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Abstract

Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas genome-wide screens are powerful tools for unraveling
genotype-phenotype relationships, enabling precise manipulation of genes to study and engineer industrially useful traits. Tradi-
tional genetic methods, such as random mutagenesis or RNA interference, often lack the specificity and scalability required for large-
scale functional genomic screens. CRISPR systems overcome these limitations by offering precision gene targeting and manipulation,
allowing for high-throughput investigations into gene function and interactions. Recent work has shown that CRISPR genome edit-
ing is widely adaptable to several yeast species, many of which have natural traits suited for industrial biotechnology. In this review,
we discuss recent advances in yeast functional genomics, emphasizing advancements made with CRISPR tools. We discuss how the
development and optimization of CRISPR genome-wide screens have enabled a host-first approach to metabolic engineering, which
takes advantage of the natural traits of nonconventional yeast—fast growth rates, high stress tolerance, and novel metabolism—to
create new production hosts. Lastly, we discuss future directions, including automation and biosensor-driven screens, to enhance

high-throughput CRISPR-enabled yeast engineering.
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Introduction

Functional genomic screens allow the discovery of genotype-
phenotype relationships and interactions between genes
(Schuldiner et al. 2005, Suter et al. 2006, Holland and Blazeck
2022). To do this, gene expression is eliminated or modulated
and cells are screened to identify any resulting phenotypic
changes (Doench 2018). Before whole-genome sequencing and
the advent of clustered regularly interspaced short palindromic
repeats (CRISPR)-Cas technologies, these screens were typically
performed with random UV (Pringle 1975) or chemical mutage-
nesis (Kilbey 1975). Now, manually generated knockout libraries
(Winzeler et al. 1999, Baba et al. 2006), RNA interference (RNA])
(Boutros and Ahringer 2008), transposons (Michel et al. 2017), or
guide RNAs (gRNAs) as part of a CRISPR-Cas system (Robertson et
al. 2024a) can be carefully designed to specifically target all or a
subset of genes in a host organism. In yeast, CRISPR-Cas genome-
wide screens can be easily designed to target all genes (Ramesh
et al. 2023, Tafrishi et al. 2024), or guides can be multiplexed
to study genetic interactions (Schuldiner et al. 2005, Costanzo
et al. 2019). After altering the genotype of a pool of mutants,
further assays can be performed to identify genes of interest.
For example, survival assays can determine gene essentiality
(Suter et al. 2006), genes needed for fitness in stress conditions
(Robertson et al. 2024a), or for the production of metabolites
(D’oelsnitz et al. 2022, Robertson et al. 2024b).

The use of functional genomic screens in yeast has proven their
ability to elucidate gene function and gene interactions, which al-

