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A B S T R A C T

Despite the remarkable achievements of deep neural networks, their high computational complexity limits
their wide use in many real-world embedded applications, such as autonomous driving perception. While
current neural network pruning approaches can reduce model complexity to various extents, they often adopt
local or ad hoc importance measures that are not directly related to the final task. More importantly, most
of them focus on classification tasks and do not take location information into consideration during pruning.
To address these issues, we present a novel channel importance measure that incorporates detection-related
saliency and location awareness, specifically designed for the pruning of self-driving visual detectors. Our
comprehensive experiments on the KITTI and COCO_traffic datasets demonstrate that our pruning method
achieves significant reductions in model size and computational operations with little performance degradation.
Notably, it outperforms other state-of-the-art methods across various pruning rates and base detectors. Our
pruned YOLOX-S model with 40.2% fewer parameters even improves the original model’s mAP by 1.8% on
KITTI. Moreover, we experimentally highlight the potential of our pruning approach in effectively detecting
small-scale objects.
1. Introduction

Deep neural networks (DNNs) have advanced the state of the
art across various computer vision tasks. However, their huge size
and computational costs prevent their wide deployment on resource-
constrained platforms. Especially in autonomous driving, long pro-
cessing time can be disastrous. Given that autonomous driving algo-
rithms usually run on resource-constrained hardware (e.g., embedded
CPUs/GPUs), compressing deep models becomes crucial to achieving
real-time performance. Neural network pruning has become one the
most popular and widely used compression techniques [1–3]. Un-
like other compression techniques, such as knowledge distillation [4,
5] and quantization [6,7]), network pruning directly removes un-
necessary/redundant components from a neural network [1,2,8–10].
specially, structured pruning which aims to remove entire filters
r neurons has gained great attention due to its direct speedup and
ompression using general-purpose hardware or Basic Linear Algebra
ubprograms (BLAS) libraries [2,10–14].
The main difference among various pruning methods lies in their

mportance measure. For instance, many pruning works [2,11,13–15]
ased on straightforward statistics of filter weights, such as magnitude
r variance, tend to rely on locally computed importance measures.
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They often overlook the interconnections among filters and/or have
little relevance to the final task utility. Furthermore, it is worth noting
that most pruning approaches are designed for classification tasks [11,
12,14,16,17] and do not pay special attention to the location infor-
mation, which is crucial to visual detection. In this paper, we pro-
pose a novel saliency-and-location-aware channel pruning technique
that is specially designed for self-driving visual detection. The key
contributions of this paper are summarized as follows:

• Unlike existing pruning approaches, our channel importance mea-
sure directly reflects a channel’s contribution to the final detec-
tion utility. We leverage gradients derived from detection losses
with respect to channel features to help guide the pruning process
of deep visual detection models.

• We take critical location information into consideration during
deep detector pruning. We find that both actual object location
information and contextual information surrounding the objects
are beneficial.

• In our experiments on KITTI and COCO_traffic, we demonstrate
that our proposed approach can beat state-of-the-art (SOTA) prun-
ing approaches. For example, on KITTI, the proposed approach
ttps://doi.org/10.1016/j.neucom.2024.128656
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attains substantial parameter reductions of 36.9% and 59.7% or
FLOP reductions of 43.1% and 33.6%, with only minor mAP drops
of 0.2% and 0.1% for YOLOF and ATSS, respectively. Notably,
our pruned model can even beat the original unpruned model.
For example, in the YOLOX-S on KITTI case, we achieve a 1.8%
improvement in mAP while reducing parameters and FLOPs by
40.2% and 29.2%, respectively.

• Our pruning method performs particularly well in detecting small-
scale objects, which is an essential aspect for practical applica-
tions like autonomous driving.

This is the journal version of our previous work [18], with signifi-
ant improvements: (1) We demonstrate the efficacy of our approach in
omparison to a wider range of cutting-edge detection models [19–22].
2) To show the advantages of our method, we compare our method
ith HRank [17] and HALP [23], in addition to L1 Pruning [2], Net
limming [24], and CHIP [16]. (3) We conduct a comprehensive qual-
tative analysis employing various pruning methods for comparison,
hich offers an in-depth visual understanding of our proposed ap-
roach’s advantages. (4) Through extensive experiments, we investigate
he behavior of our pruned models across various pruning rates and
hoose a decay function that better captures contextual information for
ffective pruning. (5) We also explore the real-world consequences of
arameter and FLOP reduction through pruning and how our pruning
ffects inference latency.

. Related work

.1. Deep visual detectors

Visual detection is one critical component in autonomous driving
ystems, which aims to precisely locate and identify road objects such
s cars, pedestrians, and traffic signs, making the entire driving process
afer. Compared to traditional visual detectors [25,26], deep visual
etectors usually provide better performance in finding and localizing
hese objects [21,27–30]. Typically, deep visual detection algorithms
an be classified into two main types: one-stage and two-stage. Two-
tage detectors like the R-CNN family [27,31,32] have a region of
nterest (ROI) proposal step followed by classification and bounding
ox regression of each candidate ROI. These models can offer com-
arable or better accuracy but are slower than one-stage detectors.
n the other hand, one-stage detectors like the YOLO family [21,
2,28,33] skip the region proposal stage and run classification and
ocalization directly and simultaneously, making them more efficient
han two-stage detectors. In this work, targeting the time-sensitive task
f autonomous driving perception, we explore various one-stage visual
etectors (e.g., YOLOX-S [21], YOLOF [22], GFL [20], ATSS [19]) as
our baseline models and aim to further improve the model deployment
efficiency through pruning.

2.2. Pruning of neural networks

As neural networks become more complex, their memory and com-
putational requirements grow substantially. Consequently, neural net-
work pruning has become a prominent strategy to improve network
efficiency. Pruning methods remove redundant or unnecessary com-
ponents within neural networks and can be roughly classified into
unstructured [1,8,9,15,34] and structured pruning [2,10–14,17].

Unstructured pruning. Early works, like Optimal Brain Damage [8]
and Optimal Brain Surgeon [9], focused on unstructured pruning by
removing individual weights. While these methods demonstrated the
feasibility of removing unnecessary weights with minimal loss in ac-
curacy, they face challenges when being adapted to deep networks
due to computational costs or strict assumptions. Later unstructured
pruning approaches include [1,15,34–36]. Han et al. [1] presented
a magnitude-based method to eliminate unimportant weights with
2 
absolute values smaller than a predefined threshold. Guo et al. [15]
introduced dynamic network surgery, allowing pruned weights to be
restored if deemed crucial, to compensate for unexpected loss. Re-
cently, Park et al. [36] introduced lookahead pruning as an extension
of magnitude-based pruning. Nevertheless, the practical implementa-
tion of these unstructured approaches presents challenges within the
existing hardware and software environments [37,38].

