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Generative artificial intelligence tools (Generative Al), such as ChatGPT, allow users to interact with them in intuitive ways (e.g., conversational)
and receive (mostly) good-quality answers. In education, such systems can support students’ learning objectives by providing accessible
explanations and examples even when students pose vague queries. But, they also encourage undesired help-seeking behaviors, such as by
providing solutions to the students’ homework. Therefore, it is important to better understand how students approach such tools and the
potential issues such approaches might present for the learners.

In this paper, we present a case study for understanding student-AI collaboration to solve programming tasks in the CS1 introductory
programming course. To this end, we recruited a gender-balanced majority non-white set of 15 CS1 students at the University of Houston, a
large public university in the US. We observed them solving programming tasks. We used a mixed-method approach to study their interactions
as they tackled Python programming tasks, focusing on when and why they used ChatGPT for problem-solving. We analyze and classify the
questions submitted by the 15 participants to ChatGPT. Additionally, we analyzed user interaction patterns, their reactions to ChatGPT’s
responses, and the potential impacts of Generative Al on their perception of self-efficacy.

Our results suggest that, in about a third of the cases, the student attempted to complete the task by submitting the full description of
the tasks to ChatGPT without making any effort on their own. We also observed that few students verified their solutions. We discuss the

potential implications of these results.
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1 INTRODUCTION

Many interactive learning environments (ILEs) offer on-demand help to positively influence learning; here, the learner actively
seeks information, and the systems provide the same [3]. Although such forms of help-seeking behaviors in ILEs, when
effective, are linked to improved learning outcomes, many learners do not use the available help resources effectively[1, 26].
This raises concerns that ILEs may not reach their full potential unless we find ways to help students use these support tools
better. Furthermore, since seeking help is a crucial skill that affects learning in many situations[2, 30, 31], designing ILEs to

encourage effective help-seeking behaviors could greatly enhance their educational value[2, 13].
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Generative Al can be considered an interactive learning environment (ILE), as they can provide on-demand help, such
as explanations of concepts and working code examples, to students. They play a crucial role as interactive components
within broader educational settings, and contribute to interactive learning by providing immediate responses and facilitating
learning interactions in real time. Generative Al tools such as ChatGPT and Copilot have become integral tools for many
students, particularly those in introductory programming courses [34]. They can assist students by providing code suggestions,
explaining programming concepts, identifying and resolving errors, and generating code documentation [10, 21]. Their
widespread adoption signifies a major shift in how programming is learned and practiced. However, this increasing reliance
on Generative Al tools presents significant challenges. One primary concern is that students might become overly dependent
on these tools, potentially hindering their ability to develop fundamental programming skills [37]. Additionally, Al-generated
solutions might lead to academic dishonesty or reduced problem-solving capabilities among students [7]. This dichotomy has
sparked a debate among educators: while some argue against the use of Generative Al in learning due to these risks, others
advocate for its judicious use to enhance learning outcomes [22].

Despite various studies exploring the impact of Generative Al tools like GitHub Copilot on productivity [19, 48] and learning
outcomes [27, 42], there remains a critical gap in understanding how novice programmers interact with these tools without any
limitations on using Generative Al, where they can freely utilize Al-driven assistance and guidance. Understanding the level
of trust of students in these tools, which impacts their adoption and learning outcomes [4, 5], and analyzing their interactions
while using Generative Al for programming tasks is crucial. These insights enable us to identify students’ behaviors, actions,
decisions, and responses when using Generative Al tools, guiding the design of Al-assisted learning interfaces that enhance
conceptual understanding and drive improved learning outcomes.

To this end, our study investigates the interaction of novice programmers with ChatGPT while solving programming tasks.
We conducted a mixed-method study involving 15 CS1 students who used a custom VSCode plugin that integrated ChatGPT
directly into their coding environments. This setup allowed us to observe their natural use of Generative Al assistance without
external constraints, and to gain a deeper understanding of how students use Generative Al in completing programming
tasks, namely 1) when, how and why they use them and to what effectiveness, and 2) what strategies they employ to integrate
Generative Al into their problem-solving processes.

Our findings highlight that participants extensively interacted with Generative Al yet successfully provided correct answers
only in 65% of the cases; the rest remained unsolved. Some successful interactions involved step-by-step prompting, or hybrid
approaches that combine independent programming and Generative Al support. The overall acceptance of the Generative
Al responses also varied, from full adoption of the Generative AI’s response to using Generative Al to find answers to the

queries, or simply comparing the Generative Al responses to their own solutions.

2 RELATED WORK
2.1 Exploring the Impact of Generative Al in Programming

The recent widespread deployment of generative Al programming assistants has motivated much research on the use of
these tools. Researchers have conducted empirical studies [14, 23, 39] to evaluate the quality of code and explanations
that Generative Al programming assistants can generate. Others have explored the usefulness of Large Language Model
(LLM)-based programming tools through user studies [6, 20, 28, 38, 41, 45, 46, 49]. Notably, Vaithilingam et al. [45] compared
the user experience of GitHub Copilot with traditional auto-complete and found that programmers faced more frequent
difficulties in completing tasks with Copilot, although there was no significant impact on task completion time. Barke et
al. [6] took a step further to understand how programmers interact with code-generating models using a grounded theory
analysis, identifying two primary modes of interaction: acceleration, where Generative Al is used to speed up code authoring
in small logical units, and exploration, where Generative Al serves as a planning assistant by suggesting structure or API calls.
While these studies have contributed to our understanding of how developers use Generative Al developer tools, they mainly
focused on evaluating the effectiveness of such tools and did not directly address developers’ perceptions of them. Some
studies, such as those by Liang et al. [24] and Ziegler et al. [49], have also focused on how developers perceive these tools. For
instance, Liang et al. [24] conducted a survey involving 410 developers to investigate the usability challenges associated with
Generative Al programming assistants, finding that developers appreciate their autocomplete capabilities, but also reported
challenges ranging from the quality of code generation to potentially infringing on intellectual property. Although these
studies provide valuable insights on how users perceive the Generative Al tools, the insights are primarily applicable to

professional programmers; our study focuses on the use of such tools by CS students, and more studies are needed in this area.
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2.2 The Role of Al in Education