lows for knowledge generation about the genetic underpinnings
of biotechnology traits. In addition to this, functional genomic
screens are inherently powerful for engineering microorganisms
by performing screens in stress conditions (Ando et al. 2006, Teix-
eira et al. 2010, Ramesh et al. 2023), on low-value feedstocks
(Usher et al. 2011, Coradetti et al. 2018, Robertson et al. 2024a), or
for improvement in metabolite production (D’oelsnitz et al. 2022,
Liu et al. 2022a). Yeast hosts for industrial production of chemi-
cals and bioproducts benefit from high tolerance to environmen-
tal stresses and broad substrate metabolism (Mattanovich et al.
2014, Thorwall et al. 2020, Geijer et al. 2022). By growing mutant
pools under various stress conditions and with different carbon
sources, tolerance to the stresses of industrial processing can be
rapidly engineered and genotypes responsible for these traits can
be uncovered. Finally, screens can be developed to manually se-
lect (Lupish et al. 2022), autonomously sort (Taguchi et al. 2023),
or screen with biosensor reporting for high producers of valuable
metabolites (D’'oelsnitz et al. 2022, Robertson et al. 2024b).
Saccharomyces cerevisiage has been used for decades as a host mi-
crobe for metabolic engineering and as a representative of yeast
biology due to its relative ease of transformation and high rate of
homologous recombination (Nevoigt 2008, Parapouli et al. 2020).
The Yeast Deletion Collection in particular proved valuable for
functional genetic screens (Winzeler et al. 1999, Giaever et al.
2002, Giaever and Nislow 2014). CRISPR, an adaptive bacterial im-
mune system, has been used as a tool for the past decade or so
to rapidly modify all kingdoms of life. The widespread adoption
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of CRISPR-Cas systems for genome editing has made nonconven-
tional yeasts, many of which are less genetically tractable than
S. cerevisiae, more accessible, thus enabling new approaches to
industrial biotechnology. One valuable approach is identifying a
microbe that expresses a desired trait and adapt CRISPR genome
editing to the selected species to control and enhance the desired
trait(s) (Lobs et al. 2017, Patra et al. 2021, Geijer et al. 2022). Some
examples of this approach include Ogataea polymorpha (Xie et al.
2024) and Komagataella phaffii (Claes et al. 2024), which are used for
high protein production, Kluyveromyces marxianus is naturally ther-
motolerant and is used to produce valuable metabolites such as 2-
phenylethanol and 2-phenylethyl acetate (Gao and Daugulis 2009,
Liet al. 2021), Rhodosporidium toruloides, which produces lipids and
carotenoids (Otoupal et al. 2019), and Yarrowia lipolytica, which ac-
cumulates high titers of lipids for applications in food or fuels
(Blazeck et al. 2014, Schwartz et al. 2019). By developing functional
genomic screens in these yeasts and others, we can expand their
uses in industrial applications by screening for enhancements in
valuable phenotypes.

In this review, we outline the current advances and historical
development of functional genomic screens in yeast for biotech-
nology, emphasizing the use of CRISPR-Cas systems. We dis-
cuss these topics by selecting a subset of examples that best
demonstrate the various technologies and approaches. We give a
broad overview of methods and considerations for designing these
screens as well as techniques to optimize their use. Since itis now
possible to rapidly develop tools for nonconventional yeast, we
highlight which nonconventional yeasts have been used in func-
tional genomic screens and how these techniques were developed.
Finally, we look to the future of yeast functional genomic screens,
specifically how high-throughput automation and biosensors will
be used to drive the selection of valuable phenotypes.

Approaches and methods to yeast
functional genomic screening

Many genetic engineering methods can be used to generate mu-
tations for functional genomic screening. Such methods are yeast
deletion collections, RNAi, transposon insertional mutagenesis,
and CRISPR-Cas (Table 1). In this section, we give an overview of
these methods to build mutant libraries for the purpose of discov-
ering valuable genotype-phenotype interactions.

The Yeast Deletion Collection

The Yeast Deletion Collection, the first yeast whole-genome
knockout library (a single gene deletion per strain), was gener-
ated by Winzeler et al. (1999) in S. cerevisiae and was enabled by
the complete sequencing of the S. cerevisiae genome (Goffeau et
al. 1996) and the high homologous recombination efficiency of the
host (Fig. 1A). This knockout collection is an arrayed set of mutant
strains each with a single gene deletion and allows for the rapid
testing of gene function. For example, the collection has been used
to identify essential genes (i.e. those that greatly reduce cell fit-
ness) in both rich and minimal media as well as genes that are
essential for survival in particular stress conditions such as high
osmotic stress, alternative carbon sources (Winzeler et al. 1999,
Giaever et al. 2002, Giaever and Nislow 2014), or environmental
stresses such as UV radiation (Birrell et al. 2001). Finally, these
gene deletions can be multiplexed through double or triple knock-
outs to uncover genetic interactions (Glaever and Nislow 2014,
Kuzmin et al. 2018, Liu et al. 2022b). The Yeast Deletion Collec-

tion is still used in current work and paved the way for functional
genomic screens in yeast.

