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Figure 1. Overview of MARS. (a) Within a geographical area, we operate four autonomous vehicles, displaying their GPS trajectories from
a single day using different colors. (b) Vehicles occasionally come close together (visualized via distinct-colored point clouds), supporting
research in multiagent systems. (c¢) We collect sensory data from repeated traversals of the same location under varying conditions, for
learning and perception research with retrospective memory. (d) The dataset includes surround-view RGB images and LiDAR point clouds

for cross-modal perception and learning. Note that our data is obtained from May Mobility @ ne tps://maymobility.com/

Abstract

Large-scale datasets have fueled recent advancements
in Al-based autonomous vehicle research. However, these
datasets are usually collected from a single vehicle’s one-
time pass of a certain location, lacking multiagent inter-
actions or repeated traversals of the same place. Such
information could lead to transformative enhancements in
autonomous vehicles’ perception, prediction, and planning
capabilities. To bridge this gap, in collaboration with the
self-driving company May Mobility, we present the MARS
dataset which unifies scenarios that enable MultiAgent,
multitraveRSal, and multimodal autonomous vehicle re-
search. More specifically, MARS is collected with a fleet of
autonomous vehicles driving within a certain geographical
area. Each vehicle has its own route and different vehicles
may appear at nearby locations. Each vehicle is equipped
with a LiDAR and surround-view RGB cameras. We curate
two subsets in MARS: one facilitates collaborative driv-
ing with multiple vehicles simultaneously present at the
same location, and the other enables memory retrospection
through asynchronous traversals of the same location by

multiple vehicles. We conduct experiments in place recog-
nition and neural reconstruction. More importantly, MARS
introduces new research opportunities and challenges such
as multitraversal 3D reconstruction, multiagent perception,
and unsupervised object discovery. Our data and codes can
be found at https://aidce.github.i0/MARS/.

1. Introduction

Autonomous driving, which has the potential to fundamen-
tally enhance road safety and traffic efficiency, has wit-
nessed significant advancements through Al technologies
in recent years. Large-scale, high-quality, real-world data
is crucial for Al-powered autonomous vehicles (AVs) to
enhance their perception and planning capabilities [1, 15]:
AVs can not only learn to detect objects from annotated
datasets [16] but also create safety-critical scenarios by gen-
erating digital twins based on past driving recordings [17].

The pioneering KITTI dataset [1] established the initial
benchmark for tasks such as detection and tracking. Since
its introduction, a number of datasets have been proposed
to promote the development of self-driving; see Tab. 1.
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Table 1. Comparison of existing autonomous driving datasets with multimodal sensors. C denotes the camera and L denotes LiDAR.

Datasets Sensors Camera view Location Source Year Multiagent Multitraversal
KITTI [1] C&L Front Germany Academia 2012 X X
Lyft Level 5 [2] C&L Surround U.s Industry 2019 X v
Argoverse [3, 4] C&L Surround u.sS Industry 2019&2021 X v
ApolloScape [5] C&L Front China Industry 2019 X X
A2D2 [6] C&L Surround Germany Industry 2020 X X
A*3D [7] C&L Front SG Academia 2020 X X
nuScenes [8] C&L Surround U.S. & SG Industry 2020 X v
Waymo Open Dataset [9] C&L Surround uU.s. Industry 2020 X X
ONCE [10] C&L Surround China Industry 2021 X X
KITTI-360 [11] C&L Surround Germany Academia 2022 X X
Ithaca365 [12] C&L Front U.S. Academia 2022 X 4
V2V4Real [13] C&L Front&Back U.S. Academia 2023 v X
Zenseact Open Dataset [14] C&L Front Europe Industry 2023 X X
Open MARS Dataset (Ours) C&L Surround U.S. Industry 2024 v v

Two representative datasets are nuScenes [8] and Waymo
Dataset [9] which introduce multimodal data collected from
cameras and range sensors, covering a 360-degree field of
view for panoramic scene understanding. These datasets
have shifted the focus from KITTI’s monocular cameras,
receiving wide attention in the fields of vision and robotics.

