
Genetics and population analysis

AncestryGrapher toolkit: Python command-line pipelines 
to visualize global- and local- ancestry inferences from the 
RFMIX version 2 software
Alessandro Lisi1,� and Michael C. Campbell 1,�

1Department of Biological Sciences (Human and Evolutionary Biology Section), University of Southern California, Los Angeles, CA 90089, 
United States
�Corresponding authors. Department of Biological Sciences (Human and Evolutionary Biology Section), University of Southern California, Los Angeles, CA 
90089, United States. E-mails: alisi@usc.edu (A.L.) and mc44680@usc.edu (M.C.C.)
Associate Editor: Christina Kendziorski

Abstract
Summary: Admixture is a fundamental process that has shaped levels and patterns of genetic variation in human populations. RFMIX version 2 
(RFMIX2) utilizes a robust modeling approach to identify the genetic ancestries in admixed populations. However, this software does not have a 
built-in method to visually summarize the results of analyses. Here, we introduce the AncestryGrapher toolkit, which converts the numerical 
output of RFMIX2 into graphical representations of global and local ancestry (i.e. the per-individual ancestry components and the genetic ances
try along chromosomes, respectively).
Results: To demonstrate the utility of our methods, we applied the AncestryGrapher toolkit to visualize the global and local ancestry of individu
als in the North African Mozabite Berber population from the Human Genome Diversity Panel. Our results showed that the Mozabite Berbers 
derived their ancestry from the Middle East, Europe, and sub-Saharan Africa (global ancestry). We also found that the population origin of ances
try varied considerably along chromosomes (local ancestry). For example, we observed variance in local ancestry in the genomic region on 
Chromosome 2 containing the regulatory sequence in the MCM6 gene associated with lactase persistence, a human trait tied to the cultural de
velopment of adult milk consumption. Overall, the AncestryGrapher toolkit facilitates the exploration, interpretation, and reporting of ancestry 
patterns in human populations.
Availability and implementation: The AncestryGrapher toolkit is free and open source on https://github.com/alisi1989/RFmix2-Pipeline- 
to-plot.

1 Introduction
Admixture, defined as gene flow between previously diverged 
source populations leading to new populations with ancestry 
from multiple sources, has been an important contributor to 
levels and patterns of genetic variation in humans (Rudan 
2006, 1000 Genomes Project Consortium 2012, Hellenthal 
et al. 2014, Gurdasani et al. 2015, Uren et al. 2016, Korunes 
and Goldberg 2021). For example, a number of studies have 
shown that regions of the modern human genome have origi
nated from archaic hominins, such as Neanderthals and 
Denisovans (Qin and Stoneking 2015, S�anchez-Quinto and 
Lalueza-Fox 2015, Sankararaman et al. 2016, Wall and 
Yoshihara Caldeira Brandt 2016, Browning et al. 2018, Vyas 
and Mulligan 2019, Koller et al. 2022, Vespasiani et al. 
2022, Witt et al. 2023). Other analyses have also revealed 
that admixture among modern human populations has oc
curred over millennia, leading to complex patterns of geno
mic diversity (Campbell and Tishkoff 2008, Campbell et al. 
2014, Bekada et al. 2015, Arauna et al. 2017, Korunes and 
Goldberg 2021, Gopalan et al. 2022).

Admixture in populations can be inferred by examining 
genetic ancestry at two levels: global and local (Tan and 

Atkinson 2023). Global ancestry refers to the proportion of 
an individual’s genome that originated from distinct source 
populations, while local ancestry refers to an individual’s ge
netic ancestry from source populations at particular chromo
somal locations (Liu et al. 2013, Goli et al. 2024). To 
characterize patterns of admixture, several computational 
methods have been developed to infer global ancestry 
(Pritchard et al. 2000, Hoggart et al. 2004, Patterson et al. 
2004, Alexander et al. 2009, Lawson et al. 2012, Liu et al. 
2013, Hellenthal et al. 2014, Raj et al. 2014, Wangkumhang 
et al. 2022) and local ancestry along chromosomes in individ
uals (Falush et al. 2003, Tang et al. 2005, 2006, 
Sankararaman et al. 2008a, 2008b, Sundquist et al. 2008a, 
2008b; Pasaniuc et al. 2009, Price et al. 2009, Bryc et al. 
2010, Baran et al. 2012, Brisbin et al. 2012, Churchhouse 
and Marchini 2013, Maples et al. 2013, Durand et al. 2014, 
Guan 2014, Dias-Alves et al. 2018, Salter-Townshend and 
Myers 2019, Montserrat et al. 2020, Molinaro et al. 2021, 
Browning et al. 2023). Of these methods, RFMix v.1.5.4 is 
considered to be state-of-the-art in estimating ancestry in 
complex admixture scenarios (Daya et al. 2014, Uren et al. 
2020, Hilmarsson et al. 2021). Furthermore, an updated ver
sion of this software—called RFMIX version 2 (RFMIX2) 
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(https://github.com/slowkoni/rfmix)—was recently developed 
and is argued to be superior to the previous version (Carrot- 
Zhang et al. 2021). However, there is currently no straight
forward way to visualize the global and local ancestry results 
from RFMIX2, which is important for the exploration, 
interpretation, and reporting of ancestry patterns in human 
populations. To address this problem, we developed compu
tational tools to depict both global and local ancestry, as 
inferred by RFMIX2, in individuals from admixed groups.

