

Advances in CRISPR-enabled genome-wide screens in yeast

Nicholas R. Robertson¹, Sangcheon Lee², Aida Tafrishi², Ian Wheeldon^{2,3,*}

¹Bioengineering, University of California, Riverside, Riverside, CA 92521, United States

²Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA 92521, United States

³Center for Industrial Biotechnology, University of California, Riverside, Riverside, CA 92521, United States

*Corresponding author. University of California, Riverside, Riverside, CA 92521, USA. E-mail: wheeldon@ucr.edu

Editor: [John Morrissey]

Abstract

Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas genome-wide screens are powerful tools for unraveling genotype–phenotype relationships, enabling precise manipulation of genes to study and engineer industrially useful traits. Traditional genetic methods, such as random mutagenesis or RNA interference, often lack the specificity and scalability required for large-scale functional genomic screens. CRISPR systems overcome these limitations by offering precision gene targeting and manipulation, allowing for high-throughput investigations into gene function and interactions. Recent work has shown that CRISPR genome editing is widely adaptable to several yeast species, many of which have natural traits suited for industrial biotechnology. In this review, we discuss recent advances in yeast functional genomics, emphasizing advancements made with CRISPR tools. We discuss how the development and optimization of CRISPR genome-wide screens have enabled a host-first approach to metabolic engineering, which takes advantage of the natural traits of nonconventional yeast—fast growth rates, high stress tolerance, and novel metabolism—to create new production hosts. Lastly, we discuss future directions, including automation and biosensor-driven screens, to enhance high-throughput CRISPR-enabled yeast engineering.

Keywords: functional genetics; forward genetic screening; nonconventional yeast; CRISPR; metabolic engineering

Introduction

Functional genomic screens allow the discovery of genotype–phenotype relationships and interactions between genes (Schuldiner et al. 2005, Suter et al. 2006, Holland and Blazeck 2022). To do this, gene expression is eliminated or modulated and cells are screened to identify any resulting phenotypic changes (Doench 2018). Before whole-genome sequencing and the advent of clustered regularly interspaced short palindromic repeats (CRISPR)-Cas technologies, these screens were typically performed with random UV (Pringle 1975) or chemical mutagenesis (Kilbey 1975). Now, manually generated knockout libraries (Winzeler et al. 1999, Baba et al. 2006), RNA interference (RNAi) (Boutros and Ahringer 2008), transposons (Michel et al. 2017), or guide RNAs (gRNAs) as part of a CRISPR-Cas system (Robertson et al. 2024a) can be carefully designed to specifically target all or a subset of genes in a host organism. In yeast, CRISPR-Cas genome-wide screens can be easily designed to target all genes (Ramesh et al. 2023, Tafrishi et al. 2024), or guides can be multiplexed to study genetic interactions (Schuldiner et al. 2005, Costanzo et al. 2019). After altering the genotype of a pool of mutants, further assays can be performed to identify genes of interest. For example, survival assays can determine gene essentiality (Suter et al. 2006), genes needed for fitness in stress conditions (Robertson et al. 2024a), or for the production of metabolites (D’oelsnitz et al. 2022, Robertson et al. 2024b).

The use of functional genomic screens in yeast has proven their ability to elucidate gene function and gene interactions, which al-

lows for knowledge generation about the genetic underpinnings of biotechnology traits. In addition to this, functional genomic screens are inherently powerful for engineering microorganisms by performing screens in stress conditions (Ando et al. 2006, Teixeira et al. 2010, Ramesh et al. 2023), on low-value feedstocks (Usher et al. 2011, Coradetti et al. 2018, Robertson et al. 2024a), or for improvement in metabolite production (D’oelsnitz et al. 2022, Liu et al. 2022a). Yeast hosts for industrial production of chemicals and bioproducts benefit from high tolerance to environmental stresses and broad substrate metabolism (Mattanovich et al. 2014, Thorwall et al. 2020, Geijer et al. 2022). By growing mutant pools under various stress conditions and with different carbon sources, tolerance to the stresses of industrial processing can be rapidly engineered and genotypes responsible for these traits can be uncovered. Finally, screens can be developed to manually select (Lupish et al. 2022), autonomously sort (Taguchi et al. 2023), or screen with biosensor reporting for high producers of valuable metabolites (D’oelsnitz et al. 2022, Robertson et al. 2024b).

Saccharomyces cerevisiae has been used for decades as a host microbe for metabolic engineering and as a representative of yeast biology due to its relative ease of transformation and high rate of homologous recombination (Nevoigt 2008, Parapouli et al. 2020). The Yeast Deletion Collection in particular proved valuable for functional genetic screens (Winzeler et al. 1999, Giaever et al. 2002, Giaever and Nislow 2014). CRISPR, an adaptive bacterial immune system, has been used as a tool for the past decade or so to rapidly modify all kingdoms of life. The widespread adoption

Received 29 November 2024; revised 12 March 2025; accepted 19 March 2025

© The Author(s) 2025. Published by Oxford University Press on behalf of FEMS. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (<https://creativecommons.org/licenses/by-nc/4.0/>), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

of CRISPR-Cas systems for genome editing has made nonconventional yeasts, many of which are less genetically tractable than *S. cerevisiae*, more accessible, thus enabling new approaches to industrial biotechnology. One valuable approach is identifying a microbe that expresses a desired trait and adapt CRISPR genome editing to the selected species to control and enhance the desired trait(s) (Löbs et al. 2017, Patra et al. 2021, Geijer et al. 2022). Some examples of this approach include *Ogataea polymorpha* (Xie et al. 2024) and *Komagataella phaffii* (Claes et al. 2024), which are used for high protein production, *Kluyveromyces marxianus* is naturally thermotolerant and is used to produce valuable metabolites such as 2-phenylethanol and 2-phenylethyl acetate (Gao and Daugulis 2009, Li et al. 2021), *Rhodosporidium toruloides*, which produces lipids and carotenoids (Otopual et al. 2019), and *Yarrowia lipolytica*, which accumulates high titers of lipids for applications in food or fuels (Blazeck et al. 2014, Schwartz et al. 2019). By developing functional genomic screens in these yeasts and others, we can expand their uses in industrial applications by screening for enhancements in valuable phenotypes.

In this review, we outline the current advances and historical development of functional genomic screens in yeast for biotechnology, emphasizing the use of CRISPR-Cas systems. We discuss these topics by selecting a subset of examples that best demonstrate the various technologies and approaches. We give a broad overview of methods and considerations for designing these screens as well as techniques to optimize their use. Since it is now possible to rapidly develop tools for nonconventional yeast, we highlight which nonconventional yeasts have been used in functional genomic screens and how these techniques were developed. Finally, we look to the future of yeast functional genomic screens, specifically how high-throughput automation and biosensors will be used to drive the selection of valuable phenotypes.