Recent studies have started to explore the applications of Generative Al tools in educational contexts. For example, Denny et
al. [9] have identified desirable characteristics for Generative Al teaching assistants in programming education. They emphasize
the importance of features that provide immediate, engaging support while allowing students to maintain autonomy in their
learning process. Liu et al. [25] investigated the integration of Generative Al tools in the CS50 course at Harvard University,
demonstrating how they can significantly enhance the learning experience for students in introductory programming classes.
Their approach involved developing and deploying a suite of Generative Al-based tools designed to emulate a 1:1 teacher-to-
student ratio, thereby providing personalized, real-time support to students. These tools, including the CS50 Duck, a virtual
rubber-duck debugging assistant, were well received by students, who reported that the Generative Al tools made them
feel as if they had a personal tutor available at all times. Prather et al. [36] have recently published a series of studies that
examine the usability and interaction challenges faced by novice programmers using Generative Al tools, e.g., GitHub Copilot.
Their research highlights the dual nature of such tools: while they can significantly accelerate the coding process and aid in
overcoming programming blocks, they also introduce unique cognitive and metacognitive difficulties. Students often found it
"weird" how accurately Copilot predicted their needs, which led to a mix of fascination and dependency concerns. The study
also identified new interaction patterns such as "shepherding” and "drifting," reflecting the nuanced ways novices attempt
to guide Generative Al or are misled by it. All these prior works together lend motivation to our research, highlighting
the potential usefulness of Generative Al tools, while underscoring the need to balance learning support with independent

problem-solving skills and over-reliance on Generative AL

2.3 Interaction Patterns of Novice Programmers Using LLMs

To develop Generative Al systems that balance fostering independent thinking with learning support and avoiding overreliance,
it is necessary to understand how students use LLMs in practice. In the past, Kazemitabaar et al. [21] conducted a thematic
analysis of novice learners using an LLM-based code generator in a self-paced Python course. They identified distinct coding
approaches among the learners, noting that the Hybrid approach, which combined manual coding with LLM assistance,
produced the best outcomes. However, the study also highlighted signs of over-reliance on LLMs, such as copying LLM
output without changes, and positive self-regulation behaviors, like adding code to verify LLM output. In another study,
Nguyen et al. [32] conducted a large-scale multi-institutional study that explored the challenges faced by near-novices when
interacting with Code LLMs. Their study identified barriers such as difficulties in expressing problem understanding and
using appropriate coding terminology. Prather et al. [37] further investigated the impact of generative Al tools on novice
programmers’ metacognitive awareness and problem-solving strategies, highlighting the potential widening gap between
well-prepared and under-prepared students in the era of generative AL However, there is a lack of studies elucidating when
and how students use LLMs, to what effectiveness, and to what effect on their self-efficacy; this is what we cover in the

present study.

2.4 Assessing Student Self-Efficacy in Al-Enhanced Learning

Self-efficacy, or the belief in one’s capabilities to achieve a goal or an outcome, is a crucial factor in students’ learning
processes. Recent studies have examined how interactions with GenAl tools influence students’ self-efficacy in programming.
Tankelevitch et al. [43] discussed the metacognitive demands imposed by GenAlI systems, highlighting the need for tools that
support students in monitoring and controlling their learning processes. Xue et al. [47] investigated the impact of ChatGPT
on introductory programming students, finding that the Al tool can enhance students’ self-efficacy by providing immediate
feedback and support, thereby reducing the anxiety associated with complex problem-solving tasks. Furthermore, Denny et
al. [9] emphasized the importance of designing Al teaching assistants that not only assist with immediate problem-solving
but also help students develop long-term self-efficacy by encouraging independent learning and critical thinking. This study
serves to add further evidence on the effect of Generative Al use on student self-efficacy, albeit using a different approach

(namely, pre- and post-task comparisons).

3 METHODOLOGY

This study focuses on students’ use of Generative Al-covering the whats, whys, whens, and hows of doing so. The specific

research questions for our study are as follows:

RQ1: How frequently do students use Generative Al while solving programming tasks?
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Table 1. Demographic Information of Participants

Participant Age Gender Education-level Racial/Ethnic College-generation
P1 19  Female Freshman African American Continuing-generation
P2 18  Female Freshman African American Continuing-generation
P3 19  Female Freshman African American Continuing-generation
P4 19 Male Freshman Asian Continuing-generation
P5 18  Female Freshman Asian Continuing-generation
P6 19  Female Freshman Asian First-generation

P7 19 Male Freshman African American Continuing-generation
P8 18 Male Freshman Latino First-generation

P9 22 Female Postbacc African American Continuing-generation
P10 18 Male Freshman Asian Continuing-generation
P11 19  Female Freshman White Continuing-generation
P12 19 Male Freshman African American Continuing-generation
P13 18 Male Freshman African American Continuing-generation
P14 20 Male Junior Latino Continuing-generation
P15 19  Female Freshman African American Continuing-generation

RQ2: How do students interact with Generative Al while solving a programming task?

