+

√
(

\

X

)2

− 1





− 9
.

As a result, we have

lim
9→∞

d 9 = lim
9→∞

f9

f9+1

=





\

X
+

√
(

\

X

)2

− 1





−1

=
\

X
−

√
(

\

X

)2

− 1 ≡ d. (3.22)

One can therefore consider replacing the scalars d 9 by their limit in the algorithm.

This scheme, which we will refer to as the Stationary Chebyshev iteration, typically

results in a small reduction in convergence speed relative to the standard Chebyshev

iteration Kerkhoven and Saad (1992).

3.3. An overview of Krylov subspace methods

Polynomial iterations of the type introduced by Richardson lead to a residual of the

form (3.5) where ? 9+1 is a polynomial of degree 9 + 1, see Section 3.1. The related

approximate solution at step 9 + 1 is given in Equation (3.6). The approximate

solution G 9 at step 9 , is of the form G0 + X where X belongs to the subspace

K 9(�, A0) = Span{A0, �A0, · · · , � 9−1A0}. (3.23)

This is the 9-th Krylov subspace. As can be seen, K 9(�, A0) is nothing but the

space of all vectors of the form @(�)A0 where @ is an arbitrary polynomial of degree

not exceeding 9 − 1. When there is no ambiguity we denote K 9(�, A0) by K 9 .

Krylov subspace methods for solving a system of the form (3.1), are projection

methods on the subspace (3.23) and can be viewed as a form of optimal polynomial



Acceleration methods 25

acceleration implemented via a projection process. We begin with a brief discussion

of projection methods.

3.3.1. Projection methods

The primary objective of a projection method is to extract an approximate solution

to a problem from a subspace. Suppose we wish to obtain a solution G ∈ R= to a

given problem (%). The problem is projected into a problem (%̃) set in a subspace

K of R= from which we obtain an approximate solution G̃. Typically, the dimension

< of K is much smaller than =, the size of the system.

When applied to the solution of linear systems of equations, we assume the

knowledge of some initial guess G0 to the solution and two subspaces K and L both

of dimension <. From these the following projected problem is formulated:

Find G̃ = G0 + X, X ∈ K such that 1 − �G̃ ⊥ L. (3.24)

We have < degrees of freedom (dimension of K) and < constraints (dimension of

L), and so (3.24) will result in an < × < linear system which is nonsingular under

certain mild conditions onK andL. The Galerkin projection process just described

satisfies important optimality properties that play an essential role in their analysis.

There are two important cases.

Orthogonal Projection (OP) methods. This case corresponds to the situation where

the subspacesK andL are the same. In this scenario the residual 1−�G̃ is orthogonal

to K and the corresponding approximate solution is the closest vector from affine

space G0 +K to the exact solution G∗, where distance is measured with the � norm:

‖E‖� = (�E, E)1/2.

Proposition 3.1. Assume that � is Symmetric Positive Definite andL = K. Then

a vector G̃ is the result of an (orthogonal) projection method ontoK with the starting

vector G0 if and only if it minimizes the �-norm of the error over G0 +K, i.e., if and

only if

�(G̃) = min
G∈G0+K

�(G),

where

�(G) ≡ (�(G∗ − G), G∗ − G)1/2.

The necessary condition means the following:

L = K and � SPD −→ ‖G∗ − G̃‖� = min
G∈G0+K

‖G∗ − G‖�.

It is interesting to note that Richardson’s scheme shown in Equation (3.3) can

be cast to include another prominent one-dimensional projection method namely

the well-known steepest descent algorithm. Here, � is assumed to be symmetric

positive definite and at each step the algorithm computes the vector of the form

G = G 9 + WA 9 where A 9 = 1 − �G 9 , that satisfies the orthogonality condition

1− �G ⊥ A 9 . This leads to selecting at each step W = W 9 ≡ (A 9 , A 9)/(�A 9 , A 9) which,
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according to the above proposition, minimizes ‖G − G∗‖� over W. Another method

in this category is the Conjugate Gradient method which will be covered shortly.

Minimal Residual (MR) methods. This case corresponds to the situation when

L = �K. It can be shown that if � is nonsingular, then G̃ minimizes the Euclidean

norm of the residual over the affine space G0 +K.

Proposition 3.2. Let � be an arbitrary square matrix and assume that L = �K.

Then a vector G̃ is the result of an (oblique) projection method onto K orthogonally

to L with the starting vector G0 if and only if it minimizes the 2-norm of the residual

vector 1 − �G over G ∈ G0 +K, i.e., if and only if

'(G̃) = min
G∈G0+K

'(G),

where '(G) ≡ ‖1 − �G‖2.

The necessary condition now means the following:

L = �K and � nonsingular −→ ‖1 − �G̃‖2 = min
G∈G0+K

‖1 − �G‖2.

Methods in this category include the Conjugate Residual (CR) method, the Gen-

eralized Conjugate Residual (GCR) method, and GMRES among others, see Sec-

tion 3.3.3.

Another instance of Richardson’s general iteration of the form (3.3) is the Min-

imal Residual iteration (MR) where W 9 is selected as the value of W that minimizes

the next residual norm: ‖1 − �(G 9 + WA 9)‖2. A little calculation will show that

the optimal W is W 9 = (A 9 , �A 9)/(�A 9 , �A 9), where it is assumed that �A 9 ≠ 0, see,

e.g., Saad (2003). MR is a one-dimensional projection method since it computes a

vector of the form G 9+3 where 3 ∈ X = Span{A 9} which satisfies the orthogonality

condition 1 − �G ⊥ �X .

3.3.2. OP-Krylov and the Conjugate Gradient method

One particularly important instance in the OP class of projection methods is the

Conjugate Gradient algorithm (CG) algorithm, a clever implementation of the

case where K = L is a Krylov subspace of the form (3.23) and � is SPD. This

implementation is shown in Algorithm 2.

The discovery of CG Hestenes and Stiefel (1952) was a major breakthrough in the

early 1950s. The original CG article was co-authored by Magnus Hestenes [UCLA]

and Eduard Stiefel [ETH], but these authors made the discovery independently and,

as they learned of each other’s work, decided to publish the paper together, see Saad

(2022) for a brief history of Krylov methods.

Nowadays the CG algorithm is often presented as a projection method on Krylov

subspaces, but in their paper Hestenes and Stiefel invoked purely geometric argu-

ments as their insight from the 2-dimensional case and knowledge of ‘conics’ led

them to the notion of ‘conjugate directions’. The goal is to find the minimum of

5 (G) = 1
2
(�G, G) − (1, G). In R2 the contour lines of 5 (G), i.e., the sets {G | 5 (G) = ^}
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Algorithm 2 Conjugate Gradient

1: Compute A0 := 1 − �G0, ?0 := A0.

2: for 9 = 0, 1, . . ., until convergence Do: do

3: U 9 := (A 9 , A 9)/(�? 9 , ? 9)

4: G 9+1 := G 9 + U 9 ? 9

5: A 9+1 := A 9 − U 9�? 9

6: V 9 := (A 9+1, A 9+1)/(A 9 , A 9)
7: ? 9+1 := A 9+1 + V 9 ? 9

8: end for

where ^ is a constant, are con-focal ellipses the center of which is G∗ the desired

solution.
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Figure 3.1. Illustration of the construction of conjugate gradient directions. This

illustration is based on the reference Hestenes and Todd (1991)

Figure 3.1 provides an illustration borrowed from Hestenes and Todd (1991).

The minimum of 5 (G) on a given chord of the ellipse is reached in the middle of

the chord. The middles G2, H2 of two given parallel chords !1, !2, will define a

line !3 that passes through the center G∗ of the ellipse. The minimum of 5 (G)

along !3 will be at the center, i.e., at the exact solution. If G2 = G1 + U1?1, is an

iterate and H1 = G2 + B2, an intermediate iterate, the line !2: H(C) = H1 + C ?1, is

parallel to !1. Its minimum is reached at a point H2 = H1 + V1?1, and the direction

?2 = H2 − G2 ≡ ?1 + V1B2 is conjugate to ?1. In the CG algorithm, the direction B2
is taken to be the residual A2 of G2.

At the same time as the CG work was unfolding, Cornelius Lanczos, who also

worked at the INA, developed a similar method using a different notation and

viewpoint Lanczos (1952). This was a minimal residual approach (MR method

discussed below), implemented with the use of what we now call a Lanczos basis

Lanczos (1950) for solving eigenvalue problems, another major contribution to

numerical linear algebra from the same era.
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The Conjugate Gradient algorithm was not too well received initially. It was

viewed as an unstable direct solution method and for this reason it laid dormant for

about two decades. Two important articles played a role in its revival. The first one

was by John Reid (1971) who discovered that the method could be rather effective

when used as an iterative procedure. At the same time, work by Paige (1971, 1980),

analyzed the Lanczos process for eigenvalue problems from the point of view of

inexact arithmetic, and this work gave a much better understanding of how the loss

of orthogonality affected the process. The same loss of orthogonality affected the

CG method and lead to its initial rejection by numerical analysts.

3.3.3. MR-Krylov methods, GCR, GMRES

Quite a few projection methods on the Krylov subspaces K 9(�, A0) were developed

starting in the late 1970s, with the objective of minimizing the residual norm. As

was seen earlier this optimality condition is equivalent to the property that the

approximate solution G̃ ∈ K 9(�, A0) be orthogonal to the subspace �K 9(�, A0).

Implementations with orthonormal basis of  < lead to the Generalized Minimal

Residual (GMRES) method Saad and Schultz (1986), a procedure based on the

Arnoldi process. Other implementations included Axelsson’s GCG-LS method

Axelsson (1980), ORTHOMIN (Vinsome Vinsome (1976)), ORTHODIR (Young

and Jea, Jea and Young (1980)), the Generalized Conjugate Residual Method

(GCR) of Eisenstat, Elman and Schultz (1983), among others. A rather exhaustive

treatise on this work can be found in the book by Meurant and Tebbens (2020). We

now briefly discuss the Generalized Conjugate Residual (GCR) method for solving

the system (3.1), since this approach will be exploited later.

The original GCR algorithm Eisenstat et al. (1983) for solving (3.1) exploits an

orthogonal basis of the subspace �K 9(�, A0). The 9-th step of the procedure can be

described as follows. Assume that we already have vectors ?0, ?0, · · · , ? 9 that are

�) �-orthogonal, i.e., such that (�?8 , �?:) = 0 if 8 ≠ : for 8, : ≤ 9 . Thus, the set

{?8}8=0, · · · , 9 forms an �) � -orthogonal basis of the Krylov subspace K 9+1. In this

situation the solution G 9+1 at the current iteration, i.e., the one that minimizes the

residual norm in G0 +K 9+1 = G0 + Span{?0, ?1, · · · , ? 9} becomes easy to express.

It can be written as follows, see, Saad (2003, Lemma 6.21) and Lemma 3.1 below:

G 9+1 = G 9 +
(A 9 , �? 9)

(�? 9 , �? 9)
? 9 , (3.25)

where G 9 is the current iterate, and A 9 the related residual A 9 = 1 − �G 9 .
Once G 9+1 is computed, the next basis vector, i.e., ? 9+1, is obtained from �) �-

orthogonalizing the residual vector A 9+1 = 1 − �G 9+1 against the previous ?8’s by

the loop:

? 9+1 = A 9+1 −
9∑

8=0

V8 9 ?8 where V8 9 := (�A 9+1, �?8)/(�?8 , �?8). (3.26)

The above describes in a succinct way one step of the algorithm. Practically it is
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necessary to keep a set of vectors for the ?8’s and another set for the �?8’s. We

will set E8 = �?8 in what follows. In the classical (‘full’) version of GCR, these

sets are denoted by

% 9 = [?0, ?1, · · · , ? 9]; + 9 = [E0, E1, · · · , E 9] . (3.27)

Note here are that all previous search directions ?8 and the corresponding E8’s must

be saved in this full version.

We will bring two modifications to the basic procedure just described. The first

is to introduce a “truncated” version of the algorithm whereby only the most recent

min{<, 9 + 1} vectors {?8} and {�?8} are kept. Thus, the summation in (3.26)

starts at 8 = [ 9 − < + 1] instead of 8 = 0, i.e., it starts at 8 = 0 for 9 < < and at

8 = 9 − < + 1 otherwise. The sets % 9 , + 9 in (3.27) are replaced by:

% 9 = [? [ 9−<+1] , · · · , ? 9]; + 9 = [E [ 9−<+1] , · · · , E 9] . (3.28)

The second change is to make the set of E8’s orthonormal, i.e., such that (E 9 , E8) =

X8 9 . Thus, the new vector E 9+1 is made orthonormal to E 9−<+1, E 9−<+2, · · · , E 9 ,
when 9 − < + 1 ≥ 0 or to E0, E1, · · · , E 9 otherwise.

Algorithm 3 TGCR(m)

1: Input: Matrix �, Right-hand side 1, initial guess G0.

2: Set A0 ≡ 1 − �G0; E = �A0;

3: E0 = E/‖E‖2; ?0 = A0/‖E‖2;

4: for 9 = 0, 1, 2, · · · , Until convergence do

5: U 9 = 〈A 9 , E 9〉
6: G 9+1 = G 9 + U 9 ? 9

7: A 9+1 = A 9 − U 9E 9
8: ? = A 9+1; E = �?;

9: if j> 0 then [with: + 9 , % 9 defined in (3.28)]

10: Compute B = +)
9 E

11: Compute E = E −+ 9 B and ? = ? − % 9 B

12: end if

13: ? 9+1 := ?/‖E‖2 ; E 9+1 := E/‖E‖2 ;

14: end for

Regarding notation, it may be helpful to observe that the last column of % 9

(resp. + 9) is always ? 9 (resp. E 9) and that the number of columns of % 9 (and

also + 9) is min{<, 9 + 1}. Note also that in practice, it is preferable to replace

the orthogonalization steps in Lines 10-11 of the algorithm by a modified Gram-

Schmidt procedure.

The following lemma explains why the update to the solution takes the simple

form of Equation 3.25. This result was stated in a slightly different form in Saad

(2003, Lemma 6.21).
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Lemma 3.1. Assume that we are solving the linear system �G = 1 and let

{?8 , E8}8=[ 9−<+1]: 9 be a paired set of vectors with E8 = �?8 , 8 = [ 9 −< + 1], · · · , 9 .
Assume also that the set + 9 is orthonormal. Then the solution vector of the affine

space G 9 + Span{% 9} with smallest residual norm is G 9 + % 9 H 9 where H 9 = +
)
9 A 9 .

In addition, only the bottom component of H 9 , namely E)9 A 9 , is nonzero.

Proof. The residual of G = G 9 + % 9 H is A = A 9 − �% 9 H = A 9 − + 9 H and its norm

is smallest when +)
9 A = 0. Hence the 1st result. Next, this condition implies that

the inner products E)8 A 9+1 are all zero when 8 ≤ 9 , so the vector H 9+1 = +)
9+1
A 9+1 at

the next iteration will have only one nonzero component, namely its last one, i.e.,

E)
9+1
A 9+1. This proves the second result for the index 9 + 1 replaced by 9 .

It follows from the lemma that the approximate solution obtained by a projection

method that minimizes the residual norm in the affine space G 9 + Span{% 9} can

be written in the simple form G 9+1 = G 9 + U 9 ? 9 where U 9 = E
)
9 A 9 . This explains

formula (3.25) shown above and Lines 5-6 of Algorithm 3 when we take into

consideration the orthonormality of the E8’s.

We will call the ‘full-window’ case of the algorithm the situation when there

is no truncation. This is equivalent to setting < = ∞ in the algorithm. The

truncated variation to GCR (< < ∞), which we will call Truncated GCR (TGCR)

was first introduced in Vinsome (1976) and was named ‘ORTHOMIN’. Eisenstat

et al. (1983) established a number of results for both the full window case (< = ∞)

and the truncated case (< < ∞) including, a convergence analysis for the situation

when � is positive real, i.e., when its symmetric part is positive definite. In addition

to the orthogonality of the vectors �?8 , or equivalently the �) �-orthogonality of

the ?8’s, another property of (full) GCR is that the residual vectors that it produces

are ‘semi-conjugate’ in that (A8 , �A 9) = 0 for 8 > 9 .

Note that when 9 ≥ < in TGCR (< < ∞), then the approximate solution G 9 no

longer minimizes the residual norm over the whole Krylov subspace G0 +K 9(�, A0)

but only over G 9−< + span{? 9−<, · · · ? 9}, see Eisenstat et al. (1983, Th. 4.1).

3.4. Momentum-based techniques

The Chebyshev iteration provides a good introduction to the notion of momemtum.

It is sufficient to frame the method for an optimization problem, where we seek

to minimize the quadratic function q(G) = 1
2
G) �G − 1) G where � is SPD. In this

case ∇q(G) = �G − 1 which is the negative of the residual. With this we see that

Chebyshev iteration (3.21) can be written as:

G 9+1 = G 9 + [ 9ΔG 9−1 − a 9∇q(G 9) (3.29)

where [ 9 = d 9d 9−1 and a 9 = 2d 9/X. Recall the notation: ΔG 9−1 = G 9 − G 9−1.

3.4.1. The ‘heavy-ball’ method

Equation (3.29) is the general form of a gradient-type method with momentum,

whereby the next iterate G 9+1 is a combination of the term G 9 −a 9∇q(G 9), which can
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be viewed as a standard gradient-type iterate, and the previous increment, i.e., the

difference G 9 − G 9−1. This difference ΔG 9−1 is often termed ‘velocity’ and denoted

by E 9−1 in the literature. Thus, a method with momentum takes the gradient iterate

from the current point and adds a multiple of velocity. A comparison is often made

with a mechanical system representing a ball rolling downhill. Often the term

heavy-ball method is used to describe the iteration (3.29) in which the coefficients

[ 9 , ` 9 are constant. An illustration is provided in Figure 3.2.