Structured pruning. In contrast to unstructured pruning, structured
pruning methods [2,10–14,16,17,39] directly removes entire channels
or filters, enabling actual speedup and compression using off-the-shelf
hardware or software. The key difference among the existing structured
pruning methods lies in how they assess the importance of a fil-
ter/channel. Li et al. [2] proposed a filter pruning method based on the
L1-norm of the filter weights, considering filters with smaller L1-norm
values as less important and pruning them. He et al. [14] presented
a geometric median-based pruning approach, where the filters closest
to this median were considered redundant and subsequently removed.
While these filter-weight-based methods are simple and effective, they
do not consider the distribution of input data, potentially leading
to suboptimal performance. On the other hand, activation/feature-
based methods consider both input data and filter parameters for filter
pruning, allowing them to capture useful information from the actual
data distribution and filters. Our proposed technique aligns with this
line of research. Hu et al. [10] proposed to explore sparsity in activation
maps by evaluating the importance of each filter based on the Average
Percentage of Zero (APoZ). Liu et al. [24] proposed Network Slim-
ming, which applies L1 regularization on the scaling factors in Batch
Normalization layers to identify and prune less important channels.
This method aims to induce sparsity in the scaling factors, which are
then used to determine which channels to prune. In He et al. [40]
and Luo et al. [41], they viewed channel selection as an optimization
problem. Both methods [40,41] tried to minimize the reconstruction
error of feature maps, where LASSO regression and greedy strategy
were used to select the pruned channels, respectively. Liu and Wu [39]
presented a channel pruning technique that relies on the mean gradient
of feature maps in each layer. Lin et al. [17] presented HRank that
prunes filters based on the rank of their feature maps, assuming lower-
ranked feature maps contain less information. Sui et al. [16] proposed
Channel Independence-Based Pruning (CHIP) to determine the impor-
tance of each feature map. Less independent channels are considered
redundant and pruned. Shen et al. [23] introduced Hardware-Aware
Latency Pruning (HALP), which aims to prune neural networks to
meet specific hardware latency constraints while maximizing accuracy.
However, these methods primarily target classification tasks and do not
explicitly account for the spatial importance of features in detection
tasks. Recently, Huang et al. [42] introduced CP3, a Channel Pruning
Plug-in designed to enhance existing channel pruning methods on 3D
Point-based networks. Guo et al. [43] introduced an automatic pruning
approach based on the Information Bottleneck (IB) theory, addressing
the channel pruning problem from an IB perspective.

Pruning for object detection. While most existing pruning approaches
are tailored for deep classification models [2,16,17,24], there are only a
limited number of studies addressing the more complex object detection
tasks [44,45]. Targeting object detection, Xie et al. [44] presented a
localization-aware channel pruning approach (LCP), which involves an
auxiliary network designed for the object detection task. Li et al. [45]
introduced a multi-task information fusion method for object detection
pruning (MIFCP) where the multi-task information is extracted from
an auxiliary network. Although both our approach and these methods
focus on channel pruning for the object detection task, our approach
differs in its comprehensive incorporation of visual saliency and loca-
tion information, and the explicit inclusion of contextual information
surrounding the objects. Unlike LCP [44] and MIFCP [45], which rely
on auxiliary networks designed for object detection, our approach elim-
inates the need for such networks. These auxiliary networks increase
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both the complexity of the pruning process and the overall training
time. In contrast, our pruning importance measure is directly tied to
the final detection objective, incorporating both saliency and location
information. This measure can be computed with minimal overhead,
streamlining the pruning process.

2.3. Visual saliency

Classic visual saliency methods provide insights into the decision-
making of a neural network. Early saliency methods in the deep
learning era include gradient-based approaches [46] and the decon-
volutional network approach [47] to discover salient regions. Later
methods like guided backpropagation [48], class activation mapping
(CAM) [49], Grad-CAM [50], and Grad-CAM++ [51] were introduced
to enhance saliency measures. All the above saliency measures are
designed for classification tasks. Some works attempt to ‘‘predict"
saliency with priors and assumptions. For example, Jian et al. [52]
proposed integrating spatial position priors with background cues for
visual saliency detection. The predicted saliency based on priors and
assumptions may not align with the features a neural network deems
important for decision-making. This paper introduces a saliency mea-
sure directly related to visual detection and incorporates it into channel
importance calculation, along with location and context information, to
guide the pruning of deep autonomous driving detectors.

3. Methodology

In this section, we present a saliency-and-location-aware channel
pruning approach for deep visual detection models. Pruning deep visual
detectors is more challenging than pruning deep classifiers, as visual de-
tection involves both object classification and localization. Our goal is
to minimize the complexity of deep visual detectors without degrading
the performance (mAP).

3.1. Overview

Unlike the majority of pruning approaches that focus on classi-
fication, in this work, we attempt to prune visual detection models
in a saliency-and-location-aware way, utilizing both classification and
localization information. We particularly target autonomous driving
applications where both accuracy and speed are critical. To quantify
channels’ detection utility, we consider the derivatives of the detection
losses (including classification and localization regression) with respect
to channel features. In addition, we integrate relevant object location
information and contextual insights into our importance measure to
make our pruning of object detectors location-aware. Unlike existing
pruning approaches, our approach is holistic and captures each chan-
nel’s contribution to the final detection utility. The overview of the
proposed saliency and location aware pruning approach is shown in
Fig. 1.

3.2. Saliency and location aware channel importance criterion

As discussed in Section 2.2, one major limitation with current
pruning importance measures is their lack of direct alignment with
task utility. We argue that the importance measure of individual units
within a deep visual detector should consider their contribution to
the final detection (including both classification and localization). In
this paper, we propose a saliency and location aware detection utility
measure and utilize it to guide our pruning.

