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Abstract

Summary: Admixture is a fundamental process that has shaped levels and patterns of genetic variation in human populations. RFMIX version 2
(REMIX2) utilizes a robust modeling approach to identify the genetic ancestries in admixed populations. However, this software does not have a
built-in method to visually summarize the results of analyses. Here, we introduce the AncestryGrapher toolkit, which converts the numerical
output of RFMIX2 into graphical representations of global and local ancestry (i.e. the per-individual ancestry components and the genetic ances-
try along chromosomes, respectively).

Results: To demonstrate the utility of our methods, we applied the AncestryGrapher toolkit to visualize the global and local ancestry of individu-
als in the North African Mozabite Berber population from the Human Genome Diversity Panel. Our results showed that the Mozabite Berbers
derived their ancestry from the Middle East, Europe, and sub-Saharan Africa (global ancestry). We also found that the population origin of ances-
try varied considerably along chromosomes (local ancestry). For example, we observed variance in local ancestry in the genomic region on
Chromosome 2 containing the regulatory sequence in the MCMG6 gene associated with lactase persistence, a human trait tied to the cultural de-
velopment of adult milk consumption. Overall, the AncestryGrapher toolkit facilitates the exploration, interpretation, and reporting of ancestry
patterns in human populations.

Availability and implementation: The AncestryGrapher toolkit is free and open source on https://github.com/alisi1989/RFmix2-Pipeline-
to-plot.

Atkinson 2023). Global ancestry refers to the proportion of
an individual’s genome that originated from distinct source
populations, while local ancestry refers to an individual’s ge-
netic ancestry from source populations at particular chromo-
somal locations (Liu et al. 2013, Goli et al. 2024). To
characterize patterns of admixture, several computational
methods have been developed to infer global ancestry
(Pritchard et al. 2000, Hoggart et al. 2004, Patterson et al.
2004, Alexander et al. 2009, Lawson et al. 2012, Liu et al.
2013, Hellenthal et al. 2014, Raj et al. 2014, Wangkumhang
et al. 2022) and local ancestry along chromosomes in individ-
uals (Falush et al. 2003, Tang et al. 2005, 2006,
Sankararaman et al. 2008a, 2008b, Sundquist et al. 2008a,

1 Introduction

Admixture, defined as gene flow between previously diverged
source populations leading to new populations with ancestry
from multiple sources, has been an important contributor to
levels and patterns of genetic variation in humans (Rudan
2006, 1000 Genomes Project Consortium 2012, Hellenthal
et al. 2014, Gurdasani et al. 2015, Uren et al. 2016, Korunes
and Goldberg 2021). For example, a number of studies have
shown that regions of the modern human genome have origi-
nated from archaic hominins, such as Neanderthals and
Denisovans (Qin and Stoneking 2015, Sanchez-Quinto and
Lalueza-Fox 2015, Sankararaman et al. 2016, Wall and

Yoshihara Caldeira Brandt 2016, Browning et al. 2018, Vyas
and Mulligan 2019, Koller et al. 2022, Vespasiani et al.
2022, Witt et al. 2023). Other analyses have also revealed
that admixture among modern human populations has oc-
curred over millennia, leading to complex patterns of geno-
mic diversity (Campbell and Tishkoff 2008, Campbell ez al.
2014, Bekada et al. 2015, Arauna et al. 2017, Korunes and
Goldberg 2021, Gopalan et al. 2022).

Admixture in populations can be inferred by examining
genetic ancestry at two levels: global and local (Tan and

2008b; Pasaniuc et al. 2009, Price et al. 2009, Bryc et al.
2010, Baran et al. 2012, Brisbin et al. 2012, Churchhouse
and Marchini 2013, Maples et al. 2013, Durand et al. 2014,
Guan 2014, Dias-Alves et al. 2018, Salter-Townshend and
Myers 2019, Montserrat et al. 2020, Molinaro et al. 2021,
Browning et al. 2023). Of these methods, RFMix v.1.5.4 is
considered to be state-of-the-art in estimating ancestry in
complex admixture scenarios (Daya et al. 2014, Uren et al.
2020, Hilmarsson et al. 2021). Furthermore, an updated ver-
sion of this software—called RFMIX version 2 (RFMIX2)
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(https://github.com/slowkoni/rfmix)—was recently developed
and is argued to be superior to the previous version (Carrot-
Zhang et al. 2021). However, there is currently no straight-
forward way to visualize the global and local ancestry results
from RFMIX2, which is important for the exploration,
interpretation, and reporting of ancestry patterns in human
populations. To address this problem, we developed compu-
tational tools to depict both global and local ancestry, as
inferred by RFMIX2, in individuals from admixed groups.

