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Generative arti�cial intelligence tools (Generative AI), such as ChatGPT, allow users to interact with them in intuitive ways (e.g., conversational)

and receive (mostly) good-quality answers. In education, such systems can support students’ learning objectives by providing accessible

explanations and examples even when students pose vague queries. But, they also encourage undesired help-seeking behaviors, such as by

providing solutions to the students’ homework. Therefore, it is important to better understand how students approach such tools and the

potential issues such approaches might present for the learners.

In this paper, we present a case study for understanding student-AI collaboration to solve programming tasks in the CS1 introductory

programming course. To this end, we recruited a gender-balanced majority non-white set of 15 CS1 students at the University of Houston, a

large public university in the US. We observed them solving programming tasks. We used a mixed-method approach to study their interactions

as they tackled Python programming tasks, focusing on when and why they used ChatGPT for problem-solving. We analyze and classify the

questions submitted by the 15 participants to ChatGPT. Additionally, we analyzed user interaction patterns, their reactions to ChatGPT’s

responses, and the potential impacts of Generative AI on their perception of self-e�cacy.

Our results suggest that, in about a third of the cases, the student attempted to complete the task by submitting the full description of

the tasks to ChatGPT without making any e�ort on their own. We also observed that few students veri�ed their solutions. We discuss the

potential implications of these results.

CCS Concepts: •Human-centered computing→Human computer interaction (HCI); • Social and professional topics→Computing

education; • Computing methodologies→ Arti�cial intelligence.
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1 INTRODUCTION

Many interactive learning environments (ILEs) o�er on-demand help to positively in�uence learning; here, the learner actively

seeks information, and the systems provide the same [3]. Although such forms of help-seeking behaviors in ILEs, when

e�ective, are linked to improved learning outcomes, many learners do not use the available help resources e�ectively[1, 26].

This raises concerns that ILEs may not reach their full potential unless we �nd ways to help students use these support tools

better. Furthermore, since seeking help is a crucial skill that a�ects learning in many situations[2, 30, 31], designing ILEs to

encourage e�ective help-seeking behaviors could greatly enhance their educational value[2, 13].
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Generative AI can be considered an interactive learning environment (ILE), as they can provide on-demand help, such

as explanations of concepts and working code examples, to students. They play a crucial role as interactive components

within broader educational settings, and contribute to interactive learning by providing immediate responses and facilitating

learning interactions in real time. Generative AI tools such as ChatGPT and Copilot have become integral tools for many

students, particularly those in introductory programming courses [34]. They can assist students by providing code suggestions,

explaining programming concepts, identifying and resolving errors, and generating code documentation [10, 21]. Their

widespread adoption signi�es a major shift in how programming is learned and practiced. However, this increasing reliance

on Generative AI tools presents signi�cant challenges. One primary concern is that students might become overly dependent

on these tools, potentially hindering their ability to develop fundamental programming skills [37]. Additionally, AI-generated

solutions might lead to academic dishonesty or reduced problem-solving capabilities among students [7]. This dichotomy has

sparked a debate among educators: while some argue against the use of Generative AI in learning due to these risks, others

advocate for its judicious use to enhance learning outcomes [22].

Despite various studies exploring the impact of Generative AI tools like GitHub Copilot on productivity [19, 48] and learning

outcomes [27, 42], there remains a critical gap in understanding how novice programmers interact with these tools without any

limitations on using Generative AI, where they can freely utilize AI-driven assistance and guidance. Understanding the level

of trust of students in these tools, which impacts their adoption and learning outcomes [4, 5], and analyzing their interactions

while using Generative AI for programming tasks is crucial. These insights enable us to identify students’ behaviors, actions,

decisions, and responses when using Generative AI tools, guiding the design of AI-assisted learning interfaces that enhance

conceptual understanding and drive improved learning outcomes.

To this end, our study investigates the interaction of novice programmers with ChatGPT while solving programming tasks.

We conducted a mixed-method study involving 15 CS1 students who used a custom VSCode plugin that integrated ChatGPT

directly into their coding environments. This setup allowed us to observe their natural use of Generative AI assistance without

external constraints, and to gain a deeper understanding of how students use Generative AI in completing programming

tasks, namely 1) when, how and why they use them and to what e�ectiveness, and 2) what strategies they employ to integrate

Generative AI into their problem-solving processes.

Our �ndings highlight that participants extensively interacted with Generative AI, yet successfully provided correct answers

only in 65% of the cases; the rest remained unsolved. Some successful interactions involved step-by-step prompting, or hybrid

approaches that combine independent programming and Generative AI support. The overall acceptance of the Generative

AI responses also varied, from full adoption of the Generative AI’s response to using Generative AI to �nd answers to the

queries, or simply comparing the Generative AI responses to their own solutions.

2 RELATEDWORK

2.1 Exploring the Impact of Generative AI in Programming

The recent widespread deployment of generative AI programming assistants has motivated much research on the use of

these tools. Researchers have conducted empirical studies [14, 23, 39] to evaluate the quality of code and explanations

that Generative AI programming assistants can generate. Others have explored the usefulness of Large Language Model

(LLM)-based programming tools through user studies [6, 20, 28, 38, 41, 45, 46, 49]. Notably, Vaithilingam et al. [45] compared

the user experience of GitHub Copilot with traditional auto-complete and found that programmers faced more frequent

di�culties in completing tasks with Copilot, although there was no signi�cant impact on task completion time. Barke et

al. [6] took a step further to understand how programmers interact with code-generating models using a grounded theory

analysis, identifying two primary modes of interaction: acceleration, where Generative AI is used to speed up code authoring

in small logical units, and exploration, where Generative AI serves as a planning assistant by suggesting structure or API calls.