To compute the channel importance score 𝑆𝑘𝑙 of the 𝑘th channel
within layer 𝑙, we first define the detection-utility-weighted feature at
the position (𝑖, 𝑗) in the 𝑘th channel of layer 𝑙 as:

𝑤𝑘𝑙
(𝑖,𝑗) =

( 1
𝑊𝐻

𝑊
∑

𝐻
∑ 𝜕𝑑𝑒𝑡

𝑘𝑙

)

𝐴𝑘𝑙
(𝑖,𝑗) , (1)
𝑖=1 𝑗=1 𝜕𝐴(𝑖,𝑗)
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where 𝑑𝑒𝑡 is the total loss for the object detection task, 𝐴𝑘𝑙
(𝑖,𝑗) represents

the feature point located at (𝑖, 𝑗) within the 𝑘th feature map of layer 𝑙,
W and H indicate the width and height of the feature map, respectively.
The gradients of the detection utility with respect to channel features
are averaged across the width and height dimensions, and then they are
multiplied with the feature map to yield the detection-utility-weighted
map denoted as 𝑤𝑘𝑙

(𝑖,𝑗). The process of pruning visual detectors should

consider both classification and location aspects. The overall detection
loss 𝑑𝑒𝑡 is comprised of the classification loss 𝑐𝑙𝑠 and the bounding
ox regression loss 𝑏𝑜𝑥:

𝑑𝑒𝑡 =
𝑀
∑

𝑚=1
I𝑜𝑏𝑗𝑚 (𝜆𝑐𝑙𝑠𝑐𝑙𝑠 + 𝜆𝑏𝑜𝑥𝑏𝑜𝑥) , (2)

where I𝑜𝑏𝑗𝑚 indicates whether the 𝑚th bounding box contains an object
(i.e., I𝑜𝑏𝑗𝑚 = 1) or not (i.e., I𝑜𝑏𝑗𝑚 = 0), and 𝑀 stands for the total number
of predicted bounding boxes. 𝜆𝑐𝑙𝑠 and 𝜆𝑏𝑜𝑥 are hyperparameters that
balance the respective contributions of the classification and bounding
box regression loss terms.

Moreover, unlike pruning measures for classification tasks, we pro-
pose to include location information in the utility calculation. To be
more specific, we consider both ground truth bounding box information
and contextual information surrounding the bounding boxes. Includ-
ing the object location information can direct more attention to the
foreground objects of interest and help filter out irrelevant distractions.
Additionally, surrounding regions provide valuable contextual cues for
accurate object detection. Thus, we define our location-weighted utility
map as:

𝑤𝑘𝑙
(𝑖,𝑗) = 𝛽𝑙(𝑖,𝑗)𝑤

𝑘𝑙
(𝑖,𝑗) , (3)

where 𝛽𝑙(𝑖,𝑗) denotes the reweighting coefficient associated with the
given location within layer 𝑙, which is defined as:

𝛽𝑙(𝑖,𝑗) =

⎧

⎪

⎨

⎪

⎩

1 𝑖𝑓 (𝑖, 𝑗) ∈ 𝑎𝑟𝑒𝑎()
𝑓𝑑𝑒𝑐𝑎𝑦(𝑖, 𝑗) 𝑒𝑙𝑠𝑒 𝑖𝑓 (𝑖, 𝑗) ∈ 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟()
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, (4)

where  denotes a set of the ground truth bounding boxes, 𝑎𝑟𝑒𝑎()
corresponds to the set of pixels within these bounding boxes, and
𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟() represents a set of adjacent pixels surrounding the bound-
ing boxes. The size of these margins is proportional to the dimen-
sions of the bounding boxes and the ratio is determined empirically.
Furthermore, 𝑓𝑑𝑒𝑐𝑎𝑦(⋅, ⋅) is a decay function defined as follows:

𝑓𝑑𝑒𝑐𝑎𝑦(𝑖, 𝑗) = 𝑚{(𝑖 − 𝑎)2 + (𝑗 − 𝑏)2}−𝑠 , (5)

where 𝑚 represents a nonzero constant, (𝑎, 𝑏) stands for the center of the
orresponding ground truth bounding box, and 𝑠 is a real-valued num-
ber. In addition to the pixels inside the ground truth box, we take into
account the neighboring pixels while adjusting their attention weights.
This reweighting is related to the distance of a given neighboring pixel
from the bounding box center.

For a given input sample, we define the importance of the 𝑘th
channel of layer 𝑙 as follows:

𝑆𝑘𝑙 = |

∑

𝑖

∑

𝑗
𝑤𝑘𝑙

(𝑖,𝑗)| . (6)

The algorithm described in Algorithm 1 outlines the core procedure
of our proposed channel pruning method. Unlike conventional pruning
techniques that rely on generic importance measures such as mag-
nitude or variance, our method employs a task-specific importance
measure that reflects each channel’s contribution to the final detection
utility. This measure incorporates three key components: detection-
related saliency, actual object location information, and surrounding
contextual information. Many existing pruning techniques are designed
primarily for classification tasks and do not incorporate location infor-
mation, which is crucial for visual detection. The integration of our
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Fig. 1. Overview of the proposed saliency and location aware pruning approach for visual detectors. The location-aware reweighting and the channel importance calculation are
based on Eqs. (4) and (6), respectively. C denotes the number of channels in a layer and the dotted red boxes in the figure indicate unimportant channels to be pruned.
key elements ensures that the pruning process preserves features that
are vital for accurately identifying and localizing objects in the scene. In
Section 4.3.1, we demonstrate that each of these components positively
impacts the overall performance of the pruned visual detectors, and
together, they contribute significantly to the model’s improvement.

Algorithm 1 Saliency & Location Aware Pruning for Layer 𝑙
Input: pre-trained model, pruning rate 𝜂, sample size𝑁 , layer 𝑙 with
channels
utput: pruned model ′

1: for each sample image do
2: for each channel k do
3: Calculate the detection-utility-weighted feature:

𝑤𝑘𝑙
(𝑖,𝑗) =

(

1
𝑊𝐻

∑𝑊
𝑖=1

∑𝐻
𝑗=1

𝜕𝑑𝑒𝑡
𝜕𝐴𝑘𝑙

(𝑖,𝑗)

)

𝐴𝑘𝑙
(𝑖,𝑗)

4: Calculate the location-weighted utility map:
𝑤𝑘𝑙

(𝑖,𝑗) = 𝛽𝑙(𝑖,𝑗)𝑤
𝑘𝑙
(𝑖,𝑗)

5: Calculate the saliency and location aware channel importance:
𝑆𝑘𝑙 = |

∑

𝑖
∑

𝑗 𝑤
𝑘𝑙
(𝑖,𝑗)|

6: end for
7: end for
8: Average across N samples: 𝑆𝑘𝑙

𝑎𝑣𝑔 =
∑𝑁

𝑛=1 𝑆
𝑘𝑙
𝑛

𝑁
9: Remove the channels with the lowest 𝑆𝑘𝑙

𝑎𝑣𝑔 and their corresponding
filters based on the pruning rate 𝜂

10: Fine-tune the pruned model

4. Experiments and results

4.1. Experimental setup

In addition to two cutting-edge YOLO family members (i.e., YOLOX-
S [21] and YOLOF [22]), we have explored ATSS [19] and GFL [20]
s base models in our experiments. CSPDarkNet53 [53] and ResNet50
54] are employed as the backbone architectures for YOLOX-S and the
ther three models, respectively. All baseline models have been pre-
rained on MS-COCO 2017 [55]. We test our pruning approach on
wo datasets, i.e., KITTI [56] and COCO_traffic [57]. For KITTI, we
ave followed the same pre-processing as [58]. Specifically, the KITTI
dataset includes three categories: car, cyclist, and pedestrian where the
categories of car, van, truck, and tram have been combined into a single
category, car. We divide the 7,481 training images into two halves, with
 p