2 Implementation

Inferences of genetic ancestry are informative for determining
the population origins of alleles associated with traits, includ-
ing disease susceptibility (Freedman et al. 2006, Cheng et al.
2009, Daya et al. 2014) and for understanding the genetic
history of admixed populations (most notably, past migra-
tion events) (Daya et al. 2014, Uren et al. 2020; Gopalan
et al. 2022; Browning et al. 2023).

The AncestryGrapher toolkit is a very powerful package
for displaying the broad ancestry proportions originating
from source populations that individuals possess (i.e. global
ancestry), which is helpful when selecting cohorts of individu-
als with either a high or low level of a particular ancestry for
admixture mapping analyses (Caliebe et al. 2022; Shriner
2023). Furthermore, the AncestryGrapher toolkit can visual-
ize the genetic ancestry within genomic coordinates along
chromosomes. allowing for the efficient identification of the
population origins of alleles (i.e. local ancestry) in anthropo-
logical studies (Gravel 2012, Secolin et al. 2019). The
AncestryGrapher toolkit enables users to visualize these levels
of ancestry with two distinct pipelines, Global Ancestry
Painting (GAP) and Local Ancestry Painting (LAP; Fig. 1).

2.1 Global Ancestry Painting
The Global Ancestry Painting (GAP) pipeline consists of three
separate Python scripts: (i) RFMIX2ToBed4GAP.py; (ii)
BedToGAP.py; and (iii) GAP.py.

2.1.1 Step 1: Combine the RFMIX2 output files for all
chromosomes and individuals into a single file

The RFMIX2 software generates a *.rfmix.Q (global ancestry
information) output file for each chromosome per individual
in a given dataset. The RFMIX2ToBed4GAP.py script will
combine these separate files into a single file and then calcu-
late a mean value for each inferred ancestry component
across chromosomes per individual. If users wish to sort
individuals by a particular mean ancestry component (from
largest to smallest), they can accomplish this task by imple-
menting the “--sort-ancestry” flag.

2.1.2 Step 2: Create the input file for GAP to visualize the
global ancestry components

The output file generated in Step 1 will serve as the input file
for BedToGAP.py. Here, users can select up to 10 distinct
colors to represent ancestry (one color for each mean ancestry
component).

2.1.3 Step 3: Generate the plot for global ancestry
components

In this step, users will run the GAP.py script to generate an
output file with mean ancestry components in a bar plot for
all individuals, together with a legend of ancestry origin and
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the name of each individual in the dataset, in either “pdf” or
“svg” format (Fig. 1A).

2.2 Local Ancestry Painting

The Local Ancestry Painting (LAP) pipeline consists of three
separate Python scripts: (i) RFMIX2ToBed.py; (ii)
BedToLAP.py; and (iii) LAP.py.

2.2.1 Step 1: Combine the output files from RFMIX2 into a
single file and generate *.bed files

RFMix2 generates a *.msp.tsv (local ancestry information)
output file for each chromosome (e.g. 1-22) for a given indi-
vidual. RFMIX2ToBed.py will combine these chromosomes
into a single file that contains header and ancestry informa-
tion for all chromosomes for each individual in the dataset.
RFMIX2ToBed.py will also generate two *.bed files (*_hap1.
bed and *_hap2.bed) per individual, corresponding to mater-
nal and paternal chromosomes in diploid organisms (with
one set of chromosomes in each *.bed file).

2.2.2 Step 2: Create the color scheme for ancestry painting
along chromosomes

Here, the output files from Step 1 will serve as the input files
in this step. BedToLAP.py will assign a default color to each
ancestry component inferred by RFMIX2 (a maximum of 10
colors will be generated, one for each ancestry component).
Alternatively, users can select up to 10 distinct colors with
the “--ancestry” flag. BedToLAP.py can also highlight a spe-
cific gene or genomic region of interest on a chromosome
with additional parameters.

2.2.3 Step 3: Generate the ancestry plot for each
chromosome for a given individual

The resulting output files, generated using the LAP.py script,
will contain ancestry-informative karyograms along with a
legend of ancestry origin and other identifiers (Fig. 1B).
The images within the output files will have 4k resolution (4210
X 1663) and can be edited in Adobe Illustrator or Inkscape.

3 Results and discussion

We have developed the AncestryGrapher toolkit to visually
summarize the output of the RFMIX2 software. To demon-
strate the utility of our computational pipelines, we applied
the GAP and LAP algorithms to plot the inferred ancestry of
individuals in the North African Mozabite Berber population
from the Human Genome Diversity Panel (Rosenberg et al.
2002, Li et al. 2008, Bergstrom et al. 2020). Our results
showed that individuals in this population have distinct levels
of Middle Eastern, European, and sub-Saharan African ances-
try (Fig. 1), consistent with prior studies (Henn et al. 2012,
Bekada et al. 2015, Arauna et al. 2017, Silva et al. 2021).