It is common to rewrite Equation (3.29) by explicitly invoking a momentum part.

This can be done by defining E 9 ≡ ΔG 9 = G 9+1 − G 9 . Then the update (3.29) can be

written in two parts as
{
E 9 = [ 9E 9−1 − a 9∇q(G 9)

G 9+1 = G 9 + E 9 .
(3.30)

However, often the velocity E 9 is defined with the opposite sign 2, i.e., E 9 ≡ −ΔG 9 =
G 9 − G 9+1, in which case the update (3.29) becomes

{
E 9 = [ 9E 9−1 + a 9∇q(G 9)

G 9+1 = G 9 − E 9 .
(3.31)

Both of expressions (3.30) and (3.31) can be found in the literature but we will

utilize (3.31) which is equivalent to a form seen in Machine Learning (ML). In

ML, the scalar parameters of the sequence are constant, i.e., [ 9 ≡ [, a 9 ≡ a and

the velocity vector E 9 is often scaled by a, i.e., we set E 9 = aF 9 upon which (3.31)

becomes {
F 9 = [F 9−1 + ∇q(G 9)

G 9+1 = G 9 − aF 9 .
(3.32)

In this way, F 9 is just a damped average of previous gradients where the damping

coefficient is a power of [ that gives more weight to recent gradients. In Deep

Learning, the gradient is actually a sampled gradient corresponding to a ‘batch’ of

functions that make up the final objective function, see, Section 8.

3.4.2. Convergence

The convergence of Chebyshev iteration for linear problems is well understood,

see, e.g., Saad (2011). Here we consider, more generally, the momentum scheme

(3.29) but we restrict our study to the particular case where the scalars [ 9 , a 9 are

constant, denoted by [, a respectively. We also make the same assumption as for

the Chebyshev iteration that the eigenvalues of � are real and located in the interval

[U, V] with U > 0. Equation (3.29) becomes

G 9+1 = G 9 + [(G 9 − G 9−1) − a(�G 9 − 1)

2 The motivation here is that when [ = 0, which corresponds to the gradient method without

momentum, the vector E 9 in the update G 9+1 = G 9 + E 9 should be a negative multiple of the

gradient of q, so changing the sign makes E 9 a positive multiple of the gradient.
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Figure 3.2. Illustration of the gradient method with momentum

= [(1 + [)� − a�]G 9 − [G 9−1 + a1 (3.33)

To analyze the convergence of the above iteration we can write it in the form

(

G 9+1

G 9

)

=





(1 + [)� − a� −[�

� 0





(

G 9
G 9−1

)

+
(

a1

0

)

. (3.34)

It is helpful to introduce two matrices:

� =
1

X
(� − \�) and � =

1

2
[(1 + [)� − a�] (3.35)

where we recall that X, \ are defined in (3.11) and that the eigenvalues _8(�) are in

the interval [−1, 1]. Then the iteration matrix in (3.34) is

� =

(

2� −[�
� 0

)

. (3.36)

If ` 9 9 = 1, · · · , =, are the eigenvalues of �, then those of � are

_ 9 = ` 9 ±
√
`2
9
− [. (3.37)

This expression can help determine if the scheme (3.29) will converge. As a

particular case, a sufficient condition for convergence is that 0 < [ < 1 and all ` 9’s

be less that
√
[ in magnitude. In this case `2

9 − [ is negative and the modulus of _ 9

is a constant equal to
√
[, which is independent of 9 .

As an example, we will look at what happens in the case of the stationary

Chebyshev iteration defined earlier.

Proposition 3.3. Consider the stationary Chebyshev iteration in which [ 9 = [ ≡
d2 and a 9 = a = 2(d/X), where d was defined in (3.22). Then each of the

eigenvalues ` 9 of the matrix � in (3.35) satisfies the inequality |` 9 | ≤ d. In

addition, if d < 1 the stationary Chebyshev iteration converges and its convergence

factor, i.e., the spectral radius of the matrix � in (3.36), is equal to d.
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Proof. The eigenvalues ` 9 of � are related to those of � as follows

` 9 =
1

2

[
1 + [ − a_ 9(�)

]
=

1

2

[
1 + [ − a(\ + X_ 9(�))

]
. (3.38)

Substituting [ = d2 and a = 2d/X, leads to:

` 9 =
1

2

[
1 + d2 − 2d

X
(\ + X_ 9(�))

]
=

1

2

[
d2 − 2

\

X
d + 1

]
− d_ 9(�). (3.39)

It can be observed that d in (3.22) is a root of the quadratic term in the brackets in

the second part, i.e., d2 − 2 \
X
d + 1 = 0, and so ` 9 = −d_ 9(�). Since |_ 9(�)| ≤ 1,

it is clear that |` 9 | ≤ d and therefore the term `2
9 − [ = `2

9 − d2 in (3.37) is

non-positive. Hence, the eigenvalues _ 9 are of the form _ 9 = ` 9 ± 8
√
d2 − `2

9
and

they all have the same modulus d.

It may seem counter intuitive that a simple fixed-point iteration like (3.34) can

be competitive with more advanced schemes but we note that we have doubled

the dimension of the problem relative to a simple first order scheme. The strategy

of moving a problem into a higher dimension to achieve better convergence is

common.

3.4.3. Nesterov acceleration

A slight variation of the momentum scheme discussed above is Nesterov’s iteration

Nesterov (2014). In this approach the gradient is evaluated at an intermediate point

instead of the most recent iterate:

G 9+1 = G 9 + [ 9ΔG 9−1 − a 9∇q(G 9 + [ 9ΔG 9−1). (3.40)

Using earlier notation where E 9−1 = −ΔG 9−1 this can also be re-written as:
{
E 9 = [ 9E 9−1 + a 9∇q(G 9 − [ 9E 9−1)

G 9+1 = G 9 − E 9
(3.41)

To analyze convergence in the linear case, we need to rewrite (3.40) in a block

form similar to (3.34). Setting [ 9 = [, a 9 = a and ∇q(G) = �G − 1 in (3.40) yields:

G 9+1 = G 9 + [(G 9 − G 9−1) − a
[
�(G 9 + [(G 9 − G 9−1)) − 1

]

= (1 + [)G 9 − [G 9−1 − a(1 + [)�G 9 + a[�G 9−1 + a1
= (1 + [)(� − a�)G 9 − [[� − a�]G 9−1 + a1

which leads to:

(

G 9+1

G 9

)

=





(1 + [)(� − a�) −[(� − a�)

� 0





(

G 9
G 9−1

)

+
(

a1

0

)

(3.42)

The scheme represented by (3.40) and its matrix form (3.42) can be viewed as
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a way of accelerating a Richardson-type scheme, see, (3.2), with the parameters

W 9 set equal to a for all 9 . The corresponding iteration matrix (3.4) is the matrix

� ≡ � − a�. If ` 9 , 9 = 1, · · · , = are the eigenvalues of �, those of the iteration

matrix in (3.42) are roots of the equation _2 − (1 + [)` 9_ + [` 9 = 0 and they can

be written as follows:

_±9 = ` 9



1 + [
2

±

√
(

1 + [
2

)2

− [

` 9


(3.43)

with the convention that when ` 9 = 0 both roots are zero. Assume that the

eigenvalues of � are real and such that

− \1 ≤ ` 9 ≤ \2 (3.44)

where \1, \2 are non-negative. It is convenient to define

\∗ =
[

1
2
(1 + [)2

. (3.45)

The simplest scenario to analyze is when a and [ are selected such that \1 = 0

and \2 = \∗. For example, we can first set a = 1/_<0G(�) to satisfy the requirement

\1 = 0 since in this case

`8 = 1 − a_8(�) ≥ 1 − _<0G

_<0G

= 0.

Then with a set to the value just selected, we will find [ so that \∗ = \2, i.e.,
[

( 1
2 (1+[))2

= \2, which yields the quadratic equation:

[2 − 2

(

2

\2

− 1

)

[ + 1 = 0. (3.46)

Note that if the eigenvalues of � are positive, then \2 ≤ 1 and the discriminant

Δ =

(

2
\2

− 1
)2

− 1 is non-negative so the roots are real. It is important to also note

that the product of the two roots of this equation is one, and we will select [ to be

the smallest of the two roots so we know it will not exceed one.

In this scenario, the eigenvalues ` 9 are in the interval [0, \∗] and will yield a

negative value inside the square root in formula (3.43) for _±9 . The squared modulus

of _±9 is

`2
9

[
(

1 + [
2

)2

+ [

` 9

−
(

1 + [
2

)2
]

= [` 9 . (3.47)

So each of these eigenvalues is transformed into a complex conjugate pair of

eigenvalues with modulus
√
[` 9 , but since ` 9 ≤ \∗ the maximum modulus is

≤ 2[/(1 + [) which is less than one when ` is selected to be the smallest root
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of (3.46) as discussed above. In this situation the scheme will converge with a

convergence factor 2[/(1 + [).

It is also possible to analyze convergence in a more general scenario when

−\1 ≤ 0 ≤ \∗ ≤ \2

In this situation we would need to distinguish between 3 different cases correspond-

ing to the intervals [\1, 0), [0, \∗), and [\∗, \2]. The analysis is more complex

and is omitted.

4. Accelerating the SCF iteration

The Schrödinger’s equation �Ψ = �Ψ was the result of a few decades of excep-

tionally productive research starting in the late 19th century that revolutionized

our understanding of matter at the nanoscale, see Gamov (1966). In this equa-

tion � is the energy of the system and Ψ = Ψ(A1, A2, . . . , A=, '1, '2, . . . , '# ) the

wavefunction which depends on the positions '8 , A8 of the nuclei and electrons

respectively. This dependence makes the equation intractable except for the smal-

lest cases. Thus, in 1929, Dirac famously stated that (paraphrasing) ‘The physical

laws necessary for understanding a large part of physics and the whole chemistry

are now completely known and what remains is to develop practical methods to

solve the related equations’. It took about four additional decades to develop such

methods, a good representative of which is Density Functional Theory (DFT).

4.1. The Kohn-Sham equations and the SCF iteration

DFT manages to obtain a tractable version of the original equation by replacing

the many-particle wavefunction Ψ with one that depends on one fictitious particle

which will generate the same charge density as that of the original interacting

multi-particle interacting system. The foundation of the method is a fundamental

result by Kohn and Sham (1965), namely that observable quantities are uniquely

determined by the ground state charge density. The resulting Kohn-Sham equation

can be written as follows:
[
− ℎ

2

2<
∇2 ++C>C [d(A)]

]
Ψ(A) = �Ψ(A) (4.1)

where the total potential +C>C is the sum of three terms:

+C>C = +8>= ++� ++G2 . (4.2)

Both the Hartree potential +� and the Exchange-Correlation +G2 depend on the

charge density (or electron density) which is defined from ‘occupied’ wavefunc-

tions:

d(A) =

>22D?∑

8

|Ψ8(A)|2. (4.3)
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Thus, the Hartree Potential +� is solution of the Poisson equation: ∇2+� =

−4cd(A) on the domain of interest while the Exchange-Correlation potential de-

pends nonlinearly on d under various expressions that depend on the model. Once

discretized, Equation (4.1) yields a large eigenvalue problem, typically involving

=>22D? eigenvalues and associated eigenvectors. For additional details, see Saad,

Chelikowsky and Shontz (2009).

The basic SCF iteration would start from a guessed value of the charge density

and other variables and obtain a total potential from it. Then the eigenvalue problem

is solved to give a new set of wavefunctions k8 from which a new charge density d

is computed and the cycle is repeated until self- consistence is reached, i.e., until

the input d8= and output d>DC are close enough. One can capture the process of

computing d in this way by a fixed-point iteration:

d 9+1 = 6(d 9) (4.4)

where 6 is a rather complex mapping that computes a new charge density from the

old one. This mapping involves solving an eigenvalue problem, a Poisson equation,

and making some other updates.

Convergence of this process can be slow in some specific situations. In addi-

tion, the cost of each iteration can be enormous. For example, one could have a

discretized eigenvalue problem with a size in the tens of millions, and a number of

occupied states, i.e., eigenpairs to compute, in the tens of thousands. It is therefore

natural to think of employing procedures that accelerate the process and this can

be done in a number of ways.

4.2. Simple mixing

The idea of acceleration used in the context of DFT is different from that of

extrapolation discussed earlier. Here, researchers invoke the idea of ‘mixing’ a

current d with older ones. The most basic of these is known as ‘simple mixing’

and it defines a new d from an old one as follows, where W is a scalar parameter:

d 9+1 = W6(d 9) + (1 − W)d 9 (4.5)

= d 9 + W(6(d 9) − d 9) (4.6)

It may be helpful to link the above acceleration scheme with other methods that

have been developed in different contexts and to this end a proper notation is key

to unraveling these links. We will replace d by a more general variable G, so (4.4)

becomes

G 9+1 = 6(G 9) (4.7)

and we will denote by 5 the function:

5 (G) = 6(G) − G. (4.8)
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With this, the ‘simple mixing’ iteration (4.6) becomes:

G 9+1 = G 9 + W 5 (G 9). (4.9)

The first link that will help set the notation and terminology is with Richarson’s

iteration, see Equation (3.2), for solving linear systems of the form �G = 1. In this

case 6(G) = G+W(1− �G) and 5 (G) = 1− �G. So, Richardson’s iteration amounts to

the simple mixing scheme above where 5 (G) is the residual 1 − �G. We will refer

to the general scheme defined by (4.9) as Richardson’s iteration, or ‘linear mixing’,

in order to avoid the term ‘simple mixing’ which is proper to the physics literature.

Often, linear iterations are expressed in the form G 9+1 = "G 9 + 1. In this case we

seek to solve the system (� − ")G = 1 and 5 (G) = (� − ")G − 1, is the negative of

the residual.

The next link is with gradient descent algorithms for minimizing a scalar function

q(G). Assuming that the function is convex and differentiable, the iteration reads:

G 9+1 = G 9 − W∇q(G 9) (4.10)

where W is a positive scalar selected to ensure a decrease of the function q(G). In the

special case where q(G) = 1
2
G) �G − 1) G and � is symmetric then ∇q(G) = �G − 1

which is the negative of the residual, i.e., ∇q(G) = −(1 − �G). This leads to the

gradient method for minimizing q(G), and thereby solving the system �G = 1, when

� is SPD.

4.3. Anderson mixing

The article Anderson (1965) presented what the author called an ‘extrapolation

algorithm’ for accelerating sequences produced by fixed-point iterations. The

method became well-known in the physics literature as “Anderson mixing” and

later as “Anderson Acceleration” (AA) among numerical analysts. The following

description of the algorithm introduces minimal changes to the notation adopted

in the original paper. Anderson’s scheme aimed at generalizing the simple mixing

discussed earlier. It also starts with a mapping 6 that takes an input G into some

output H, so that H = 6(G). The pair G, H is ‘self-consistent’ when the output and

input values are the same, i.e., when ‖H − G‖2 = 0, or small enough in practice.

In the following we define 5 to be the residual 5 (G) = 6(G) − G. First, Anderson

considered a pair consisting of an intermediate iterate Ḡ 9 and an associated ‘linear

residual’ 5̄ 9 :

Ḡ 9 = G 9 +
9−1∑

8=[ 9−<]
\8(G8 − G 9), (4.11)

5̄ 9 = 5 9 +
9−1∑

8=[ 9−<]
\8( 58 − 5 9). (4.12)
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Since 5̄ 9 can be viewed as a linearized residual for Ḡ 9 , the idea is to determine the

set of \8’s so as to minimize the 2-norm of 5̄ 9 :

min
{\8 }








5 9 +

9−1∑

8=[ 9−<]
\8( 58 − 5 9)








2

. (4.13)

Once the optimal \ = [\ [ 9−<] , · · · , \ 9−1]) is found, the vectors Ḡ 9 , 5̄ 9 are computed

according to (4.11 – 4.12) and the next iterate is then defined as:

G 9+1 = Ḡ 9 + V 5̄ 9 . (4.14)

In the original article, V was dependent on 9 , but we removed this dependence for

simplicity, as this also reflects common practice.

When comparing the Anderson scheme to Pulay mixing discussed in the next

section, it becomes useful to rewrite equations (4.11 – 4.12) by defining \ 9 =

1 −∑ 9−1

8=[ 9−<] \8 . This leads to the mathematically equivalent equations:

Ḡ 9 =

9∑

8=[ 9−<]
\8G8 (4.15)

5̄ 9 =

9∑

8=[ 9−<]
\8 58 (4.16)

{\8} = argmin












9∑

8=[ 9−<]
\8 58








2

subject to:

9∑

8=[ 9−<]
\8 = 1




(4.17)

Formulation (4.11 – 4.13) leads to a standard (unconstrained) least-squares prob-

lem to solve, see (4.13). It can be viewed as a straightforward alternative to the for-

mulation (4.15 – 4.17) which requires solving a constrained optimization problem.

The first formulation is still not an efficient one from the implementation point of

view – mainly because the sets of vectors 58− 5 9 and G8−G 9 for 8 = [ 9−<], · · · , 9−1]
must computed at each step. An equivalent algorithm that avoids this will be seen

in Section 6.