4 
the first half used as the training set and the second half reserved for
validation (as the testing images lack labels). COCO_traffic [57] is a
subset of COCO dataset [55], which is composed of images containing
at least one of the 13 traffic-related categories (i.e., person, bicycle,
car, motorcycle, bus, train, truck, traffic light, fire hydrant, stop sign,
parking meter, dog, and cat). The dataset comprises 25,180 training
images and 1,092 testing images in total.

As a data-driven approach, our importance measure is computed
based on training data. However, employing the entire dataset for
calculating channel importance is generally unfeasible (and unneces-
sary as we will demonstrate later) for large datasets. For this task, we
propose to utilize a class-balanced subset of the training images. To
determine the optimal subset size, we conduct experiments with class-
balanced subsets of varying sizes, and the pruning results using these
subsets can be seen in Fig. 2. The experimentation involves YOLOX-
S on both KITTI and COCO_traffic. Notably, for both datasets, the
performance reaches a plateau after a certain subset size, beyond which
there is minimal improvement. Taking this into account, we use a class-
balanced set containing 50 training images for KITTI and 128 training
images for COCO_traffic to evaluate the average channel importance.

After completing the channel pruning at a specified pruning rate,1
we proceed to fine-tune the pruned models using the SGD optimizer. To
be specific, we re-trained the pruned model for 300 epochs for YOLOX-
S and YOLOF, and 24 epochs for ATSS and GFL, on the KITTI dataset.
On COCO_traffic, we performed 100 epochs of re-training for YOLOX-S
and YOLOF, and 24 epochs for ATSS and GFL. For both datasets, we
use a batch size of 8, a momentum of 0.9, a weight decay of 0.0005,
and an initial learning rate of 0.01. The mean Average Precision (mAP)
with IoU threshold of 0.5 is used as our overall performance metric.
Furthermore, we compute Average Precisions (APs) for various object
scales — small, medium, and large — for each dataset. In this context,
AP𝑆 , AP𝑀 , and AP𝐿 correspond to the AP scores for objects categorized
as small (area less than 322), medium (area ranging from 322 to 962),
and large (area exceeding 962), respectively.

4.2. Comparative analysis: mAP vs. Pruning rate

In this subsection, we assess the efficacy of our proposed pruning
method on the different base detectors (namely, YOLOX-S, YOLOF,

1 By default, the pruning rate refers to the channel pruning rate or the
ercentage of channels discarded in this paper.



J.I. Choi and Q. Tian Neurocomputing 611 (2025) 128656 
Fig. 2. mAP performance of the pruned models vs. training images used during channel importance calculation. Each class is equally represented in the selected training images.
Base: YOLOX-S, pruning rate: 30%, datasets: (a) KITTI and (b) COCO_traffic. In both cases, the performance reaches a plateau once a specific subset size is achieved.
Fig. 3. Pruning of (a) YOLOX-S, (b) YOLOF, (c) ATSS on KITTI. (d) is a zoomed-in view of (c). The competing pruning approaches are L1 Pruning [2], Net Slimming [24],
HRank [17], CHIP [16], and HALP [23]. The 𝑥-axis is the percentage of the parameters that have been discarded, and the 𝑦-axis indicates the performance of pruned models.
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ATSS, and GFL) at different pruning rates. These evaluations are con-
ducted using both the KITTI and COCO_traffic datasets. Then, we
perform a comparative analysis between our approach and a range
of classic and/or SOTA pruning methods including, 𝐿1-norm based
pruning [2], Network Slimming [24], HRank [17], CHIP [16], and
HALP [23] for a comprehensive comparison.

4.2.1. Results on KITTI
First, on the KITTI dataset, our pruning approach is applied to

YOLOX-S, YOLOF, and ATSS models. We then assess its pruning efficacy
in comparison to several SOTA pruning methods. As HRank [17] and
CHIP [16] did not provide details regarding their specific layer-wise
sparsity configurations, we adopt a uniform pruning rate for these two
techniques. For a fair comparison, we also adopt this uniform pruning
rate for our approach. In [23], only one latency look-up table was
provided for ResNets. To ensure a fair comparison, our comparison with
HALP [23] was conducted on base detectors using a ResNet backbone,
including ATSS, YOLOF, and GFL. The impact of our pruning on model
performance is illustrated in Fig. 3. This figure shows the results for
 o

5 
YOLOX-S, YOLOF, and ATSS in (a), (b), and (c), respectively. Across all
the different pruning rates examined in our experiment, our proposed
method consistently outperforms the other approaches. For a closer
examination, Fig. 3(d) provides a zoomed-in view of (c). This focused
view allows for a more detailed comparison of our method with the
three competing approaches: HRank, CHIP, and HALP.

The detailed results for ATSS, YOLOF, and YOLOX-S are shown in
Tables 1, 2, and 3, respectively. In Table 1, our approach maintains a
omparable performance with a 0.1% mAP reduction, even as param-
ters are pruned by 59.7% (33.6% reduction in FLOPs). As shown in
able 2, the proposed approach maintains a competitive performance,
ith only a marginal 0.2% mAP decrease, despite a substantial reduc-
ion of 36.9% in parameters (43.1% reduction in FLOPs). Similarly,
n Table 3, our approach even achieves an improvement of 1.8%
AP over the original model while pruning 40.2% of the parameters
29.2% reduction in FLOPs). In addition to the overall mAP, our method
utperforms the competing SOTA approaches in detecting small-scale
bjects across a range of pruning rates and baseline models.
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Table 1
mAP performance of pruned models (base: ATSS, dataset: KITTI). The numbers in parentheses indicate the
percentage reduction compared to the unpruned model. ‘–’ indicates that we did not explore further pruning
rates due to excessive loss of important features, with some layers ending up with no filters, breaking the
model’s information flow.
Approach Pruning FLOPs Params AP𝑆 b AP𝑀 b AP𝐿b mAP

rate (%)a (G) (M) (%) (%) (%) (%)

Original ATSS 0 219.74 32.12 79.1 88.8 93.5 87.9

L1 Pruning [2]