RNA interference

Since the discovery and functionalization of RNAi as a tool, its use
has found diverse applications for synthetic biology in all king-
doms of life (Fire et al. 1998, Hannon 2002). In contrast to the yeast
knockout collection, RNAi acts post-transcriptionally (on RNA, not
DNA) to silence genes (Fig. 1B). Interestingly, the RNAi machin-
ery is evolutionarily lost in some yeast, including S. cerevisiae, but
can be reimplemented with the expression of the relevant pro-
tein machinery, often via plasmid expression (Agrawal et al. 2003,
Drinnenberg et al. 2009). The use of a post-transcriptional gene in-
terference technology presents additional challenges and oppor-
tunities when used in yeast (Hannon 2002, Chen et al. 2020). To
our knowledge, RNAI technologies have not been demonstrated
in K. phaffii, Y. lipolytica, K. marxianus, or O. polymorpha, only in S.
cerevisiae. This is due in part to the more recent development of
transformation protocols and basic genetic manipulation tools for
many nonconventional yeasts.

Functional genomic screens using RNAI in S. cerevisiae have
been widely successful. RNAI is advantageous in part because it
allows for gene knockdown or activation as opposed to complete
knockout. This allows for investigation of variable transcription
levels and probing of essential genes (Si et al. 2015, Chen et al.
2020). Additionally, libraries can be generated from the genomic
DNA of your host strain, rather than undergoing the costly pro-
cess of gRNA or other DNA synthesis (Chen et al. 2020). Functional
genomic screens using RNAi have successfully been used in S. cere-
visiae to improve acetic acid tolerance (Si et al. 2015), isobutanol
production (Si et al. 2017), and xylose utilization (HamediRad et
al. 2018), among others. Some screens have been developed for
both knockdown and activation simultaneously (Sietal. 2017) and
some have been built for tunable knockdown (Crook et al. 2016).

RNAI applications on a genome-wide scale are not without
obstacles. Constructing high-quality libraries demands rigorous
quality control to ensure comprehensive genomic representation.
Off-target effects remain a significant issue, often necessitating
follow-up experiments to verify the reliability of identified targets.
Furthermore, RNAI screens typically focus on phenotypes that
are straightforward to measure, such as growth under chemical
stress or substrate consumption, leaving more complex pheno-
types underexplored. Introducing multiple RNAi reagents simul-
taneously can overwhelm the silencing machinery, reducing the
efficiency of individual gene targeting. Additionally, understand-
ing how combinations of mutations contribute to enhanced traits
is challenging, requiring thorough studies to decipher their indi-
vidual roles and interactions. Despite these challenges, the power
of RNAI functional genomic screens suggests that this technol-
ogy should be further explored for use in nonconventional yeast
(Hannon 2002, Chen et al. 2020).

Transposon insertional mutagenesis

Transposons are portable genetic elements that insert themselves
within chromosomes. As a synthetic biology tool, transposon in-
sertional mutagenesis interrupts reading frames, promoters, non-
coding regions, and other genetic elements nearly indiscrimi-
nately by inserting at TA or TTAA sites, depending on the system
(zhu et al. 2018) (Fig. 1C). After insertion, techniques such as in-
verse polymerase chain reaction (PCR) and randomly broken frag-
ment PCR (RBF-PCR) can be used to amplify and then sequence the
transposon and adjacent DNA to identify the insertion site (Naat-
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Figure 1. Common methods of generating mutations for functional genomic screens. (A) Yeast deletion collections utilize homologous recombination
to generate gene knockouts. (B) RNAi occurs when Dicer protein cleaves double-stranded RNA (dsRNA) into small-interfering RNAs (siRNA), which are
then incorporated into the RNA-induced silencing complex (RISC) to target and degrade complementary mRNA, thereby silencing gene expression. (C)
Transposon mutant libraries rely on a transposase to randomly insert mutations throughout the genome. (D) The CRISPR-Cas system can be used to
generate knockouts or up-/downregulate genes with CRISPRa/CRISPRi by using an sgRNA that directs a Cas endonuclease. In many cases, this
double-stranded break (DSB) is then repaired by native error-prone repair enzymes like Ku70/80 creating an insertion or deletion that causes a
premature stop codon downstream. For CRISPRa/CRISPRI, a dCas9 is fused to an activation/repression domain like VPR/Mxi1l to increase/decrease

expression, respectively.