While these studies have contributed to our understanding of how developers use Generative AI developer tools, they mainly

focused on evaluating the e�ectiveness of such tools and did not directly address developers’ perceptions of them. Some

studies, such as those by Liang et al. [24] and Ziegler et al. [49], have also focused on how developers perceive these tools. For

instance, Liang et al. [24] conducted a survey involving 410 developers to investigate the usability challenges associated with

Generative AI programming assistants, �nding that developers appreciate their autocomplete capabilities, but also reported

challenges ranging from the quality of code generation to potentially infringing on intellectual property. Although these

studies provide valuable insights on how users perceive the Generative AI tools, the insights are primarily applicable to

professional programmers; our study focuses on the use of such tools by CS students, and more studies are needed in this area.
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2.2 The Role of AI in Education

Recent studies have started to explore the applications of Generative AI tools in educational contexts. For example, Denny et

al. [9] have identi�ed desirable characteristics for Generative AI teaching assistants in programming education. They emphasize

the importance of features that provide immediate, engaging support while allowing students to maintain autonomy in their

learning process. Liu et al. [25] investigated the integration of Generative AI tools in the CS50 course at Harvard University,

demonstrating how they can signi�cantly enhance the learning experience for students in introductory programming classes.

Their approach involved developing and deploying a suite of Generative AI-based tools designed to emulate a 1:1 teacher-to-

student ratio, thereby providing personalized, real-time support to students. These tools, including the CS50 Duck, a virtual

rubber-duck debugging assistant, were well received by students, who reported that the Generative AI tools made them

feel as if they had a personal tutor available at all times. Prather et al. [36] have recently published a series of studies that

examine the usability and interaction challenges faced by novice programmers using Generative AI tools, e.g., GitHub Copilot.

Their research highlights the dual nature of such tools: while they can signi�cantly accelerate the coding process and aid in

overcoming programming blocks, they also introduce unique cognitive and metacognitive di�culties. Students often found it

"weird" how accurately Copilot predicted their needs, which led to a mix of fascination and dependency concerns. The study

also identi�ed new interaction patterns such as "shepherding" and "drifting," re�ecting the nuanced ways novices attempt

to guide Generative AI or are misled by it. All these prior works together lend motivation to our research, highlighting

the potential usefulness of Generative AI tools, while underscoring the need to balance learning support with independent

problem-solving skills and over-reliance on Generative AI.

2.3 Interaction Pa�erns of Novice Programmers Using LLMs

To develop Generative AI systems that balance fostering independent thinking with learning support and avoiding overreliance,

it is necessary to understand how students use LLMs in practice. In the past, Kazemitabaar et al. [21] conducted a thematic

analysis of novice learners using an LLM-based code generator in a self-paced Python course. They identi�ed distinct coding

approaches among the learners, noting that the Hybrid approach, which combined manual coding with LLM assistance,

produced the best outcomes. However, the study also highlighted signs of over-reliance on LLMs, such as copying LLM

output without changes, and positive self-regulation behaviors, like adding code to verify LLM output. In another study,

Nguyen et al. [32] conducted a large-scale multi-institutional study that explored the challenges faced by near-novices when

interacting with Code LLMs. Their study identi�ed barriers such as di�culties in expressing problem understanding and

using appropriate coding terminology. Prather et al. [37] further investigated the impact of generative AI tools on novice

programmers’ metacognitive awareness and problem-solving strategies, highlighting the potential widening gap between

well-prepared and under-prepared students in the era of generative AI. However, there is a lack of studies elucidating when

and how students use LLMs, to what e�ectiveness, and to what e�ect on their self-e�cacy; this is what we cover in the

present study.

2.4 Assessing Student Self-E�icacy in AI-Enhanced Learning

Self-e�cacy, or the belief in one’s capabilities to achieve a goal or an outcome, is a crucial factor in students’ learning

processes. Recent studies have examined how interactions with GenAI tools in�uence students’ self-e�cacy in programming.

Tankelevitch et al. [43] discussed the metacognitive demands imposed by GenAI systems, highlighting the need for tools that

support students in monitoring and controlling their learning processes. Xue et al. [47] investigated the impact of ChatGPT

on introductory programming students, �nding that the AI tool can enhance students’ self-e�cacy by providing immediate

feedback and support, thereby reducing the anxiety associated with complex problem-solving tasks. Furthermore, Denny et

al. [9] emphasized the importance of designing AI teaching assistants that not only assist with immediate problem-solving

but also help students develop long-term self-e�cacy by encouraging independent learning and critical thinking. This study

serves to add further evidence on the e�ect of Generative AI use on student self-e�cacy, albeit using a di�erent approach

(namely, pre- and post-task comparisons).

3 METHODOLOGY

This study focuses on students’ use of Generative AI–covering the whats, whys, whens, and hows of doing so. The speci�c

research questions for our study are as follows:

RQ1: How frequently do students use Generative AI while solving programming tasks?
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Table 1. Demographic Information of Participants

Participant Age Gender Education-level Racial/Ethnic College-generation

P1 19 Female Freshman African American Continuing-generation

P2 18 Female Freshman African American Continuing-generation

P3 19 Female Freshman African American Continuing-generation

P4 19 Male Freshman Asian Continuing-generation

P5 18 Female Freshman Asian Continuing-generation

P6 19 Female Freshman Asian First-generation

P7 19 Male Freshman African American Continuing-generation

P8 18 Male Freshman Latino First-generation

P9 22 Female Postbacc African American Continuing-generation

P10 18 Male Freshman Asian Continuing-generation

P11 19 Female Freshman White Continuing-generation

P12 19 Male Freshman African American Continuing-generation

P13 18 Male Freshman African American Continuing-generation

P14 20 Male Junior Latino Continuing-generation

P15 19 Female Freshman African American Continuing-generation

RQ2: How do students interact with Generative AI while solving a programming task?