4.4. DIIS (Pulay mixing)

The “Direct Inversion in the Iterative Subspace” (DIIS) is a method introduced by

Pulay (1980) to address the same acceleration needs as Anderson’s method. It is

well-known as ‘Pulay mixing’ and widely used in computational chemistry. The

method defines the new iterate in the following form:

G 9+1 =

9∑

8=[ 9−<]
\86(G8), (4.18)
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where the \8’s are to be determined parameters such that
∑ 9

8=[ 9−<] \8 = 1. Defining

the residual for iteration 8 as 58 = 6(G8) − G8 , the \8’s are selected to minimize

the norm of the linearized residual, i.e., they result from solving the following

optimization problem

min









9∑

8=[ 9−<]
\8 58








2

subject to:

9∑

8=[ 9−<]
\8 = 1 . (4.19)

In the original paper, the above problem was solved by using standard techniques

based on Lagrange multipliers. However, an alternative approach is to invoke the

constraint and express one of the \8’s in term of the others. Specifically, we can

define

\ 9 = 1 −
9−1∑

8=[ 9−<]
\8 . (4.20)

When this is substituted in the optimization problem (4.19) we obtain the same

optimization problem (4.13) as for AA. In addition, assume that DIIS is applied to

an iteration of the form (4.9) with W replaced by V. In this case 6(G8) = G8 + V 5 (G8)
and therefore the next iterate defined in (4.18) can be re-written as

G 9+1 =

9∑

8=1

\8(G8 + V 5 (G8)) =
9∑

8=[ 9−<]
\8G8 + V

9∑

8=[ 9−<]
\8 5 (G8)) ≡ Ḡ 9 + V 5̄ 9 , (4.21)

which is identical with Anderson’s update in Eq. (4.14). Note also that the vectors

58 defined above are now G8 − 6(G8) = V 58 and so the solution to the problem

(4.19) is unchanged. So the two schemes are equivalent when both are used to

accelerate an iteration of the Richardson type (4.9). For this reason, the common

term “Anderson-Pulay mixing” is often used to refer to either method.

Later Pulay published another paper Pulay (1982) which considered improve-

ments to the original scheme discussed above. This improved scheme consisted

mainly in introducing a new SCF iteration, i.e., an alternative to the function 6

in our notation, which leads to better convergence. In other words the method is

specifically targeted at SCF iterations. Pulay seemed unaware of Anderson’s work

which preceded his by approximately 15 years. Indeed, neither of the two articles

just mentioned cites Anderson’s method.

The article Chupin, Dupuy, Legendre and Séré (2021) discusses the conver-

gence of variable depth DIIS algorithms and shows that these can lead to superior

convergence and computationally more effective schemes.

5. Inexact and Quasi Newton approaches

Among other technique that have been successfully applied to accelerate fixed-

point iterations such as the one in DFT, are those based on Quasi-Newton (QN)

approaches. One might argue whether or not it is legitimate to view these as
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‘acceleration techniques’. If the only restriction we put on acceleration methods

is that they utilize a few of the previous iterates of the sequence, and that they

apply the fixed-point mapping 6, to one of more vectors, then inexact Newton and

Quasi-Newton methods satisfy these requirements.

5.1. Inexact Newton

Many of the approaches developed for solving (1.2) are derived as approximations

to Newton’s approach which is based on the local linear model around some current

approximation G 9 :

5 (G 9 + ΔG) ≈ 5 (G 9) + �(G 9)ΔG, (5.1)

where �(G 9) is the Jacobian matrix at G 9 . Newton’s method determines X = ΔG 9 =

G 9+1 − G 9 at step 9 , to make the right-hand side on (5.1) equal to zero. This is

achieved by solving the Newton linear system �(G 9)X + 5 (G 9) = 0. Inexact Newton

methods, see e.g., Kelley (1995), Dembo, Eisenstat and Steihaug (1982), Brown and

Saad (1990) among many references, compute a sequence of iterates in which the

above Newton systems are solved approximately, typically by an iterative method.

Starting from an initial guess G0, the iteration proceeds as follows:

Solve �(G 9)X 9 ≈ − 5 (G 9) (5.2)

Set G 9+1 = G 9 + X 9 (5.3)

The right-hand side of the Newton system is − 5 (G 9) and this is also the residual

for the linear system when X 9 = 0. Therefore, in later sections we will define the

residual vector A 9 ≡ − 5 (G 9).
Suppose that we invoke a Krylov subspace method for solving (5.2). If we set

� ≡ �(G 9) then the method will usually generate an approximate solution that can

be written in the form

X 9 = + 9 H 9 , (5.4)

where + 9 is an orthonormal basis of the Krylov subspace

K 9 = Span{A 9 , �A 9 , · · · , �<−1A 9}. (5.5)

The vector H 9 represents the expression of the solution in the basis+ 9 . For example,

if GMRES or, equivalently Generalized Conjugate Residual (GCR) Eisenstat et al.

(1983), is used, then H 9 becomes H 9 = (�+ 9)
†(− 5 (G 9)). In essence, the inverse

Jacobian is locally approximated by the rank < matrix:

� 9 ,�"'�( = + 9(�+ 9)
†. (5.6)

In inexact Newton methods the approximation just defined can be termed ‘local’,

since it is only used for the 9-th step: once the solution is updated, the approximate

inverse Jacobian (5.6) is discarded and the process will essentially compute a new

Krylov subspace and related approximate Jacobian at the next iteration. This ‘lack
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of memory’ can be an impediment to performance. Herein lies an important distinc-

tion between these methods and Quasi-Newton methods whose goal is to compute

approximations to the Jacobians, or their inverses, by an accumulative process,

which utilizes the most recent iterates to gradually update these approximations.

5.2. Quasi-Newton

Standard quasi-Newton methods build a local approximation � 9 to the Jacobian

�(G 9) progressively by using previous iterates. These methods require the relation

(5.1) to be satisfied by the updated � 9+1 which is built at step 9 . First the following

secant condition, is imposed:

� 9+1ΔG 9 = Δ 5 9 , (5.7)

where Δ 5 9 := 5 (G 9+1) − 5 (G 9). Such a condition will force the new approximation

to be exact on the pair ΔG 9 ,Δ 5 9 in the sense that the mapping � 9+1 must transform

ΔG 9 into Δ 5 9 exactly. A second common requirement is the no-change condition:

� 9+1@ = � 9@, ∀@ such that @)ΔG 9 = 0. (5.8)

In other words, there should be no new information from � 9 to � 9+1 along any

direction @ orthogonal to ΔG 9 . Broyden showed that there is a unique matrix � 9+1

that satisfies both conditions (5.7) and (5.8) and it can be obtained by the update

formula:

� 9+1 = � 9 + (Δ 5 9 − � 9ΔG 9)
ΔG)9

ΔG)
9
ΔG 9

. (5.9)

Broyden’s second method approximates the inverse Jacobian directly instead of

the Jacobian itself. If � 9 denotes this approximate inverse Jacobian at the 9-th

iteration, then the secant condition (5.7) becomes:

� 9+1Δ 5 9 = ΔG 9 . (5.10)

By minimizing �(� 9+1) = ‖� 9+1 − � 9 ‖2
�

with respect to � 9+1 subject to (5.10),

one finds this update formula for the inverse Jacobian:

� 9+1 = � 9 + (ΔG 9 − � 9Δ 5 9)
Δ 5 )9

Δ 5 )
9
Δ 5 9

, (5.11)

which is also the only update satisfying both the secant condition (5.10) and the

no-change condition for the inverse Jacobian:

(� 9+1 − � 9)@ = 0, ∀ @ ⊥ Δ 5 9 . (5.12)

AA can be viewed from the angle of multi-secant methods, i.e., block forms of the

secant methods just discussed, in which we impose a secant condition on a whole

set of vectors ΔG8 ,Δ 58 at the same time, see 6.7.1.
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6. A detailed look at Anderson Acceleration

In the original article Anderson (1965) the author hinted that he was influenced by

the literature on ‘extrapolation methods’ of the type presented by Richardson and

Shanks and in fact he named his method the “extrapolation method”, although more

recent terminology reserves this term to a different class of methods. There were

several rediscoveries of the method, as well as variations in the implementations. In

this section we will take a deeper look at AA and explore different implementations,

variants of the algorithm, as well as theoretical aspects.

6.1. Reformulating Anderson’s method

We begin by making a small adjustment to the notation in order to rewrite AA in a

form that resembles that of extrapolation methods. This variation requires a simple

change of basis. As was seen in Section 4.3 Anderson used the basis vectors

38 = 5 9 − 58 , for 8 = [ 9 − <] : 9 − 1 (6.1)

to express the vector added to 5 9 to obtain 5̄ 9 as shown in (4.12) which becomes

5̄8 = 5 9 −
9−1∑

8=[ 9−<]
\838 . (6.2)

We assume that the 38’s do indeed form a basis. It is common in extrapolation

methods to use forward differences, e.g., Δ 58 = 58+1 − 58 and ΔG8 = G8+1 − G8 . These

can be exploited to form an alternate basis consisting of the vectorsΔ 58−1 = 58− 58−1

for 8 = [ 9 − <] : 9 − 1 instead of the 38’s. Note that the simple relations:

Δ 58 = ( 58+1 − 5 9) − ( 58 − 5 9) = 38 − 38+1, 8 = [ 9 − <], · · · , 9 − 1 (6.3)

5 9 − 58 = ( 5 9 − 5 9−1) + ( 5 9−1 − 5 9−2) + · · · + ( 58+1 − 58)

= Δ 5 9−1 + Δ 5 9−2 + · · · + Δ 58 , 8 = [ 9 − <], · · · , 9 − 1, (6.4)

allow to switch from one basis representation to the other. Note that the linear

independance of one of these two sets of vectors implies the linear independance of

the other. A simliar transformation can also applied to express the vectors G 9 − G8
in terms of ΔG8’s and vice-versa.

With this new notation at hand, we can rewrite AA as follows. Starting with an

initial G0 and G1 ≡ 6(G0) = G0 + V 50, where V > 0 is a parameter, we define blocks

of forward differences

X 9 = [ΔG [ 9−<] · · · ΔG 9−1], F 9 = [Δ 5 [ 9−<] · · · Δ 5 9−1] . (6.5)

We will define < 9 = min{<, 9} which is the number of columns in X 9 and F 9 .

The least-squares problem (4.13) is translated to the new problem:

W( 9)
= argminW∈R<9 ‖ 5 9 − F 9W‖2. (6.6)
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from which we get the vectors in Equations (4.11), (4.12), and (4.14):

Ḡ 9 = G 9 − X 9 W
( 9), (6.7)

5̄ 9 = 5 9 − F 9 W
( 9), (6.8)

G 9+1 = Ḡ 9 + V 5̄ 9 . (6.9)

We show this as Algorithm 4.

Algorithm 4 Anderson-Acceleration AA (m)

1: Input: Function 5 (G), initial G0.

2: Set 50 ≡ 5 (G0);

3: G1 = G0 + V0 50;

4: 51 ≡ 5 (G1).

5: for 9 = 1, 2, · · · , until convergence do

6: ΔG 9−1 = G 9 − G 9−1 Δ 5 9−1 = 5 9 − 5 9−1

7: Set X 9 = [ΔG [ 9−<] , · · · ,ΔG 9−1], F 9 = [Δ 5 [ 9−<] , · · · ,Δ 5 9−1]
8: Compute W( 9) = argminW ‖ 5 9 − F 9W‖2

9: Compute G 9+1 = (G 9 − X 9W
( 9)) + V( 5 9 − F 9W

( 9))

10: end for

It is clear that the two methods are mathematically equivalent, as they both

express the same underlying problem in two different bases. To better see the

correspondance between the two in the simplest case when < = ∞ (in which case

[ 9 − <] = 0) we can expand 5 9 − F 9W and exploit (6.3):

5 9 − F 9W = 5 9 −
9−1∑

8=0

W8+1( 58+1 − 58)

= 5 9 −
9−1∑

8=0

W8+1 [38 − 38+1] (Note: 3 9 ≡ 0)

= 5 9 −
9−1∑

8=0

(W8+1 − W8)38 (with: W0 ≡ 0).

Thus, a comparison with (6.2) shows that the optimal \8’s in the original Anderson

algorithm can be obtained from the W8’s of the variant just presented by using the

relation \8 = W8+1−W8 for 8 = 0, · · · , 9 −1 with the convention that W0 ≡ 0. It is also

easy to go in the opposite direction and express the W8’s from the \8’s of the original

algorithm. In fact, a simple induction argument using the relations \8 = W8+1 − W8
for 8 ≥ 0 with W0 ≡ 0, will show that W8+1 =

∑8
9=0 \ 9 for 8 ≥ 0.

The intermediate solution Ḡ 9 in (6.7) can be interpreted as the minimizer of the

linear model:

5 (G 9 − X 9W) ≈ 5 (G 9) − F 9W (6.10)
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where we use the approximation 5 (G 9 − W8ΔG8) ≈ 5 (G 9) − W8Δ 58 . The method

computes the minimizer of the linear model (6.10) and the corresponding optimal

Ḡ 9 . The vector 5̄ 9 is the corresponding linear residual. Anderson’s method obtains

this intermediate solution Ḡ 9 and proceeds to perform a fixed-point iteration using

the linear model represented by the pair Ḡ 9 , 5̄ 9 as shown in (6.9).

From an implementation point of view, to compute the new iterate G 9+1 as defined

in (6.36) we need the pair G 9 , 5 9 , the pair of arraysX 9 ,F 9 , and V. We may write this

as G 9+1 = AA(G 9 , V,X 9 , F 9). The algorithm would first obtain W( 9) from solving

(6.6), then compute Ḡ 9 , 5̄ 9 and finally obtain the next iterate G 9+1 from (6.9). In

the restarted version of the algorithm X 9 ,F 9 are essentially reset to empty arrays

every, say, : iterations. The case where all previous vectors are used, called the

‘full-window AA’ (or just ‘full AA’), corresponds to setting< = ∞ in Algorithm 4.

The ‘finite window AA’ or ‘truncated AA’ corresponds Algorithm 4 where < is

finite. The parameter < is often termed called the ‘window-size’ or ‘depth’ of the

algorithm .

6.2. Classical Implementations

In the classical implementation of AA the least-squares problem (6.6) or (4.13) are

solved via the normal equations:

(F)
9 F 9)W

( 9)
= F

)
9 5 9 (6.11)

where it is assumed that F 9 has full rank. When the iterates near convergence, the

column vectors of F 9 will tend to be close to zero or they may just become linerarly

dependent to within the available working accuracy. Solving the normal equations

(6.11) in these situations will fail or be subject to severe numerical issues. In spite of

this, the normal equation approach is rather common, especially when the window-

size< is small. The ideal solution to the problem from a numerical point of view is

to resort to the Singular Value Decomposition (SVD) and apply the truncated SVD

Golub and Van Loan (2013, sec. 5.5). However, this ‘gold-standard’ approach is

expensive and has been avoided by practitioners. An alternative is to regularize the

least-equares problem, replacing (6.11) by

(F)
9 F 9 + g�)W( 9)

= F
)
9 5 9 (6.12)

where g is a regularization parameter. This compromise works reasonably well

in practice and has the advantage of being inexpensive in terms of arithmetic and

memory. Note that the memory cost of an approach based on normal equations

is modest, requiring mainly to keep the sets F 9 ,X 9 , i.e., a total of 2< vectors of

length =.

6.3. Implementation with “Downdating QR”

A numerically effective alternative to the normal equations is based on exploiting

the QR factorization. Here we will focus on Problem (6.6) of the formulation of
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AA discussed above. In principle the idea of using QR is straightforward. Start

with a QR factorization of F 9 , which we write as F 9 = &' with& ∈ R=×< 9 where

we recall the notation < 9 = min{<, 9} and ' ∈ R< 9×< 9 . Then obtain W( 9) by

simply solving the triangular system 'W( 9) = &) 5 9 . Such a trivial implementation

runs into a practical difficulty in that recomputing the QR factorization of F 9 at

each step is wasteful as it ignores the evolving nature of the block F 9 .

Assume at first that 9 ≤ < − 1. Then at the end of the 9-th step represented in

the main loop of Algorithm 4, one column is added to F 9 (which has 9 columns)

to obtain F 9+1 (which has 9 + 1 ≤ < columns). If F 9 = &' and the new column

E ≡ Δ 5 9 is added then we just need to carry out one additional step of the Gram-

Schmidt process whereby this E is orthonormalized against the existing columns of

&, i.e., we write @̂ = E −&ℎ where ℎ = &) E and then @ 9+1 = @̂/d where d = ‖@̂‖2.

Hence, the new factorization is

F 9+1 = [F 9 , E] = [&, @ 9+1]
(

' ℎ

0 d

)

≡ &̃'̃. (6.13)

Assume now that 9 > < − 1. Then, to form F 9+1 in the next step, a column E

is added to F 9 while the oldest one, Δ 5< 9
, must be discarded to create room for

the new vector. Recall that the number of columns must stay ≤ <. This calls for a

different strategy based on ‘downdating’ the QR factorization, i.e., updating a QR

factorization when a column of the original matrix is deleted.

To simplify notation in describing the process, we will remove indices and write

our current F 9 simply as � = [E1, E2, · · · , E<] (< columns) and assume that �

was previously factorized as � = &'. The aim is to build the QR factorization of

[E2, E3, · · · , E<] from the existing factors &, ' of �. Once this is done we will

be in the same situation as the one where 9 ≤ < − 1 which was treated above,

and we can finish the process in the same way as will be seen shortly. We write

� = [E1, E2, · · · , E<], ' = [A1, A2, · · · , A<] and denote the same matrices with their

1st columns deleted by:

�(−) = [E2, E3, · · · , E<], � = [A2, A3, · · · , A<] . (6.14)

The matrix � is of size <× (<−1) and has an upper Hessenberg form, i.e., ℎ8 9 = 0

for 8 > 9 + 1. The matrix �(−), satisfies

�(−) = &� (6.15)

and our goal is to obtain a QR factorization of �(−) from this relation. For this we

need to transform � into upper triangular form with the help of Givens rotation

matrices Golub and Van Loan (2013) as is often done. Givens rotations are matrices
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of the form:

�(8, :, \) =

























1 . . . 0 . . . 0 0
...
. . .