30

165.17 (−24.8%) 20.08 (−37.5%) 39.4 59.5 17.6 43.7
Net Slimming [24] 176.60 (−19.6%) 19.75 (−38.5%) 67.4 83.0 77.6 78.6
HRank [17] 163.69 (−25.5%) 19.21 (−40.2%) 78.9 87.7 93.5 87.4
CHIP [16] 163.67 (−25.5%) 19.20 (−40.2%) 77.5 88.3 93.2 87.3
HALP [23] 178.54 (−18.7%) 17.98 (−44.0%) 78.1 87.8 93.2 87.0
Ours 170.67 (−22.3%) 19.18 (−40.3%) 79.1 88.6 93.3 87.7

L1 Pruning [2]

50

148.78 (−32.3%) 13.60 (−57.7%) 31.3 42.6 11.5 30.6
Net Slimming [24] 163.53 (−25.6%) 13.30 (−58.6%) 45.0 66.8 77.3 64.1
HRank [17] 135.22 (−38.5%) 12.87 (−59.9%) 78.3 86.9 92.8 86.4
CHIP [16] 135.30 (−38.4%) 12.91 (−59.8%) 78.2 87.3 92.7 86.6
HALP [23] 150.78 (−31.4%) 12.61 (−60.7%) 77.7 86.4 92.3 85.9
Ours 145.80 (−33.6%) 12.93 (−59.7%) 79.3 88.4 93.3 87.8

L1 Pruning [2]

70

143.69 (−34.6%) 9.40 (−70.7%) 28.4 37.1 10.2 26.7
Net Slimming [24] 149.38 (−32.0%) 8.78 (−72.7%) 40.2 58.6 17.9 43.3
HRank [17] 116.24 (−47.1%) 8.83 (−72.5%) 71.8 84.7 91.5 83.2
CHIP [16] 115.46 (−47.5%) 8.68 (−73.0%) 75.1 86.5 92.8 85.5
HALP [23] 134.43 (−38.8%) 8.52 (−73.5%) 72.0 84.9 90.2 83.1
Ours 127.78 (−41.8%) 8.71 (−72.9%) 78.3 88.0 92.9 87.2

L1 Pruning [2]

80

127.29 (−42.1%) 7.96 (−75.2%) <10 <10 <10 <10
Net Slimming [24] 126.97 (−42.2%) 7.70 (−76.0%) <10 <10 <10 <10
HRank [17] 101.88 (−53.6%) 6.00 (−81.3%) 69.8 82.9 88.7 80.9
CHIP [16] 100.85 (−54.1%) 5.83 (−81.8%) 69.0 83.3 89.4 81.4
HALP [23] – – – – – –
Ours 101.52 (−53.8%) 5.93 (−81.5%) 71.1 84.4 89.6 82.5

L1 Pruning [2]

90

– – – – – –
Net Slimming [24] – – – – – –
HRank [17] 86.70 (−60.5%) 3.64 (−88.7%) 33.8 50.9 62.7 49.4
CHIP [16] 86.05 (−60.8%) 3.59 (−88.8%) 34.1 48.3 58.1 47.1
HALP [23] – – – – – –
Ours 86.43 (−60.7%) 3.61 (−88.8%) 39.7 58.0 64.7 54.9

a Pruning rate refers to the channel pruning rate or the percentage of channels discarded.
b AP𝑆 , AP𝑀 , and AP𝐿 indicate the Average Precision scores for small, medium, and large objects, respectively.
.2.2. Results on COCO_traffic
We assess the effectiveness of our approach on the COCO_traffic

ataset using YOLOX-S, YOLOF, and GFL models and compare it with
he competing methods. The results for these detectors are illustrated
n Fig. 4. Across all pruning rates explored in our study, our approach
onsistently achieves the highest mAP among the pruning methods for
ll three base models. Similar to Fig. 3, for a more detailed analysis,
ig. 4(d) offers a zoomed-in view of (c).
The detailed results for GFL, YOLOF, and YOLOX-S models are

hown in Tables 4, 5, and 6, respectively. On the COCO_traffic dataset,
our approach also demonstrates superior performance in the detection
of small-scale objects when compared to the competing SOTA ap-
proaches. For example, our pruned GFL, YOLOF, and YOLOX-S models
can achieve an average of 7.6%, 6.3%, and 7.5% higher mAP for small-
scale objects compared to models using the other competitive methods,
with 40.1%, 36.9%, and 50.7% model size reductions, respectively.

In Fig. 5, we visually compare our method’s detection results with
those of the competing pruning approaches on COCO_traffic examples.
As we can see, our approach demonstrates the best detection perfor-
mance, especially for small-scale cases (as denoted by cyan circles
in Fig. 5). A potential explanation is that bounding boxes of smaller
objects inherently offer limited information, causing the surrounding
areas to assume a more significant and crucial role in such cases. Our
approach can better take advantage of such neighboring contextual
information in addition to the bounding box information.

4.3. Ablation analysis

To examine and assess the effects of various factors on our pruned

model’s performance, we perform a comprehensive ablation analysis.

6 
This study evaluates the influence of individual importance components
and decay weighting functions on our detection utility measure.

4.3.1. Impact of individual importance elements
We investigate the three elements of our saliency-based, location-

aware channel importance measure: the gradients of the detection
utility, ground truth bounding boxes, and the contextual information
in the vicinity. We remove one element at a time, conduct the channel
pruning, and assess its effects on channel pruning performance. The
experiments are conducted on the KITTI dataset, using YOLOX-S as the
base model. The pruning rate is set at 30% for all experiments. The
outcomes are presented in Table 7. Notably, each element contributes
positively to the overall performance of our pruned model, and the
model, which takes into account all three elements when computing
channel importance, attains the highest mAP. This illustrates the effec-
tiveness of the proposed method, which integrates these elements to
optimize channel pruning.