RQ3: How does the self-e�cacy of students change before and after programming with Generative AI?

To answer these questions, we adopted a mixed-methods approach, gathering data from 15 CS1 students using Generative

AI to perform a programming task. As we reason later in this section, the access to Generative AI in our study was via a

plug-in that we designed for the study.

3.1 Participants

We recruited students from a CS1 course at the University of Houston, a large public university in the US. We sent an email to

the course email list, via the instructor (also an author of this paper), inviting volunteers to participate in a research study

involving programming tasks with AI. Each participant was o�ered �ve bonus points in their course for their participation. We

considered o�ering bonus points so as to not coerce students into participating. Participants could simply �ll in an available

time slot for the study if they were willing to participate. The course had 110 students, of which 15 students volunteered to

participate.

Table 1 summarizes the demographics of the participants. Our study was gender balanced (8 females, 7 males). Two of

our participants were �rst-generation students (i.e., no parent or guardian possessed a four-year college degree); the rest

were continuing-generation students and had at least one parent or guardian with a four-year college degree. Most of our

participants (13 out of 15) were freshmen; the other two were junior and post-baccalaureate respectively. The participants

reported diverse racial/ethnic backgrounds, and everyone used English as their �rst or second language �uently.

3.2 Study Procedure

The study was conducted in an o�ce within the computer science department during the spring semester of 2024, with one

participant per study session. The moderator conducting the study was not part of the CS1 course in any capacity (instructor,

tutor, or TA).

Each study session began with a study debrie�ng, and the participant signing the informed consent form. The participant

then �lled out a pre-study questionnaire, which contained questions about: 1) demographics, 2) programming background,

and 3) self-e�cacy questionnaire(from [33]).

Then, the participants were introduced to the study environment. We chose the Python programming language and VSCode

environment for the study, since it was already used in the course. Participants were also introduced to the plug-in, and were

briefed on how to ensert prompts into it, should they choose to use Generative AI for their tasks. We also emphasized to

participants that other Generative AI or aids (e.g., web searches) were not allowed during this time. We also clari�ed that their

performance would not be judged by others, or a�ect their course grades, to ensure that the participation was non-coercive.

Participants were introduced to the programming tasks on a sheet of paper, and were given one hour to complete the tasks.

On completion of the tasks, the participants completed a post-study survey containing the same self-e�cacy questionnaire

administered as part of the pre-study survey. The study sessions lasted between 30 and 70 minutes each.
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Fig. 1. Interface of the VS Code plug-in used in the study: ChatGPT Response and Participant Code

3.3 Programming tasks

Participants were asked to complete three programming tasks, each of which is tailored to the complexity appropriate for a

CS1 level and covered topics taught by the instructor throughout the semester preceding the study.

Participants were provided with input and output examples for each task. Collectively, these three tasks addressed core

programming concepts such as conditionals, loops, functions, input/output operations, and simple algorithm design, providing

participants with a comprehensive understanding of essential programming principles and problem-solving approaches.

As mentioned earlier, participants had a choice of using Generative AI or not to complete these tasks. The use of Generative

AI had to be via the custom plug-in we developed, and the use of any other resource (e.g., web search) was disallowed.

3.4 Generative AI plugin

The goal of this study is to understand when, how, and why CS1 students interact with Generative AI tools and how e�ective

these interactions are. Therefore, we decided to allow only the use of Generative AI for students’ help seeking to complete

their tasks and disallowed all other sources.

In deciding what Generative AI tool to use for the study, we had several choices: OpenAI ChatGPT, Google Gemini,

and Github Copilot, to name a few. We chose to use OpenAI ChatGPT for two reasons: 1) it provided general help beyond

programming, and 2) from a prior study, it seemed to be the most familiar Generative AI among students [5].

However, in a recent study, Tankelevitch et al. [43] highlighted the metacognitive demands placed on users when interacting

with Generative AI systems (e.g., the need to remember sub-tasks and which one they are on), and suggested the need to

minimize switching between the task and the Generative AI help-seeking contexts. Therefore, we used a GPT-3.5 plug-in

within the VSCode1 [29] programming environment, to reduce the cognitive load associated with switching between di�erent

environments, thereby allowing participants to remain within a single, cohesive coding environment.

Figure 1 shows the VSCode plugin [29] we used for this study. As the �gure shows, the plugin had a simple interface

comprising of a prompt-writing box (See "Ask a question..." in the image), allowing users to access ChatGPT within the

VSCode IDE. This prompt box allows students to freely input prompts without any restrictions on the number or type of

questions, or prompt lengths. The Generative AI responses to the prompts are also provided in the same pane, as the �gure

shows. The fact that users can access GenAI and see its responses together with their code in the same window allows for a

focused environment where users do not need to switch context to another window, and are less tempted to use other AIs.

3.5 Data gathering

Our study employed a multi-faceted approach to data collection, designed to capture a comprehensive view of participants’

interactions with Generative AI (here, ChatGPT) during programming tasks. We utilized a custom VSCode plugin to log all

1https://code.visualstudio.com/
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text editor interactions (including any text selections) and ChatGPT prompts, and responses. The audio and video recordings

of the participants, along with recordings of the participants’ screens throughout the session provided qualitative data on

problem-solving behaviors and reactions to AI assistance. Pre-study and post-study surveys collected demographic information

and self-e�cacy data using Likert scales. In addition, we collected detailed logs of ChatGPT conversations, including the full

text of prompts and responses. This diverse dataset allowed us to analyze the frequency and timing of Generative AI use

(RQ1), students’ activities and their patterns (RQ2), their Generative AI use strategies (RQ3), and the e�ects of Generative AI

use on students’ self-e�cacy (RQ4). By combining automated logging, video analysis, and self-reported measures, we ensured

a foundation for both quantitative and qualitative analysis of novice programmers’ engagement with AI-assisted coding.