Approaches and methods to yeast functional genomic screening

Many genetic engineering methods can be used to generate mutations for functional genomic screening. Such methods are yeast deletion collections, RNAi, transposon insertional mutagenesis, and CRISPR-Cas (Table 1). In this section, we give an overview of these methods to build mutant libraries for the purpose of discovering valuable genotype–phenotype interactions.

The Yeast Deletion Collection

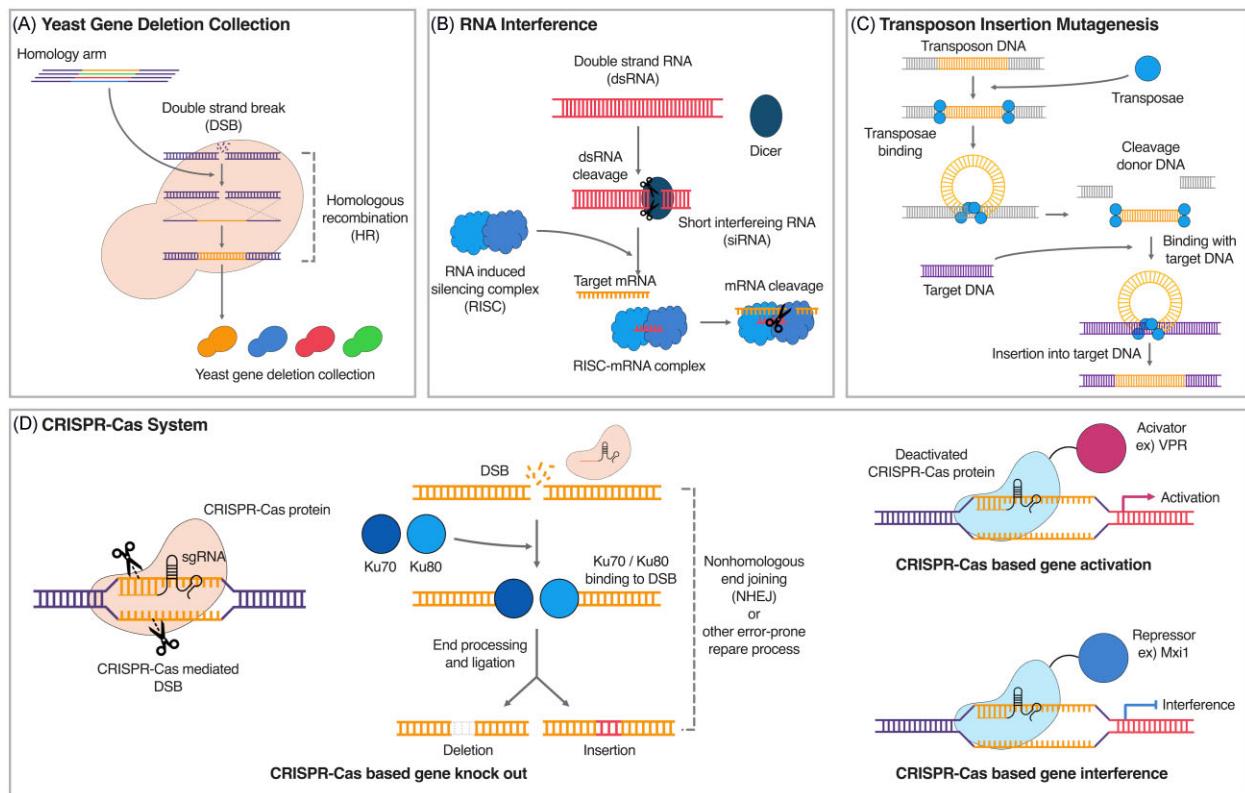
The Yeast Deletion Collection, the first yeast whole-genome knockout library (a single gene deletion per strain), was generated by Winzeler et al. (1999) in *S. cerevisiae* and was enabled by the complete sequencing of the *S. cerevisiae* genome (Goffeau et al. 1996) and the high homologous recombination efficiency of the host (Fig. 1A). This knockout collection is an arrayed set of mutant strains each with a single gene deletion and allows for the rapid testing of gene function. For example, the collection has been used to identify essential genes (i.e. those that greatly reduce cell fitness) in both rich and minimal media as well as genes that are essential for survival in particular stress conditions such as high osmotic stress, alternative carbon sources (Winzeler et al. 1999, Giaever et al. 2002, Giaever and Nislow 2014), or environmental stresses such as UV radiation (Birrell et al. 2001). Finally, these gene deletions can be multiplexed through double or triple knockouts to uncover genetic interactions (Giaever and Nislow 2014, Kuzmin et al. 2018, Liu et al. 2022b). The Yeast Deletion Collec-

tion is still used in current work and paved the way for functional genomic screens in yeast.

RNA interference

Since the discovery and functionalization of RNAi as a tool, its use has found diverse applications for synthetic biology in all kingdoms of life (Fire et al. 1998, Hannon 2002). In contrast to the yeast knockout collection, RNAi acts post-transcriptionally (on RNA, not DNA) to silence genes (Fig. 1B). Interestingly, the RNAi machinery is evolutionarily lost in some yeast, including *S. cerevisiae*, but can be reimplemented with the expression of the relevant protein machinery, often via plasmid expression (Agrawal et al. 2003, Drinnenberg et al. 2009). The use of a post-transcriptional gene interference technology presents additional challenges and opportunities when used in yeast (Hannon 2002, Chen et al. 2020). To our knowledge, RNAi technologies have not been demonstrated in *K. phaffii*, *Y. lipolytica*, *K. marxianus*, or *O. polymorpha*, only in *S. cerevisiae*. This is due in part to the more recent development of transformation protocols and basic genetic manipulation tools for many nonconventional yeasts.

Functional genomic screens using RNAi in *S. cerevisiae* have been widely successful. RNAi is advantageous in part because it allows for gene knockdown or activation as opposed to complete knockout. This allows for investigation of variable transcription levels and probing of essential genes (Si et al. 2015, Chen et al. 2020). Additionally, libraries can be generated from the genomic DNA of your host strain, rather than undergoing the costly process of gRNA or other DNA synthesis (Chen et al. 2020). Functional genomic screens using RNAi have successfully been used in *S. cerevisiae* to improve acetic acid tolerance (Si et al. 2015), isobutanol production (Si et al. 2017), and xylose utilization (Hamedirad et al. 2018), among others. Some screens have been developed for both knockdown and activation simultaneously (Si et al. 2017) and some have been built for tunable knockdown (Crook et al. 2016).