RQ3: How does the self-efficacy of students change before and after programming with Generative AI?

To answer these questions, we adopted a mixed-methods approach, gathering data from 15 CS1 students using Generative
Al to perform a programming task. As we reason later in this section, the access to Generative Al in our study was via a

plug-in that we designed for the study.

3.1 Participants

We recruited students from a CS1 course at the University of Houston, a large public university in the US. We sent an email to
the course email list, via the instructor (also an author of this paper), inviting volunteers to participate in a research study
involving programming tasks with AL Each participant was offered five bonus points in their course for their participation. We
considered offering bonus points so as to not coerce students into participating. Participants could simply fill in an available
time slot for the study if they were willing to participate. The course had 110 students, of which 15 students volunteered to
participate.

Table 1 summarizes the demographics of the participants. Our study was gender balanced (8 females, 7 males). Two of
our participants were first-generation students (i.e., no parent or guardian possessed a four-year college degree); the rest
were continuing-generation students and had at least one parent or guardian with a four-year college degree. Most of our
participants (13 out of 15) were freshmen; the other two were junior and post-baccalaureate respectively. The participants

reported diverse racial/ethnic backgrounds, and everyone used English as their first or second language fluently.

3.2 Study Procedure

The study was conducted in an office within the computer science department during the spring semester of 2024, with one
participant per study session. The moderator conducting the study was not part of the CS1 course in any capacity (instructor,
tutor, or TA).

Each study session began with a study debriefing, and the participant signing the informed consent form. The participant
then filled out a pre-study questionnaire, which contained questions about: 1) demographics, 2) programming background,
and 3) self-efficacy questionnaire(from [33]).

Then, the participants were introduced to the study environment. We chose the Python programming language and VSCode
environment for the study, since it was already used in the course. Participants were also introduced to the plug-in, and were
briefed on how to ensert prompts into it, should they choose to use Generative Al for their tasks. We also emphasized to
participants that other Generative Al or aids (e.g., web searches) were not allowed during this time. We also clarified that their
performance would not be judged by others, or affect their course grades, to ensure that the participation was non-coercive.

Participants were introduced to the programming tasks on a sheet of paper, and were given one hour to complete the tasks.
On completion of the tasks, the participants completed a post-study survey containing the same self-efficacy questionnaire
administered as part of the pre-study survey. The study sessions lasted between 30 and 70 minutes each.
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Fig. 1. Interface of the VS Code plug-in used in the study: ChatGPT Response and Participant Code

3.3 Programming tasks

Participants were asked to complete three programming tasks, each of which is tailored to the complexity appropriate for a
CS1 level and covered topics taught by the instructor throughout the semester preceding the study.

Participants were provided with input and output examples for each task. Collectively, these three tasks addressed core
programming concepts such as conditionals, loops, functions, input/output operations, and simple algorithm design, providing
participants with a comprehensive understanding of essential programming principles and problem-solving approaches.

As mentioned earlier, participants had a choice of using Generative Al or not to complete these tasks. The use of Generative

AT had to be via the custom plug-in we developed, and the use of any other resource (e.g., web search) was disallowed.

3.4 Generative Al plugin

The goal of this study is to understand when, how, and why CS1 students interact with Generative Al tools and how effective
these interactions are. Therefore, we decided to allow only the use of Generative Al for students’ help seeking to complete
their tasks and disallowed all other sources.

In deciding what Generative Al tool to use for the study, we had several choices: OpenAl ChatGPT, Google Gemini,
and Github Copilot, to name a few. We chose to use OpenAl ChatGPT for two reasons: 1) it provided general help beyond
programming, and 2) from a prior study, it seemed to be the most familiar Generative Al among students [5].

However, in a recent study, Tankelevitch et al. [43] highlighted the metacognitive demands placed on users when interacting
with Generative Al systems (e.g., the need to remember sub-tasks and which one they are on), and suggested the need to
minimize switching between the task and the Generative Al help-seeking contexts. Therefore, we used a GPT-3.5 plug-in
within the VSCode! [29] programming environment, to reduce the cognitive load associated with switching between different
environments, thereby allowing participants to remain within a single, cohesive coding environment.

Figure 1 shows the VSCode plugin [29] we used for this study. As the figure shows, the plugin had a simple interface
comprising of a prompt-writing box (See "Ask a question.." in the image), allowing users to access ChatGPT within the
VSCode IDE. This prompt box allows students to freely input prompts without any restrictions on the number or type of
questions, or prompt lengths. The Generative Al responses to the prompts are also provided in the same pane, as the figure
shows. The fact that users can access GenAl and see its responses together with their code in the same window allows for a

focused environment where users do not need to switch context to another window, and are less tempted to use other Als.

3.5 Data gathering

Our study employed a multi-faceted approach to data collection, designed to capture a comprehensive view of participants’
interactions with Generative Al (here, ChatGPT) during programming tasks. We utilized a custom VSCode plugin to log all

!https://code.visualstudio.com/
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text editor interactions (including any text selections) and ChatGPT prompts, and responses. The audio and video recordings
of the participants, along with recordings of the participants’ screens throughout the session provided qualitative data on
problem-solving behaviors and reactions to Al assistance. Pre-study and post-study surveys collected demographic information
and self-efficacy data using Likert scales. In addition, we collected detailed logs of ChatGPT conversations, including the full
text of prompts and responses. This diverse dataset allowed us to analyze the frequency and timing of Generative Al use
(RQ1), students’ activities and their patterns (RQ2), their Generative Al use strategies (RQ3), and the effects of Generative Al
use on students’ self-efficacy (RQ4). By combining automated logging, video analysis, and self-reported measures, we ensured

a foundation for both quantitative and qualitative analysis of novice programmers’ engagement with Al-assisted coding.