3.6 Data analysis

To answer our research questions, we conducted both qualitative and quantitative analyses of the data.

3.6.1 �alitative. Two authors independently coded the video data for three programming tasks, each varying in di�culty

levels and topics, utilizing the initial codebook. Subsequently, they engaged in discussions to review the initial coding outcomes,

resolve any con�icts, and enhance the codebook further. With the identi�cation of each new code, we reviewed all prior

comments for possible adjustments.

The codebook provides a clear breakdown of how participants interacted with Generative AI prompts throughout various

stages of programming tasks. It categorizes prompts based on their types and how participants engaged with them, whether

standalone or as follow-up interactions. Additionally, it outlines how participants responded to errors during programming

and their preferences for resolving them, including using Generative AI responses or ignoring errors altogether. Moreover, the

book details the extent to which participants accepted AI-generated solutions, from copying entire responses to incorporating

only certain parts or using them for guidance. In essence, the codebook served as a guide for understanding participant-AI

interactions during programming activities in educational settings. The codebook includes such thematic coding of responses

allowing us to draw meaningful insights about students’ perspectives and shed light on the complex range of attitudes and

emotions surrounding Generative AI systems in the context of programming.

3.6.2 �antitative. We conducted two surveys, one administered before the programming session and another after, to

assess participants’ level of self-e�cacy. Participants rated their self-e�cacy levels using 5-level Likert scales, indicating their

agreement with statements related to their programming abilities. These Likert scores provided quantitative data to measure

changes in participants’ self-e�cacy before and after engaging in the programming tasks.

4 RESULTS

Fifteen CS1 students participated in our study, and we asked each of them to do their best to complete three programming tasks.

Table 2 summarizes the tasks completed and the correctness of solutions for each participant. Notably, most participants (P3,

P15) had atleast one correct solution, but only 6 out of 15 participants (P3, P5, P6, P9, P12, P14) solved the three programming

tasks successfully. Overall, we had 40 completed (correct + incorrect) solutions submitted by participants. We then analyzed

the logs from the Generative AI.

4.1 RQ1: How frequently do students use Generative AI while programming?

We used the logs from the plugin to analyze the frequency of Generative AI use. Of the 40 completed participant submissions,

29 solutions were created with assistance from the Generative AI plug-in provided, and 11 without Generative AI. requests, as

a measure of the frequency of participants’ Generative AI use during each task. Table 2 displays this frequency of participants’

plugin-aided Generative AI use, illustrating the di�erent levels of dependence on Generative AI assistance among participants.

However, these use frequencies did not always translate into task completion successes. Overall, among the 29 Generative

AI assisted solutions created by participants, only 19 solutions (65%) were correct and the rest (35%) were incorrect. Even

among two participants (P2, P5) used Generative AI extensively for a task, only one instance (P5, Q3) was successful; P2 did

not manage to complete Q1 correctly, even after 9 Generative AI queries. Moreover, some participants, such as P3 and P6,

achieved correct answers (’C’) for one or all tasks even without relying on Generative AI, indicating that some participants

may not need Generative AI to perform well.

Thus, participants’ frequency of Generative AI use alone did not lead to successes; instead, participants’ strategies in using

Generative AI and their inherent problem-solving abilities both played crucial roles in their success.
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Table 2. Usage and Problem Solving by Participants: This table details participants’ problem-solving activities. “Participant” identifies

participants, “Tasks” shows the main concepts in the tasks a�empted, and “Completed” indicates if the task has been completed by the

participant (‘Y’ for yes, ‘N’ for no). “Correct” shows if the submission was correct (‘C’), wrong (‘W’), or not a�empted (‘N’). "Using Generative

AI " indicates Generative AI use (‘Y’ for yes, ‘N’ for no), and “Times Generative AI” shows the number of times Generative AI used.

Participant Tasks Completed Correct Using Generative AI #Times Generative AI

Q1,Q2,Q3 Q1,Q2,Q3 Q1,Q2,Q3

P1 Condition, String, Function Y, Y, N W, W, N N, Y, N 0, 1, 0

P2 Condition, String, Function Y, Y, Y W, W, C Y, Y, Y 9, 3, 1

P3 Condition, String, Function Y, Y, Y C, C, C N, N, Y 0, 0, 2

P4 Condition, String, Function Y, Y, N C, W, N N, N, N 0, 0, 0

P5 Condition, String, Function Y, Y, Y C, C, C N, Y, Y 0, 1, 10

P6 String, List, Array Y, Y, Y C, C, C N, Y, N 0, 5, 0

P7 String, List, Array Y, Y, Y C, C, W Y, Y, Y 2, 1, 4

P8 String, List, Array Y, Y, Y C, C, W N, N, Y 0, 0, 3

P9 String, List, Array Y, Y, Y C, C, C Y, Y, Y 1, 1, 1

P10 String, List, Array Y, Y, Y C, C, W Y, Y, Y 1, 2, 1

P11 String, List, Array Y, Y, Y W, C, C N, Y, Y 0, 1, 1

P12 String, List, Array Y, Y, N C, C, N Y, Y, N 3, 1, 0

P13 String, List, Array Y, N, N W, N, N Y, N, N 3, 0, 0

P14 String, List, Array Y, Y, Y C, C, C Y, Y, Y 1, 1, 1

P15 String, List, Array Y, Y, Y W, W, W Y, Y, Y 1, 1, 1

4.2 RQ2: How do students interact with Generative AI while programming?

To understand how and why some participants were able to use Generative AI to correctly complete tasks, and others

were unsuccessful in doing so, we delved into various qualitative aspects of participants Generative AI use–when and how

participants interacted with Generative AI, and how these translated into task completion successes.