RNAi applications on a genome-wide scale are not without obstacles. Constructing high-quality libraries demands rigorous quality control to ensure comprehensive genomic representation. Off-target effects remain a significant issue, often necessitating follow-up experiments to verify the reliability of identified targets. Furthermore, RNAi screens typically focus on phenotypes that are straightforward to measure, such as growth under chemical stress or substrate consumption, leaving more complex phenotypes underexplored. Introducing multiple RNAi reagents simultaneously can overwhelm the silencing machinery, reducing the efficiency of individual gene targeting. Additionally, understanding how combinations of mutations contribute to enhanced traits is challenging, requiring thorough studies to decipher their individual roles and interactions. Despite these challenges, the power of RNAi functional genomic screens suggests that this technology should be further explored for use in nonconventional yeast (Hannon 2002, Chen et al. 2020).

Transposon insertional mutagenesis

Transposons are portable genetic elements that insert themselves within chromosomes. As a synthetic biology tool, transposon insertional mutagenesis interrupts reading frames, promoters, non-coding regions, and other genetic elements nearly indiscriminately by inserting at TA or TTAA sites, depending on the system (Zhu et al. 2018) (Fig. 1C). After insertion, techniques such as inverse polymerase chain reaction (PCR) and randomly broken fragment PCR (RBF-PCR) can be used to amplify and then sequence the transposon and adjacent DNA to identify the insertion site (Näät-

Table 1. Comparison of functional genomic screening techniques.

Screen method	Advantages	Disadvantages
Deletion collections	Comprehensive coverage Well-characterized	Limited to nonessential genes Complete knockout only Limited to <i>S. cerevisiae</i> No complete knockout Transient effects Off-target potential Insertion site bias
RNA interference	Can study essential genes Variable gene repression Generated from host DNA	Random insertion limits scope Off-target potential Library design and generation Cellular burden from endonuclease
Transposon insertion	Higher mutational depth Rapid development time	
CRISPR-Cas	Precision editing Versatile (KO, CRISPRi/a, base editor) Can identify and study essential genes	

Figure 1. Common methods of generating mutations for functional genomic screens. (A) Yeast deletion collections utilize homologous recombination to generate gene knockouts. (B) RNAi occurs when Dicer protein cleaves double-stranded RNA (dsRNA) into small-interfering RNAs (siRNA), which are then incorporated into the RNA-induced silencing complex (RISC) to target and degrade complementary mRNA, thereby silencing gene expression. (C) Transposon mutant libraries rely on a transposase to randomly insert mutations throughout the genome. (D) The CRISPR-Cas system can be used to generate knockouts or up-/downregulate genes with CRISPRa/CRISPRi by using an sgRNA that directs a Cas endonuclease. In many cases, this double-stranded break (DSB) is then repaired by native error-prone repair enzymes like Ku70/80 creating an insertion or deletion that causes a premature stop codon downstream. For CRISPRa/CRISPRi, a dCas9 is fused to an activation/repression domain like VPR/Mxi1 to increase/decrease expression, respectively.

saari et al. 2012, Xu et al. 2013). Transposon insertional mutagenesis has been used for functional genomic screens in *S. cerevisiae* (Takahashi et al. 2001), *Schizosaccharomyces pombe* (Li et al. 2011), *K. phaffii* (Zhu et al. 2018), *R. toruloides* (Coradetti et al. 2018), and *Y. lipolytica* (Wagner et al. 2018), but work is missing in other non-conventional yeast.

Once a transposon insertional mutagenesis system is developed for a particular species, mutational libraries of the yeast can be created and screened. In one screen, *K. phaffii* colonies were individually picked and validated for their more efficient utilization of methanol as a carbon source (Zhu et al. 2018). In another, a

transposon screen was developed for *S. pombe* and demonstrated by identifying genes related to microtubule formation and temperature sensitivity. Instead of picking individual mutants, up to 400 000 colonies were pooled and deep sequenced, demonstrating the throughput capabilities of the system (Li et al. 2011). Both of these projects utilized the *piggyBac* transposon system from the cabbage looper moth, *Trichoplusia ni*, due to its high transposition efficiency (Zhu et al. 2018). Finally, another study found two loci that improve growth on xylose with a transposon-based functional genomic screen in *S. cerevisiae* (Ni et al. 2007). The downside of transposon tools for functional genomics—the fact they are

untargeted—should be taken advantage of as it provides an opportunity to work with unsequenced genomes and rapidly implement the built tool because computational design is not needed before implementation. They can also be low or high throughput depending on the needs and the resources of the laboratory. Transposon insertional mutagenesis systems should be further developed, particularly for nonconventional yeast.