saari et al. 2012, Xu et al. 2013). Transposon insertional mutagen-
esis has been used for functional genomic screens in S. cerevisiae
(Takahashi et al. 2001), Schizosaccharomyces pombe (Li et al. 2011),
K. phaffii (Zhu et al. 2018), R. toruloides (Coradetti et al. 2018), and
Y. lipolytica (Wagner et al. 2018), but work is missing in other non-
conventional yeast.

Once a transposon insertional mutagenesis system is devel-
oped for a particular species, mutational libraries of the yeast can
be created and screened. In one screen, K. phaffii colonies were in-
dividually picked and validated for their more efficient utilization
of methanol as a carbon source (Zhu et al. 2018). In another, a

transposon screen was developed for S. pombe and demonstrated
by identifying genes related to microtubule formation and tem-
perature sensitivity. Instead of picking individual mutants, up to
400000 colonies were pooled and deep sequenced, demonstrat-
ing the throughput capabilities of the system (Li et al. 2011). Both
of these projects utilized the piggyBac transposon system from
the cabbage looper moth, Trichoplusia ni, due to its high transposi-
tion efficiency (Zhu et al. 2018). Finally, another study found two
loci that improve growth on xylose with a transposon-based func-
tional genomic screen in S. cerevisiae (Ni et al. 2007). The downside
of transposon tools for functional genomics—the fact they are
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untargeted—should be taken advantage of as it provides an op-
portunity to work with unsequenced genomes and rapidly imple-
ment the built tool because computational design is not needed
before implementation. They can also be low or high throughput
depending on the needs and the resources of the laboratory. Trans-
poson insertional mutagenesis systems should be further devel-
oped, particularly for nonconventional yeast.

CRISPR-Cas systems

The advent of CRISPR-Cas tools has greatly accelerated the field of
functional genomics due to the platform’s flexibility (gene knock-
out, downregulation, upregulation, and base editing), portability
between hosts, and programmability (Doudna and Charpentier
2014, Shalem et al. 2015, Anzalone et al. 2020, Trivedi et al. 2023).
In a typical CRISPR-Cas system, an endonuclease is directed by
gRNA (typically ~20 bp in length) to make a targeted double-
stranded break in the host genome. The cell repairs the break ei-
ther through error-prone nonhomologous end joining (NHE]) or
microhomology-mediated end joining (MMEJ), which introduces
insertions or deletions that disrupt gene function, or through
homology-directed repair if a DNA template is provided enabling
precise gene deletion or insertion (Schwartz et al. 2017, Xue and
Greene 2021) (Fig. 1D). These repair mechanisms provide a foun-
dation for creating targeted genetic alterations for functional ge-
nomic studies.

The versatility of the CRISPR-Cas systems extends beyond sim-
ple knockouts, as modifications of the Cas protein enable gene reg-
ulation without introducing double-stranded breaks. For instance,
CRISPR interference (CRISPRI) utilizes a catalytically inactive Cas9
(dCas9) to block transcription by sterically hindering RNA poly-
merase at target genes (Qi et al. 2013). Conversely, CRISPR acti-
vation (CRISPRa) involves fusing dCas9 with transcriptional acti-
vators to enhance gene expression (Chavez et al. 2015) (Fig. 1D).
These approaches provide a powerful toolkit for investigating gene
function through precise modulation of gene activity. Moreover,
some Cas proteins, like Cas12a (formerly Cpfl), exhibit distinct
properties, such as the ability to process their own gRNAs and
target multiple sites simultaneously using multiplexed sgRNAs
(Ramesh et al. 2020). Limitations to CRISPR screens include am-
biguous gene knockout scenarios (it is unknown whether frame-
shift-causing insertion or deletion is created), large size, cellular
burden of the Cas9 endonuclease, discrepancies in gRNA activ-
ity predictions, and, like other screening methods, a need for high
transformation efficiency. Despite these limitations and with ad-
vances in whole-genome sequencing and sgRNA library synthesis
makes the CRISPR-Cas system a valuable candidate for functional
genomic screens.