4.2.1 When do students use Generative AI?. We observed that participants typically engaged with generative AI at three

di�erent stages during their task:

• Early in the task. In our study, 8 participants, in a total of 18 tasks, turned to ChatGPT right away, at the beginning

of the task, without making any initial attempts on their own; see instances of "Early" in Table 3 under "When". Of

them, four participants (P9, P10, P14, P15) used Generative AI right from the beginning for all three programming

tasks. Typically, during these instances, participants typed in the description of the task as is, and relied on Generative

AI to complete the task for them.

• Middle of the task. In 9 out of 45 total tasks, participants (7 out of 15) sought the assistance of Generative AI in the

middle of their programming; these instances are labeled "Middle" in Table 3, under "When". Initially coding manually,

they resorted to using Generative AI when they encountered errors, or to understand programming concepts.

• After completing the task. Interestingly, two participants (P3 and P5) employed Generative AI even after they had

already arrived at the correct answer on their own. See instances of "After-Solving" in Table 3; Section "When". Here,

P3 used Generative AI to validate she understood the problem description correctly by inquiring about the distinction

between the terms (i, N) mentioned in the problem. P5 reached the correct solution on their own �rst, but still sought

Generative AI’s solution for the entire question, apparently to verify the correctness and/or e�ectiveness of their

solution by comparing their solution with the Generative AI’s responses.

4.2.2 What are common Generative AI usage pa�erns among students? We conducted an activity analysis of the students’

programming tasks, coding the activities they engaged in. We identi�ed six common activities users performed when using

Generative AI, namely, reading, thinking, writing code, modifying code, prompting, and debugging. Table 4 de�nes these

activities. Participants engaged in these activities in varying levels, with some engaging in the same activity on multiple

instances during the same task, and others performing them only once per task.

An analysis of the activity sequences for each task revealed two large patterns, as illustrated in 2; the �gure shows the

activity sequences2 of two tasks by P14 and P7 respectively. Whereas P14 followed a straight path across all three programming

questions, performing each activity once, P7 in question 4 repeated certain activities such as running, debugging, prompting,

2Notice that in the �gure "correct" and "wrong" are not activities; we also did not count "running code" as an explicit activity because it was a part of task
completion or veri�cation.
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Table 3. Summary of Generative AI Usage and Approaches by Participants: The table summarizes the Generative AI usage and approaches

taken by users for di�erent programming questions (Q1, Q2, Q3). The first set of columns under "When (Generative AI Used)" indicates the

timing of Generative AI usage classified as "Early", "Middle", "A�er-Solving", or "-" if not used. The second set of columns under "Approach"

details the approach taken by participants, such as "Hybrid/partial", "Step by step", "Full description", and "-" if not used. The third column

shows nature of participants’ activities, with some repeating activities multiple times as iterative "I" and others performing them only once

as linear shown as "L".

User When (Generative AI Used) Approach Usage Pattern

Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3

P1 - Middle - - Hybrid/partial - I I -

P2 Early Middle Early step-by-step Hybrid/partial Full description I I I

P3 - - After-Solving - - step-by-step I I I

P4 - - - - - - I I -

P5 - After-Solving Early - Full description step-by-step I L I

P6 - Middle - Themselves Hybrid/partial - L I I

P7 Middle Middle Middle Hybrid/partial Hybrid/partial Hybrid/partial I L I

P8 - - Middle - - Hybrid/partial I I I

P9 Early Early Early Full description Full description Full description L L L

P10 Early Early Early Full description Full description Full description L I L

P11 - Early Early - Full description Full description L L L

P12 Early Middle - Full description Hybrid/partial - I I -

P13 Middle - - step-by-step - - I I -

P14 Early Early Early Full description Full description Full description L L L

P15 Early Early Early Full description Full description Full description L L L

(a) Linear activities of P14 for all questions (b) Iterative activities of P7 for �estion 3

Fig. 2. Examples of activities

modifying, and running again. Overall, the 15 participants in our study completed a total of 40 tasks (Table 2, column

Completed); of them, we observed 17 instances of straight or linear activity sequences and 23 instances of repetitive activities.

These are indicated by “L” and “I” in Table 3, under "Usage Pattern".

The pattern of a student returning to the same activity is an indicator of an iterative process (e.g., several iterations of

re-running code, or prompting Generative AI more than once for the same task). In contrast, a linear pattern is an indicator of

one-shot task completion, assisted with or without Generative AI. The fact that over 40% instances were linear is suggestive

of one of two possibilities. The �rst is that of high task performance abilities, as marked by minimal help-seeking, and lack of

edit-verify loops. The second possibility is that of over reliance on Generative AI, wherein participants made a single prompt

to Generative AI the result of which resulted in a direct solution to the problem, following which participants did not have to

enter an edit-verify loop. To assess which of these possibilities caused the observed usage patterns, we drilled down into the

nature of participants’ interactions with Generative AI.

4.2.3 What interaction strategies do students adopt with Generative AI?. There were three key aspects to participants interac-

tions with Generative AI: the level of task decomposition, the kind of information they needed, and how participants exploited

the Generative AI response.

Table 4. Description of six common activities users performed when using Generative AI user activities.