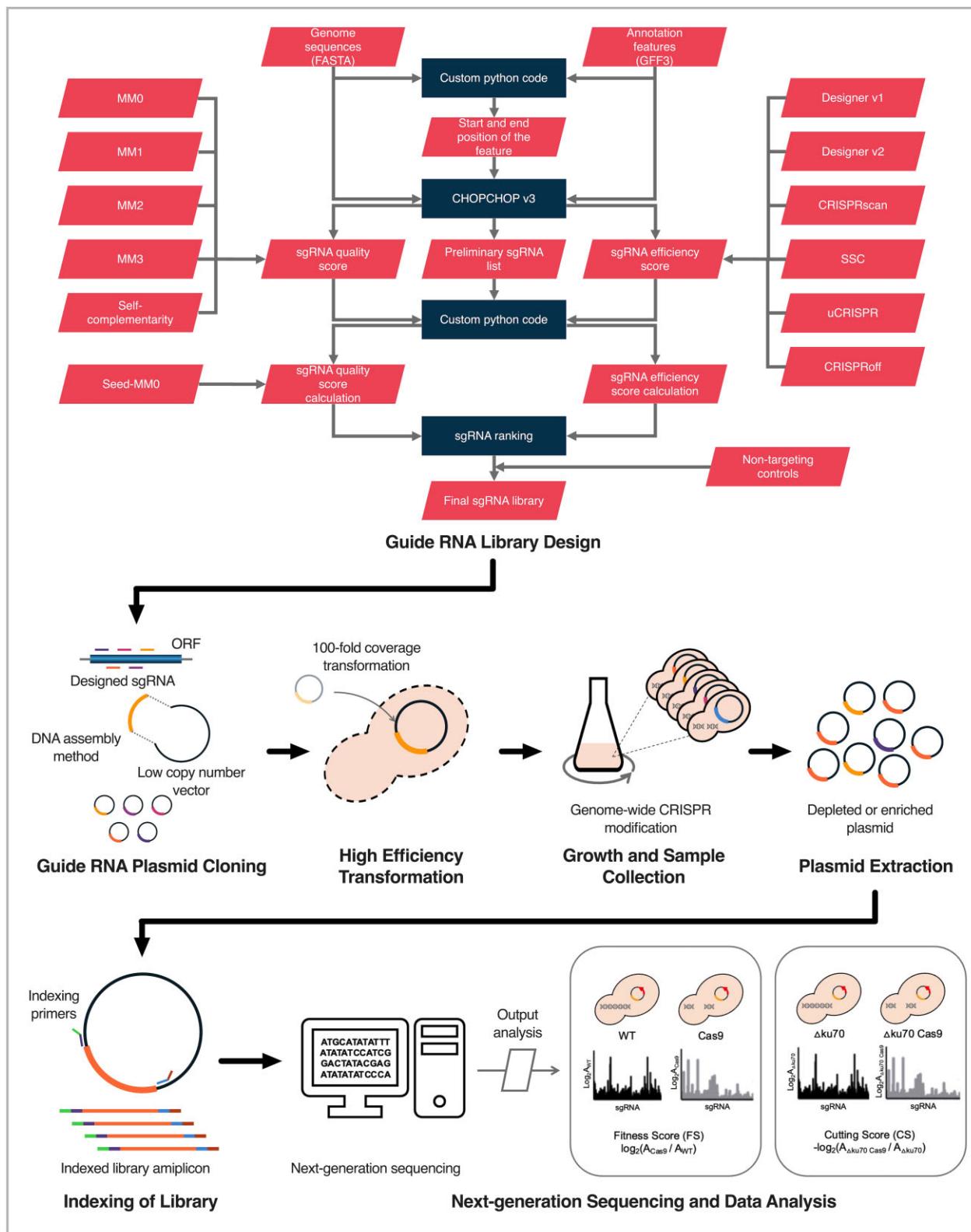
CRISPR-Cas systems

The advent of CRISPR-Cas tools has greatly accelerated the field of functional genomics due to the platform's flexibility (gene knockout, downregulation, upregulation, and base editing), portability between hosts, and programmability (Doudna and Charpentier 2014, Shalem et al. 2015, Anzalone et al. 2020, Trivedi et al. 2023). In a typical CRISPR-Cas system, an endonuclease is directed by gRNA (typically ~20 bp in length) to make a targeted double-stranded break in the host genome. The cell repairs the break either through error-prone nonhomologous end joining (NHE) or microhomology-mediated end joining (MME), which introduces insertions or deletions that disrupt gene function, or through homology-directed repair if a DNA template is provided enabling precise gene deletion or insertion (Schwartz et al. 2017, Xue and Greene 2021) (Fig. 1D). These repair mechanisms provide a foundation for creating targeted genetic alterations for functional genomic studies.

The versatility of the CRISPR-Cas systems extends beyond simple knockouts, as modifications of the Cas protein enable gene regulation without introducing double-stranded breaks. For instance, CRISPR interference (CRISPRi) utilizes a catalytically inactive Cas9 (dCas9) to block transcription by sterically hindering RNA polymerase at target genes (Qi et al. 2013). Conversely, CRISPR activation (CRISPRa) involves fusing dCas9 with transcriptional activators to enhance gene expression (Chavez et al. 2015) (Fig. 1D). These approaches provide a powerful toolkit for investigating gene function through precise modulation of gene activity. Moreover, some Cas proteins, like Cas12a (formerly Cpf1), exhibit distinct properties, such as the ability to process their own gRNAs and target multiple sites simultaneously using multiplexed sgRNAs (Ramesh et al. 2020). Limitations to CRISPR screens include ambiguous gene knockout scenarios (it is unknown whether frame-shift-causing insertion or deletion is created), large size, cellular burden of the Cas9 endonuclease, discrepancies in gRNA activity predictions, and, like other screening methods, a need for high transformation efficiency. Despite these limitations and with advances in whole-genome sequencing and sgRNA library synthesis makes the CRISPR-Cas system a valuable candidate for functional genomic screens.

Optimizing CRISPR functional genomic screens

Despite the rapid development of the CRISPR-Cas system, further refinement is needed to optimize these technologies for genome-wide screening applications. Effective implementation demands extensive upfront work, including gRNA library design (Fig. 2). Library design criteria vary based on application (CRISPR knockout, CRISPRi, or CRISPRa). In knockout libraries, intronic regions are typically excluded, and guides are preferentially designed to target the first 5%–65% of the coding sequence to maximize the likelihood of a functional knockout. Alternatively, guides may target promoter regions to disrupt native transcriptional regulation, either through causing random sequence changes in the promoter


regions with unmodified Cas endonuclease or by directing an activator or repressor to a specific site in CRISPRi/CRISPRa applications. Library design should also seek to address off-target effects. To this end, libraries should contain unique guides that are sufficiently spaced to improve diversity of target locations (Doench et al. 2016, Dong et al. 2021, Ramesh and Wheeldon 2021, Trivedi et al. 2023). sgRNA uniqueness within the genome minimizes off-target effects and enhances genome editing precision. Additional refinements can further optimize library efficiency. For instance, predicting sgRNA secondary structures can help avoid designs prone to forming stable secondary structures (Thyme et al. 2016, Labun et al. 2019), which may hinder complex formation with the Cas protein. Another key factor is the uniqueness of the sgRNA seed sequence (the 12–14 nucleotides upstream of the protospacer adjacent motif (PAM) site for Cas9), as mismatches outside this region are more tolerable, while seed region specificity is crucial for effective on-target activity (Jinek et al. 2012, Cong et al. 2013, Hsu et al. 2013, Jiang et al. 2013). While several sgRNA activity prediction tools exist, most are tailored for mammalian cells (Doench et al. 2014, Moreno-Mateos et al. 2015, Xu et al. 2015, Doench et al. 2016, Zhang et al. 2019), necessitating species-specific adaptations. One example of this is DeepGuide (Baisya et al. 2022), a machine learning-based guide prediction platform, has been introduced as an sgRNA design tool trained on experimental library data from *Y. lipolytica*. Finally, plasmid stability should be validated to ensure guide abundance changes are due solely to condition variations.

Given the challenges in predicting sgRNA activity, targeting multiple sgRNAs per gene increases the likelihood of successful gene disruption and improves fitness effect calculations. However, this also expands library size and complicates data analysis, particularly in hosts with limited transformation efficiency. One solution is to experimentally measure library activity by disrupting the dominant DNA repair pathway. In *Y. lipolytica*, *K. phafii*, *K. marxianus*, and many other nonconventional yeasts (Löbs et al. 2017), the dominant repair mechanism is NHEJ. Knocking out key repair genes like *KU70/KU80* prevents DNA repair, causing cell death upon efficient CRISPR-induced cuts (Schwartz et al. 2019, Tafrishi et al. 2024). By comparing sgRNA abundance between an endonuclease-active strain and a control strain, sgRNA activity can be systematically assessed across the library (Robertson et al. 2024). An activity-validated sgRNA library consequently enhances the accuracy of genome-wide screens by ensuring that only functional guides contribute to phenotypic readouts. Investing in these foundational steps enhances the reliability of subsequent analyses, streamlines downstream processes, and accelerates the discovery of gene functions in the target host.