3.6 Data analysis

To answer our research questions, we conducted both qualitative and quantitative analyses of the data.

3.6.1 Qualitative. Two authors independently coded the video data for three programming tasks, each varying in difficulty
levels and topics, utilizing the initial codebook. Subsequently, they engaged in discussions to review the initial coding outcomes,
resolve any conflicts, and enhance the codebook further. With the identification of each new code, we reviewed all prior
comments for possible adjustments.

The codebook provides a clear breakdown of how participants interacted with Generative Al prompts throughout various
stages of programming tasks. It categorizes prompts based on their types and how participants engaged with them, whether
standalone or as follow-up interactions. Additionally, it outlines how participants responded to errors during programming
and their preferences for resolving them, including using Generative Al responses or ignoring errors altogether. Moreover, the
book details the extent to which participants accepted Al-generated solutions, from copying entire responses to incorporating
only certain parts or using them for guidance. In essence, the codebook served as a guide for understanding participant-Al
interactions during programming activities in educational settings. The codebook includes such thematic coding of responses
allowing us to draw meaningful insights about students’ perspectives and shed light on the complex range of attitudes and

emotions surrounding Generative Al systems in the context of programming.

3.6.2 Quantitative. We conducted two surveys, one administered before the programming session and another after, to
assess participants’ level of self-efficacy. Participants rated their self-efficacy levels using 5-level Likert scales, indicating their
agreement with statements related to their programming abilities. These Likert scores provided quantitative data to measure

changes in participants’ self-efficacy before and after engaging in the programming tasks.

4 RESULTS

Fifteen CS1 students participated in our study, and we asked each of them to do their best to complete three programming tasks.
Table 2 summarizes the tasks completed and the correctness of solutions for each participant. Notably, most participants (P3,
P15) had atleast one correct solution, but only 6 out of 15 participants (P3, P5, P6, P9, P12, P14) solved the three programming
tasks successfully. Overall, we had 40 completed (correct + incorrect) solutions submitted by participants. We then analyzed

the logs from the Generative AL

4.1 RQ1: How frequently do students use Generative Al while programming?

We used the logs from the plugin to analyze the frequency of Generative Al use. Of the 40 completed participant submissions,
29 solutions were created with assistance from the Generative Al plug-in provided, and 11 without Generative Al requests, as
a measure of the frequency of participants’ Generative Al use during each task. Table 2 displays this frequency of participants’
plugin-aided Generative Al use, illustrating the different levels of dependence on Generative Al assistance among participants.

However, these use frequencies did not always translate into task completion successes. Overall, among the 29 Generative
Al assisted solutions created by participants, only 19 solutions (65%) were correct and the rest (35%) were incorrect. Even
among two participants (P2, P5) used Generative Al extensively for a task, only one instance (P5, Q3) was successful; P2 did
not manage to complete Q1 correctly, even after 9 Generative Al queries. Moreover, some participants, such as P3 and Pé,
achieved correct answers ('C’) for one or all tasks even without relying on Generative Al indicating that some participants
may not need Generative Al to perform well.

Thus, participants’ frequency of Generative Al use alone did not lead to successes; instead, participants’ strategies in using
Generative Al and their inherent problem-solving abilities both played crucial roles in their success.
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Table 2. Usage and Problem Solving by Participants: This table details participants’ problem-solving activities. “Participant” identifies
participants, “Tasks” shows the main concepts in the tasks attempted, and “Completed” indicates if the task has been completed by the
participant (Y’ for yes, ‘N’ for no). “Correct” shows if the submission was correct (‘C’), wrong (‘W’), or not attempted (‘N’). "Using Generative
Al " indicates Generative Al use (Y’ for yes, ‘N’ for no), and “Times Generative Al” shows the number of times Generative Al used.

Participant Tasks Completed  Correct  Using Generative AI  #Times Generative Al
Q1,02,03  Q1,02,03 Q1,02,03
P1 Condition, String, Function Y,Y,N W, W, N N,Y,N 0,1,0
P2 Condition, String, Function Y,YY W, W, C YYY 9,3,1
P3 Condition, String, Function Y,YY C,C,C N,N, Y 0,0,2
P4 Condition, String, Function Y,Y, N C,W, N N,N,N 0,0,0
P5 Condition, String, Function Y,YY CC,C NYY 0,1,10
Pé6 String, List, Array YYY GG, C N, Y,N 0,5,0
P7 String, List, Array YYY C,C,W Y.YY 2,1,4
P8 String, List, Array Y, Y, Y C,CW N,N, Y 0,0,3
P9 String, List, Array YYY GG, C Y,YY 1,1,1
P10 String, List, Array Y.YY C,C,W Y.YY 1,2,1
P11 String, List, Array Y,YY W, C,C N,YY 0,1,1
P12 String, List, Array Y, Y,N C,CN Y, Y,N 3,1,0
P13 String, List, Array Y,N,N W, N, N Y,N,N 3,0,0
P14 String, List, Array Y,YY CCC Y,YY 1,1,1
P15 String, List, Array YYY W, W, W Y,YY 1,1,1

4.2 RQ2: How do students interact with Generative Al while programming?

To understand how and why some participants were able to use Generative Al to correctly complete tasks, and others
were unsuccessful in doing so, we delved into various qualitative aspects of participants Generative Al use-when and how

participants interacted with Generative Al and how these translated into task completion successes.