Activity Description

Reading Reading the question before starting to write code

Thinking Thinking about solution, or Generative AI prompt and response

Writing Code Writing code by themselves or copying Generative AI response

Modifying Code Editing existing code

Prompting Asking questions from Generative AI

Veri�cation and Debugging Running code and �nding errors
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Levels of task decomposition. As Table 3 shows, participants engaged in three prompting strategies, based on the level of

task decomposition: full description, step-by-step, and partial:

• In the full description strategy, the participant copied the full description of the task into the plugin, thereby o�oading

task completion entirely to Generative AI. In total, there were 17 instances across 9 participants where participants,

early in the task (Table 3), provided the entire problem description to Generative AI to be solved by the latter. Of them, 5

participants adopted this approach for only one or two tasks, and relied on step-by-step or hybrid /partial approach for

others. However, 4 participants (P9, P10, P11, P14, P15) entirely relied on this strategy for all tasks, taking to Generative

AI very early in the task. Note, however, that this opportunistic approach to o�oad the task completion to Generative

AI did not translate to complete and correct solutions. Among the participants who relied on full descriptions, P10 (for

Q3) and P15 (for Q1, Q2, Q3) were unable to �nd the correct answers.

• In the step-by-step interaction strategy, participants broke the question down into structured sub-goals and then used

the Generative AI to solve the problem step by step–resulting in an iterative approach. Four participants (P2, P3, P5,

P13) adopted this problem-solving strategy. For example, participant P5 used Generative AI for the �rst time to inquire,

’How to round numbers in Python?’ and then followed up with a second query, “How to round numbers in Python

only from the tenths place?”. Similarly, P13 used Generative AI three times for their �rst question. The �rst inquiry

was, “In Python, can you turn an integer into a list?” The second query was about arrays: “What is an array?” Lastly,

the user asked: “Given an integer n, produce the array: 0123. . . n, 1234. . . 0, n012. . . n-1?.” Indeed, there is diversity in the

nature of prompts, as we describe later.

• The remaining participants used a hybrid or partial strategy where participants tackled some parts of the task inde-

pendently while seeking assistance from Generative AI for some other parts. Notably, participants attempted to write

programs independently, but turned to Generative AI for debugging to resolve errors or others. We identi�ed n=8

instances that we categorized as Hybrid or Partial. For example, when stuck with a bug, participant P2 asked Generative

AI, “Fix my code to work.” User P6 encountered an error and copied the message: "TypeError: ’int’ object is

not subscriptable". We observed only one instance of a participant successfully completing a task on their own

(Table 3, Q1, P6 labeled "Themselves").

Information needs. We analyzed the prompts that users submitted to ChatGPT, via the logger. In all, 15 participants wrote

60 prompts, and we categorized them based on the information need the prompt aimed to serve.

• Entire Solution. As described earlier, several participants simply typed in the question descriptions, which we considered

as their entire prompt. These accounted for a third of all prompts (20 out of 60). Often, these prompts were issued

early on during the task, and participants obtained the entire solution to the task, via this single prompt; 8 out of 15

participants engaged in this behavior.

• Coding Concepts. Another popular prompting strategy, namely seeking to understanding programming concepts, was

equally common among participants. About a half of participants (7 out of 15) accounting sought such information,

accounting for 30% (19 out of 60) of all prompts. These instances of conceptual understanding, arose in largely two

cases, namely when the participant had a logical understanding of what to do, but needed help executing them in

Python (e.g., P2: “How to append to a list?”, P5:“How to round numbers in Python?”), to understand whether the

language allowed something (e.g., P7: “In my program, I am trying to move the negative numbers to the front. Could I

initialize an empty list �rst?”), or to understand jargon (e.g., P13: “What is an array?’).

• Program Logic. In about 15% of the time (10 out of 60 prompts), participants utilized Generative AI because they found

it challenging to determine the sequence of steps or instructions needed to accomplish a speci�c task or goal within the

program. In other words, they used Generative AI for planning help. For instance, P2 asked about "a function to return

the �rst n values of the triangular number sequence starting from 1.", expecting to receive the steps to accomplish the

task. P12 needed help trying to reverse a list. P7 inquired, "I am trying to produce the array 0, 1, 2, 3 all the way to n,

meaning it could also be n, 0, 1, 2. Is my approach correct so far?".

• Debugging. Finally, some participants turned to Generative AI for debugging and their questions typically revolved

around the question: “How can I solve this error?”. In total, 11 out of 60 prompts utilized Generative AI for error

resolution. Often, users would simply copy the error message from the console and ask ChatGPT for help. P6 copied

and pasted the code, asking, “What is wrong with this code?” P10 asked, “Why does the code not work?” P6 speci�cally

inquired about the error received, in some ways treating it like a search engine: <TypeError: ‘int’ object is not

subscriptable.=
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Exploiting Generative AI responses. We identi�ed various user actions upon receiving responses from Generative AI, which

we categorize as acceptance categories. These actions re�ect users’ reactions to Generative AI answers, and this collaboration

can result in either successes or failures in the completion of tasks. These categories are based on the prompts and their

reactions to the Generative AI’s answers.

• Entire response. Participants often accepted the Generative AI’s response in its entirety. We had Ĥ = 18 out of 60 prompts

we found that users accepted Generative AI answers, without any evidence of explicitly evaluating the responses. For

example, P10 formulated a prompt for Question 3 “Given an integer n, produce the array” and accepted the Generative

AI’s solution without any modi�cation. Similarly, P7, when addressing the same question, queried “I am trying to

produce the array 0,1,2,3 all the way to n, meaning it could also be n,0,1,2 is my correct so far?” fully embraced the

Generative AI’s response.

• Selective use. Another common use of Generative AI responses was that participants tried to understand the Generative

AI response, and then translate that understanding to implementing their own solution. There were Ĥ = 23 out of 60

prompts where users sought ideas from Generative AI responses to write their own code. For instance, P5 asked: “How

to round numbers in Python only from the tenths place” and the Generative AI response was “To round numbers in

Python only from the tenths place, you can use the round() function”, followed by an example of how round() function

works. The user then completed the task using their own code.