Applications of CRISPR genome-wide screens

Essential gene identification

Knockout of an essential gene causes cell death, stops cell growth, or substantially reduces growth rate. Gene essentiality may shift in different growth conditions, but there should exist substantial overlap between conditions and a core set of genes that are essential to growth in any condition. To identify essential genes with CRISPR genome-wide screens, populations containing the gRNA library and the Cas protein are grown and subcultured until the targeting and nontargeting control guides diverge in their abundance (Fig. 2). Many tools have been developed to predict gene essentiality from sgRNA abundance including acCRISPR (Ramesh et

Figure 2. Pipeline for sgRNA library design and genome-wide screening with CRISPR-Cas systems. The CRISPR-Cas sgRNAs are predicted from annotated genomes of the target organism. Guide libraries are synthesized and cloned into, typically, low-copy number vectors to prevent multiple guide plasmids in a single cell. The transformed libraries are propagated in the given condition where strains with advantageous traits become enriched. After collecting plasmid DNA from each sample population, the sgRNA region is amplified with indexing primers required for later demultiplexing and next-generation sequencing. Finally, read counts are utilized to calculate guide or gene metrics like fitness score and cutting score.

Table 2. CRISPR-based functional genomic screens in yeast.

Screening	Species	CRISPR Tool	Target	Reference
Essential gene identification	<i>Y. lipolytica</i>	CRISPR knockout	Essential gene	Schwartz et al. (2019) and Robertson et al. (2024a)
	<i>S. cerevisiae</i>	CRISPR interference	Essential gene	Mcglincy et al. (2021)
	<i>K. phaffii</i>	CRISPR knockout	Essential gene	Zhu et al. (2018) and Tafrishi et al. (2024)
	<i>S. cerevisiae</i>	CRISPR knockout	Furfural tolerance	Bao et al. (2018)
Stress tolerance-related gene identification	<i>S. cerevisiae</i>	CRISPR interference	Absence of arginine, adenine	Momen-Roknabadi et al. (2020)
	<i>S. cerevisiae</i>	CRISPR interference	Acetic acid tolerance	Mukherjee et al. (2021)
	<i>Y. lipolytica</i>	CRISPR knockout	Canavanine tolerance	Schwartz et al. (2019)
	<i>Y. lipolytica</i>	CRISPR knockout	Salt tolerance	Ramesh et al. (2023)
	<i>Y. lipolytica</i>	CRISPR knockout	Acetate, fatty acid tolerance	Robertson et al. (2024a)
Biosensor-driven screens	<i>S. cerevisiae</i>	CRISPR interference	Acetic acid sensitivity	Mormino et al. (2022)
	<i>K. marxianus</i>	CRISPR knockout	Terpene	Robertson et al. (2024b)

al. 2023), developed and validated based on data obtained from yeast cells, and JACKS (Allen et al. 2019), MAGeCK-MLE (Li et al. 2015), and CRISPhieRmix (Daley et al. 2018) validated based on mammalian cell essential genes. Fitness scores of each gene can be calculated by averaging the change in abundance of each guide over time or comparing the abundance to a library transformed into a strain without the Cas protein; in our work, we define fitness score as $\log_2(A_{\text{Cas9}}/A_{\text{wt}})$, where A_{Cas9} is the given guide's abundance in the Cas9 strain and A_{wt} is the given guide's abundance in the wild-type strain (Fig. 2) (Schwartz et al. 2019, Robertson et al. 2024a).

In *S. cerevisiae*, a CRISPRi library was able to call essential genes (Mcglincy et al. 2021). In *Y. lipolytica*, a first- and second-generation library were built and used to call essential genes (Schwartz et al. 2019, Robertson et al. 2024a). In *K. phaffii*, a CRISPR genome-wide screen revealed essential genes that overlap substantially with a previous transposon functional genomic screen. Through comparison of this essential gene set with that of other yeasts, a unique set of *K. phaffii*-exclusive essential genes were identified that were linked to this microorganism's nonconventional characteristics such as protein secretion and glycosylation (Zhu et al. 2018, Tafrishi et al. 2024). Essential gene information adds to our general understanding and paves the way to develop new tools. CRISPR function has been demonstrated in many other nonconventional yeast, paving the way for future CRISPR genome-wide functional genomic screens.

Stress tolerance-related gene identification

One variation on essential gene screens is stress-tolerance screens. In these cases, growth screens can be conducted in high salt or low pH media, on various carbon sources, or in other environmental stress conditions (Schwartz et al. 2019, Robertson et al. 2024a). Knockout of a low fitness score gene reduces fitness in the given condition whereas knockout of a high fitness score gene improves fitness in the given condition. Complexity increases when utilizing CRISPRi/CRISPRa to find tolerance-related genes or when altering promoter strength with CRISPR tools because guide activity (in the case of CRISPRi/CRISPRa) or promoter insertions and deletions (in the case of targeting promoter regions) vary transcription levels to unknown strength. With these methods, it is often the case that a gene can be flagged as important for a given condition, but the effect of changing the promoter strength is unknown, or a specific high-performing mutant needs to be isolated

from the screen. To isolate a high-performing mutant from any style of screen, the stringency of the selection must be carefully designed. Highly stringent conditions may remove 99% of mutants, which is more amenable to selecting individual winners (positive screens), rather than deep sequencing. Less stringent conditions are more amenable to deep sequencing and to characterizing a spectrum of fitness effects. As with essential genes, these hits should be validated.

Stress tolerance screens have also been performed with non-conventional yeast, but there are considerably fewer examples than those conducted with *S. cerevisiae*. In *Y. lipolytica*, tolerance screens have been performed to identify genes related to canavanine resistance (Schwartz et al. 2019), salt tolerance (Ramesh et al. 2023), acetate tolerance, and fatty acid tolerance (Robertson et al. 2024a). These screens in *Y. lipolytica* demonstrate the enabling power of genome-wide screening to develop industrially relevant phenotypes.

Biosensor-driven screens

Screening for stress tolerance of a toxic product may improve yields, but tolerance is often not the limiting factor for metabolite production. Biosensor-driven screens bridge the gap between tolerance screens and production screens. A form of directed evolution, biosensor-driven CRISPR genome-wide screens, identifies genes responsible for improved metabolite production through the use of a biosensor. These screens could be set up with growth- or fluorescence-based reporting systems, for example.