Optimizing CRISPR functional genomic
screens

Despite the rapid development of the CRISPR-Cas system, further
refinement is needed to optimize these technologies for genome-
wide screening applications. Effective implementation demands
extensive upfront work, including gRNA library design (Fig. 2). Li-
brary design criteria vary based on application (CRISPR knockout,
CRISPR], or CRISPRa). In knockout libraries, intronic regions are
typically excluded, and guides are preferentially designed to tar-
get the first 5%-65% of the coding sequence to maximize the like-
lihood of a functional knockout. Alternatively, guides may target
promoter regions to disrupt native transcriptional regulation, ei-
ther through causing random sequence changes in the promoter

regions with unmodified Cas endonuclease or by directing an ac-
tivator or repressor to a specific site in CRISPRiI/CRISPRa appli-
cations. Library design should also seek to address off-target ef-
fects. To this end, libraries should contain unique guides that
are sufficiently spaced to improve diversity of target locations
(Doench et al. 2016, Dong et al. 2021, Ramesh and Wheeldon 2021,
Trivedi et al. 2023). sgRNA uniqueness within the genome min-
imizes off-target effects and enhances genome editing precision.
Additional refinements can further optimize library efficiency. For
instance, predicting sgRNA secondary structures can help avoid
designs prone to forming stable secondary structures (Thyme et
al. 2016, Labun et al. 2019), which may hinder complex formation
with the Cas protein. Another key factor is the uniqueness of the
sgRNA seed sequence (the 12-14 nucleotides upstream of the pro-
tospacer adjacent motif (PAM) site for Cas9), as mismatches out-
side this region are more tolerable, while seed region specificity
is crucial for effective on-target activity (Jinek et al. 2012, Cong et
al. 2013, Hsu et al. 2013, Jiang et al. 2013). While several sgRNA
activity prediction tools exist, most are tailored for mammalian
cells (Doench et al. 2014, Moreno-Mateos et al. 2015, Xu et al.
2015, Doench et al. 2016, Zhang et al. 2019), necessitating species-
specific adaptations. One example of this is DeepGuide (Baisya et
al. 2022), a machine learning-based guide prediction platform, has
been introduced as an sgRNA design tool trained on experimen-
tal library data from Y. lipolytica. Finally, plasmid stability should
be validated to ensure guide abundance changes are due solely to
condition variations.

Given the challenges in predicting sgRNA activity, targeting
multiple sgRNAs per gene increases the likelihood of successful
gene disruption and improves fitness effect calculations. How-
ever, this also expands library size and complicates data analy-
sis, particularly in hosts with limited transformation efficiency.
One solution is to experimentally measure library activity by dis-
rupting the dominant DNA repair pathway. In Y. lipolytica, K. phaf-
fii, K. marxianus, and many other nonconventional yeasts (Lobs et
al. 2017), the dominant repair mechanism is NHE]. Knocking out
key repair genes like KU70/KU80 prevents DNA repair, causing cell
death upon efficient CRISPR-induced cuts (Schwartz et al. 2019,
Tafrishi et al. 2024). By comparing sgRNA abundance between an
endonuclease-active strain and a control strain, sgRNA activity
can be systematically assessed across the library (Robertson et al.
2024). An activity-validated sgRNA library consequently enhances
the accuracy of genome-wide screens by ensuring that only func-
tional guides contribute to phenotypic readouts. Investing in these
foundational steps enhances the reliability of subsequent analy-
ses, streamlines downstream processes, and accelerates the dis-
covery of gene functions in the target host.