• Reject and Retry. Using recorded videos of facial expressions and eye movements, we also identi�ed cases in which

participants spent an extended amount of time reading and (most likely) contemplating Generative AI’s responses.

We observed six participants visibly contemplating the Generative AI’s response to 19 (out of 60) prompts. These

participants read the responses but did not exploit it, by way of either copying the code from the response, or simply

write it in their own way. Instead, they went on to write another prompt, which may indicate their rejection of the

Generative AI solution The reasons for this varied from Generative AI responses not meeting their information needs,

to a rejection of the implementation choices made in the responses. P12’s initial query was “I need help trying to

reverse a list.” After reading the Generative AI response, the user attempted to write another prompt, “Help me turn a

sequence of numbers into a list.” Once again, the user read the Generative AI’s response. Subsequently, P12 revised

his prompt and wrote: “Without using a built-in function, help me turn a sequence of numbers into a list.” After this

prompt, he began to write code in their own way.

4.3 RQ3: How does student self-e�icacy change before and a�er programming with Generative AI?

With such diversity in Generative AI usage among participants–in terms of frequencies, usage patterns and strategies, and

success rates– we went beyond simple task completion to metacognition, speci�cally to evaluate the impact of Generative AI

tools on students’ self-e�cacy.

For this, we analyzed the self-e�cacy questionnaires we administered as part of the pre-study and post-study surveys.

Unfortunately, for the �rst �ve participants (P1 to P5), we did not capture the pre-study self-e�cacy data; thus, we had data

from 10 participants.

Figure 3 presents the participants’ perception of self-e�cacy before and after using Generative AI. Figure 3a shows the

distribution of perception of self-e�cacy before and after the study. Given the small number of observations, we cannot draw

any statistically-sound conclusion about any di�erence between the distributions.

Figure 3b compares the self-e�cacy of the participants before and after the experiment. It shows that P6 experienced

a noticeable increase in self-e�cacy, from a self-e�cacy score of 4.00 in pre-study to 4.75 after the study, indicating a

potential positive impact of using Generative AI on self-e�cacy. P6 completed all three programming tasks successfully and

demonstrated a mix-model behavior by independently addressing two tasks and using a hybrid approach with Generative

AI for one task. The increase in self-e�cacy scores suggests that employing Generative AI was e�ective in improving her

perception of self-e�cacy.

In contrast, self-e�cacy in P9 decreased from 2.58, before the study, to 1.75 after the study. Although P9 completed all

programming tasks successfully, she copied the full description to the plug-in, asked ChatGPT for the answer, and pasted the

results as the submission. Similarly, this occurred for P13, who began with a pre-study self-e�cacy score of 3.92, however, the

post-study mean score dropped to 3.00. He submitted an incorrect solution for one task and did not �nish the other two tasks,

she used Generative AI in a step-by-step approach.
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(a) Distribution of Pre-study and Post-study self-E�icacy scores (b) Pre- vs. Post-study self-e�icacy scores by participant

Fig. 3. Self-e�icacy of participants

5 THREATS TO VALIDITY

Replicability Can others replicate our results? Because Generative AI and its usage and acceptance are rapidly emerging, we

do not know if the results of this study will be replicable due to changing student behaviors and rapid advances in Generative

AI. We encourage other researchers to replicate our study for di�erent populations to check for emerging behaviors of students

when using Generative AI.

Internal Did we skew the accuracy of our results with how we collected and analyzed data? We used open coding to analyze the

data and two authors reviewed all the data to make sure that the coding of videos adhered to the codebook that was created.

External Do our results generalize? Because our study has a small sample size (n=15) relative to the overall student population,

it is not possible to generalize to all students’ behavior. However, we attempted to have diversity based on gender. The bias of

drawing conclusions from self-selection bias remains a threat to validity.

6 DISCUSSION AND CONCLUDING REMARKS

In this section, we discuss the potential implications of our �ndings for computing education research and practice.

6.1 Interactions with Generative AI

In this study, our objective was to investigate how CS1 students utilize Generative AI for programming questions to assess

whether Generative AI serves as a help-seeking tool for beginners in programming. As observed in other recent studies [21, 37],

our �ndings indicate that a large number of Generative AI users rely on providing full descriptions of programming questions

to �nd solutions without making su�cient e�ort on their own, even under supervision. This trend aligns with the patterns

of over-reliance on LLMs identi�ed by Kazemitabaar et al. [21], particularly among novices using the ’AI single prompt’

approach, which resulted in lower performance on subsequent tasks. The observed behavior raises concerns about the potential

overreliance on Generative AI in educational settings, where students might increasingly rely on Generative AI to provide all

solutions to the detriment of their learning. This echoes the observations of Fernandez and Cornell [12], who emphasized the

need for careful integration of AI-driven code generation tools to avoid such overreliance. Help-seeking is crucial for students

to grasp new concepts, acquire skills, and tackle challenges in their computing courses [16]. However, when participants use

full descriptions of programming tasks as prompts and accept complete Generative AI-generated responses, Generative AI

may not e�ectively ful�ll its role as a help-seeking tool that constructively aids struggling students, but an oracle that does

the learners’ job for them. This concern was also raised by Jošt et al.[18], highlighting the need for instructional strategies

that emphasize breaking down problems and leveraging Generative AI for incremental learning. Our �ndings, alongside those

of Prather et al. [37], suggest that some students may struggle with new metacognitive di�culties when using generative AI

tools, including being conceptually behind in course material but unaware of it due to a false sense of con�dence. Further

exploration is needed to understand the underlying reasons for this undesired behavior and to encourage a more constructive

use of Generative AI that promotes deep understanding and problem-solving skills in computing education.