Saccharomyces cerevisiae has been used to demonstrate a fluorescence-based acetic acid biosensor screen where a subset of genes were repressed with CRISPRi. Five genes were identified that, when repressed, led to higher acetic acid sensitivity (Mormino et al. 2022). In another work, *K. marxianus*, a PYR1 biosensor for the terpene geraniol, and a 10-fold coverage gRNA CRISPR-Cas9 knockout library were used to identify gene knockouts that improve geraniol production. Rather than fluorescence-based cell sorting, a growth-based system was used and individual colonies were picked for their size/faster growth rate, then were validated for improved terpene production (Robertson et al. 2024). In spite of the power of this system, few biosensor-driven genome-wide screening platforms have been developed. Additional compiled CRISPR functional genomic screens in yeast can be seen in Table 2.

Perspectives

With the rapid domestication of nonconventional yeast through the development of whole-genome sequencing, inclusive CRISPR tools, and improved transformation protocols, CRISPR functional genomic screens will become more prevalent in a broad range of yeasts. These nonconventional hosts already have attractive traits over baker's yeast that can be improved with these advanced screening systems (Geijer et al. 2022). Additionally, these yeast contain new or understudied genes that may be relevant for applications in industrial biotechnology. More advanced tools will allow for rapid multi-round screens in strains that are already heavily modified for the process of interest, greatly accelerating strain development.

With more development in the field, guide activity will be more accurately predicted with larger experimental datasets and improved artificial intelligence/machine learning techniques that seek to generate predictive models of CRISPR activity and, more broadly, biological function. In many screening scenarios, sorting for hits is the bottleneck of elucidating valuable phenotypes (Mitchell et al. 2015, Lupish et al. 2022). The advancement of biosensors, like the PYR1 platform (Beltrán et al. 2022) and bacterial transcription factors (Tellechea-Luzardo et al. 2023), functional genomic screens will advance rapidly. With biosensor-driven screens, cells can self-report product titers allowing for easy sorting (D'oelsnitz et al. 2022, Robertson et al. 2024b). Current screening methods or these more advanced biosensor-driven screens can then be followed up with automation systems. Especially when paired with machine learning and machine vision, liquid handling robots can sort and test hits rapidly and full time (Torres-Acosta et al. 2022). The next decade of functional genomic screens will advance rapidly as other synthetic biology and computational tools develop.

Funding

This work was supported by the National Science Foundation (NSF-2323984, NSF-2225878 to I.W.).

Conflict of interest: None declared.

References

Agrawal N, Dasaradhi PVN, Mohammed A et al. RNA interference: biology, mechanism, and applications. *Microbiol Mol Biol Rev* 2003; **67**:657–85.

Allen F, Behan F, Khodak A et al. JACKS: joint analysis of CRISPR/Cas9 knockout screens. *Genome Res* 2019; **29**:464–71.

Ando A, Tanaka F, Murata Y et al. Identification and classification of genes required for tolerance to high-sucrose stress revealed by genome-wide screening of *saccharomyces cerevisiae*: identification of genes required for high-sucrose tolerance. *FEMS Yeast Res* 2006; **6**:249–67.

Anzalone AV, Koblan LW, Liu DR. Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors. *Nat Biotechnol* 2020; **38**:824–44.

Baba T, Ara T, Hasegawa M et al. Construction of *Escherichia coli* K-12 in-frame, single-gene knockout mutants: the Keio collection. *Mol Syst Biol* 2006; **2**:2006–0008.

Baisya D, Ramesh A, Schwartz C et al. Genome-wide functional screens enable the prediction of high activity CRISPR-Cas9 and -Cas12a guides in *Yarrowia lipolytica*. *Nat Commun* 2022; **13**:922.

Bao Z, Hamedirad M, Xue P et al. Genome-scale engineering of *Saccharomyces cerevisiae* with single-nucleotide precision. *Nat Biotechnol* 2018; **36**:505–8.

Beltrán J, Steiner PJ, Bedewitz M et al. Rapid biosensor development using plant hormone receptors as reprogrammable scaffolds. *Nat Biotechnol* 2022; **40**:1855–61.

Birrell GW, Gaeaver G, Chu AM et al. A genome-wide screen in *Saccharomyces cerevisiae* for genes affecting UV radiation sensitivity. *Proc Natl Acad Sci USA* 2001; **98**:12608–13.

Blazeck J, Hill A, Liu L et al. Harnessing *Yarrowia lipolytica* lipogenesis to create a platform for lipid and biofuel production. *Nat Commun* 2014; **5**:3131.

Boutros M, Ahringer J. The art and design of genetic screens: RNA interference. *Nat Rev Genet* 2008; **9**:554–66.

Chavez A, Scheiman J, Vora S et al. Highly efficient Cas9-mediated transcriptional programming. *Nat Methods* 2015; **12**:326–8.

Chen Y, Guo E, Zhang J et al. Advances in RNAi-assisted strain engineering in *saccharomyces cerevisiae*. *Front Bioeng Biotechnol* 2020; **8**:731.

Claes K, Van Herpe D, Vanluchene R et al. OPENPichia: licence-free *Komagataella phaffii* chassis strains and toolkit for protein expression. *Nat Microbiol* 2024; **9**:864–76.

Cong L, Ran FA, Cox D et al. Multiplex genome engineering using CRISPR/Cas systems. *Science* 2013; **339**:819–23.

Coradetti ST, Pinel D, Geiselman GM et al. Functional genomics of lipid metabolism in the oleaginous yeast *Rhodosporidium toruloides*. *eLife* 2018; **7**:e32110.

Costanzo M, Kuzmin E, Van Leeuwen J et al. Global genetic networks and the genotype-to-phenotype relationship. *Cell* 2019; **177**:85–100.

Crook N, Sun J, Morse N et al. Identification of gene knockdown targets conferring enhanced isobutanol and 1-butanol tolerance to *Saccharomyces cerevisiae* using a tunable RNAi screening approach. *Appl Microbiol Biotechnol* 2016; **100**:10005–18.

D'oelsnitz S, Kim W, Burkholder NT et al. Using fungible biosensors to evolve improved alkaloid biosyntheses. *Nat Chem Biol* 2022; **18**:981–9.

Daley TP, Lin Z, Lin X et al. CRISPhieRmix: a hierarchical mixture model for CRISPR pooled screens. *Genome Biol* 2018; **19**:159.

Doench JG, Fusi N, Sullender M et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. *Nat Biotechnol* 2016; **34**:184–91.

Doench JG, Hartenian E, Graham DB et al. Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation. *Nat Biotechnol* 2014; **32**:1262–7.