Applications of CRISPR genome-wide
screens

Essential gene identification

Knockout of an essential gene causes cell death, stops cell growth,
or substantially reduces growth rate. Gene essentiality may shift
in different growth conditions, but there should exist substantial
overlap between conditions and a core set of genes that are essen-
tial to growth in any condition. To identify essential genes with
CRISPR genome-wide screens, populations containing the gRNA
library and the Cas protein are grown and subcultured until the
targeting and nontargeting control guides diverge in their abun-
dance (Fig. 2). Many tools have been developed to predict gene es-
sentiality from sgRNA abundance including acCRISPR (Ramesh et
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Table 2. CRISPR-based functional genomic screens in yeast.

Screening Species CRISPR Tool Target Reference
Essential gene identification Y. lipolytica CRISPR knockout Essential gene Schwartz et al. (2019) and Robertson et al.
(2024a)
S. cerevisiae CRISPR interference Essential gene Mcglincy et al. (2021)
K. phaffi CRISPR knockout Essential gene Zhu et al. (2018) and Tafrishi et al. (2024)
Stress tolerance-related gene S. cerevisiae CRISPR knockout Furfural tolerance Bao et al. (2018)
identification
S. cerevisiae CRISPR interference Absence of arginine, Momen-Roknabadi et al. (2020)
adenine
S. cerevisiae CRISPR interference Acetic acid tolerance Mukherjee et al. (2021)
Y. lipolytica CRISPR knockout Canavanine tolerance Schwartz et al. (2019)
Y. lipolytica CRISPR knockout Salt tolerance Ramesh et al. (2023)
Y. lipolytica CRISPR knockout Acetate, fatty acid Robertson et al. (2024a)
tolerance
Biosensor-driven screens S. cerevisiae CRISPR interference Acetic acid sensitivity Mormino et al. (2022)
K. marxianus CRISPR knockout Terpene Robertson et al. (2024b)

al. 2023), developed and validated based on data obtained from
yeast cells, and JACKS (Allen et al. 2019), MAGeCK-MLE (Li et al.
2015), and CRISPhieRmix (Daley et al. 2018) validated based on
mammalian cell essential genes. Fitness scores of each gene can
be calculated by averaging the change in abundance of each guide
over time or comparing the abundance to a library transformed
into a strain without the Cas protein; in our work, we define fitness
score as 1ogy(Acaso/Awt), Where Acago is the given guide’s abun-
dance in the Cas9 strain and Ay is the given guide’s abundance
in the wild-type strain (Fig. 2) (Schwartz et al. 2019, Robertson et
al. 2024a).

In S. cerevisiae, a CRISPRI library was able to call essential genes
(Mcglincy et al. 2021). In Y. lipolytica, a first- and second-generation
library were built and used to call essential genes (Schwartz et
al. 2019, Robertson et al. 2024a). In K. phaffii, a CRISPR genome-
wide screen revealed essential genes that overlap substantially
with a previous transposon functional genomic screen. Through
comparison of this essential gene set with that of other yeasts, a
unique set of K. phaffii-exclusive essential genes were identified
that were linked to this microorganism’s nonconventional char-
acteristics such as protein secretion and glycosylation (Zhu et al.
2018, Tafrishi et al. 2024). Essential gene information adds to our
general understanding and paves the way to develop new tools.
CRISPR function has been demonstrated in many other noncon-
ventional yeast, paving the way for future CRISPR genome-wide
functional genomic screens.

Stress tolerance-related gene identification

One variation on essential gene screens is stress-tolerance
screens. In these cases, growth screens can be conducted in high
salt or low pH media, on various carbon sources, or in other envi-
ronmental stress conditions (Schwartz et al. 2019, Robertson et al.
2024a). Knockout of a low fitness score gene reduces fitness in the
given condition whereas knockout of a high fitness score gene im-
proves fitness in the given condition. Complexity increases when
utilizing CRISPRi/CRISPRa to find tolerance-related genes or when
altering promoter strength with CRISPR tools because guide activ-
ity (in the case of CRISPRi/CRISPRa) or promoter insertions and
deletions (in the case of targeting promoter regions) vary tran-
scription levels to unknown strength. With these methods, it is
often the case that a gene can be flagged as important for a given
condition, but the effect of changing the promoter strength is un-
known, or a specific high-performing mutant needs to be isolated

from the screen. To isolate a high-performing mutant from any
style of screen, the stringency of the selection must be carefully
designed. Highly stringent conditions may remove 99% of mu-
tants, which is more amenable to selecting individual winners
(positive screens), rather than deep sequencing. Less stringent
conditions are more amenable to deep sequencing and to char-
acterizing a spectrum of fitness effects. As with essential genes,
these hits should be validated.