4.3.2. Decay weighting functions
In our approach, we enhance the ground truth bounding boxes by

incorporating additional contextual information. This involves intro-
ducing margins to the boxes and applying a decay function to the
surrounding regions. The importance of the surrounding context in
boosting the performance of the pruned model has been previously
testified. Here, we assess the effects of substituting decay functions on
model performance. For our analysis, we focus on the YOLOX-S model
and conduct experiments on the KITTI dataset at various parameter

pruning rates (i.e., 40.2%, 59.6%, and 72.4%, corresponding to 30%,
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Table 2
mAP performance of pruned models (base: YOLOF, dataset: KITTI). The numbers in parentheses indicate the
percentage reduction compared to the unpruned model. ‘–’ indicates that we did not explore further pruning
rates due to excessive loss of important features, with some layers ending up with no filters, breaking the
model’s information flow.
Approach Pruning FLOPs Params AP𝑆 b AP𝑀 b AP𝐿b mAP

rate (%)a (G) (M) (%) (%) (%) (%)

Original YOLOF 0 106.90 42.39 74.4 89.4 93.6 87.4

L1 Pruning [2]

30

63.09 (−41.0%) 27.87 (−34.3%) 65.1 80.1 84.0 77.8
Net Slimming [24] 80.54 (−24.1%) 25.54 (−39.7%) 67.3 84.5 89.4 81.8
HRank [17] 60.48 (−43.4%) 25.59 (−37.3%) 74.8 88.2 92.6 86.4
CHIP [16] 60.83 (−43.1%) 26.75 (−36.9%) 74.1 88.2 92.4 86.3
HALP [23] 55.47 (−48.1%) 26.28 (−38.0%) 71.8 89.1 94.1 86.4
Ours 60.83 (−43.1%) 26.75 (−36.9%) 76.6 88.8 92.7 87.2

L1 Pruning [2]

50

50.83 (−52.5%) 22.34 (−47.3%) <10 <10 <10 <10
Net Slimming [24] 45.89 (−57.1%) 18.04 (−57.4%) 62.1 81.7 85.9 78.3
HRank [17] 38.07 (−64.4%) 18.90 (−55.4%) 66.4 84.9 90.3 82.0
CHIP [16] 38.34 (−64.1%) 19.02 (−55.1%) 67.7 85.2 90.3 82.5
HALP [23] 39.12 (−63.4%) 21.52 (−49.2%) 61.3 83.2 89.6 79.5
Ours 38.34 (−64.1%) 19.02 (−55.1%) 74.2 88.4 92.3 86.4

L1 Pruning [2]

70

39.77 (−62.8%) 17.32 (−59.1%) <10 <10 <10 <10
Net Slimming [24] 27.29 (−74.5%) 15.22 (−64.1%) 41.2 59.9 65.3 57.4
HRank [17] 22.88 (−78.6%) 13.52 (−68.1%) 63.4 82.3 87.7 79.3
CHIP [16] 23.23 (−78.3%) 13.61 (−67.9%) 61.5 80.4 86.3 77.5
HALP [23] 24.44 (−77.1%) 18.52 (−56.3%) <10 19.7 18.9 17.0
Ours 23.23 (−78.3%) 13.61 (−67.9%) 64.7 84.4 89.3 81.2

L1 Pruning [2]

80

– – – – – –
Net Slimming [24] 13.35 (−87.5%) 9.75 (−77.0%) <10 <10 <10 <10
HRank [17] 13.37 (−87.5%) 9.74 (−77.0%) 45.7 65.6 71.6 62.8
CHIP [16] 13.32 (−87.5%) 9.72 (−77.1%) 48.6 69.4 77.5 66.8
HALP [23] – – – – – –
Ours 13.35 (−87.5%) 9.73 (−77.0%) 51.5 71.1 80.1 68.8

a Pruning rate refers to the channel pruning rate or the percentage of channels discarded.
b AP𝑆 , AP𝑀 , and AP𝐿 indicate the Average Precision scores for small, medium, and large objects, respectively.
Table 3
mAP performance of pruned models (base: YOLOX-S, dataset: KITTI). The numbers in parentheses indicate the
percentage reduction compared to the unpruned model.
Approach Pruning FLOPs Params AP𝑆 b AP𝑀 b AP𝐿b mAP

rate (%)a (G) (M) (%) (%) (%) (%)

Original YOLOX-S 0 26.65 8.94 75.4 89.4 92.8 87.3

L1 Pruning [2]

30

18.71 (−29.8%) 5.40 (−39.6%) 78.7 90.0 93.4 88.5
Net Slimming [24] 16.49 (−38.1%) 5.96 (−33.3%) 68.3 86.3 93.1 84.0
HRank [17] 18.76 (−29.6%) 5.28 (−40.9%) 77.2 89.6 92.3 87.8
CHIP [16] 18.88 (−29.2%) 5.35 (−40.2%) 79.9 90.3 92.7 88.9
Ours 18.88 (−29.2%) 5.35 (−40.2%) 81.1 90.1 93.1 89.1

L1 Pruning [2]

50

14.99 (−43.8%) 3.88 (−56.6%) 65.9 83.1 89.6 81.1
Net Slimming [24] 14.22 (−46.6%) 4.08 (−54.4%) 57.8 80.0 91.2 77.8
HRank [17] 14.99 (−43.8%) 3.59 (−59.8%) 71.4 87.1 92.3 85.2
CHIP [16] 15.01 (−43.7%) 3.61 (−59.6%) 74.1 88.1 92.3 86.2
Ours 15.01 (−43.7%) 3.61 (−59.6%) 75.1 88.1 92.6 86.6

L1 Pruning [2]

70

12.36 (−53.6%) 2.22 (−75.2%) 24.1 33.6 48.6 34.9
Net Slimming [24] 12.69(−52.4%) 2.66 (−70.2%) 44.7 67.9 84.7 66.7
HRank [17] 12.37 (−53.6%) 2.44 (−72.7%) 57.2 78.4 90.0 76.6
CHIP [16] 12.50 (−53.1%) 2.47 (−72.4%) 64.0 83.2 91.4 80.9
Ours 12.50 (−53.1%) 2.47 (−72.4%) 64.4 83.1 91.6 81.1

L1 Pruning [2]

80

11.93 (−55.2%) 1.87 (−79.1%) 21.3 30.0 42.6 31.2
Net Slimming [24] 11.74 (−55.9%) 1.88 (−79.0%) 26.0 44.3 65.2 45.1
HRank [17] 10.85 (−59.3%) 1.83 (−79.5%) 33.9 58.3 70.2 55.5
CHIP [16] 10.81 (−59.4%) 1.82 (−79.6%) 36.5 59.8 75.2 57.9
Ours 10.81 (−59.4%) 1.82 (−79.6%) 37.4 62.0 77.1 59.8

a Pruning rate refers to the channel pruning rate or the percentage of channels discarded.
b AP𝑆 , AP𝑀 , and AP𝐿 indicate the Average Precision scores for small, medium, and large objects, respectively.
0%, and 70% of channels discarded). We investigate three different
ecay functions for the reweighting purpose: the flat-top Gaussian
unction, the exponential function, and the power function. The results
re visually presented in Fig. 6. Among the evaluated decay functions,
he model using a power decay function demonstrates superior per-

ormance. On the other hand, the model produced without any decay

7 
function exhibits the poorest results, highlighting the importance of
incorporating a decay function to effectively leverage contextual cues
when calculating channel importance. Given the better performance of
the power decay function, we have selected it as our preferred decay

function (as shown in Eq. (5)).
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Fig. 4. Pruning of (a) YOLOX-S, (b) YOLOF, (c) GFL on COCO_traffic. (d) is a zoomed-in view of (c). The competing pruning approaches are L1 Pruning [2], Net Slimming [24],
HRank [17], CHIP [16], and HALP [23]. The 𝑥-axis is the percentage of the parameters that have been discarded, and the 𝑦-axis indicates the performance of pruned models.
Table 4
mAP performance of pruned models (base: GFL, dataset: COCO_traffic). The numbers in parentheses indicate
the percentage reduction compared to the unpruned model.
Approach Pruning FLOPs Params AP𝑆 b AP𝑀 b AP𝐿b mAP

rate (%)a (G) (M) (%) (%) (%) (%)