Doench JG. Am I ready for CRISPR? A user's guide to genetic screens. *Nat Rev Genet* 2018; **19**:67–80.

Dong C, Schultz JC, Liu W et al. Identification of novel metabolic engineering targets for S-adenosyl-L-methionine production in *Saccharomyces cerevisiae* via genome-scale engineering. *Metab Eng* 2021; **66**:319–27.

Doudna JA, Charpentier E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. *Science* 2014; **346**:1258096.

Drinnenberg IA, Weinberg DE, Xie KT et al. RNAi in budding yeast. *Science* 2009; **326**:544–50.

Fire A, Xu S, Montgomery MK et al. Potent and specific genetic interference by double-stranded RNA in *Caenorhabditis elegans*. *Nature* 1998; **391**:806–11.

Gao F, Daugulis AJ. Bioproduction of the aroma compound 2-phenylethanol in a solid-liquid two-phase partitioning bioreactor system by *Kluyveromyces marxianus*. *Biotechnol Bioeng* 2009; **104**:332–9.

Geijer C, Ledesma-Amaro R, Tomás-Pejó E. Unraveling the potential of non-conventional yeasts in biotechnology. *FEMS Yeast Res* 2022;22:foab071.

Gaevert G, Chu AM, Ni L et al. Functional profiling of the *Saccharomyces cerevisiae* genome. *Nature* 2002;418:387–91.

Gaevert G, Nislow C. The yeast deletion collection: a decade of functional genomics. *Genetics* 2014;197:451–65.

Goffeau A, Barrell BG, Bussey H et al. Life with 6000 genes. *Science* 1996;274:546–7.

Hamedirad M, Lian J, Li H et al. RNAi assisted genome evolution unveils yeast mutants with improved xylose utilization. *Biotechnol Bioeng* 2018;115:1552–60.

Hannon GJ. RNA interference. *Nature* 2002;418:244–51.

Holland K, Blazeck J. High throughput mutagenesis and screening for yeast engineering. *J Biol Eng* 2022;16:37.

Hsu PD, Scott DA, Weinstein JA et al. DNA targeting specificity of RNA-guided Cas9 nucleases. *Nat Biotechnol* 2013;31:827–32.

Jiang W, Bikard D, Cox D et al. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. *Nat Biotechnol* 2013;31:233–9.

Jinek M, Chylinski K, Fonfara I et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. *Science* 2012;337:816–21.

Kilbey BJ. Chapter 11 Mutagenesis in yeast. In: Prescott DM (ed.), *Methods in Cell Biology*. Vol 12. New York: Academic Press, 1975, 209–31.

Kuzmin E, Vandersluis B, Wang W et al. Systematic analysis of complex genetic interactions. *Science* 2018;360:eaao1729.

Labun K, Montague TG, Krause M et al. CHOPCHOP v3: expanding the CRISPR web toolbox beyond genome editing. *Nucleic Acids Res* 2019;47:W171–4.

Li J, Zhang J-M, Li X et al. A piggyBac transposon-based mutagenesis system for the fission yeast *Schizosaccharomyces pombe*. *Nucleic Acids Res* 2011;39:e40.

Li M, Lang X, Moran Cabrera M et al. CRISPR-mediated multigene integration enables Shikimate pathway refactoring for enhanced 2-phenylethanol biosynthesis in *Kluyveromyces marxianus*. *Biotechnol Biofuels* 2021;14:3.

Li W, Köster J, Xu H et al. Quality control, modeling, and visualization of CRISPR screens with MAGeCK-VISPR. *Genome Biol* 2015;16:281.

Liu M, Zhang J, Liu X et al. Rapid gene target tracking for enhancing β -carotene production using flow cytometry-based high-throughput screening in *Yarrowia lipolytica*. *Appl Environ Microb* 2022a;88:e0114922.

Liu X, Li J, Gygi SP et al. Profiling yeast deletion strains using sample multiplexing and network-based analyses. *J Proteome Res* 2022b;21:1525–36.

Löbs A-K, Schwartz C, Wheeldon I. Genome and metabolic engineering in non-conventional yeasts: current advances and applications. *Synth Syst Biotechnol* 2017;2:198–207.

Lupish B, Hall J, Schwartz C et al. Genome-wide CRISPR-Cas9 screen reveals a persistent null-hyphal phenotype that maintains high carotenoid production in *Yarrowia lipolytica*. *Biotechnol Bioeng* 2022;119:3623–31.

Mattanovich D, Sauer M, Gasser B. Yeast biotechnology: teaching the old dog new tricks. *Microb Cell Fact* 2014;13:34.

Mcglincy NJ, Meacham ZA, Reynaud KK et al. A genome-scale CRISPR interference guide library enables comprehensive phenotypic profiling in yeast. *BMC Genomics* 2021;22:205.

Michel AH, Hatakeyama R, Kimmig P et al. Functional mapping of yeast genomes by saturated transposition. *eLife* 2017;6:e23570.

Mitchell LA, Chuang J, Agmon N et al. Versatile genetic assembly system (VEGAS) to assemble pathways for expression in *S. cerevisiae*. *Nucleic Acids Res* 2015;43:6620–30.

Momen-Roknabadi A, Oikonomou P, Zegans M et al. An inducible CRISPR interference library for genetic interrogation of *Saccharomyces cerevisiae* biology. *Commun Biol* 2020;3:723.

Moreno-Mateos MA, Vejnar CE, Beaudoin J-D et al. CRISPRscan: designing highly efficient sgRNAs for CRISPR-Cas9 targeting in vivo. *Nat Methods* 2015;12:982–8.

Mormino M, Lenitz I, Siewers V et al. Identification of acetic acid sensitive strains through biosensor-based screening of a *Saccharomyces cerevisiae* CRISPRi library. *Microb Cell Fact* 2022;21:214.

Mukherjee V, Lind U, St. Onge RP et al. A CRISPR interference screen of essential genes reveals that proteasome regulation dictates acetic acid tolerance in *Saccharomyces cerevisiae*. *Msystems* 2021;6:e0041–821.

Näätänsaari L, Mistlberger B, Ruth C et al. Deletion of the *Pichia pastoris* KU70 homologue facilitates platform strain generation for gene expression and synthetic biology. *PLoS One* 2012;7:e39–720.

Nevoigt E. Progress in metabolic engineering of *saccharomyces cerevisiae*. *Microbiol Mol Biol Rev* 2008;72:379–412.

Ni H, Laplaza JM, Jeffries TW et al. Transposon mutagenesis to improve the growth of recombinant *Saccharomyces cerevisiae* on D-xylose. *Appl Environ Microb* 2007;73:2061–6.