4.2.1  When do students use Generative Al?. We observed that participants typically engaged with generative Al at three
different stages during their task:

e Early in the task. In our study, 8 participants, in a total of 18 tasks, turned to ChatGPT right away, at the beginning
of the task, without making any initial attempts on their own; see instances of "Early” in Table 3 under "When". Of
them, four participants (P9, P10, P14, P15) used Generative Al right from the beginning for all three programming
tasks. Typically, during these instances, participants typed in the description of the task as is, and relied on Generative
Al to complete the task for them.

Middle of the task. In 9 out of 45 total tasks, participants (7 out of 15) sought the assistance of Generative Al in the

middle of their programming; these instances are labeled "Middle" in Table 3, under "When". Initially coding manually,

they resorted to using Generative Al when they encountered errors, or to understand programming concepts.

After completing the task. Interestingly, two participants (P3 and P5) employed Generative Al even after they had
already arrived at the correct answer on their own. See instances of "After-Solving" in Table 3; Section "When". Here,
P3 used Generative Al to validate she understood the problem description correctly by inquiring about the distinction
between the terms (i, N) mentioned in the problem. P5 reached the correct solution on their own first, but still sought
Generative Al’s solution for the entire question, apparently to verify the correctness and/or effectiveness of their

solution by comparing their solution with the Generative AI's responses.

4.2.2  What are common Generative Al usage patterns among students? We conducted an activity analysis of the students’
programming tasks, coding the activities they engaged in. We identified six common activities users performed when using
Generative Al, namely, reading, thinking, writing code, modifying code, prompting, and debugging. Table 4 defines these
activities. Participants engaged in these activities in varying levels, with some engaging in the same activity on multiple
instances during the same task, and others performing them only once per task.

An analysis of the activity sequences for each task revealed two large patterns, as illustrated in 2; the figure shows the
activity sequences? of two tasks by P14 and P7 respectively. Whereas P14 followed a straight path across all three programming

questions, performing each activity once, P7 in question 4 repeated certain activities such as running, debugging, prompting,

“Notice that in the figure "correct" and "wrong" are not activities; we also did not count "running code" as an explicit activity because it was a part of task
completion or verification.
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Table 3. Summary of Generative Al Usage and Approaches by Participants: The table summarizes the Generative Al usage and approaches
taken by users for different programming questions (Q1, Q2, Q3). The first set of columns under "When (Generative Al Used)" indicates the
timing of Generative Al usage classified as "Early”, "Middle", "After-Solving", or "-" if not used. The second set of columns under "Approach”
" if not used. The third column
shows nature of participants’ activities, with some repeating activities multiple times as iterative "I" and others performing them only once
as linear shown as "L".

details the approach taken by participants, such as "Hybrid/partial”, "Step by step", "Full description", and "-

User When (Generative Al Used) Approach Usage Pattern
Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3
P1 - Middle - - Hybrid/partial - I I -
P2 Early Middle Early step-by-step Hybrid/partial ~ Full description I I I
P3 - - After-Solving - - step-by-step I I I
P4 - - - - - - I I -
P5 - After-Solving Early - Full description  step-by-step I L I
P6 - Middle - Themselves Hybrid/partial - L I I
P7 Middle Middle Middle Hybrid/partial ~ Hybrid/partial ~ Hybrid/partial I L I
P8 - - Middle - - Hybrid/partial I I I
P9 Early Early Early Full description  Full description ~ Full description L L L
P10 Early Early Early Full description  Full description  Full description L I L
P11 - Early Early - Full description  Full description L L L
P12 Early Middle - Full description ~ Hybrid/partial - I I -
P13 Middle - - step-by-step - - I I -
P14 Early Early Early Full description  Full description ~ Full description L L L
P15 Early Early Early Full description  Full description ~ Full description L L L

» ” ! |

Reading —  Thinking }—{w:mngcoua]—[ Eme }—»Mndiﬁ/mgcndea Rnoing ‘.{ Coa

(a) Linear activities of P14 for all questions (b) Iterative activities of P7 for Question 3

Fig. 2. Examples of activities

modifying, and running again. Overall, the 15 participants in our study completed a total of 40 tasks (Table 2, column
Completed); of them, we observed 17 instances of straight or linear activity sequences and 23 instances of repetitive activities.
These are indicated by “L” and “I” in Table 3, under "Usage Pattern".

The pattern of a student returning to the same activity is an indicator of an iterative process (e.g., several iterations of
re-running code, or prompting Generative Al more than once for the same task). In contrast, a linear pattern is an indicator of
one-shot task completion, assisted with or without Generative Al The fact that over 40% instances were linear is suggestive
of one of two possibilities. The first is that of high task performance abilities, as marked by minimal help-seeking, and lack of
edit-verify loops. The second possibility is that of over reliance on Generative Al, wherein participants made a single prompt
to Generative Al the result of which resulted in a direct solution to the problem, following which participants did not have to
enter an edit-verify loop. To assess which of these possibilities caused the observed usage patterns, we drilled down into the

nature of participants’ interactions with Generative Al

4.2.3 What interaction strategies do students adopt with Generative Al?. There were three key aspects to participants interac-
tions with Generative Al: the level of task decomposition, the kind of information they needed, and how participants exploited

the Generative Al response.

Table 4. Description of six common activities users performed when using Generative Al user activities.