...
...

...
...
...

0 · · · 2 · · · B · · · 0
... · · ·

...
. . .

...
...
...

0 · · · −B · · · 2 · · · 0
... · · ·

... · · ·
... · · ·

...

0 . . . 0 . . . 1

























8

:

with 2 = cos \ and B = sin \. This matrix represents a rotation of angle −\ in

the span of 48 and 4: . A rotation of this type is usually applied to transform

some entry in the :-th row of a matrix � to zero by an appropriate choice of \. If

� = {ℎ8 9}8=1:<, 9=1:<−1 we can find a rotation�1 = �(1, 2, \1) so that (�1�)2,1 = 0.

The values of 2 and B for this 1st rotation are

2 =
ℎ11√

ℎ2
11
+ ℎ2

12

, B =
ℎ12√

ℎ2
11
+ ℎ2

12

.

This is then followed by applying a rotation�2 = �(2, 3, \2) so that (�2(�1�))3,2 =

0, etc. Let Ω be the composition of these rotation matrices:

Ω = �<−1�<−2 · · ·�2�1.

The process just described transforms � to an < × (< − 1) upper triangular matrix

with a zero last row:

Ω� =

(

'̂

0

)

.

Defining &̂ ≡ &Ω) ≡ [@̂1, @̂2, · · · , @̂<] and &̂(−) ≡ [@̂1, · · · , @̂<−1], we see that:

�(−) = &� = (&Ω) ) (Ω�) = &̂ ×
(

'̂

0

)

= &̂(−)'̂, (6.16)

which is the factorization we were seeking. Once the factorization in (6.16) is

available, we can proceed just as was done in the full window case ( 9 ≤ < − 1)

seen earlier to add a new vector E to the subspace, by updating the QR factorization

of [�(−), E] from that of �(−), see equation (6.13). Computing the downdated QR

factors in this way is much less expensive than recomputing a new QR factorization.

This procedure yields a pair of matrices & 9 , ' 9 such that F 9 = & 9' 9 at each

step 9 . The solution to the least-squares problem in Line 8 is W( 9) = '−1
9 [

( 9) where

[( 9) = &)
9 5 9 . Then, clearly in Line 9 of Algorithm 4, we have

5 9 − F 9W
( 9)

= 5 9 − (& 9' 9)W
( 9)

= 5 9 − (& 9' 9)'
−1
9 [

( 9)
= 5 9 −& 9[

( 9), (6.17)

and so Lines 8-9 need to be replaced by:

(80) [( 9)
= &)

9 5 9 ; W( 9)
= '−1

9 [
( 9) (6.18)
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(90) G 9+1 = (G 9 − X 9W
( 9)) + V( 5 9 −& 9[

( 9)). (6.19)

It is clear that the matrix& 9 can be computed ‘in-place’ in the sense that the new

& 9 can be computed and overwritten on the old one without requiring additional

storage. Also, it is no longer necessary to store F 9 in Line 7. Instead, we will

perform a standard factorization where the vector E = Δ 5 9−1 is orthonormalized

against those previous @8’s that are saved. When 9 > < − 1 a downdating QR

factorization is performed to prepare the matrices &̂(−), '̂ from which the updated

QR is performed.

We will refer to this algorithm as AA-QR if there is need to specifically emphasize

this particular implementation of AA. It will lead us to an interesting variant of AA

to be discussed in Section 6.5.

6.4. Simple downdating

We now briefly discuss an alternative method for downdating the QR factorization.

Returning to (6.15) we split the Hessenberg matrix � into its (< − 1) × (< − 1)

lower block which is triangular and which we denote by ' and its first row which

we denote by ℎ)
1

. With this (6.15) can be rewritten as follows:

�(−) = @1ℎ
)
1 + [@2, @2, · · · , @<]'

= [&(−) + @1ℎ
)
1 '

−1]'
≡ [&(−) + @1B

) ]' (6.20)

where we have set B) ≡ ℎ)
1
'−1. From here, there are two ways of proceeding. We

can either get a QR factorization of &(−) + @1B
) which can then be retrofitted into

(6.20) or we can provide some other orthogonal factorization that can be used to

solve the least-squares problem effectively.

Consider the first approach. One way to get the QR factorization of&(−)+@1B
) is

via the Cholesky factorization of the matrix [&(−)+@1B
) ]) [&(−)+@1B

) ]. Observing

that the columns of &(−) are orthonormal and orthogonal to @1, we see that

[&(−) + @1B
) ]) [&(−) + @1B

) ] = � + BB) . (6.21)

As it turns out matrices of the form � + BB) lead to an inexpensive Cholesky

factorization due to a nice structure that can be exploited 3. From this factorization,

say, � + BB) = ��) where � is lower triangular we get the updated factorization:

�(−) = (&(−) + @1B
) )' (6.22)

= [(&(−) + @1B
) )�−) ]

︸                    ︷︷                    ︸
&

[�) ']
︸  ︷︷  ︸

'

≡ &'. (6.23)

3 In a nutshell, the entries below the main diagonal of the 9-th column of the ! matrix in the LDLT

decomposition of the matrix � + BB) are a constant times the entries 9 +1 : = of B. This observation

leads to a Cholesky factorization that is inexpensive and easy to compute and to exploit.
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The Q-factor defined above can be verified to be indeed an orthogonal matrix

while the R factor is clearly upper triangular. Implementation and other details are

omitted.

The second approach is a simplfied, possibly more appealing, procedure. Here

we no longer rely on a formal QR factorization, but a factorization that nonetheless

exploits an orthogonal factor. Starting from (6.22) we now write:

�(−) = [(&(−) + @1B
) )(� + BB) )−1/2]

︸                               ︷︷                               ︸
&

(� + BB) )1/2']
︸            ︷︷            ︸

(

≡ &(. (6.24)

Note in passing that the product&(�+BB) )1/2 is just the polar decomposition Golub

and Van Loan (2013) of the matrix &(−) + @1B
) . Here too the structure of � + BB)

leads to simplifications, in this case for the terms in the fractional powers of � + BB) .

Indeed, if we set _ = 1 + B) B, then it can be shown that

(� + BB) )1/2
= � + UBB) with U =

1

1 +
√
_

(6.25)

(� + BB) )−1/2
= � − VBB) with V =

1

_ +
√
_
. (6.26)

Noting that&)& = �, we wind up with a factorization of the form �(−) = &( where

& has orthonormal columns but ( = (� + BB) )1/2' is not triangular. It is possible

to implement this by keeping the matrix ( as a square matrix or in factored form in

order to exploit its inverse which is (−1 = '−1(� − VBB) ) where V is given in (6.26).

The next step, adding a vector to the system, can be processed as in a standard QR

factorization, see eq. (6.13) where the block ' is to be replaced by (.

These two simple alternatives to the Givens-based downdating QR do not seem

to have been considered in the literature. Their main merit is that they focus more

explicitly on the consequence of deleting a column and show what remedies can

be applied. The deletion of a column leads to the QR-like factorization (6.22) of

�(−). This resembles a QR factorization but the Q-part, namely, &(−) + @1B
) is not

orthogonal. The standard remedy is to proceed with a downdating QR factorization

which obtains QR factors from (6.15) instead of (6.20). Instead, the remedies

outlined above proceed from (6.20) from which either the QR factorization of this

matrix or its polar decomposition are derived. In both cases, the results are then

retrofitted into (6.22) to obtain a corrected decomposition, with an orthogonal Q

factor.

6.5. The Truncated Gram-Schmidt (TGS) variant

There is an appealing alternative to AA-QR worth considering: bypass the downd-

ating QR, and just use the orthogonal factor & 9 obtained from a Truncated Gram-

Schmidt (TGS) orthogonalization. This means that a new vector @ 9 is obtained by

orthonormalizing Δ 5 9−1 against the previous @′8s that are saved, and when we delete

a column we just omit the adjustment consisting of the downdating QR process.
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Without this adjustment the resulting factors & 9 , ' 9 are no longer a QR factoriza-

tion of X 9 when a truncation has taken place, i.e., when 9 > <. The solution to the

least-squares problem now uses & 9 instead of F 9 , i.e., we minimize ‖ 5 9 − & 9W‖2,

ending with W( 9) = &)
9 5 9 . In the limited window case, the resulting least-squares

approximation to 5 9 , i.e., & 9W
( 9), is no longer equal to the one resulting from the

Downdating QR approach which solves the original LS problem (4.13) with the set

F 9 by exploiting its QR factorization. In Anderson Acceleration with Truncated

Gram-Schmidt (AA-TGS), the resulting matrix& 9 is not required to be the Q-factor

of F 9 and so the range of F 9 is different from that of & 9 . Therefore the method is

not equivalent to AA in the finite window case.

We can write the orthogonalization process at the 9-th step as

@ 9 =
1

B 9 9


Δ 5 9−1 −

9−1∑

8=[ 9−<+1]
B8 9@8


. (6.27)

Here the scalars B8 9 , 8 = [ 9 − < + 1], · · · , 9 − 1 are those utilized in a modified

Gram-Schmidt process, and B 9 9 is a normalizing factor so that ‖@ 9 ‖2 = 1.

With < 9 ≡ min{<, 9 + 1} define the < 9 × < 9 upper triangular matrix ( 9 =

{B8:}8=[ 9−<+1]: 9 ,:=[ 9−<+1]: 9 resulting from the orthogonalization process in (6.27).

Having selected what set of columns to use in place of F 9 , the question now is how

do we compute the solution G 9+1, i.e., how do we change Line 9 of Algorithm 4?

One is tempted to take equations (6.18–6.19) of AA-QR as a model where the

matrix ' 9 in (6.18) is replaced by 4 ( 9 . However, the relation F 9 = & 9' 9 is only

valid in the full-window case, so the relation 5 9 −F 9'
−1
9 [

( 9) = 5 9 −& 9[
( 9) in (6.17)

no longer holds, and so we cannot write Ḡ 9 in the form Ḡ 9 = G 9 − X 9'
−1
9 [

( 9). The

solution is to make use of the basis * 9 that is defined from the set of ΔG8’s in the

same way that & 9 is defined from the Δ 58’s. Thus, we compute the 9-th column of

* 9 by the same process we applied to obtain @ 9 namely:

D 9 =
1

B 9 9


ΔG 9−1 −

9−1∑

8=[ 9−<+1]
B8 9D8


, (6.28)

where the scalars B8 9 are the same as those utilized to obtain @ 9 in (6.27). With

this, the relations (6.7–6.9) are replaced by

Ḡ 9 = G 9 −* 9[
( 9), 5̄ 9 = 5 9 −& 9[

( 9), G 9+1 = Ḡ 9 + V 5̄ 9 . (6.29)

The procedure is sketched as Algorithm 5. Let us examine the algorithm and

compare it with the downdating QR version seen in Section 6.3. When 9 ≤ < (full

window case), the 8 loop starting in Line 6, begins at 8 = 0, and the block in Lines

6–12 essentially performs a Gram-Schmidt QR factorization of the matrix F 9 ,

4 Recall that for convenience the indexing of the columns in & and other arrays in Section 6.3 start

at 1 instead of 0.
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while also enforcing identical operations on the set X 9 . A result of the algorithm

is that

F 9 = & 9( 9 ; X 9 = * 9( 9 . (6.30)

The above relations are not valid when 9 > <. In particular, the subspace spanned

by & 9 is not the span of F 9 anymore. We saw how to deal with this issue in

Section 6.3 in order to recover a QR factorization for F 9 from a QR downdating

process. AA-TGS provides an alternative solution by relaxing the requirement of

having to use a QR factorization of X 9 .

Algorithm 5 AA-TGS(m)

1: Input: Function 5 (G), initial guess G0, window size <

2: Set 50 ≡ 5 (G0), G1 = G0 + V0 50, 51 ≡ 5 (G1)

3: for 9 = 1, 2, · · · , until convergence do

4: D := ΔG = G 9 − G 9−1

5: @ := Δ 5 = 5 9 − 5 9−1

6: for 8 = [ 9 − < + 1], . . . , 9 − 1 do

7: B8 9 := (@, @8)

8: D := D − B8 9D8
9: @ := @ − B8 9@8

10: end for

11: B 9 9 = ‖@‖2

12: @ 9 := @/B 9 9 , D 9 := D/B 9 9
13: Set & 9 = [@ [ 9−<+1] , . . . , @ 9], * 9 = [D [ 9−<+1] , . . . , D 9]
14: Compute [( 9) = &⊤

9 5 9

15: G 9+1 = (G 9 −* 9[
( 9)) + V 9( 5 9 −& 9[

( 9))

16: 5 9+1 = 5 (G 9+1)

17: end for

To better understand the process, we examine what happens specifically when

9 = < + 1, focussing on the set of @8’s. We adopt the same lightened notation as

in Section 6.3, and in particular the indexing in arrays & and ( start at 1 instead of

zero. Before the orthogonalization step we have the QR factorization F< = &<(<.

Dropping the oldest (first) column is captured by equations (6.14) and (6.15). We

rewrite (6.15) as follows:

�(−) = &� = [@1, @2, ..., @<]� = @1ℎ
)
1 + [@2, @3, · · · , @<]((−).

As before � is < × (< − 1) Hessenberg matrix obtained from the upper triangular

matrix (< by deleting its first column. The row vector ℎ)
1

is the first row of �

(1st row of (<, omitting its first entry). The matrix ((−) is the (< − 1) × (< − 1)

upper triangular matrix obtained from (< by deleting its first row and its first

column. Thus, if we let &(−) = [@2, @3, · · · , @<] as before, we obtain a reduced
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QR factorization but it is for a different matrix, i.e.,

�(−) − @1ℎ
)
1 = &(−)((−). (6.31)

After the truncation, the new vector E<+1 = Δ 5< is orthonormalized against

@2, @3, · · · , @<, leading to the next vector @<+1. Then we can write:

[�(−) − @1ℎ
)
1 , E<+1] = [&(−), @<+1] ×

[
((−) B2:<,<+1

0 B<+1,<+1

]

≡ &<+1(<+1. (6.32)

Therefore, at step 9 = < + 1 the pair of matrices &<+1, (<+1 produce a QR

factorization of a rank-one perturbation of the matrix F<+1.

Herein lies the only difference between the two methods: the Downdating QR

enforces the relation F 9 = & 9' 9 by correcting the relation (6.31) into a valid

factorization of �(−) before proceeding. We saw in Sections 6.3 and 6.4 how this

can be done. This ensures that we obtain the same solution as with AA. In contrast,

AA-TGS simplifies the process by not insisting on having a QR factorization of

F 9 . Instead, it exploits a QR factorization of a modified version of F 9 , see (6.32)

for the case 9 = < + 1. Note that when 9 > < + 1 the rank-1 modification on the

left-hand side of (6.32) becomes a sum of rank-one matrices.

Let us now consider the full window case, i.e., the situation 9 ≤ <. It is easy

to see that in this case the subspaces spanned by F 9 and & 9 are identical and in

this situation the iterates G 9+1 resulting from AA and AA-TGS will be the same. In

particular, when< = ∞ this will always be the case. We will state this mathematical

equivalence of the two algorithms in the following proposition.

Proposition 6.1. Assuming that they start from the same initial guess G0, AA-

TGS (∞) and AA(∞) return the same iterates at each iteration, in exact arithmetic.

In addition, they also break down under the same condition.

The proof is straightforward and relies on the equality Span{& 9} = Span{X 9} for

all 9 . Though rather trivial this property is worth stating explicitly because it will

help us simplify our analysis of AA in the full-window case. It is clear that we can

also state a more general result for the restarted versions of the algorithms 5.

We end this section with an important addition to the AA-TGS algorithm whose

goal is to circumvent some numerical stability issues. The two recurrences induced

by Equations (6.27–6.28) are linear recurrences that can lead to instability. A

mechanism must be added to monitor the behavior of the above sequence with

the help of a scalar sequence whose numerical behavior imitates that of the vector

5 Restarting can be implemented for any of the algorithms seen in this article. By restarting we

mean that every : iterations, the algorithm starts anew with G0 replaced by the most recent

approximation computed. The parameter : is called the ‘restart dimension’, or ‘period’. Other

restarting strategies are not periodic and restart instead when deemeed necessary by the numerical

behavior of the iterates.
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sequences. This will help prevent excessive growth of rounding errors by restarting

the process when deemed necessary. A process of this type was developed in Tang,

Xu, He, Saad and Xi (2024). Readers are referred to the article for details.

6.6. Numerical Illustration

We will illustrate a few of the methods seen in this paper so far with two examples.

The first example is usually viewed as an easy problem to solve because its level of

nonlinearity can be characterized as mild. The second is an optimization problem

in molecular physics with highly nonlinear coefficients.

6.6.1. The Bratu problem

The Bratu problem appears in modeling thermal combustion, radiative heat transfer,

thermal reaction, among other applications, see, e.g., Mohsen (2014), Jacobsen and

Schmitt (2002) for references. It consists in the following nonlinear elliptic Partial

Differential Equation (PDE) with Dirichlet boundary conditions on an open domain

Ω:

ΔD + _4D = 0 in Ω

D(G, H) = 0 for (G, H) ∈ mΩ.
Here _ is a parameter and there is a solution only for values of _ in a certain

interval. We set _ to the value _ = 0.5 and define the domain Ω to be the square

Ω = (0, 1)× (0, 1). Discretization with centered finite differences using 100 interior

points in each direction results in a system of nonlinear equations 5 (G) = 0 where

5 is a mapping from R= to itself, with = = 10, 000.