Original GFL 0 223.66 32.29 46.2 71.7 89.1 71.5

L1 Pruning [2]

20

189.90 (−15.1%) 25.66 (−20.5%) 21.5 47.5 70.2 46.9
Net Slimming [24] 196.75 (−12.0%) 25.79 (−20.1%) 39.2 67.1 85.9 66.7
HRank [17] 195.44 (−12.6%) 25.73 (−20.3%) 44.8 70.8 85.4 67.8
CHIP [16] 195.30 (−12.7%) 25.66 (−20.5%) 43.2 69.5 87.0 68.3
HALP [23] 200.43 (−10.4%) 24.48 (−24.2%) 46.0 70.9 85.5 68.6
Ours 198.66 (−11.2%) 25.60 (−20.7%) 46.5 70.3 86.3 69.4

L1 Pruning [2]

40

181.07 (−19.0%) 20.39 (−36.9%) 15.6 29.6 51.1 32.5
Net Slimming [24] 180.35 (−19.4%) 19.33 (−40.1%) 34.3 43.0 63.0 47.3
HRank [17] 167.59 (−25.1%) 19.37 (−40.0%) 41.7 67.1 85.3 66.7
CHIP [16] 167.49 (−25.1%) 19.32 (−40.2%) 46.3 69.8 85.0 67.1
HALP [23] 176.83 (−20.9%) 18.26 (−43.4%) 41.9 68.9 84.4 66.9
Ours 174.59 (−21.9%) 19.35 (−40.1%) 43.6 69.1 85.1 68.0

L1 Pruning [2]

60

154.43 (−31.0%) 14.77 (−54.3%) <10 <10 <10 <10
Net Slimming [24] 164.14 (−26.6%) 12.94 (−59.9%) 15.1 29.4 51.4 32.3
HRank [17] 138.67 (−38.0%) 12.91 (−60.0%) 38.6 64.3 81.9 62.8
CHIP [16] 138.18 (−38.2%) 12.83 (−60.3%) 41.2 68.4 81.6 64.9
HALP [23] 154.40 (−31.0%) 13.57 (−58.0%) 36.9 64.9 80.6 62.9
Ours 148.79 (−33.5%) 12.90 (−60.0%) 41.8 68.4 80.5 65.8

a Pruning rate refers to the channel pruning rate or the percentage of channels discarded.
b AP𝑆 , AP𝑀 , and AP𝐿 indicate the Average Precision scores for small, medium, and large objects, respectively.
.4. Inference latency analysis

In this section, we explore the practical implications of parameter
nd FLOP reductions through pruning on inference latency. As an
8 
example, we provide insights into the inference latency of the YOLOF
model and our pruned variant with a comparable mAP on the KITTI
dataset. It is important to note that the direct measurement of inference
latency is influenced by various hardware-specific and environmental
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Table 5
mAP performance of pruned models (base: YOLOF, dataset: COCO_traffic). The numbers in parentheses indicate
the percentage reduction compared to the unpruned model. ‘–’ indicates that we did not explore further pruning
rates due to excessive loss of important features, with some layers ending up with no filters, breaking the
model’s information flow.
Approach Pruning FLOPs Params AP𝑆 b AP𝑀 b AP𝐿b mAP

rate (%)a (G) (M) (%) (%) (%) (%)

Original YOLOF 0 107.15 42.39 42.9 71.0 84.5 67.0

L1 Pruning [2]

10

86.56 (−19.2%) 41.11 (−3.0%) 23.1 60.4 79.4 56.0
Net Slimming [24] 94.83 (−11.5%) 35.40 (−16.5%) 38.7 68.1 82.7 64.7
HRank [17] 87.17 (−18.6%) 36.80 (−13.2%) 37.7 69.3 84.2 65.5
CHIP [16] 90.40 (−15.6%) 36.65 (−13.5%) 38.9 69.7 83.7 65.8
HALP [23] 94.19 (−12.1%) 35.46 (−16.3%) 45.4 72.2 82.9 66.4
Ours 90.40 (−15.6%) 36.65 (−13.5%) 44.6 71.2 83.5 66.8

L1 Pruning [2]

30

66.39 (−38.0%) 34.62 (−18.3%) <10 <10 <10 <10
Net Slimming [24] 57.17 (−46.6%) 25.49 (−39.9%) 34.5 65.3 79.7 61.2
HRank [17] 90.40 (−46.1%) 36.65 (−36.8%) 35.8 64.3 80.8 61.4
CHIP [16] 61.09 (−43.0%) 26.75 (−36.9%) 35.5 66.2 81.5 61.8
HALP [23] 57.60 (−46.2%) 26.81 (−36.8%) 37.9 67.9 78.6 62.5
Ours 61.09 (−43.0%) 26.75 (−36.9%) 36.8 69.8 82.3 64.1

L1 Pruning [2]

50

43.23 (−59.7%) 20.58 (−51.5%) <10 <10 <10 <10
Net Slimming [24] 44.77 (−58.2%) 18.83 (−55.6%) <10 27.1 25.2 20.2
HRank [17] 35.49 (−66.9%) 19.09 (−55.0%) 20.0 49.0 66.2 47.3
CHIP [16] 38.59 (−64.0%) 19.02 (−55.1%) 26.4 54.7 69.1 51.2
HALP [23] – – – – – –
Ours 38.59 (−64.0%) 19.02 (−55.1%) 27.8 60.8 74.4 54.6

a Pruning rate refers to the channel pruning rate or the percentage of channels discarded.
b AP𝑆 , AP𝑀 , and AP𝐿 indicate the Average Precision scores for small, medium, and large objects, respectively.
Table 6
mAP performance of pruned models (base: YOLOX-S, dataset: COCO_traffic). The numbers in parentheses
indicate the percentage reduction compared to the unpruned model.
Approach Pruning FLOPs Params AP𝑆 b AP𝑀 b AP𝐿b mAP

rate (%)a (G) (M) (%) (%) (%) (%)