Otuopal PB, Ito M, Arkin AP et al. Multiplexed CRISPR-Cas9-based genome editing of *Rhodosporidium toruloides*. *mSphere* 2019;4:e00099–19.

Parapouli M, Vasileiadis A, Afendra A-S et al. *Saccharomyces cerevisiae* and its industrial applications. *AIMS Microbiol* 2020;6:1–32.

Patra P, Das M, Kundu P et al. Recent advances in systems and synthetic biology approaches for developing novel cell-factories in non-conventional yeasts. *Biotechnol Adv* 2021;47:107–695.

Pringle JR. Induction, selection, and experimental uses of temperature-sensitive and other conditional mutants of yeast. *Methods Cell Biol* 1975;12:233–72.

Qi LS, Larson MH, Gilbert LA et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. *Cell* 2013;152:1173–83.

Ramesh A, Ong T, Garcia JA et al. Guide RNA engineering enables dual purpose CRISPR-Cpf1 for simultaneous gene editing and gene regulation in *Yarrowia lipolytica*. *ACS Synth Biol* 2020;9:967–71.

Ramesh A, Trivedi V, Lee S et al. acCRISPR: an activity-correction method for improving the accuracy of CRISPR screens. *Commun Biol* 2023;6:617.

Ramesh A, Wheeldon I. Guide RNA design for genome-wide CRISPR screens in *Yarrowia lipolytica*. *Methods Mol Biol* 2021;2307:123–37.

Robertson Nicholas R, Trivedi Varun, Lupish Brian et al. Optimized genome-wide CRISPR screening enables rapid engineering of growth-based phenotypes in *Yarrowia lipolytica*. *Metab Eng* 2024a;86:55–65.

Robertson R Robertson, Lernert-Mondou Chase, Leonard Alison C et al. PYR1 biosensor-driven genome-wide CRISPR screens for improved monoterpenoid production in *Kluyveromyces marxianus*. *biorxiv* 2024b. <https://doi.org/10.1101/2024.11.14.623641>

Schuldiner M. Exploration of the function and organization of the yeast early secretory pathway through an epistatic miniaarray profile. *Cell* 2005;123:507–19.

Schwartz C, Cheng J-F, Evans R et al. Validating genome-wide CRISPR-Cas9 function improves screening in the oleaginous yeast *Yarrowia lipolytica*. *Metab Eng* 2019;55:102–10.

Schwartz C, Frogue K, Ramesh A et al. CRISPRi repression of non-homologous end-joining for enhanced genome engineering via homologous recombination in *Yarrowia lipolytica*. *Biotechnol Bioeng* 2017;114:2896–906.

Shalem O, Sanjana NE, Zhang F. High-throughput functional genomics using CRISPR-Cas9. *Nat Rev Genet* 2015;16:299–311.

Si T, Chao R, Min Y et al. Automated multiplex genome-scale engineering in yeast. *Nat Commun* 2017;8:151–87.

Si T, Luo Y, Bao Z et al. RNAi-assisted genome evolution in *Saccharomyces cerevisiae* for complex phenotype engineering. *ACS Synth Biol* 2015;4:283–91.

Suter B, Auerbach D, Stagljar I. Yeast-based functional genomics and proteomics technologies: the first 15 years and beyond. *Biotechniques* 2006;40:625–44.

Tafrishi A, Trivedi V, Xing Z et al. Functional genomic screening in *Komagataella phaffii* enabled by high-activity CRISPR-Cas9 library. *Metab Eng* 2024;85:73–83.

Taguchi S, Suda Y, Irie K et al. Automation of yeast spot assays using an affordable liquid handling robot. *SLAS Technol* 2023;28:55–62.

Takahashi T, Shimo H, Ito K. Identification of genes required for growth under ethanol stress using transposon mutagenesis in *Saccharomyces cerevisiae*. *Mol Genet Genomics* 2001;265:1112–9.

Teixeira MC, Raposo LR, Palma M et al. Identification of genes required for maximal tolerance to high-glucose concentrations, as those present in industrial alcoholic fermentation media, through a chemogenomics approach. *OMICS* 2010;14:201–10.

Tellechea-Luzardo J, Stiebritz MT, Carbonell P. Transcription factor-based biosensors for screening and dynamic regulation. *Front Bieng Biotechnol* 2023;11:1118–702.

Thorwall S, Schwartz C, Chartron JW et al. Stress-tolerant non-conventional microbes enable next-generation chemical biosynthesis. *Nat Chem Biol* 2020;16:113–21.

Thyme SB, Akhmetova L, Montague TG et al. Internal guide RNA interactions interfere with Cas9-mediated cleavage. *Nat Commun* 2016;7:11750.

Torres-Acosta MA, Lye GJ, Dikicioglu D. Automated liquid-handling operations for robust, resilient, and efficient bio-based laboratory practices. *Biochem Eng J* 2022;188:108–713.

Trivedi V, Ramesh A, Wheeldon I. Analyzing CRISPR screens in non-conventional microbes. *J Ind Microbiol Biotechnol* 2023;50:kuad006.

Usher J, Balderas-Hernandez V, Quon P et al. Chemical and synthetic genetic array analysis identifies genes that suppress xylose utilization and fermentation in *Saccharomyces cerevisiae*. *G3 (Bethesda)* 2011;1:247–58.

Wagner JM, Williams EV, Alper HS. Developing a piggyBac transposon system and compatible selection markers for insertional mutagenesis and genome engineering in *Yarrowia lipolytica*. *Biotechnol J* 2018;13:e1800–022.

Winzeler EA, Shoemaker DD, Astromoff A et al. Functional characterization of the *S. cerevisiae* genome by gene deletion and parallel analysis. *Science* 1999;285:901–6.

Xie L, Yu W, Gao J et al. *Ogataea polymorpha* as a next-generation chassis for industrial biotechnology. *Trends Biotechnol* 2024;42:1363–78.

Xu H, Xiao T, Chen C-H et al. Sequence determinants of improved CRISPR sgRNA design. *Genome Res* 2015;25:1147–57.

Xu W, Shang Y, Zhu P et al. Randomly broken fragment PCR with 5' end-directed adaptor for genome walking. *Sci Rep* 2013;3:34–65.

Xue C, Greene EC. DNA repair pathway choices in CRISPR-Cas9-mediated genome editing. *Trends Genet* 2021;37:639–56.

Zhang D, Hurst T, Duan D et al. Unified energetics analysis unravels SpCas9 cleavage activity for optimal gRNA design. *Proc Natl Acad Sci USA* 2019;116:8693–8.

Zhu J, Zhu Q, Gong R et al. PiggyBac transposon-mediated mutagenesis and application in yeast *Komagataella phaffii*. *Biotechnol Lett* 2018;40:1365–76.