The first step in applying acceleration techniques to solve the problem is to

formulate an equivalent fixed-point iteration of the form

6(G) = G − ` 5 (G). (6.33)

The reader may have noted the negatve sign used for ` instead of the positive

sign seen in earlier formulas for the mixing scheme (4.9). In earlier notation

5 (G) represented the ‘residual’, i.e., typically the negative of the gradient of some

function q, instead of the gradient as is the case here. What value of ` should we

use? Noting that the Jacobian of 6 is

m6

mG
(G) = � − `m 5

mG
(G)

a rule of thumb, admitedly a vague one, is that a small value is needed only when

we expect the Jacobian of 5 to have large values. For all experiments dealing with

the Bratu problem, we will set ` = 0.1.

6.6.2. Molecular optimization with Lennard-Jones potential

The goal of geometry optimization is to find atom positions that minimize total

potential energy as described by a certain potential. The Lennard-Jones (LJ)
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potential has a long history and is commonly used is computational chemistry, see

Kittel (1986, p. 61). Its aim is to represent both attration and repulsion forces

between atoms by the inclusion of two terms with opposite signs:

� =

#∑

8=1

8−1∑

9=1

4 ×
[

1

‖G8 − G 9 ‖12
2

− 1

‖G8 − G 9 ‖6
2

]

. (6.34)

Each G8 is a 3-dimensional vector whose components are the coordinates of the

location of atom 8. A common problem is to start with a certain configuration and

then optimize the geometry by minimizing the potential starting from that position.

Note that the resulting position is not a global optimum but a local minimum around

some initial configuration. In this particular example, we simulate an Argon cluster

by taking the initial position of the atoms to consist of a perturbed initial Face-

Cented-Cubic structure Meyer, Barrett and Haasen (1964). We took 3 cells per

direction, resulting in 27 unit cells. FCC cells include 4 atoms each and so we

end up with a total of 108 atoms. The problem can be challenging due to the high

powers in the potential.

Instead of a nonlinear system equations as was the case for the Bratu problem, we

now need to minimize �({G8}). The gradient of � with respect to atom positions can

be readily computed. If we denote by G the vector that concatenates the coordinates

of all atoms, we can call 5 (G) this gradient: 5 (G) = ∇�(G). The associated

fixed-point mapping is again of the form (6.33) but this time we will need to take

a much smaller value for `, namely ` = 0.0001. Larger values of ` often result

in unstable iterates, overflow, or convergence to a non-optimal configuration. Note

that we are seeking a local minimum and as such we do need to verify for each run

that the scheme being tested converges to the correct optimal configuration, in this

case a configuration that thas the potential �>?C = −579.4639..

6.6.3. Gradient Descent, RRE, Anderson, and Anderson-TGS

We will illustrate four algorithms for the two problems discussed above. The first is

a simple adaptive gradient descent algorithm of the form G 9+1 = G 9 − ` 5 (G 9 , where

` is set adaptively by a very simple scheme: if the norm of 5 (G 9) increases multiply

` by .3 and if it decreases multiply ` by 1.05. The initial ` is as defined earlier:

` = 0.1 for Bratu and ` = 0.0001 for LJ. We will call this scheme adaptGD.

The second scheme tested is a restarted version of the RRE algorithm seen in

Section 2.6. If < is the restart dimension then the scheme computes an accelerated

solution H< using G0, · · · , G<+1 and then sets G0 to be equal to H< and the algorithm

is continued from this G0. It is interesting to note that we use G0, · · · , G<, G<+1 to

compute H< which is an update to G<, not G<+1, see (2.39). Thus, in effect G<+1

is only used to obtain the optimal W in (2.39). Anderson acceleration takes care of

this by the extra approximate fixed-point step (6.9). We can perform a similar step

for RRE, and it will translate to

G<+1 = H< + V 5̄< (6.35)
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where 5̄< = ΔG< + Δ-0W is the linear residual. This modificiation is implemented

with V = 1 in the experiments that follow. In addition to the baseline Adaptive GD,

we test RRE(3), RRE(5), and Anderson(5,10) for both problems. We also tested

Anderson-TGS(5,.) with the automatic restarting strategy briefly mentioned at the

end of Section 6.5 and described in detail in Tang et al. (2024). We should point

out that RRE(5), Anderson(5,10), and Anderson-TGS(5,.) all use roughly the same

amount of memory.
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Figure 6.1. Comparison of 5 different methods for the Bratu problem (left) and the

Lennard-Jones optimization problem (right).

Figure 6.1 shows the results obtained by these methods for both problems. Here

AA(5,10) stands for AA with a window size of 5, and a restart dimension of

: = 10. RRE(<) is the restarted RRE procedure described above with a restart

dimension of <, where < = 3 in the first experiment with RRE and < = 5 in

the second. The plots show the norm of the residual (for Bratu) and the norm of

the gradient (for LJ) versus the number of function evaluations. All methods start

from the same random initial guess and are stopped when either the residual norm

decreases by C>; = 10−12 or the number of function evaluations exceeds a certain

maximum (500 for the Bratu problem, 300 for Lennard-Jones). As can be been, for

the Bratu problem, Anderson and its TGS variant both yield a good improvement

relative to the simpler RRE schemes. In contrast, for the Lennard Jones problem,

the performance of AA(5,10) is close to that of RRE. Surprisingly, RRE(3) which

uses much less memory does quite well for this example. In both test problems,

AA-TGS outperforms the standard Anderson algorithm by a moderate margin. The

standard Anderson scheme discussed in these experiments is based on the AA-QR

(AA with QR downdating) implementation discussed in 6.3.
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6.7. Theory

Around the year 2009, Anderson Acceleration started to be noticed in the linear

algebra community, no doubt owing to its simplicity and its success in dealing with

a wide range of problems. The article Fang and Saad (2009) discussed multisecant

methods, first introduced as ‘Generalized Broyden methods’ in article Vanderbilt

and Louie (1984). These methods can be called block secant methods in which

rank-1 updates of the form (5.9) or (5.11) are replaced by rank-< updates. As it

turns out, AA is a multisecant method and this specific link was first unraveled

in Eyert (1996) and discussed further in Fang and Saad (2009). A number of

other results were subsequently shown. Among these is an equivalence between

Krylov methods and Anderson in the linear case as well as convergence studies for

nonlinear sequences. This goal of this section is to summarize these results.

6.7.1. AA as a multi-secant approach

Acceleration methods, such as AA, do not aim at solving a system like (1.2) directly.

As was seen in Section 4.3 their goal is to accelerate a given fixed-point iteration of

the form (4.4). The method implicitly expresses an approximation to the Jacobian

via a secant relation which puts F 9 in correspondence with X 9 . Roughly speaking,

AA develops some approximation to a Jacobian � that satisfies a secant condition of

the form F 9 ≈ �X 9 . The classic text by Ortega and Rheinbolt already mentions AA

as a form of quasi-Newton approach Ortega and Rheinbolt (1970, pp. 204-205).

However, at the time the method was viewed negatively by these authors, possibly

due to its potential for numerically unstable behavior.

As seen in Section 5 Broyden-type methods replace Newton’s iteration: G 9+1 =

G 9 − �(G 9)−1 5 9 with something like G 9+1 = G 9 − � 9 5 9 where � 9 approximates the

inverse of the Jacobian �(G 9) at G 9 by the update formula � 9+1 = � 9 + (ΔG 9 −
� 9Δ 5 9)E

)
9 in which E 9 is defined in different ways see Fang and Saad (2009) for

details. AA belongs to the related class of multi-secant methods. Indeed, the

approximation (6.9) can be written as:

G 9+1 = G 9 + V 5 9 − (X 9 + VF 9) \
( 9) (6.36)

= G 9 − [−V� + (X 9 + VF 9)(F
)
9 F 9)

−1
F

)
9 ] 5 9 (6.37)

≡ G 9 − � 9 5 9 with � 9 ≡ −V� + (X 9 + VF 9)(F
)
9 F 9)

−1
F

)
9 . (6.38)

Thus, � 9 can be seen as an update to the (approximate) inverse Jacobian � [ 9−<] =
−V� by the formula:

� 9 = � [ 9−<] + (X 9 − � [ 9−<]F 9)(F
)
9 F 9)

−1
F

)
9 . (6.39)

It can be shown that the approximate inverse Jacobian� 9 is the result of minimizing



56 Y. Saad

‖� 9 + V� ‖� under the multi-secant condition of type II 6

� 9F 9 = X 9 . (6.40)

This link between AA and Broyden multi-secant type updates was first unraveled

by Eyert Eyert (1996) and expanded upon in Fang and Saad (2009). Thus, the

method is in essence what we might call a ‘block version’ of Broyden’s second

update method, whereby a rank <, instead of rank 1, update is applied at each step.

In addition, we also have a multi-secant version of the no-change condition

(5.12). This is just a block version of the no-change condition Equation (5.12) as

represented by Equation (15) in Fang and Saad (2009), which stipulates that

(� 9 − � [ 9−<])@ = 0 ∀@ ⊥ Span{F 9} (6.41)

provided we define � [ 9−<] = 0.

The essence of AA is that it approximates 5 (G 9 − Δ- 9 W) by 5 (G 9) − Δ�9 W. If

� 9 is the Jacobian at G 9 , we are approximating � 9 Δ- 9 by Δ�9 and aim at making

5 (G 9 − Δ- 9 W) small by selecting W so that its linear approximation 5 (G 9) − Δ�9 W

has a minimal norm. Thus, just like quasi-Newton approaches, the method also

aims at exploiting earlier iterates in order to approximate � 9 , or its action on a vector

or a set of vectors. The main approach relies of two sets of vectors - which we call

% 9 = [? [ 9−<+1] , ? [ 9−<+1]+1, · · · , ? 9] and + 9 = [E [ 9−<+1] , E [ 9−<+1]+1, · · · , E 9] in

this paper with the requirement that

�(G 9)? 9 ≈ E 9 . (6.42)

These ‘secant’ conditions establish a correspondence between the range of % 9 and

the range of + 9 and are at the core of any multi-secant method.

6.7.2. Interpretations of AA

Anderson’s original algorithm can be interpreted from a number of different per-

spectives. The author acknowledged being inspired the work on extrapolation

methods similar to those discussed in Section 2. However, the method he intro-

duced does not fit the definition of an extrapolation technique according to the

terminology we use in this paper.

Equation (6.9) resembles a simple Richardson iteration, see (3.2), applied to the

intermediate iterate Ḡ 9 and its (linear) residual 5̄ 9 . Therefore, the first question

we could address is what do Ḡ 9 and 5̄ 9 represent? AA starts by computing an

intermediate approximation solution which is denoted by Ḡ 9 . The approximation

Ḡ 9 is just a member of the affine space G 9 + Span{X 9}. (In the equivalent initial

presentation of AA, it was of the form given by Eq. (4.11).) We would normally

write any vector on this space as G 9 + X 9W where W is an arbitrary vector in R< 9 ,

6 Type I Broyden conditions involve approximations to the Jacobian, while type II conditions deal

with the inverse Jacobian.



Acceleration methods 57

where < 9 = min{ 9 , <} is the number of columns of X 9 . Anderson changed the

sign of the coefficient W so instead he considered vectors of the form

G(W) = G 9 − X 9W. (6.43)

Ideally, we would have liked to compute a coefficient vector W that minimizes the

norm ‖ 5 (G(W))‖2. This is computable by a line-search but at a high cost, so instead,

Anderson exploits the linear model around G 9 :

5 (G(W)) ≡ 5 (G 9 − X 9W) ≈ 5 (G 9) − F 9W = 5 9 − F 9W. (6.44)

The above expression is therefore the linear residual at G 9 for vectors of the form

(6.43). The optimal W which we denoted by W( 9) is precisely what is computed in

(6.6). Therefore, Ḡ 9 is just the vector of the form (6.43) that achieves the smallest

linear residual.

An important observation here is that we could have considered the new sequence

{Ḡ 9} 9=0,1, · · · by itself. Remarkably, each vector Ḡ 9 is just a linear combination of

the previous G8’s so it represents an extrapolated sequence of the form (2.13). In

fact the vector Ḡ 9 can be seen to be identical with the vector produced by the RRE

algorithm seen in Section 2.6. Computing this extrapolated sequence by itself,

without mixing it with the original iterates will be identical with applying the RRE

procedure to the G8’s. It gets us closer to the solution by combining previous

iterates but we can do better. Since Ḡ 9 is likely to be a better approximation than

G 9 a reasonable option would be to define the next iterate as a fixed-point iteration

from it:

G
(+)

9+1
= Ḡ 9 + V 5 (Ḡ 9). (6.45)

This, however, would require an additional function evaluation. Therefore, AA

replaces 5 (Ḡ 9) = 5 (G 9 − X 9W
( 9)) by its linear approximation given in (6.44) which

is just 5̄ 9 , resulting in the Anderson update given by (6.9). Thus, Anderson

Acceleration can be viewed as a process that intermingles one step of RRE applied

to previous iterates with one linearized gradient descent of the form: (6.9). An

alternative would be to restart - say every : RRE steps - and reset the next iterate to

be the linearized update (6.9). We tested a technique of this type in the experiment

shown in Section 6.6.

6.7.3. Linear case: Links with Krylov subspace methods

In this section we consider the case when the problem is linear and set 5 (G) = 1−�G
(note the sign difference with earlier notation). We assume that � is nonsingular.

In this situation we have

F 9 = −�X 9 . (6.46)

The following lemma shows that that the matrix * 9 resulting from Algorithm 5 is

a basis of the Krylov subspace K 9(�, 50) and that under mild conditions, & 9 ,* 9

satisfy the same relation as F 9 ,X 9 in (6.46) for AA-TGS(∞).
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Lemma 6.1. Assume � is invertible and 5 (G) = 1 − �G. If Algorithm 5 applied

to solve 5 (G) = 0 with < = ∞ does not break down at step 9 , then the system

* 9 forms a basis of the Krylov subspace K 9(�, 50). In addition, the orthonormal

system & 9 built by Algorithm 5 satisfies & 9 = −�* 9 .

Proof. We first prove & 9 = −�* 9 by induction. When 9 = 1, we have @1 =

( 51 − 50)/B11 = −�D1. Assume & 9−1 = −�* 9−1. Then we have

B 9 9@ 9 = ( 5 9 − 5 9−1) −
9−1∑

8=1

B8 9@8 = −�(G 9 − G 9−1) −
9−1∑

8=1

B8 9(−�D8)

= −�[(G 9 − G 9−1) −
9−1∑

8=1

B8 9D8]

= B 9 9(−�D 9).

Thus, since B 9 9 ≠ 0 we get @ 9 = −�D 9 and therefore & 9 = −�* 9 , completing the

induction proof.

Next, we prove by induction that * 9 forms a basis of K 9(�, 50). It is more

convenient to prove by induction the property that for each 8 ≤ 9 , *8 forms a basis

ofK8(�, 50). The result is true for 9 = 1 since we haveD1 = (G1−G0)/B11 = V0 50/B11.

Now let us assume the property is true for 9−1, i.e., that for each 8 = 1, 2, · · · , 9−1,

*8 is a basis of the Krylov subspace K8(�, 50). Then we have

B 9 9D 9 = (G 9 − G 9−1) −
9−1∑

8=1

B8 9D8 (6.47)

= −* 9−1\ 9−1 + V 9−1( 5 9−1 −& 9−1\ 9−1) −
9−1∑

8=1

B8 9D8

= −* 9−1\ 9−1 + V 9−1 5 9−1 − V 9−1& 9−1\ 9−1 −
9−1∑

8=1

B8 9D8

= V 9−1 5 9−1 −* 9−1\ 9−1 + V 9−1�* 9−1\ 9−1 −
9−1∑

8=1

B8 9D8 .

The induction hypothesis shows that −* 9−1\ 9−1 + V 9−1�* 9−1\ 9−1 −
∑ 9−1

8=1
B8 9D8 ∈

K 9(�, 50). It remains to show that 5 9−1 = 1 − �G 9−1 ∈ K 9(�, 50). For this, expand

1 − �G 9−1 as

1 − �G 9−1 = 1 − �G 9−1 + �G 9−2 − �G 9−2 + . . . − �G1 + �G0 − �G0

=

9−1∑

8=1

−�(G8 − G8−1) + 50.

From the relation (6.47) applied with 9 replaced by 8, we see that G8−G8−1 is a linear
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combination of D1, D2, · · · , D8 , i.e., it is a member K8 by the induction hypothesis.

Therefore −�(G8 − G8−1) ∈ K8+1 - but since 8 ≤ 9 − 1 this vector belongs to K 9 . The

remaining term 50 is clearly in K 9 . Because * 9 = −�−1& 9 has full column rank

and D8 ∈ K 9(�, 50) for 8 = 1, . . . , 9 ,* 9 forms a basis of K 9(�, 50). This completes

the induction proof.

From (6.29), we see that in the linear case under consideration the vector 5̄ 9 is

the residual for Ḡ 9 :

5̄ 9 = 5 9 −& 9\ 9 = (1 − �G 9) −& 9\ 9

= (1 − �G 9) + �* 9\ 9 = 1 − �(G 9 −* 9\ 9) = 1 − �Ḡ 9 . (6.48)

The next theorem shows that Ḡ 9 minimizes ‖1 − �G‖2 over the affine space G0 +
K 9(�, 50).