Stress tolerance screens have also been performed with non-
conventional yeast, but there are considerably fewer examples
than those conducted with S. cerevisiae. In Y. lipolytica, tolerance
screens have been performed to identify genes related to canava-
nine resistance (Schwartz et al. 2019), salt tolerance (Ramesh et
al. 2023), acetate tolerance, and fatty acid tolerance (Robertson et
al. 2024a). These screens in Y. lipolytica demonstrate the enabling
power of genome-wide screening to develop industrially relevant
phenotypes.

Biosensor-driven screens

Screening for stress tolerance of a toxic product may improve
yields, but tolerance is often not the limiting factor for metabo-
lite production. Biosensor-driven screens bridge the gap be-
tween tolerance screens and production screens. A form of di-
rected evolution, biosensor-driven CRISPR genome-wide screens,
identifies genes responsible for improved metabolite production
through the use of a biosensor. These screens could be set
up with growth- or fluorescence-based reporting systems, for
example.

Saccharomyces cerevisiae has been used to demonstrate a
fluorescence-based acetic acid biosensor screen where a sub-
set of genes were repressed with CRISPRI. Five genes were iden-
tified that, when repressed, led to higher acetic acid sensitiv-
ity (Mormino et al. 2022). In another work, K. marxianus, a PYR1
biosensor for the terpene geraniol, and a 10-fold coverage gRNA
CRISPR-Cas9 knockout library were used to identify gene knock-
outs that improve geraniol production. Rather than fluorescence-
based cell sorting, a growth-based system was used and individual
colonies were picked for their size/faster growth rate, then were
validated for improved terpene production (Robertson et al. 2024).
In spite of the power of this system, few biosensor-driven genome-
wide screening platforms have been developed. Additional com-
piled CRISPR functional genomic screens in yeast can be seen in
Table 2.



Perspectives

With the rapid domestication of nonconventional yeast through
the development of whole-genome sequencing, inclusive CRISPR
tools, and improved transformation protocols, CRISPR functional
genomic screens will become more prevalent in a broad range
of yeasts. These nonconventional hosts already have attractive
traits over baker’s yeast that can be improved with these advanced
screening systems (Geijer et al. 2022). Additionally, these yeast
contain new or understudied genes that may be relevant for ap-
plications in industrial biotechnology. More advanced tools will al-
low for rapid multiround screens in strains that are already heav-
ily modified for the process of interest, greatly accelerating strain
development.

With more development in the field, guide activity will be more
accurately predicted with larger experimental datasets and im-
proved artificial intelligence/machine learning techniques that
seek to generate predictive models of CRISPR activity and, more
broadly, biological function. In many screening scenarios, sort-
ing for hits is the bottleneck of elucidating valuable phenotypes
(Mitchell et al. 2015, Lupish et al. 2022). The advancement of
biosensors, like the PYR1 platform (Beltran et al. 2022) and bac-
terial transcription factors (Tellechea-Luzardo et al. 2023), func-
tional genomic screens will advance rapidly. With biosensor-
driven screens, cells can self-report product titers allowing for
easy sorting (D’oelsnitz et al. 2022, Robertson et al. 2024b). Cur-
rent screening methods or these more advanced biosensor-driven
screens can then be followed up with automation systems. Es-
pecially when paired with machine learning and machine vision,
liquid handling robots can sort and test hits rapidly and full time
(Torres-Acosta et al. 2022). The next decade of functional genomic
screens will advance rapidly as other synthetic biology and com-
putational tools develop.
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