Activity Description

Reading Reading the question before starting to write code

Thinking Thinking about solution, or Generative Al prompt and response
Writing Code Writing code by themselves or copying Generative Al response
Modifying Code Editing existing code

Prompting Asking questions from Generative Al

Verification and Debugging Running code and finding errors
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Levels of task decomposition. As Table 3 shows, participants engaged in three prompting strategies, based on the level of

task decomposition: full description, step-by-step, and partial:

o In the full description strategy, the participant copied the full description of the task into the plugin, thereby offloading
task completion entirely to Generative AL In total, there were 17 instances across 9 participants where participants,
early in the task (Table 3), provided the entire problem description to Generative Al to be solved by the latter. Of them, 5
participants adopted this approach for only one or two tasks, and relied on step-by-step or hybrid /partial approach for
others. However, 4 participants (P9, P10, P11, P14, P15) entirely relied on this strategy for all tasks, taking to Generative
Al very early in the task. Note, however, that this opportunistic approach to offload the task completion to Generative
Al did not translate to complete and correct solutions. Among the participants who relied on full descriptions, P10 (for
Q3) and P15 (for Q1, Q2, Q3) were unable to find the correct answers.

In the step-by-step interaction strategy, participants broke the question down into structured sub-goals and then used

the Generative Al to solve the problem step by step-resulting in an iterative approach. Four participants (P2, P3, P5,
P13) adopted this problem-solving strategy. For example, participant P5 used Generative Al for the first time to inquire,
"How to round numbers in Python?” and then followed up with a second query, “How to round numbers in Python
only from the tenths place?”. Similarly, P13 used Generative Al three times for their first question. The first inquiry
was, “In Python, can you turn an integer into a list?” The second query was about arrays: “What is an array?” Lastly,
the user asked: “Given an integer n, produce the array: 0123...n, 1234...0, n012...n-1?” Indeed, there is diversity in the
nature of prompts, as we describe later.

e The remaining participants used a hybrid or partial strategy where participants tackled some parts of the task inde-
pendently while seeking assistance from Generative Al for some other parts. Notably, participants attempted to write
programs independently, but turned to Generative Al for debugging to resolve errors or others. We identified n=8
instances that we categorized as Hybrid or Partial. For example, when stuck with a bug, participant P2 asked Generative
AL “Fix my code to work” User P6 encountered an error and copied the message: "TypeError: ’int’ object is
not subscriptable". We observed only one instance of a participant successfully completing a task on their own
(Table 3, Q1, P6 labeled "Themselves").

Information needs. We analyzed the prompts that users submitted to ChatGPT, via the logger. In all, 15 participants wrote

60 prompts, and we categorized them based on the information need the prompt aimed to serve.

o Entire Solution. As described earlier, several participants simply typed in the question descriptions, which we considered
as their entire prompt. These accounted for a third of all prompts (20 out of 60). Often, these prompts were issued
early on during the task, and participants obtained the entire solution to the task, via this single prompt; 8 out of 15
participants engaged in this behavior.

e Coding Concepts. Another popular prompting strategy, namely seeking to understanding programming concepts, was
equally common among participants. About a half of participants (7 out of 15) accounting sought such information,
accounting for 30% (19 out of 60) of all prompts. These instances of conceptual understanding, arose in largely two
cases, namely when the participant had a logical understanding of what to do, but needed help executing them in
Python (e.g., P2: “How to append to a list?”, P5:“How to round numbers in Python?”), to understand whether the
language allowed something (e.g., P7: “In my program, [ am trying to move the negative numbers to the front. Could I
initialize an empty list first?”), or to understand jargon (e.g., P13: “What is an array?’).

e Program Logic. In about 15% of the time (10 out of 60 prompts), participants utilized Generative Al because they found
it challenging to determine the sequence of steps or instructions needed to accomplish a specific task or goal within the
program. In other words, they used Generative Al for planning help. For instance, P2 asked about "a function to return
the first n values of the triangular number sequence starting from 1., expecting to receive the steps to accomplish the
task. P12 needed help trying to reverse a list. P7 inquired, "I am trying to produce the array 0, 1, 2, 3 all the way to n,
meaning it could also be n, 0, 1, 2. Is my approach correct so far?".

o Debugging. Finally, some participants turned to Generative Al for debugging and their questions typically revolved
around the question: “How can I solve this error?”. In total, 11 out of 60 prompts utilized Generative Al for error
resolution. Often, users would simply copy the error message from the console and ask ChatGPT for help. P6 copied
and pasted the code, asking, “What is wrong with this code?” P10 asked, “Why does the code not work?” P6 specifically
inquired about the error received, in some ways treating it like a search engine: “TypeError: ‘int’ object is not
subscriptable.”
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Exploiting Generative Al responses. We identified various user actions upon receiving responses from Generative Al, which
we categorize as acceptance categories. These actions reflect users’ reactions to Generative Al answers, and this collaboration
can result in either successes or failures in the completion of tasks. These categories are based on the prompts and their

reactions to the Generative AI’s answers.

o Entire response. Participants often accepted the Generative Al’s response in its entirety. We had n = 18 out of 60 prompts
we found that users accepted Generative Al answers, without any evidence of explicitly evaluating the responses. For
example, P10 formulated a prompt for Question 3 “Given an integer n, produce the array” and accepted the Generative
AT’s solution without any modification. Similarly, P7, when addressing the same question, queried “I am trying to
produce the array 0,1,2,3 all the way to n, meaning it could also be n,0,1,2 is my correct so far?” fully embraced the

Generative Al’s response.

Selective use. Another common use of Generative Al responses was that participants tried to understand the Generative
Al response, and then translate that understanding to implementing their own solution. There were n = 23 out of 60
prompts where users sought ideas from Generative Al responses to write their own code. For instance, P5 asked: “How
to round numbers in Python only from the tenths place” and the Generative Al response was “To round numbers in
Python only from the tenths place, you can use the round() function”, followed by an example of how round() function

works. The user then completed the task using their own code.