Our observations reveal two main types of behavior in problem solving: iterative and linear. Students who employed an

iterative approach re�ned their prompts to achieve correct answers, while students who used a linear approach used the
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full description of the problems to �nd answers directly. This behavioral split re�ects the �ndings of Vadaparty et al. [44],

who noted similar patterns in student interactions with Generative AI in a CS1 course. The iterative approach can improve

learning by encouraging deeper engagement with problem-solving processes, whereas the linear approach may indicate a

tendency to seek quick �xes.

Some prompts were related to coding concepts, indicating that novices struggle the most to understand programming

concepts. This is consistent with the �ndings of Liu et al. [25], who found that students often used Generative AI tools to

clarify the concepts of coding and the logic of the program. Our study further suggests that while Generative AI can assist

with the coding concepts, additional instructional support is needed for the logic and debugging of the program.

Our results show that in 30% of prompts, users accepted the Generative AI response, while in 70%, AI responses were used

to learn concepts. This dual role of Generative AI as both an answer provider and a personal tutor aligns with the observations

by Prather et al. [37] regarding the mixed impact of Generative AI on student learning, where Generative AI facilitated both

understanding and dependency. E�ective Generative AI integration should balance assistance with promoting independent

problem-solving skills.

We can categorize the nature of interactions with Generative AI based on the reliance of a prompt on prior prompts into

two groups: (1) stateless and (2) stateful. In the stateless interactions, individual prompts are independent of the prior prompts,

hence prompts can be interpreted and answered independently. However, in stateful interactions, the prompt assumes that

Generative AI uses the history of the user’s interaction. For instance, P7 used stateful interaction, where he asked “So, what

was wrong with my initial code?”.

We observed that seven participants P4, P7, P9, P10, P13, P14, and P15 employed the same approach on all tasks. We call

their strategy for problem-solving, single-approach strategy. In contrast, P1, P2, P3, P5, P6, P8, P11, and P12 used di�erent

approaches for di�erent tasks that we call mixed-approach. As generative AI becomes more commonplace and more learners

can access them for diverse sets of topics, a more granular investigation of these approaches becomes more important to

guide pedagogy.

6.2 Self-e�icacy and Generative AI

Our observations suggest that users who used full descriptions of the questions may prefer smooth interactions without

challenges. This behavior correlates with lower self-e�cacy scores, similar to the �ndings of Xue et al. [47] and Prather et

al. [37], who observed that students with lower self-e�cacy tend to rely more heavily on Generative AI tools. Overall, some

users’ self-e�cacy levels increased after programming with Generative AI. This suggests the varied impacts of integrating

Generative AI in educational contexts, shaping self-e�cacy outcomes according to individual learning strategies and initial

con�dence levels. Enhancing self-e�cacy through sca�olded Generative AI interactions could support more con�dent and

independent problem-solving.

6.3 Implications for Computing Education

The current advancement in prompt engineering focuses on productivity, aiming to help developers �nd �nal solutions

quickly. However, in an educational context, the goal is not merely to reach a solution, but to ensure that students achieve the

learning objectives. This goal is inherently di�erent from prompt engineering for productivity improvement, which aims to

minimize and eradicate failures, a proper learning strategy may require expecting or even encouraging a signi�cant amount

of purposeful failures along the way. Thus, prompt engineering research prioritizing individual learning, as seen in works like

Jin et al. [17], should be further investigated.

Our results suggest that, even in the physical presence of a researcher and with knowledge of being recorded, in a

considerable number of cases, the participants directly resorted to Generative AI to provide solutions to the tasks without

making any attempts on their own. This undesirable way of help-seeking, if used as the default approach in solving homework

problems, can negatively impact students’ learning. This suggests the need for students to improve their self-regulation

skills, e.g. self-monitoring [40] to monitor and re�ect the intensity and frequency of their use of Generative AI. Similarly,

Generative AI educational tool builders should consider supporting such strategies that enhance students’ self-regulation and

help-seeking behavior when they use Generative AI.

The �ndings of Margulieux et al. [27] are particularly relevant here. In their study, they found that some students used

Generative AI to support and not replace their critical thinking and problem solving. However, they also noticed that the

weakest students tended to use GenAI earlier in the problem solving process. Their �ndings mirror those in our study. However,

Margulieux et al.were somewhat optimistic that their �ndings meant that users who needed help and support could receive it.
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Our �ndings, as well as those by Prather et al. [37], show that lower-performing students using Generative AI earlier in the

problem solving process is likely an indication of overreliance and a failure to properly self-regulate with these tools.

One can imagine that a possible remedy for this problem is to devise novel homework assignments that can be di�cult for

Generative AI to solve. However, as Generative AI tools become more sophisticated and powerful, the arms race between

educators and Generative AI seems to be a losing proposition, especially in introductory courses such as CS1 that only include

basic algorithmic thinking that there is an upper limit to the appropriate complexity of problems [10, 34]. To discourage students

from using prompts to �nd complete solutions to homework problems, we should investigate novel types of problems that are

compatible with the era of Generative AI. Recent work such as Prompt Problems [8] that uses the graphical representation for

problem description instead of a textual description is a step in this direction. Even though the newest models with visual

modality have been able to solve Prompt Problems [15], they remain useful as a way to sca�old students usage of GenAI by

helping them learn problem decomposition, iterative problem solving, describing a problem, and prompt engineering [35].

An intriguing observation from our study was that most participants did not frequently execute their programs during

development to verify the correctness or identify syntax errors. This lack of regular testing suggests a gap in their understanding

of the importance of iterative debugging in the programming process. Consequently, students may miss out on early detection

of mistakes, which can lead to more complex issues and frustration later in the development cycle. Addressing this behavior

through new pedagogical tools such as [11] that visualizes the value of variables as students develop their solutions could

improve students’ coding practices and overall comprehension of programming concepts.
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