2 Implementation
Inferences of genetic ancestry are informative for determining 
the population origins of alleles associated with traits, includ
ing disease susceptibility (Freedman et al. 2006, Cheng et al. 
2009, Daya et al. 2014) and for understanding the genetic 
history of admixed populations (most notably, past migra
tion events) (Daya et al. 2014, Uren et al. 2020; Gopalan 
et al. 2022; Browning et al. 2023).

The AncestryGrapher toolkit is a very powerful package 
for displaying the broad ancestry proportions originating 
from source populations that individuals possess (i.e. global 
ancestry), which is helpful when selecting cohorts of individu
als with either a high or low level of a particular ancestry for 
admixture mapping analyses (Caliebe et al. 2022; Shriner 
2023). Furthermore, the AncestryGrapher toolkit can visual
ize the genetic ancestry within genomic coordinates along 
chromosomes. allowing for the efficient identification of the 
population origins of alleles (i.e. local ancestry) in anthropo
logical studies (Gravel 2012, Secolin et al. 2019). The 
AncestryGrapher toolkit enables users to visualize these levels 
of ancestry with two distinct pipelines, Global Ancestry 
Painting (GAP) and Local Ancestry Painting (LAP; Fig. 1).

2.1 Global Ancestry Painting
The Global Ancestry Painting (GAP) pipeline consists of three 
separate Python scripts: (i) RFMIX2ToBed4GAP.py; (ii) 
BedToGAP.py; and (iii) GAP.py.

2.1.1 Step 1: Combine the RFMIX2 output files for all 
chromosomes and individuals into a single file
The RFMIX2 software generates a �.rfmix.Q (global ancestry 
information) output file for each chromosome per individual 
in a given dataset. The RFMIX2ToBed4GAP.py script will 
combine these separate files into a single file and then calcu
late a mean value for each inferred ancestry component 
across chromosomes per individual. If users wish to sort 
individuals by a particular mean ancestry component (from 
largest to smallest), they can accomplish this task by imple
menting the “--sort-ancestry” flag.

2.1.2 Step 2: Create the input file for GAP to visualize the 
global ancestry components
The output file generated in Step 1 will serve as the input file 
for BedToGAP.py. Here, users can select up to 10 distinct 
colors to represent ancestry (one color for each mean ancestry 
component).

2.1.3 Step 3: Generate the plot for global ancestry  
components
In this step, users will run the GAP.py script to generate an 
output file with mean ancestry components in a bar plot for 
all individuals, together with a legend of ancestry origin and 

the name of each individual in the dataset, in either “pdf” or 
“svg” format (Fig. 1A).

2.2 Local Ancestry Painting
The Local Ancestry Painting (LAP) pipeline consists of three 
separate Python scripts: (i) RFMIX2ToBed.py; (ii) 
BedToLAP.py; and (iii) LAP.py.

2.2.1 Step 1: Combine the output files from RFMIX2 into a 
single file and generate �.bed files
RFMix2 generates a �.msp.tsv (local ancestry information) 
output file for each chromosome (e.g. 1–22) for a given indi
vidual. RFMIX2ToBed.py will combine these chromosomes 
into a single file that contains header and ancestry informa
tion for all chromosomes for each individual in the dataset. 
RFMIX2ToBed.py will also generate two �.bed files (�_hap1. 
bed and �_hap2.bed) per individual, corresponding to mater
nal and paternal chromosomes in diploid organisms (with 
one set of chromosomes in each �.bed file).

2.2.2 Step 2: Create the color scheme for ancestry painting 
along chromosomes
Here, the output files from Step 1 will serve as the input files 
in this step. BedToLAP.py will assign a default color to each 
ancestry component inferred by RFMIX2 (a maximum of 10 
colors will be generated, one for each ancestry component). 
Alternatively, users can select up to 10 distinct colors with 
the “--ancestry” flag. BedToLAP.py can also highlight a spe
cific gene or genomic region of interest on a chromosome 
with additional parameters.

2.2.3 Step 3: Generate the ancestry plot for each 
chromosome for a given individual
The resulting output files, generated using the LAP.py script, 
will contain ancestry-informative karyograms along with a 
legend of ancestry origin and other identifiers (Fig. 1B). 
The images within the output files will have 4k resolution (4210 
× 1663) and can be edited in Adobe Illustrator or Inkscape.

3 Results and discussion
We have developed the AncestryGrapher toolkit to visually 
summarize the output of the RFMIX2 software. To demon
strate the utility of our computational pipelines, we applied 
the GAP and LAP algorithms to plot the inferred ancestry of 
individuals in the North African Mozabite Berber population 
from the Human Genome Diversity Panel (Rosenberg et al. 
2002, Li et al. 2008, Bergstr€om et al. 2020). Our results 
showed that individuals in this population have distinct levels 
of Middle Eastern, European, and sub-Saharan African ances
try (Fig. 1), consistent with prior studies (Henn et al. 2012, 
Bekada et al. 2015, Arauna et al. 2017, Silva et al. 2021).