Theorem 6.1. The vector Ḡ 9 generated at the 9-th step of AA-TGS(∞) minimizes

the residual norm ‖1 − �G‖2 over all vectors G in the affine space G0 +K 9(�, 50). It

also minimizes the same residual norm over the subspace G: +K 9(�, 50) for any :

such that 0 ≤ : ≤ 9 .

Proof. Consider a vector of the form G = G 9 − X where X = * 9 H is an arbitrary

member of K 9(�, 50). We have

1 − �G = 1 − �(G 9 −* 9 H) = 5 9 + �* 9 H = 5 9 −& 9 H. (6.49)

The minimal norm ‖1 − �G‖2 is reached when H = &⊤
9 5 9 and the corresponding

optimal G is Ḡ 9 . Therefore, Ḡ 9 is the vector G of the affine space G 9 +K 9(�, 50) with

the smallest residual norm. We now write G as:

G = G 9 −* 9 H

= G0 + (G1 − G0) + (G2 − G1) + (G3 − G2) + · · · (G8+1 − G8)+
· · · + (G 9 − G 9−1) −* 9 H (6.50)

= G0 + ΔG0 + ΔG1 + · · · + ΔG 9−1 −* 9 H. (6.51)

We now exploit the relation obtained from the QR factorization of Algorithm 5,

namely X 9 = * 9( 9 in (6.30): If 4 is the vector of all ones, then ΔG0 + ΔG1 + · · · +
ΔG 9−1 = X 94 = * 9( 94. Define C 9 ≡ ( 94. Then, from (6.51) we obtain

G = G 9 − X = G0 −* 9 [H − C 9] . (6.52)

Hence, the set of all vectors of the form G 9 − X = G 9 −* 9 H is the same as the set of

all vectors of the form G0−X′ where X′ ∈ K 9(�, 50). As a result, Ḡ 9 also minimizes

1 − �G over all vectors in the affine space G0 + K 9(�, 50).

The proof can be easily repeated if we replace G0 by G: for any : between 0 and

9 . The expansion (6.50 –6.51) becomes

G: −* 9 H = G: + (G:+1 − G:) + (G:+2 − G:+1)+
· · · (G8+1 − G8) + · · · (G 9 − G 9−1) −* 9 H (6.53)
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= G: + ΔG: + ΔG:+1 + · · · + ΔG 9−1 −* 9 H. (6.54)

The rest of the proof is similar and straightforward.

Theorem 6.1 shows that Ḡ 9 is the 9-th iterate of the GMRES algorithm for solving

�G = 1 with the initial guess G0 and that 5̄ 9 is the corresponding residual. The

value of Ḡ 9 is independent of the choice of V8 for 8 ≤ 9 . Now consider the residual

5 9+1 of AA-TGS(∞) at step 9 + 1. From the relations G 9+1 = Ḡ 9 + V 9 5̄ 9 and (6.48)

we get:

5 9+1 = 1 − �[Ḡ 9 + V 9 5̄ 9] = 1 − �Ḡ 9 − V 9� 5̄ 9 = 5̄ 9 − V 9� 5̄ 9 = (� − V 9�) 5̄ 9 . (6.55)

This implies that the vector 5 9+1 is the residual for G 9+1 obtained from G 9+1 =

Ḡ 9 + V 9 5̄ 9 - which is a simple Richardson iteration starting from the iterate Ḡ 9 .

Therefore, G 9+1 in Line 15 of Algorithm 5 is nothing but a Richardson iteration

step from this GMRES iterate. This is stated in the following proposition.

Proposition 6.2. The residual 5 9+1 of the iterate G 9+1 generated at the 9-th step

of AA-TGS(∞) is equal to (� − V 9�) 5̄ 9 where 5̄ 9 = 1 − �Ḡ 9 minimizes the residual

norm ‖1− �G‖2 over all vectors G in the affine space G0+K 9(�, 50). In other words,

the ( 9 + 1)-st iterate of AA-TGS(∞) can be obtained by performing one step of a

Richardson iteration applied to the 9-th GMRES iterate.

A similar result has also been proved for the standard AA by Walker and Ni (2011)

under slightly different assumptions, see Section 6.7.5.

Convergence in the linear case can be therefore analyzed by relating the resid-

ual of full AA-TGS with that of GMRES. The following corollary of the above

proposition shows a simple but useful inequality.

Corollary 1. If AA-TGS(∞) is used to solve the system (3.1), then the residual

norm of the iterate G
(��−)�()

9+1
satisfies the inequality:

‖1 − �G(��−)�()

9+1
‖2 ≤ ‖(� − V�)‖2 ‖1 − �G(�"'�()

9
‖2, (6.56)

where G
(�"'�()
9

‖2 is the iterate obtained by 9 steps of full GMRES starting with

the same initial guess G0.

Proof. According to Proposition 6.2: A 9+1 = − 5 (G 9+1) = −(�−V�) 5̄ 9 = (�−V�)A 9
where A 9 is the residual obtained from 9 steps of GMRES starting with the same

initial guess G0. Therefore:

‖1 − �G(��−)�()

9+1
‖2 = ‖(� − V�)(1 − �G(�"'�()

9
)‖2 = ‖(� − V�)A

(�"'�()
9

‖2

≤ ‖(� − V�)‖2 ‖A (�"'�()
9

‖2. (6.57)

Thus, essentially all the convergence analysis of GMRES can be adapted to AA-

TGS when it is applied to linear systems. The next section examines the special

case of linear symmetric systems.
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6.7.4. The linear symmetric case

A simple experiment will reveal a remarkable observation for the linear case when

the matrix � is symmetric. Indeed, the orthogonalization process (Lines 6-10 of

Algorithm 5) simplifies in this case in the sense that ( 9 consists of only 3 non-zero

diagonals in the upper triangular part when � is symmetric. In other words, when �

is symmetric we only need to save @ 9−2, @ 9−1 and D 9−2, D 9−1 in order to generate @ 9

and D 9 in the full-depth case, i.e., when< = ∞. This is similar to the simplification

obtained by a Krylov method like FOM or GMRES when the matrix is symmetric.

We first examine the components of the vector &⊤
9 5 9 in Line 14 of Algorithm 5.

Lemma 6.2. When 5 (G) = 1 − �G where � is a real non-singular symmetric

matrix then the entries of the vector \ 9 = &
)
9 5 9 in Algorithm 5 are all zeros except

the last two.

Proof. Let 8 ≤ 9 − 1. From (6.55), we have

( 5 9 , @8) = ( 5̄ 9−1 − V 9−1� 5̄ 9−1, @8) = ( 5̄ 9−1, @8) − V 9−1(� 5̄ 9−1, @8).

The first term on the right-hand side vanishes because:

( 5̄ 9−1, @8) = ( 5 9−1 −& 9−1\ 9−1, @8) = ((� −& 9−1&
)
9−1) 5 9−1, @8) = 0.

For the second term we write (� 5̄ 9−1, @8) = ( 5̄ 9−1, �@8) and observe that since

D8 ∈ K8(�, 50), then @8 = −�D8 belongs to the Krylov subspace K8+1(�, 50) which

is the same as Span{*8+1} according to Lemma 6.1. Thus, it can be written as

@8 = −�D8 = *8+1H for some H and hence, �@8 = �*8+1H = −&8+1H, i.e., �@8 is in

the span of @1, · · · , @8+1. Therefore, recalling that 5̄ 9−1 ⊥ Span{& 9−1}, we have:

( 5̄ 9−1, �@8) = 0 for 8 ≤ 9 − 2. (6.58)

In the end, we obtain ( 5 9 , @8) = 0 for 8 ≤ 9 − 2.

Lemma 6.2 indicates that the computation of G 9+1 in Line 15 of Algorithm 5 only

depends on the two most recent @8’s and D8’s. In addition, as is shown next, the

vectors @ 9 and D 9 in Line 12 can be computed from @ 9−2, @ 9−1 and D 9−2, D 9−1

instead of all previous @8’s and D8’s.

Theorem 6.2. When 5 (G) = 1 − �G where � is a real non-singular symmetric

matrix, then the upper triangular matrix ( 9 produced in Algorithm 5 is banded with

bandwidth 3, i.e., we have B8: = 0 for 8 < : − 2.

Proof. It is notationally more convenient to consider column : + 1 of ( 9 where

: + 1 ≤ 9 . Let Δ 5: ≡ 5:+1 − 5: , and ΔG: = G:+1 − G: . The inner product B8,:+1 in

Algorithm 5 is the same as B8,:+1 = (Δ 5: , @8) that would be obtained by a classical

Gram-Schmidt algorithm. We note that for 8 ≤ : we have B8,:+1 = −(�ΔG: , @8).

Exploiting the relation:

ΔG: = (Ḡ: + V: 5̄:) − G: = G: −*:\: + V: 5̄: − G: = −*:\: + V: 5̄: ,
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we write

�ΔG: = −�*:\: + V:� 5̄: = &:\: + V:� 5̄:
= −( 5: −&:\:) + 5: + V:� 5̄:
= − 5̄: + 5: + V:� 5̄: ,

and hence,

(�ΔG: , @8) = −( 5̄: , @8) + ( 5: , @8) + V:(� 5̄: , @8). (6.59)

The first term on the right-hand side, ( 5̄: , @8), vanishes since 8 ≤ : . According

to Lemma 6.2 the inner product ( 5: , @8) is zero for 8 ≤ : − 2. In the proof of

Lemma 6.2 we showed that ( 5̄ 9−1, �@8) = 0 for 8 ≤ 9 − 2, see (6.58), which means

that ( 5̄: , �@8) = 0 for 8 ≤ : − 1. In the end B8,:+1 = −(�ΔG: , @8) = 0 for 8 < : − 1

which is equivalent to the desired result.

Lemma 6.2 and Theorem 6.2 show that when AA-TGS(∞) is applied to solving

linear symmetric problems, only the two most recent @8’s and D8’s, i.e., @ 9−2, @ 9−1

and D 9−2, D 9−1 are needed to compute the next iterate G 9+1. In other words, the for

loop in Line 6 of the algorithm needs only to be executed for 8 = 9 −2, and 8 = 9 −1

which means that AA-TGS(3) is equivalent to AA-TGS(∞) in the linear symmetric

case. Practically, this leads to a significant reduction in memory and computational

cost.

We saw earlier that in all cases, the full AA-TGS algorithm is equivalent to

the full-window Anderson, at least in exact arithmetic. AA-TGS is just a different

implementation of AA in this case. In the linear case, Proposition 6.2 states that the

full AA-TGS is equivalent to (full) GMRES followed by a Richardson step. This

led to Corollary 1 which enables us to establish convergence results by exploiting

already known theory. One specific such result is an analysis of the special case

when the problem is linear and symmetric.

Theorem 6.3. Assume that � is symmetric positive definite and that a constant

V is used in AA-TGS. Then the iterate G
(��−)�()

9+1
obtained at the ( 9 + 1)-st step of

AA-TGS(∞) satisfies :

‖1 − �G(��−)�()

9+1
‖2 ≤ ‖� − V�‖2

‖1 − �G0‖2

)9(
^+1
^−1

)

≤ 2‖� − V�‖2‖1 − �G0‖2

(√
^ − 1

√
^ + 1

) 9

where )9 is the Chebyshev polynomial of first kind of degree 9 , and ^ = ^(�) is the

2-norm condition number of �.

Proof. We start from inequality (6.56) of Corollary 1. An analysis similar to that
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in Saad (2003, sec. 6.11.3) for the CG method, will show that

‖A�"'�(
9 ‖2 ≤ ‖A0‖2

)9(1 + 2[)

in which [ = _<8=/(_<0G − _<8=) = 1/(^ − 1). Noting that 1 + 2[ = (^ + 1)/(^ −
1) establishes the first inequality. The second one follows from using standard

expressions of the Chebyshev polynomials based on the hyperbolic cosine Saad

(2003, p. 204-205), which shows that

)9(1 + 2[) ≥ 1

2

(√
^(�) + 1

√
^(�) − 1

) 9

.

This completes the proof.

6.7.5. Other links between AA and Krylov methods in linear case

The analysis shown above establishes strong connections between full-depth AA-

TGS and GMRES. Since AA-TGS is equivalent to standard AA in the full-window

case, these results are also valid for AA. Such connections were established well

before the recent article Tang et al. (2024).

Specifically, in 2011, Walker and Ni (2011) studied the algorithm and showed a

form of equivalence between AA and GMRES in the linear case. Another study

along the same lines, discussed at the end of this section, is the 2010 article by

Haelterman, Degroote, Heule and Vierendeels (2010) which is concerned with a

slightly different version of AA.

Because the Walker and Ni result is somewhat different from the one of Propos-

ition 6.2 seen in Section 6.7.3, we will now summarize it. The paper makes the

following set of assumptions.

Assumption (A):

• AA is applied for the fixed-point mapping 6(G) = �G + 1
• Anderson acceleration is not truncated, i.e., < = ∞
• (� − �) is nonsingular.

• GMRES is applied to solve (� − �)G = 1 with the same initial guess G0 as for

AA.

The main result of the article is stated for the formulation of AA that follows

the notation of Pulay mixing seen in Section 4.4. Accounting for this change of

notation, their result is stated below.

Theorem 6.4. Suppose that Assumption (A) holds and that, for some 9 > 0,

A
(�"'�()

9−1
≠ 0 and also that ‖A (�"'�()

8−1
‖2 > ‖A (�"'�()

8
‖2 for each 8 such that

0 < 8 < 9 . Then, Ḡ 9 = G
(�"'�()
9

and G 9+1 = 6(G
(�"'�()
9

).

The article by Degroote, Bathe and Vierendeels (2009) described a method
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called QN-ILS (‘Quasi-Newton Inverse Least-Squares’) which resembles AA al-

though it is presented as a Quasi-Newton approach (hence its name). The authors

seemed unaware of the Anderson article and the related literature but the spirit of

their method is quite close to that of AA. In fact, the authors even use the same

formulation for their method as that of the original AA in that they invoke the basis

(6.1) to formulate their method, instead of the bases using forward differences.

Their algorithm is viewed from the angle of a quasi-Newton method with updates

of type-II, where the inverse Jacobian is approximated. Using our notation, the

only difference with AA is that in their case the update (6.9) for the new iterate

becomes:

G 9+1 = Ḡ 9 + 5 9 . (6.60)

Thus, relative to the update equation (6.9) of AA, V is set to one and 5̄ 9 is replaced

by 5 9 in QN-ILS. In the linear case, and full window case, the two methods

are mathematically equivalent since 5̄ 9 = 5 9 − F 9W
( 9) and the two methods will

produce the same space of approximants in the projection process, at each step. In

the nonlinear case, the two methods will not generate the same iterates in general.

From an implementation point of view, QN-ILS is more expensive than AA. As

described in Degroote et al. (2009) the algorithm recomputes a new QR factoriz-

ation each time, and does not exploit any form of downdating. The main reason

for this is that, as already mentioned, QN-ILS relies on a basis of the form (6.1),

which changes entirely at each new step 9 . This also means that each of the vectors

38 = 5 9 − 58 for 8 = ([ 9 −<]), · · · , 9 − 1 and the related differences G 9 − G8 , must be

recomputed at every step 9 leading to a substantial added cost when compared to

modern implementations of AA. Indeed, the basis of the ΔG8’s used in the modern

version of AA, requires only that we compute the most recent pair Δ 5 9−1,ΔG 9−1

since the other needed pairs were computed in earlier steps. In AA, one column is

computed and added to F 9 and one is dropped from it (when 9 > <). Similarly for

X 9 .

The article Haelterman et al. (2010) studied the method in the linear case, and

established that it is equivalent to GMRES in this situation. This result is similar

to that of Walker and Ni (2011), but we need to remember that AA and QN-ILS

are different in the nonlinear case.

6.7.6. Convergence properties of AA

Toth and Kelley (2015) proved that AA is locally A-linearly convergent under the

condition that the fixed point map 6 is a contraction mapping and the coefficients

in the linear combination remain bounded. A number of other results were proved

under different assumptions.

The article Toth and Kelley (2015) starts by considering the linear case in which

6(G) = "G + 1 and shows that when " is contracting with ‖" ‖ = 2 < 1 then

the iterates of Anderson acceleration applied to 6 will converge to the fixed-point

G∗ = (� − ")−11. In addition, the residuals converge @-linearly to zero, i.e., if
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5 (G) = 6(G) − G then ‖ 5 (G:+1)‖ ≤ 2‖ 5 (G:)‖. This is used as a starting point for

proving a result in the nonlinear case.

Consider the situation where AA is applied to find the fixed-point of a function 6

and let 5 (G) = 6(G) − G. The authors invoke formulation (4.15–4.17) because their

results require to make assumptions on the coefficients \8 . With this in mind, their

main result can be stated as follows.

Theorem 6.5 (Toth and Kelley (2015), Theorem 2.3). Assume that:

1 There is constant `\ such that
∑ 9

8= 9− 9<
|\8 | ≤ `\ for all 9 ≥ 0.

2 There is an G∗ such that 5 (G∗) = 6(G∗) − G∗ = 0.

3 6 is Lipschitz continuously differentiable in the ballB(d̂) = {G | ‖G−G∗‖ ≤ d̂}.
4 There is a 2 ∈ (0, 1) such that ‖6(D) − 6(E)‖ ≤ 2‖D − E‖ for all D, E in B(d̂).