In addition, we detected striking patterns of local ancestry
along individual chromosomes. For this analysis, we focused
our attention on the well-studied regulatory region in intron 13
of the MCM6 gene on Chromosome 2, which contains single
nucleotide polymorphisms associated with lactase persistence—
namely, C/T_13910 (1'54988235), C/G_13907 (I'S41525747),
T/G_13015 (rs41380347), T/G_1a000 (rs869051967), and
G/C_14010 (rs145946881) (Enattah er al. 2002, Ingram et al.
2007, 2009, Tishkoff et al. 2007, Hassan et al. 2016, Anguita-
Ruiz et al. 2020, Campbell and Ranciaro 2021). Prior studies
also have shown that these functional sites have been the targets
of Darwinian selection in Middle Eastern, European, and sub-
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Figure 1. Workflow of the AncestryGrapher toolkit. AncestryGrapher consists of two pipelines: (i) GAP and (ii) LAP that run in a command-line Terminal.
GAP combines individuals and chromosomes into a single file, calculates mean ancestry components across chromosomes per individual, and visualizes
their ancestry in a bar plot (i.e., global ancestry). Panel A shows the plotted mean ancestry components per individual in the Mozabite population from the
Human Genome Diversity Panel (Rosenberg et al. 2002; Li et al. 2008; Bergstrom et al. 2020). Individuals have been arranged by the Middle Eastern
ancestry component from largest to smallest. LAP combines the output from RFMIX2 into a single file, creates a color scheme for ancestry painting, and
plots the ancestry along chromosomes (i.e., local ancestry). Panel B shows the local ancestry components along diploid Chromosomes 1 through 22 for a
Mozabite individual. In Panels A and B, the orange color indicates Middle Eastern ancestry; purple represents European ancestry; and blue signifies sub-
Saharan African ancestry. The white color in Panel B represents regions of the genome with unknown ancestry (i.e., the reference ancestry is not
present) and/or these regions contain missing SNP data.
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Saharan African populations with a history of dairying
(Bersaglieri et al. 2004, Tishkoff et al. 2007, Enattah et al.
2008, Gerbault et al. 2009, Itan et al. 2009, Jones et al. 2013,
Macholdt et al. 2014, Ranciaro et al. 2014, Scheinfeldt et al.
2019, Vicente et al. 2019, Hollfelder et al. 2020). Based on our
LAP plots, we found that alleles in the MCM6 regulatory se-
quence in the Mozabite Berber population sit on a chromo-
somal segment on Chromosome 2 originating from the Middle
East, Europe, and/or sub-Saharan Africa. More specifically,
alleles in the MCM6 regulatory region were found to sit in a
chromosomal segment originating from the Middle East on
53.7% of chromosomes, while alleles in the same region had
ancestry backgrounds originating from Europe and sub-
Saharan Africa on 31.5% and 14.8% of chromosomes, respec-
tively, in the Mozabite Berbers (Supplementary Fig. S1). Thus,
genetic variation in the MCMG6 regulatory region was likely in-
troduced into this population through admixture, which we vi-
sually captured using the LAP pipeline. For comparison, we
also show GAP and LAP results for different populations with
a history of geographic and cultural isolation, namely
the Finnish (Europe) and the Bedouin (Middle East) in
Supplementary Figs S2 and S3, respectively.

In summary, the AncestryGrapher toolkit has the capabil-
ity to calculate the mean ancestry components based on
RFMIX2 output files and provide a graphical display of this
global ancestry for each individual in a given dataset.
Furthermore, this package can convert the ancestry tracts
from RFMIX2 into colors representing ancestry along chro-
mosomes. While these strengths make AncestryGrapher a
powerful tool for exploring, interpreting, and reporting
results, it is also important to note the limitations of our
approaches and the RFMIX2 software. Although there is no
restriction on the number of target individuals that can be vi-
sualized with the AncestryGrapher toolkit, the GAP and LAP
pipelines can at most assign colors to a maximum of 10 an-
cestry components (or source populations). Consequently,
ancestry components above the 10th one will not be dis-
played. Regarding RFMIX2, this software is especially
effective when users have included populations that have con-
tributed genetic ancestry to the admixed population of inter-
est. In addition, these RFMIX2 analyses are powered by well-
characterized genetic maps for SNP loci along chromosomes.
Thus, REMIX2 should only be applied to datasets with valid
reference populations based on a priori information and
reliable genetic maps. Assuming RFMIX2 is used correctly,
the AncestryGrapher toolkit is highly beneficial for
graphically summarizing genetic patterns in complex
populations supporting anthropological and biomedical
research (for more detailed information about RFMIX2 and
other ancestry methods, please see Supplementary Table S1).
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