In addition, we detected striking patterns of local ancestry 
along individual chromosomes. For this analysis, we focused 
our attention on the well-studied regulatory region in intron 13 
of the MCM6 gene on Chromosome 2, which contains single 
nucleotide polymorphisms associated with lactase persistence— 
namely, C/T−13910 (rs4988235), C/G−13907 (rs41525747), 
T/G−13915 (rs41380347), T/G−14009 (rs869051967), and 
G/C−14010 (rs145946881) (Enattah et al. 2002, Ingram et al. 
2007, 2009, Tishkoff et al. 2007, Hassan et al. 2016, Anguita- 
Ruiz et al. 2020, Campbell and Ranciaro 2021). Prior studies 
also have shown that these functional sites have been the targets 
of Darwinian selection in Middle Eastern, European, and sub- 
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Figure 1. Workflow of the AncestryGrapher toolkit. AncestryGrapher consists of two pipelines: (i) GAP and (ii) LAP that run in a command-line Terminal. 
GAP combines individuals and chromosomes into a single file, calculates mean ancestry components across chromosomes per individual, and visualizes 
their ancestry in a bar plot (i.e., global ancestry). Panel A shows the plotted mean ancestry components per individual in the Mozabite population from the 
Human Genome Diversity Panel (Rosenberg et al. 2002; Li et al. 2008; Bergstr€om et al. 2020). Individuals have been arranged by the Middle Eastern 
ancestry component from largest to smallest. LAP combines the output from RFMIX2 into a single file, creates a color scheme for ancestry painting, and 
plots the ancestry along chromosomes (i.e., local ancestry). Panel B shows the local ancestry components along diploid Chromosomes 1 through 22 for a 
Mozabite individual. In Panels A and B, the orange color indicates Middle Eastern ancestry; purple represents European ancestry; and blue signifies sub- 
Saharan African ancestry. The white color in Panel B represents regions of the genome with unknown ancestry (i.e., the reference ancestry is not 
present) and/or these regions contain missing SNP data.
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Saharan African populations with a history of dairying 
(Bersaglieri et al. 2004, Tishkoff et al. 2007, Enattah et al. 
2008, Gerbault et al. 2009, Itan et al. 2009, Jones et al. 2013, 
Macholdt et al. 2014, Ranciaro et al. 2014, Scheinfeldt et al. 
2019, Vicente et al. 2019, Hollfelder et al. 2020). Based on our 
LAP plots, we found that alleles in the MCM6 regulatory se
quence in the Mozabite Berber population sit on a chromo
somal segment on Chromosome 2 originating from the Middle 
East, Europe, and/or sub-Saharan Africa. More specifically, 
alleles in the MCM6 regulatory region were found to sit in a 
chromosomal segment originating from the Middle East on 
53.7% of chromosomes, while alleles in the same region had 
ancestry backgrounds originating from Europe and sub- 
Saharan Africa on 31.5% and 14.8% of chromosomes, respec
tively, in the Mozabite Berbers (Supplementary Fig. S1). Thus, 
genetic variation in the MCM6 regulatory region was likely in
troduced into this population through admixture, which we vi
sually captured using the LAP pipeline. For comparison, we 
also show GAP and LAP results for different populations with 
a history of geographic and cultural isolation, namely 
the Finnish (Europe) and the Bedouin (Middle East) in 
Supplementary Figs S2 and S3, respectively.

In summary, the AncestryGrapher toolkit has the capabil
ity to calculate the mean ancestry components based on 
RFMIX2 output files and provide a graphical display of this 
global ancestry for each individual in a given dataset. 
Furthermore, this package can convert the ancestry tracts 
from RFMIX2 into colors representing ancestry along chro
mosomes. While these strengths make AncestryGrapher a 
powerful tool for exploring, interpreting, and reporting 
results, it is also important to note the limitations of our 
approaches and the RFMIX2 software. Although there is no 
restriction on the number of target individuals that can be vi
sualized with the AncestryGrapher toolkit, the GAP and LAP 
pipelines can at most assign colors to a maximum of 10 an
cestry components (or source populations). Consequently, 
ancestry components above the 10th one will not be dis
played. Regarding RFMIX2, this software is especially 
effective when users have included populations that have con
tributed genetic ancestry to the admixed population of inter
est. In addition, these RFMIX2 analyses are powered by well- 
characterized genetic maps for SNP loci along chromosomes. 
Thus, RFMIX2 should only be applied to datasets with valid 
reference populations based on a priori information and 
reliable genetic maps. Assuming RFMIX2 is used correctly, 
the AncestryGrapher toolkit is highly beneficial for 
graphically summarizing genetic patterns in complex 
populations supporting anthropological and biomedical 
research (for more detailed information about RFMIX2 and 
other ancestry methods, please see Supplementary Table S1).
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