Original YOLOX-S 0 26.67 8.94 44.6 72.5 83.9 68.7

L1 Pruning [2]

20

20.94 (−21.5%) 6.45 (−27.9%) 43.5 70.9 79.3 64.1
Net Slimming [24] 19.48 (−27.0%) 7.08 (−20.8%) 38.1 67.4 79.6 62.2
HRank [17] 21.31 (−20.1%) 6.44 (−28.0%) 42.9 70.3 81.1 65.7
CHIP [16] 21.29 (−20.2%) 6.41 (−28.3%) 41.2 71.9 79.9 65.8
Ours 21.29 (−20.2%) 6.41 (−28.3%) 46.0 69.2 80.6 65.9

L1 Pruning [2]

40

16.48 (−38.2%) 4.78 (−46.5%) 25.9 56.1 68.2 51.1
Net Slimming [24] 16.00 (−40.0%) 4.96 (−44.5%) 30.6 63.5 5.9 57.6
HRank [17] 16.94 (−36.5%) 4.45 (−50.2%) 40.5 67.3 78.3 62.0
CHIP [16] 16.87 (−36.7%) 4.41 (−50.7%) 37.5 66.7 78.4 62.5
Ours 16.87 (−36.7%) 4.41 (−50.7%) 41.1 67.5 78.1 62.9

L1 Pruning [2]

60

12.64 (−52.6%) 2.56 (−71.4%) <10 15.9 30.1 18.4
Net Slimming [24] 13.90 (−47.9%) 3.37 (−62.3%) 25.2 54.5 73.2 51.0
HRank [17] 13.66 (−48.8%) 3.00 (−66.4%) 34.3 61.4 73.7 55.9
CHIP [16] 13.64 (−48.9%) 2.98 (−66.7%) 31.5 62.6 74.7 56.8
Ours 13.64 (−48.9%) 2.98 (−66.7%) 32.0 61.0 75.6 57.0

a Pruning rate refers to the channel pruning rate or the percentage of channels discarded.
b AP𝑆 , AP𝑀 , and AP𝐿 indicate the Average Precision scores for small, medium, and large objects, respectively.
Table 7
Impact of the components of our approach on pruning perfor-
mance. GT bbox denotes Ground Truth bounding boxes. Base:
YOLOX-S, Dataset: KITTI, pruning rate: 30%.

Modules
Gradients × ✓ ✓ ✓

GT bbox × × ✓ ✓

Surrounding × × × ✓

Results mAP 87.3 88.5 88.7 89.1

factors. Our experiments were conducted on a single Intel Xeon E5-
2680 v4 CPU and a single NVIDIA Tesla P100 GPU. In Table 8, we
9 
present the latency results on both the CPU and the GPU, along with
the reductions in parameters and FLOPs, as well as the mAP for both
the pruned and unpruned models. As detailed in Table 8, the pruned
model with 43.1% and 36.9% reductions in FLOPs and parameters,
yields substantial improvements in latency, with reductions of 25.5%
and 28.3% on the CPU and the GPU, respectively.

5. Limitations and future work

In real-world autonomous driving scenarios, ensuring real-time per-
formance on resource-constrained hardware is critical. While our ex-
periments on the KITTI and COCO_traffic datasets show promising
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Fig. 5. Qualitative results of competing SOTA approaches (i.e., L1-norm pruning [2], Net Slimming [24], HRank [17], and CHIP [16]) and our method on example images from
COCO_traffic. In each case, the detection image was produced using YOLOX-S pruned at a 40% pruning rate on COCO_traffic. The final row highlights cyan circles, indicated by
arrows, demonstrating the superior performance of the detector pruned using our approach over other competing methods. Best viewed when zoomed in.
Fig. 6. Pruning performance with various decay functions to capture context informa-
tion (as in Eq. (4)), across a range of parameter pruning rates. Base: YOLOX-S, dataset:
ITTI.

esults, further optimizations and hardware-specific implementations
re needed to achieve the required speed and efficiency on various
10 
Table 8
Inference latency improvement via our pruning. Base: YOLOF, pruning rate: 30%,
dataset: KITTI, hardware specifications: Intel Xeon E5-2680 v4 CPU and NVIDIA
Tesla P100 GPU. Each latency number is an average of 100 runs.
Model FLOPs Params CPU GPU mAP

(G) (M) latency (ms) latency (ms) (%)

Original 106.90 42.39 7250 25.8 87.4
60.83 26.75 5400 18.5Pruned (−43.1%) (−36.9%) (−25.5%) (−28.3%) 87.2

embedded systems. We will explore other complementary model com-
pression techniques, such as quantization and knowledge distillation,
to further boost model efficiency.

While inductive biases such as spatial locality are reasonable for
visual tasks, it would be intriguing to investigate long-range dependen-
cies between objects and background cues, extending beyond interme-
diate neighborhood contexts. To this end, we plan to modify/extend
this work to pruning tokens in the self-attention mechanisms found in
transformers.

In addition, our experiments have primarily focused on standard
datasets representing common traffic scenarios. However, autonomous
vehicles may encounter diverse and dynamic environments, including
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varying weather conditions, lighting changes, and unexpected obsta-
cles. The performance of our pruned models in such scenarios has not
yet been extensively tested. We will analyze the effect of our pruning
on detector robustness, which is a critical concern in safety-critical
applications like autonomous driving. We will also design strategies to
improve pruned detectors’ robustness against adversarial perturbations,
thereby contributing to safer and more trustworthy autonomous driving
systems.

6. Conclusion

In this paper, we aim to address the growing demand for more
efficient deep detectors in the resource-constrained and time-sensitive
application of autonomous driving perception. We presented a novel
saliency and location aware channel importance measure specifically
designed for self-driving visual detection. By integrating relevant object
location and contextual details with detection-oriented saliency, our
pruning achieved great compression rates while maintaining com-
petitive mAP scores. Through extensive experiments on the KITTI
and COCO_traffic datasets using a range of visual detectors including
YOLOX-S, YOLOF, ATSS, and GFL, we showed our method’s effective-
ness and superiority over existing SOTA pruning methods, as well as
its potential in dealing with small-scale objects. One of our pruned
models outperforms its original model by 1.8% mAP while utilizing
only 59.8% of the parameters. This work not only introduces a novel
pruning method for visual detectors but also contributes to a better
understanding of the challenges of visual detector pruning, which
involves both object classification and localization.
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