Let 2 < 2̂ < 1. Then if G0 is sufficiently close to G∗, the Anderson iteration

converges to G∗ r-linearly with r-factor no greater than 2̂. Specifically:

5 (G:) ≤ 2̂: 5 (G0), (6.61)

and

‖G: − D∗‖ ≤ 1 + 2
1 − 2 2̂

: ‖G0 − D∗‖. (6.62)

Not that the result is valid for any norm not just for the case when the 2-norm

minimization is used in (4.13). The first condition only states that the coefficients

\8 resulting from the constrained least-squares problem (4.17) (or equivalently the

unconstrained problem (4.13)) all remain bounded in magnitude. It cannot be

proved that this condition will be satisfied and the ill-conditioning of the least-

squares problem may lead to large values the the \8’s. However, the authors of the

paper show how to modify the standard AA scheme to enforce the boundedness of

the coefficients in practice.

In addition, Toth and Kelley (2015) consider the particular case when the window

size is < = 1 and show that in this situation the coefficients \8 are bounded if 2 is

small enough that 2̂ ≡ ((32 − 22)/(1 − 2)) < 1. If this condition is satisfied and if

G0 ∈ B(d̂) then they show that AA(1) with least-squares optimization converges

q-linearly with q-factor 2̂.

Even though these results are proved under somewhat restrictive assumptions

they nevertheless establish strong theoretical convergence properties. In particular,

the results show that under certain conditions, the AA-accelerated iterates will

converge to the solution at least as fast as the original fixed-point sequence.

The theory in the Toth-Kelley article does not prove that the convergence of

an AA accelerated sequence will be faster than that of the original fixed-point

iteration. The article Evans, Pollock, Rebholz and Xiao (2020) addresses this

issue by showing theoretically that Anderson acceleration (AA) does improve the

convergence rate of contractive fixed-point iterations in the vicinity of the fixed-

point. Their experiments illustrate the improved linear convergence rates. However,
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they also show that when the initial fixed-point iteration converges quadratically,

then its convergence is slowed by the AA scheme.

In another paper Pollock and Rebholz (2021) discuss further theoretical aspects

of the AA algorithm and show a number of strategies to improve convergence.

These include techniques for adapting the window-size < dynamically, as well

as filtering out columns of F 9 when linear dependence is detected. Along the

same lines, building on work by Rohwedder (2010), Brezinski, Cipolla, Redivo-

Zaglia and Saad (2022) present a stabilized version of AA which examines the

linear independence of the latest Δ 5 9 from previous differences. The main idea

is to ensure that we keep a subset of the differences that are sufficiently linearly

independent for the projection process needed to solve the least-squares problem.

Local convergence properties are proved under some assumptions.

It has been observed that AA works fairly well in practice especially in the

situation when the underlying fixed-point iteration that is accelerated has adequate

convergence properties. However, without any modifications, it is not possible

to guarantee that the method will converge. A few papers address this ‘global

convergence’ issue. Zhang, O’Donoghue and Boyd (2020) consider ‘safeguarding

strategies’ to ensure global convergence of type-I AA methods. Their technique

assumes that the underlying fixed-point mapping 6 is non-expansive and, adopting

a multisecant viewpoint, develop a Type-I based AA update whereby the focus is to

approximate the Jacobian instead of its inverse as is done in AA. Their main scheme

relies on two ingredients. The first is to add a regularization of the approximate

Jacobian to deal with the potential (near)-singularity of the approximate Jacobian.

The second is to interleave the AA scheme with a linear mixing scheme of the form

(4.9). This is done in order to ‘safeguard the decrease in the residual norms.’

7. Nonlinear Truncated GCR

Krylov accelerators for linear systems, which were reviewed in Section 3.3, can be

adapted in a number of ways for nonlinear problems. We already noted that AA

can be viewed as a modified Krylov subspace method in the linear case. We also

showed strong links between Krylov methods and a few extrapolation techniques

in Section 2. One way to uncover generalizations of Krylov methods for nonlinear

equations, is to take a multisecant viewpoint. The process begins with a subspace

spanned by a set of vectors {? [ 9−<+1] , ? [ 9−<+1]+1, · · · , ? 9} – typically related to a

Krylov subspace – and finds an approximation to the Jacobian or its inverse, when

it is restricted to this subspace. This second step can take different forms but it

is typically expressed as a multisecant requirement, whereby a set vectors E8 are

coupled to the vectors ?8’s such that

E8 ≈ �(G8)?8 , (7.1)

where �(G8) is the Jacobian of 5 at G8 . Observe that a different Jacobian is involved

for each index 8. There are a number of variations to this scheme. For example,



Acceleration methods 67

�(G8) can be replaced by a fixed Jacobian at some other point, e.g., G [ 9−<+1] or G0

as in Inexact Newton methods.

We will say that the two sets:

% 9 = [? [ 9−<+1] , ? [ 9−<+1]+1, · · · , ? 9], + 9 = [E [ 9−<+1] , E [ 9−<+1]+1, · · · , E 9]
(7.2)

are paired. This setting was encountered in the linear case, see equations (3.28), and

in Anderson Acceleration where % 9 was just the set X 9 and + 9 was F 9 . Similarly,

in AA-TGS these two sets were* 9 and & 9 respectively. It is possible to develop a

broad class of multi-purpose accelerators with this general viewpoint. One of these

methods He, Tang, Zhao, Saad and Xi (2024), named the NonLinear Truncated

Generalized Conjugate Residual (NLTGCR), is built as a nonlinear extension of

the Generalized Conjugate Residual method seen in 3.3.3. It is discussed next.

7.1. nlTGCR

Recall that in the linear case, where we solve the system linear �G = 1, the main

ingredient of GCR is to build two sets of paired vectors {?8}, {�?8} where the

?8’s are the search directions obtained in earlier steps and the �?8’s are orthogonal

to each other. At the 9-th step, we introduce a new pair ? 9+1, �? 9+1 to the set in

which ? 9+1 is initially set equal to the most recent residual, See, Lines 7–12 of

Algorithm 3. This vector is then �) �-orthogonalized against the previous ?8’s.

We saw that this process leads to a simple expression for the approximate solution,

using a projection mechanism, see Lemma 3.1.

The next question we address is how to extend GCR or its truncated version

TGCR, to the nonlinear case. The simplest approach is to exploit an inexact

Newton viewpoint in which the GCR algorithm is invoked to approximately solve

the linear systems that arise from Newton’s method. However, this is avoided for a

number of reasons. First, unlike quasi-Newton techniques, inexact Newton methods

build an approximate Jacobian for the current iterate and this approximation is used

only for the current step. In other words it is discarded after it is used and another

one is build in the next step. This is to be contrasted with quasi-Newton, or

multisecant approaches where these approximations are built gradually. Inexact

Newton methods perform best when the Jacobian is explicitly available or can be

inexpensively approximated. In such cases, it is possible to solve the system in

Newton’s method as accurately as desired leading to superlinear convergence.

An approach that is more appealing for fixed-point iterations is to exploit the

multisecant viewpoint sketched above, by adapting it to GCR. At a given step 9

of TGCR, we would have available the previous directions ? [ 9−<+1] , · · · , ? 9 along

with their corresponding (paired) E8’s, for 8 = [ 9 −< +1], · · · , 9 . In the linear case,

each E8 equals �?8 . In the nonlinear case, we would have, instead, E8 ≈ �(G8)?8 .
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The next pair ? 9+1, E 9+1 is obtained by the update

? 9+1 = A 9+1 −
9∑

8=[ 9−<+1]
V8 9 ?8 , E 9+1 = �(G 9+1)A 9+1 −

9∑

8=[ 9−<+1]
V8 9E8 (7.3)

where the V8 9’s are selected so as to make E 9+1 orthonormal to the previous vectors

E [ 9−<+1] , · · · , E 9 . One big difference with the linear case, is that the residual vector

A 9+1 is now the nonlinear residual, which is A 9+1 = − 5 (G 9+1).

This process builds a pair (? 9+1, E 9+1) such that E 9+1 is orthonormal to the

previous vectors E [ 9−<+1] , · · · , E 9 . The current ‘search’ directions {?8} for 8 =

[ 9−<+1], · · · , 9 are paired with the vectors E8 ≈ �(G8)?8 , for 8 = [ 9−<+1], · · · , 9 ,
see, (7.2).

Another important difference with TGCR is that the way in which the solution

is updated in Line 6 of Algorithm 3 is no longer valid. This is because the second

part of Lemma 3.1 no longer holds in the nonlinear case. Therefore, the update

will be of the form G 9 + % 9 H 9 where H 9 = +
)
9 A 9 . Putting these together leads to the

nonlinear adaptation of GCR shown in Algorithm 6.

Algorithm 6 nlTGCR(m)

1: Input: 5 (G), initial G0.

2: Set A0 = − 5 (G0).

3: Compute E = �(G0)A0; ⊲ Use Frechet

4: E0 = E/‖E‖2, ?0 = A0/‖E‖2;

5: for 9 = 0, 1, 2, · · · , do

6: H 9 = +
)
9 A 9

7: G 9+1 = G 9 + % 9 H 9 ⊲ Scalar U 9 becomes vector H 9
8: A 9+1 = − 5 (G 9+1) ⊲ Replaces linear update: A 9+1 = A 9 −+ 9 H 9
9: Set: ? := A 9+1; and compute E = �(G 9+1)? ⊲ Use Frechet

10: Compute V 9 = +
)
9 E

11: E = E −+ 9 V 9 , ? = ? − % 9 V 9

12: ? 9+1 := ?/‖E‖2 ; E 9+1 := E/‖E‖2 ;

13: end for

The relation with Newton’s method can be understood from the local linear

model which is at the foundation of the algorithm:

5 (G 9 + % 9 H) ≈ 5 (G 9) ++ 9 H, (7.4)

which follows from the following approximation where the W8’s are the components

of H and the sum is over 8 = [ 9 − < + 1] to 9 :

5 (G 9 + % 9 H) ≈ 5 (G 9) +
∑

W8�(G 9)?8 ≈ 5 (G 9) +
∑

W8�(G8)?8 ≈ 5 (G 9) ++ 9 H.

The method essentially minimizes the residual norm of the linear model (7.4) at the

current step. Recall that Anderson exploited a similar local relation represented by
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(6.10) and the intermediate solution Ḡ: in (6.7) is a local minimizer of the linear

model. We will often use the notation

+ 9 ≈ [�]% 9 (7.5)

to express the relation represented by Equation 7.1.

7.2. Linear updates

The reader may have noticed that Algorithm 6 requires two function evaluations

per step, one in Line 8 where the residual is computed and one in Line 9 when

invoking the Frechet derivative to compute �(G 9+1)? using the formula:

�(G)? ≈ 5 (G + n ?) − 5 (G)

n
, (7.6)

where n is some carefully selected small scalar. It is possible to avoid calculating

the nonlinear residual by simply replacing it with its linear approximation given by

expression (7.4) from which we get,

A 9+1 = − 5 (G 9 + % 9 H 9) ≈ − 5 (G 9) −+ 9 H 9 = A 9 −+ 9 H 9 .

Therefore, the idea of this “linearized update version” of nlTGCR is to replace A 9+1

in Line 8 by its linear approximation A 9 −+ 9 H 9 .

8a: A 9+1 = A 9 −+ 9 H 9

This is now a method that resembles an Inexact Newton approach. It will be

equivalent to it if we add one more modification to the scheme namely that we omit

updating the Jacobian in Line 9, when computing E. In other words, the Jacobian

�(G 9+1) invoked in Line 9 is constant and equal to �(G0) and Line 9 becomes:

9a. Set: ? := A 9+1; and compute E = �(G0)?

In practice, this means that when computing the vector E in Line 9 of Algorithm 6

with equation 7.6, the vector G is set to G0. This works with restarts, i.e., when

the number of steps reaches a restart dimension, or when the linear residual has

shown sufficient decrease, G0 is reset to be the latest iteration computed and a new

subspace and corresponding approximation are computed.

All this means is that with minor changes to Algorithm 6 we can implement a

whole class of methods which have been thoroughly studies in the past, see, e.g.,

Dembo et al. (1982), Brown and Saad (1990, 1994), Eisenstat and Walker (1994)

among others. Probably the most significant disadvantage of inexact Newton

methods, or to be specific Krylov-Newton methods, is that a large number of

function evaluations may be needed to build the Krylov subspace in order to

obtain a single iterate, i.e., the next (inexact) Newton iterate. After this iterate

is computed, all the information gathered at this step, specifically %: , and +: ,

is discarded. This is to be contrasted with quasi-Newton techniques where the
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most recent function evaluation contributes to building an updated approximate

Jacobian. Inexact Newton methods are most successful when the Jacobian is

available, or inexpensive to compute, and some effective preconditioner can readily

be computed.

Nevertheless, it may still be cost-effective to reduce the number of function

evaluations from two to one whenever possible. We can update the residual norm

by replacing Line 8 of Algorithm 6 with the liner form (8a) when it is deemed safe,

i.e., typically after the iteration reaches a region where the iterate is close enough

to the exact solution that the linear model (7.4) is accurate enough. A simple

strategy to employ linear updates and move back to using nonlinear residuals, was

implemented and tested in in He et al. (2024). It is based on probing periodically

how far the linear residual Ã 9+1 = A 9 −+ 9 H 9 is from the actual one. Define:

3 9 = 1 −
(Ã 9 , A 9)

‖Ã 9 ‖2‖A 9 ‖2

. (7.7)

The adaptive nlTGCR switches the linear mode on when 3 9 < g and returns to

the nonlinear mode if 3 9 ≥ g, where g is a small threshold parameter. In the

experiments discussed in Section 7.5 we set g = 0.01.

7.3. Nonlinear updates

We now consider an implementation of Algorithm 6 in which nonlinear residuals

are computed at each step. We can study the algorithm by establishing relations

with the linear residual

Ã 9+1 = A 9 −+ 9 H 9 , (7.8)

and the deviation between the actual residual A 9+1 and its linear version Ã 9+1 at the

9 + 1th iteration:

I 9+1 = Ã 9+1 − A 9+1. (7.9)

To analyze the magnitude of I 9+1, we define

F8 = (�(G 9) − �(G8))?8 for 8 = [ 9 − < + 1], · · · , 9 ; and , 9 = [F [ 9−<+1] , · · · , F 9]
(7.10)

B 9 = 5 (G 9+1) − 5 (G 9) − �(G 9)(G 9+1 − G 9). (7.11)

Observe that

�(G 9)?8 = �(G8)?8 + F8 = E8 + F8 . (7.12)

Recall from the Taylor series expansion that B 9 is a second order term relative to

‖G 9+1 − G 9 ‖2. Then it can be shown He et al. (2024) that the difference Ã 9+1 − A 9+1

satisfies the relation:

Ã 9+1 − A 9+1 = , 9 H 9 + B 9 = , 9+
)
9 A 9 + B 9 , (7.13)
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and therefore that:

‖Ã 9+1 − A 9+1‖2 ≤ ‖, 9 ‖2 ‖A 9 ‖2 + ‖B 9 ‖2. (7.14)

When the process nears convergence, ‖, 9 ‖2‖A 9 ‖2 is the product of two first

order terms while B 9 is a second order term according to its definition (7.11). Thus,

I 9+1 is a quantity of the second order.

The following properties of Algorithm 6 are easy to establish, see He et al.

(2024) for the proof and other details. We denote by < 9 the number of columns in

+ 9 and % 9 , i.e., < 9 = min{<, 9 + 1}

Proposition 7.1. The following properties are satisfied by the vectors produced

by Algorithm 6:

1 (Ã 9+1, E8) = 0 for [ 9 − < + 1] ≤ 8 ≤ 9 , i.e., +)
9 Ã 9+1 = 0;

2 ‖Ã 9+1‖2 = minH ‖ − 5 (G 9) + [�]% 9 H‖2 = minH ‖ − 5 (G 9) ++ 9 H‖2;

3 〈E 9+1, Ã 9+1〉 =
〈
E 9+1 , A 9

〉
;

4 H 9 = +
)
9 A 9 = 〈E 9 , Ã 9〉4< 9

−+)
9 I 9 where 4< 9

= [0, 0, · · · , 1]) ∈ R< 9 .

Property (4) and equation (7.14) suggest that when I 9 is small, then H 9 will have

small components everywhere except for the last component. This happens when

the model is close to being linear or when it is nearing convergence,

7.4. Connections with multisecant methods

The update at step 9 of nlTGCR can be written as follows:

G 9+1 = G 9 + % 9+
)
9 A 9 = G 9 + % 9+

)
9 (− 5 (G 9)),

showing that nlTGCR is a multisecant-type method in which the inverse Jacobian

at step 9 , is approximated by

� 9+1 ≡ % 9+
)
9 . (7.15)

This approximation satisfies the multisecant equation

� 9+1E8 = ?8 for [ 9 − < + 1] ≤ 8 ≤ 9 . (7.16)

Indeed, � 9+1E8 = % 9+
)
9 E8 = ?8 = �(G8)

−1E8 for [ 9 − < + 1] ≤ 8 ≤ 9 . In other

words � 9+1 inverts �(G8) exactly when applied to E8 .

If we substitute ?8 with of ΔG 9 and E8 with Δ 5 9 we see that equation (7.16) is

just the constraint (5.10) we encountered in Broyden’s second update method. In

addition, the update � 9+1 also satisfies the ‘no-change’ condition:

� 9+1@ = 0 ∀@ ⊥ E8 for [ 9 − < + 1] ≤ 8 ≤ 9 . (7.17)

The usual no-change condition for secant methods is of the form (� 9+1−� [ 9−<+1])@ =

0 for @ ⊥ Δ 58 which in our case would become (� 9+1 − � [ 9−<+1])@ = 0 for

@ ⊥ E8 for [ 9 − < + 1] ≤ 8 ≤ 9 . This means that we are in effect updating
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� [ 9−<+1] ≡ 0. Interestingly,� 9+1 satisfies an optimality result that is similar to that

of other secant-type and multisecant-type methods. This is stated in the following

proposition which is easy to prove, see He et al. (2024).