Reject and Retry. Using recorded videos of facial expressions and eye movements, we also identified cases in which
participants spent an extended amount of time reading and (most likely) contemplating Generative AI’s responses.
We observed six participants visibly contemplating the Generative AI's response to 19 (out of 60) prompts. These
participants read the responses but did not exploit it, by way of either copying the code from the response, or simply
write it in their own way. Instead, they went on to write another prompt, which may indicate their rejection of the
Generative Al solution The reasons for this varied from Generative Al responses not meeting their information needs,
to a rejection of the implementation choices made in the responses. P12’s initial query was “I need help trying to
reverse a list” After reading the Generative Al response, the user attempted to write another prompt, “Help me turn a
sequence of numbers into a list” Once again, the user read the Generative AI's response. Subsequently, P12 revised
his prompt and wrote: “Without using a built-in function, help me turn a sequence of numbers into a list” After this

prompt, he began to write code in their own way.

4.3 RQ3: How does student self-efficacy change before and after programming with Generative Al?

With such diversity in Generative Al usage among participants—in terms of frequencies, usage patterns and strategies, and
success rates— we went beyond simple task completion to metacognition, specifically to evaluate the impact of Generative Al
tools on students’ self-efficacy.

For this, we analyzed the self-efficacy questionnaires we administered as part of the pre-study and post-study surveys.
Unfortunately, for the first five participants (P1 to P5), we did not capture the pre-study self-efficacy data; thus, we had data
from 10 participants.

Figure 3 presents the participants’ perception of self-efficacy before and after using Generative AL Figure 3a shows the
distribution of perception of self-efficacy before and after the study. Given the small number of observations, we cannot draw
any statistically-sound conclusion about any difference between the distributions.

Figure 3b compares the self-efficacy of the participants before and after the experiment. It shows that P6 experienced
a noticeable increase in self-efficacy, from a self-efficacy score of 4.00 in pre-study to 4.75 after the study, indicating a
potential positive impact of using Generative Al on self-efficacy. P6 completed all three programming tasks successfully and
demonstrated a mix-model behavior by independently addressing two tasks and using a hybrid approach with Generative
AlI for one task. The increase in self-efficacy scores suggests that employing Generative Al was effective in improving her
perception of self-efficacy.

In contrast, self-efficacy in P9 decreased from 2.58, before the study, to 1.75 after the study. Although P9 completed all
programming tasks successfully, she copied the full description to the plug-in, asked ChatGPT for the answer, and pasted the
results as the submission. Similarly, this occurred for P13, who began with a pre-study self-efficacy score of 3.92, however, the
post-study mean score dropped to 3.00. He submitted an incorrect solution for one task and did not finish the other two tasks,

she used Generative Al in a step-by-step approach.
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Fig. 3. Self-efficacy of participants

5 THREATS TO VALIDITY

Replicability Can others replicate our results? Because Generative Al and its usage and acceptance are rapidly emerging, we
do not know if the results of this study will be replicable due to changing student behaviors and rapid advances in Generative
Al We encourage other researchers to replicate our study for different populations to check for emerging behaviors of students
when using Generative AL

Internal Did we skew the accuracy of our results with how we collected and analyzed data? We used open coding to analyze the
data and two authors reviewed all the data to make sure that the coding of videos adhered to the codebook that was created.
External Do our results generalize? Because our study has a small sample size (n=15) relative to the overall student population,
it is not possible to generalize to all students’ behavior. However, we attempted to have diversity based on gender. The bias of

drawing conclusions from self-selection bias remains a threat to validity.

6 DISCUSSION AND CONCLUDING REMARKS

In this section, we discuss the potential implications of our findings for computing education research and practice.

6.1 Interactions with Generative Al

In this study, our objective was to investigate how CS1 students utilize Generative Al for programming questions to assess
whether Generative Al serves as a help-seeking tool for beginners in programming. As observed in other recent studies [21, 37],
our findings indicate that a large number of Generative Al users rely on providing full descriptions of programming questions
to find solutions without making sufficient effort on their own, even under supervision. This trend aligns with the patterns
of over-reliance on LLMs identified by Kazemitabaar et al. [21], particularly among novices using the ’Al single prompt’
approach, which resulted in lower performance on subsequent tasks. The observed behavior raises concerns about the potential
overreliance on Generative Al in educational settings, where students might increasingly rely on Generative Al to provide all
solutions to the detriment of their learning. This echoes the observations of Fernandez and Cornell [12], who emphasized the
need for careful integration of Al-driven code generation tools to avoid such overreliance. Help-seeking is crucial for students
to grasp new concepts, acquire skills, and tackle challenges in their computing courses [16]. However, when participants use
full descriptions of programming tasks as prompts and accept complete Generative Al-generated responses, Generative Al
may not effectively fulfill its role as a help-seeking tool that constructively aids struggling students, but an oracle that does
the learners’ job for them. This concern was also raised by Jost et al.[18], highlighting the need for instructional strategies
that emphasize breaking down problems and leveraging Generative Al for incremental learning. Our findings, alongside those
of Prather et al. [37], suggest that some students may struggle with new metacognitive difficulties when using generative Al
tools, including being conceptually behind in course material but unaware of it due to a false sense of confidence. Further
exploration is needed to understand the underlying reasons for this undesired behavior and to encourage a more constructive
use of Generative Al that promotes deep understanding and problem-solving skills in computing education.