Proposition 7.2. The unique minimizer of the following optimization problem:

min{‖�‖� , � ∈ R=×= subject to: �+ 9 = % 9} (7.18)

is the matrix � 9+1 = % 9+
)
9 .

The condition� 9+1+ 9 = % 9 is the same as the multisecant condition� 9F 9 = X 9

of Equation (6.40) discussed when we characterized AA as a multisecant method.

In addition, recall that the multisecant version of the no-change condition, as

represented by Equation (6.41) is satisfied. This is the same as the no-change

condition seen above for nlTGCR.

Therefore we see that the two methods are quite similar in that they are both

multisecant methods defined from a pairing of two sets of vectors, + 9 , % 9 for

nlTGCR on the one hand and F 9 , X 9 for AA on the other. From this viewpoint,

the two methods differ mainly in the way in which the sets F 9/+ 9 , and X 9/% 9 are

defined. Let us use the more general notation + 9 , % 9 for both pairs of subspaces.

In both cases, a vector E 9 is related to the corresponding ? 9 by the fact that

E 9 ≈ �(G 9)? 9 . (7.19)

Looking at Line 9 of Algorithm 6 indicates that, before the orthogonalization step

in nlTGCR (Lines 10-12), this relation becomes an equality, or aims to be close to

an equality, by employing a Frechet differentiation. Thus, the process introduces a

pair ? 9 , E 9 to the current paired subspaces where ? 9 is accurately mapped to E 9 by

�(G 9), see (7.19). In the case of AA, we have E 9 = Δ 5 9−1 = 5 9 − 5 9−1 and write

5 9 ≈ 5 9−1 + �(G 9−1)(G 9 − G 9−1) → Δ 5 9−1 ≈ �(G 9−1)ΔG 9−1, (7.20)

which is an expression of the form (7.19) for index 9 − 1.

An advantage of nlTGCR is that relation (7.19) is a more accurate representation

of the Jacobian than relation (7.20), which can be a rough approximation when G 9
and G 9−1 are not close to each other. This advantage comes at the extra cost of an

additional function evaluation, but this can be mitigated by an adaptive scheme as

was seen at the end of Section 7.2.

7.5. Numerical illustration: nlTGCR and Anderson

We now return to the numerical examples seen in Section 6.6 to test nlTGCR along

with Anderson acceleration. As mentioned earlier we can run nlTGCR in different

modes. We can adopt a ‘linear’ mode which is nothing but an inexact Newton

approach where the Jacobian systems are solved with a truncated GCR method.

It is also possible to run an ‘adaptive’ algorithm, as described earlier - where we

switch between the linear and nonlinear residual modes with the help of a simple

criterion, see the end of Section 7.2. Figure 7.1 reproduces the curves of RRE(5)
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and AA(5,10), and AA-TGS(5,.) shown in Section 6.6 and add results with

nlTGCR_Ln(5,.), nlTGCR_Ad(5,.), the linear and adaptive versions of nlTGCR

respectively. As before the parameter 5 for these 2 runs represents the window

size. What is shown is similar to what we saw in Section 6.6 and the parameters,

such as residual tolerance maximum number of iterations, etc., are identical. One

difference is that, because the methods perform very similarly at the beginning, we

do not plot the initial part of the curves, i.e., we omit points for which the number

of function evaluations is less than 100.
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Figure 7.1. Comparison of 5 different methods for the Bratu problem (left) and the

Lennard-Jones optimization problem (right).

Because nlTGCR_Ln is in effect an inexact Newton method, one can expect a

superlinear convergence if a proper strategy is adopted when solving the Jacobian

systems. These systems are solved inexactly by requiring that we reduce the (linear)

residual norm by a certain tolerance g where g is adapted. Table 7.1 illustrates the

superlinear convergence of the Linear, i.e., inexact Newton version of nlTGCR, as

observed for the Lennard-Jones problem. The algorithm takes 10 outer (Newton)

iterations to converge but we only show the last four iterations (as indicated by the

column ’its’). The second column shows the progress of the norm of the gradient,

which is nearly quadratic as can be seen. The 3rd column shows the number of

inner steps needed to reduce the residual norm by [ at the given Newton step, where

[ is shown in the 4th column. This tolerance parameter [ is determined according

to the Eisenstat-Walker update, see Kelley (1995) for details. This update scheme

works by trying to produce a quadratically decreasing residual based on gains made

in the previous step.

8. Acceleration methods for machine learning

We conclude this article with a few preliminary thoughts on how acceleration

methods might be put to work in a world that is increasingly driven by Machine
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its ‖∇� ‖2 inner [

7 1.894e+00 10 4.547e-02

8 6.376e-02 22 1.337e-02

9 3.282e-04 47 1.020e-03

10 7.052e-09 59 2.386e-05

Table 7.1. The superlinear convergence of nlTGCR_Ln for the Lennard-Jones

example.

Learning (ML) and Artificial Intelligence (AI). Training deep neural networks

models is accomplished with one of a number of known iterative procedures.

What sets these procedures apart from their counterparts in physical simulations is

their reliance on stochastic approaches that exploit large datasets. This presents a

completely new landscape for acceleration methods, one for which they were not

originally designed. It is too early to definitively say whether or not acceleration

methods will be broadly adopted for ML/AI optimization, but it is certainly time to

start investigating what modifications to traditional acceleration approaches might

be required to deploy them successfully in this context.

Training an AI model is highly demanding, both in terms of memory and com-

putational power. The idea of resorting to acceleration in deep learning is a rather

natural one when considering that standard approaches may require tens of thou-

sands of iterations to converge. Anderson acceleration for deep learning tasks

was discussed in a number of recent articles, see, e.g. Pasini, Yin, Reshniak and

Stoyanov (2021, 2022), Sun, Wang, Liu, Pan, Jui, Jiang, Kong et al. (2021), Shi,

Song, Wu, Hsu, Wu and Huang (2019), among others. Most of these papers ad-

vocate some form of regularization to cope with the varying/ stochastic nature of

the optimization problem.

Before reviewing the challenges posed by stochastic techniques to acceleration

methods we briefly describe the Stochastic Gradient Descent (SGD) algorithm, one

of the simplest methods employed to train DNN models. In spite of its simplicity,

SGD is a good representative of iterative optimization algorithms in deep learning,

because its use is rather widespread and because it shares the same features as those

of the more advanced algorithms.

8.1. Stochastic Gradient Descent

The classical (deterministic) gradient descent (GD) method for minimizing a convex

function q(F) with respect to F, was mentioned in Section 4.2, see Equation (4.10).

If q is differentiable the method consists of taking the iterates:

F 9+1 = F 9 − [ 9∇q(F 9), (8.1)

where [ 9 is a scalar termed the step-size or learning rate in machine learning.

The above algorithm is well understood for functions q that are convex. In this
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situation, the step-size [ 9 is usually determined by performing a line search, i.e.,

by selecting the scalar [ so as to minimize, or reduce in specific ways, the cost

function q(F 9 − [∇q(F 9)) with respect to [. It was Cauchy (1847) who invented

the method for solving systems of equations; see also Petrova and Solov’ev (1997)

for additional details on the origin of the method.

In data-related applicationsF is a vector of weights needed to optimize a process.

This often amounts to finding the best parameters to use, say in a classification

method, so that the value of q at sample points matches some given result across

items of a dataset according to a certain measure. Here, we simplified notation by

writing q(F) instead of the more accurate q(G |F), which is to be read as “the value

of q for G given the parameter set F”.

In the specific context of Deep Learning, q(F) is often the sum of a large number

of other cost functions, i.e., we often have

q(F) =

#∑

8=1

q8(F) → ∇q(F) =

#∑

8=1

∇q8(F). (8.2)

The index 8 here refers to the samples in the training data. In the simplest case

where a ‘Mean Square Error’ (MSE) cost function is employed, we would have

q(F) =

=∑

8=1

‖ Ĥ8 − qF (G8)‖2
2 (8.3)

where Ĥ8 is the target value for item G8 and H8 = qF (G8) is the result of the model

for G8 given the weights represented by F.

Stochastic Gradient Descent (SGD) methods are designed specifically for the

common case where q(F) is of the form (8.2). It is usually expensive to compute

∇q but inexpensive to compute a component ∇q8(F). As a result, the idea is to

replace the gradient ∇q(F) in the gradient descent method by ∇q8 9 (F 9) where 8 9
is drawn at random at step 9 . The result is an iteration of the type:

F 9+1 = F 9 − [ 9∇q8 9 (F 9) . (8.4)

The step-size [ 9 , called the ‘learning rate’ in this context, is rarely selected by a

linesearch but it is determined adaptively or set to a constant. Convergence results

for SGD have been established in the convex case Bubeck (2015), Robbins and

Monro (1951), Hardt, Recht and Singer (2016), Gower, Loizou, Qian, Sailanbayev,

Shulgin and Richtárik (2019). The main point, going back to the seminal work by

Robbins and Monro (1951), is that when gradients are inaccurately computed, then

if they are selected from a process whose noise has a mean of zero then the process

will converge in probability to the root.

A straightforward SGD approach that uses a single function q8 9 at a time is

seldom used in practice because this typically results in a convergence that is too

slow. A common middle ground solution between the one-subfunction SGD and

the full Gradient Descent algorithm is to resort to mini-batching. In short the idea
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consists of replacing the single function q8 9 by an average of few such functions,

again drawn at random from the full set.

Thus, mini-batching begins with partitioning the set {1, 2, · · · , #} into =� ‘mini-

batches’ B 9 , 9 = 1, · · · , =� where

=�⋃

9=1

B 9 = {1, 2, · · · , #} with B 9

⋂
B: = ∅ for 9 ≠ :.

Here, eachB 9 ⊆ {1, 2, · · · , =} is a small set of indices. Then instead of considering

a single function q8 we will consider

qB 9
(F) ≡ 1

|B 9 |
∑

:∈B 9

q:(F). (8.5)

We will cycle through all mini-batches B 9 of functions at each time performing a

group-gradient step of the form:

F 9+1 = F 9 − [∇qB 9
(F 9) 9 = 1, 2, · · · , =� . (8.6)

If each set B 9 is small enough computing the gradient will be manageable and

computationally efficient. One sweep through the whole set of functions as in (8.6)

is termed an ‘epoch’. The number of iterations of SGD and other optimization

learning in Deep Learning is often measured in terms of epochs. It is common to

select the partition at random at each new epoch by reshuffling the set {1, 2, · · · , #}
and redrawing the batches consecutively from the resulting shuffled set. Models

can be expensive to train: the more complex models often require thousands or

tens of thousands of epochs to converge.

Mini-batch processing in the random fashion described above is advantageous

from a computational point of view since it typically leads to fewer sweeps through

each function to achieve convergence. It is also mandatory if we wish to avoid

reaching local minima and overfitting. Stochastic approaches of the type just

described are at the heart of optimization techniques in deep learning.

8.2. Acceleration methods for deep learning: The challenges

Suppose we want to apply some form of acceleration to the sequence generated by

the batched gradient descent iteration (8.6). There is clearly an issue in that the

function changes at each step by the nature of the stochastic approach. Indeed, by

the definition (8.5), it is as if we are trying to find the minimum of a new function at

each new step, namely the function (8.5) which depends on the batch B 9 . We could

use the full gradient which amounts to using a full batch, i.e., the whole data set, at

each step. However, it is often argued that in deep learning an exact minimization

of the objective function using the full data-set at once is not only difficult but also

counter productive. Indeed, mini-batching serves other purposes than just better

scalability. For example, it helps prevent ‘overfitting’: Using all the data samples
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at once is similar to interpolating a function in the presence of noise at all the data

points. Randomization also helps the process escape from bad local minima.

This brings us to the second problem namely the lack of convexity of the objective

functions invoked in deep learning. This means that all methods that feature a

second order character, such as a Quasi-Newton approach, will have both theoretical

and practical difficulties. As was seen earlier, Anderson Acceleration can be viewed

as a secant method similar to a Quasi-Newton approach. These methods will

potentially utilize many additional vectors but result in no or little acceleration, if

not in a breakdown caused by the non SPD nature of the Hessian. The lack of

convexity and the fact that the problem is heavily over-parameterized means that

there are many solutions to which the algorithms can converge. Will acceleration

lead to a better solution than that of the baseline algorithm being accelerated? If

we consider only the objective function as the sole criterion, one may think that the

answer is clear: the lower the better. However, practitioners in this field are more

interested in ‘generalization’ or the property to obtain good classification results

on data that is not among the training data set. The problem of generalization has

been the object of numerous studies, see, e.g., Zhang, Bengio, Hardt, Recht and

Vinyals (2021), Li, Xu, Taylor, Studer and Goldstein (2018), Wu, Zhu and E (2017),

Zhou, Feng, Ma, Xiong, Hoi and E (2020) among many others. The paper Zhang

et al. (2021) shows by means of experiments that looking at DL from the angle of

minimizing the loss function fails to explain generalization properties. The authors

show that they can achieve a perfect loss of zero in training models on well-known

datasets (MNIST, CIFAR10) that have been modified by randomly changing all

labels. In other words one can obtain parameters whose loss function is minimum

but with the worst possible generalization since the resulting classification would

be akin to assigning a random label to each item. A number of other papers explore

this issue further Zhou et al. (2020), Neyshabur, Tomioka and Srebro (2015), Li

et al. (2018), Wu et al. (2017) by attempting to explain generalization with the help

of the ‘loss landscape’, the geometry of the loss function in high dimensional space.

What can be understood from these works is that the problem is far more complex

than just minimizing a function. There are many minima and some are better than

others. A local minimum that has a smaller loss function will not necessarily lead

to better inference accuracy and the random character of the learning algorithms

plays a central role in achieving a good generalization. This suggests that we should

study mechanisms that incorporate or encourage randomness. An illustration will

be provided in the next section.

The third challenge is that acceleration methods tend to be memory intensive,

requiring to store possibly tens of additional vectors to be effective. In deep learning

this is not an affordable option. For example, a model like Chat-GPT3 has 175B

parameters while the more recent Llama3 involves 450B parameters. This is the

main reason why simple methods like SGD or Adam Kingma and Ba (2015) are

favored in this context.
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8.3. Adapting Acceleration methods for ML

Given the discussion of the previous section one may ask what benefits can be

obtained by incorporating second-order information in stochastic methods? Indeed,

the article Bottou, Curtis and Nocedal (2018) discusses the applicability of second

order methods for machine learning and, citing previous work, points out that

the convergence rate of a Quasi-Newton-type “... stochastic iteration (..) cannot

be faster than sublinear”. However, Bottou and Le Cun (2005) state that if the

Hessian approximation converges to the exact Hessian at the limit then the rate

of convergence of SGD is independent of the conditioning of the Hessian. In

other words, second order information makes the method “better equipped to

cope with ill-conditioning than SGD”. Thus, careful successive rescaling based on

(approximate) second-order derivatives has been successfully exploited to improve

convergence of stochastic approaches.

The above discussion may lead the potential researcher to dismiss all acceleration

methods for deep learning tasks. There are a few simple variations to acceleration

schemes to cope with some of issues raised in Section 8.2. For example, if our goal

is to accelerate the iteration (8.6) with a constant learning rate [, then we could

introduce inner iterations to “iterate within the same batch”. What this means is

that we force the acceleration method to act on the same batch for a given number

of inner iterations. For example, if we use RRE (see Section 2.6) we could decide

to restart every : iterations, each of which is with the same batch B 9 . When the

next batch is selected, we replace the latest iterate with the result of the accelerated

sequence. We found with simple experiments that a method like RRE will work

very poorly without such a scheme.

On the other hand, if we are to embrace a more randomized viewpoint, we could

adopt a mixing mechanism whereby the subspaces used in the secant equation

evolve across different batches. In other words we no longer force the accelerator

to work only on the same batch. Thus, the columns of the X 9 ,F 9 in (6.5) of

Anderson acceleration are now allowed to be associated with different batches. In

contrast with RRE, our preliminary experiments show that for AA and AA-TGS

this in fact works better than adding an inner loop.

Here is a very simple experiment carried out with the help of the PyTorch library

Paszke, Gross, Massa, Lerer, Bradbury, Chanan, Killeen, Lin, Gimelshein, Antiga

et al. (2019). We train a small Multilayer Perceptron (MLP) model, see, e.g.,

Murphy (2022), with two hidden layers to recognize handwritten images from

the dataset MNIST (60,000 samples of images of handwritten digits for training,

10,000 samples for testing). We tested 4 baseline standard methods available in

PyTorch: SGD, Adam, RMSprop, and Adagrad. Each of these is then accelerated

with RRE (RRE), Anderson Acceleration (AAc), or Anderson-TGS (TGS). Here

we show the results with SGD only. AA and AA-TGS use a window size of 3

and a restart dimension of 10. Both implement the batch-overlapping subspaces

discussed above (no inner loop). In contrast RRE incorporates an inner loop of 5
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small window size (< = 3 for AA-TGS, < = 2 for nlTGCR) will essentially be

equivalent to a window size of < = ∞, potentially leading to a big advantage. In

a general nonlinear optimization situation the Hessian is symmetric so when the

iterates are near the optimum and a nearly linear regime sets in, then the process

should benefit from the short-term recurrences of AA-TGS and nlTGCR. In fact

this may explain why AA-TGS does so much better at reducing the loss than AA

with the same parameters in the previous experiment, see Figure 8.1. From this

perspective, any iteration involving short-term recurrence is worth exploring for

Machine Learning.

What is clear is that acceleration methods of the type discussed in this paper have

the potential to emerge as powerful tools for training AI models. While adapting

them to the stochastic framework poses challenges, it also offers a promising

opportunity for future research.
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