Our observations reveal two main types of behavior in problem solving: iterative and linear. Students who employed an

iterative approach refined their prompts to achieve correct answers, while students who used a linear approach used the
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full description of the problems to find answers directly. This behavioral split reflects the findings of Vadaparty et al. [44],
who noted similar patterns in student interactions with Generative Al in a CS1 course. The iterative approach can improve
learning by encouraging deeper engagement with problem-solving processes, whereas the linear approach may indicate a
tendency to seek quick fixes.

Some prompts were related to coding concepts, indicating that novices struggle the most to understand programming
concepts. This is consistent with the findings of Liu et al. [25], who found that students often used Generative Al tools to
clarify the concepts of coding and the logic of the program. Our study further suggests that while Generative Al can assist
with the coding concepts, additional instructional support is needed for the logic and debugging of the program.

Our results show that in 30% of prompts, users accepted the Generative Al response, while in 70%, Al responses were used
to learn concepts. This dual role of Generative Al as both an answer provider and a personal tutor aligns with the observations
by Prather et al. [37] regarding the mixed impact of Generative Al on student learning, where Generative Al facilitated both
understanding and dependency. Effective Generative Al integration should balance assistance with promoting independent
problem-solving skills.

We can categorize the nature of interactions with Generative Al based on the reliance of a prompt on prior prompts into
two groups: (1) stateless and (2) stateful. In the stateless interactions, individual prompts are independent of the prior prompts,
hence prompts can be interpreted and answered independently. However, in stateful interactions, the prompt assumes that
Generative Al uses the history of the user’s interaction. For instance, P7 used stateful interaction, where he asked “So, what
was wrong with my initial code?”.

We observed that seven participants P4, P7, P9, P10, P13, P14, and P15 employed the same approach on all tasks. We call
their strategy for problem-solving, single-approach strategy. In contrast, P1, P2, P3, P5, P6, P8, P11, and P12 used different
approaches for different tasks that we call mixed-approach. As generative Al becomes more commonplace and more learners
can access them for diverse sets of topics, a more granular investigation of these approaches becomes more important to

guide pedagogy.

6.2 Self-efficacy and Generative Al

Our observations suggest that users who used full descriptions of the questions may prefer smooth interactions without
challenges. This behavior correlates with lower self-efficacy scores, similar to the findings of Xue et al. [47] and Prather et
al. [37], who observed that students with lower self-efficacy tend to rely more heavily on Generative Al tools. Overall, some
users’ self-efficacy levels increased after programming with Generative Al This suggests the varied impacts of integrating
Generative Al in educational contexts, shaping self-efficacy outcomes according to individual learning strategies and initial
confidence levels. Enhancing self-efficacy through scaffolded Generative Al interactions could support more confident and

independent problem-solving.

6.3 Implications for Computing Education

The current advancement in prompt engineering focuses on productivity, aiming to help developers find final solutions
quickly. However, in an educational context, the goal is not merely to reach a solution, but to ensure that students achieve the
learning objectives. This goal is inherently different from prompt engineering for productivity improvement, which aims to
minimize and eradicate failures, a proper learning strategy may require expecting or even encouraging a significant amount
of purposeful failures along the way. Thus, prompt engineering research prioritizing individual learning, as seen in works like
Jin et al. [17], should be further investigated.

Our results suggest that, even in the physical presence of a researcher and with knowledge of being recorded, in a
considerable number of cases, the participants directly resorted to Generative Al to provide solutions to the tasks without
making any attempts on their own. This undesirable way of help-seeking, if used as the default approach in solving homework
problems, can negatively impact students’ learning. This suggests the need for students to improve their self-regulation
skills, e.g. self-monitoring [40] to monitor and reflect the intensity and frequency of their use of Generative Al. Similarly,
Generative Al educational tool builders should consider supporting such strategies that enhance students’ self-regulation and
help-seeking behavior when they use Generative Al

The findings of Margulieux et al. [27] are particularly relevant here. In their study, they found that some students used
Generative Al to support and not replace their critical thinking and problem solving. However, they also noticed that the
weakest students tended to use GenAl earlier in the problem solving process. Their findings mirror those in our study. However,

Margulieux et al.were somewhat optimistic that their findings meant that users who needed help and support could receive it.
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Our findings, as well as those by Prather et al. [37], show that lower-performing students using Generative Al earlier in the
problem solving process is likely an indication of overreliance and a failure to properly self-regulate with these tools.

One can imagine that a possible remedy for this problem is to devise novel homework assignments that can be difficult for
Generative Al to solve. However, as Generative Al tools become more sophisticated and powerful, the arms race between
educators and Generative Al seems to be a losing proposition, especially in introductory courses such as CS1 that only include
basic algorithmic thinking that there is an upper limit to the appropriate complexity of problems [10, 34]. To discourage students
from using prompts to find complete solutions to homework problems, we should investigate novel types of problems that are
compatible with the era of Generative Al Recent work such as Prompt Problems [8] that uses the graphical representation for
problem description instead of a textual description is a step in this direction. Even though the newest models with visual
modality have been able to solve Prompt Problems [15], they remain useful as a way to scaffold students usage of GenAl by
helping them learn problem decomposition, iterative problem solving, describing a problem, and prompt engineering [35].

An intriguing observation from our study was that most participants did not frequently execute their programs during
development to verify the correctness or identify syntax errors. This lack of regular testing suggests a gap in their understanding
of the importance of iterative debugging in the programming process. Consequently, students may miss out on early detection
of mistakes, which can lead to more complex issues and frustration later in the development cycle. Addressing this behavior
through new pedagogical tools such as [11] that visualizes the value of variables as students develop their solutions could

improve students’ coding practices and overall comprehension of programming concepts.
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