Existing driving datasets generally focus on geograph-
ical and traffic diversity without considering two practical
dimensions: multiagent (collaborative) and multitraversal
(retrospective). The collaborative dimension highlights the
synergy between multiple vehicles located in the same spa-
tial region, facilitating their cooperative perception, predic-
tion, and planning. The retrospective dimension enables ve-
hicles to enhance their 3D scene understanding by draw-
ing upon visual memories from prior visits to the same
place. Embracing these dimensions can address challenges
like limited sensing capability for online perception and
sparse views for offline reconstruction. Nevertheless, exist-
ing datasets are typically collected by an individual vehicle
during a one-time traversal of a specific geographical loca-
tion. To advance autonomous vehicle research, especially
in the collaborative and retrospective dimensions, the re-
search community needs a more comprehensive dataset in
real-world driving scenarios. To fill the gap, we introduce
the Open MARS Dataset, which provides MultiA gent, mul-
titraveRSal, and multimodal recordings, as shown in Fig. 1.
All the recordings are obtained from May Mobility'’s au-
tonomous vehicles operating in Ann Arbor, Michigan.

e Multiagent. We deploy a fleet of autonomous vehicles
to navigate a designated geographical area. These vehi-
cles can be in the same locations at the same time, al-
lowing for collaborative 3D perception through vehicle-
to-vehicle communication.

* Multitraversal. We capture multiple traversals within the
same spatial area under varying lighting, weather, and
traffic conditions. Each traversal may follow a unique
route, covering different driving directions or lanes, re-
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sulting in multiple trajectories that provide diverse visual
observations of the 3D scene.

e Multimodal. We equip the autonomous vehicle with
RGB cameras and LiDAR, both with a full 360-degree
field of view. This comprehensive sensor suite can enable
multimodal and panoramic scene understanding.

We conduct quantitative and qualitative experiments in
place recognition and neural reconstruction. More impor-
tantly, MARS introduces novel research challenges and op-
portunities for the vision and robotics community, including
but not limited to multiagent collaborative perception and
learning, unsupervised perception under repeated traver-
sals, continual learning, neural reconstruction and novel
view synthesis with multiple agents or multiple traversals.

2. Related Works

Autonomous driving datasets. High-quality datasets are
crucial for advancing Al-powered autonomous driving re-
search [8, 18, 19]. The seminal KITTI dataset significantly
attracted research attention in robotic perception and map-
ping [1, 20-22]. Since then, a large number of datasets have
been proposed, pushing the boundaries of the field by tack-
ling challenges in multimodal fusion, multitasking learning,
adverse weather, and dense traffic [7, 8, 11, 23-25]. In re-
cent years, researchers have proposed multiagent collabo-
ration to get rid of the limitations in single-agent percep-
tion, e.g., frequent occlusion and long-range sparsity [26—
32]. Previous efforts in curating multiagent datasets are
usually limited by simulated environments [33, 34]. The
recent V2V4Real [13] supports vehicle-to-vehicle cooper-
ative object detection and tracking in the real world, yet
the two-camera setup is insufficient for surround-view per-
ception. Another relevant dataset, Ithaca365 [12], provides
recordings from repeated traversals of the same route in
different lighting and weather conditions, yet it only uses
front-view cameras for data collection. Several works col-
lect multitraversal data for map change such as Argoverse 2
dataset [4], and some recent works build 3D reconstruc-
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Table 2. May Mobility sensor suite specification of each vehicle.

Sensor Details

1 x LiDAR 10Hz, 128 channel, horizontal FoV 360°, vertical

FoV 40°

3 x RGB Camrea 10Hz, original resolution 1440 x 928, sampled to

720 % 464, Horizontal FoV 60°, Vertical FoV 40°

3 X Fisheye Camrea 10Hz, original resolution 1240 x 728, sampled to

620 x 364, horizontal FoV 140°, vertical FoV 88°

1 x IMU 10Hz, velocity, angular velocity, acceleration

1 x GPS 10Hz, longitude, latitude, elevation

tion methods or simulators based on Argoverse 2 [35, 36].
There are also several works focusing on long-term visual
localization [37], such as Oxford RobotCar Dataset [38]
and CMU Seasons dataset [39]. Yet these datasets do not
consider scenarios of multiagent driving. To fill the gap,
our MARS dataset provides multiagent, multitraversal, and
multimodal driving recordings with a panoramic camera
view; see Tab. 1. Notably, the continuous and dynamic op-
eration of May Mobility’s fleet of vehicles makes our MARS
dataset stand out in scale and diversity, featuring hundreds
of traversals at a single location and enabling collaborative
driving for up to four vehicles, thereby setting a record for
both traversal and agent numbers.

Visual place recognition. In the field of computer vision
and robotics, visual place recognition (VPR) holds signifi-
cant importance, enabling the recognition of specific places
based on visual inputs [40]. Specifically, VPR systems
function by comparing a given query data, usually an im-
age, to an existing reference database and retrieving the
most similar instances to the query. This functionality is es-
sential for vision-based robots operating in GPS-unreliable
environments. VPR techniques generally fall into two cat-
egories: traditional methods and learning-based methods.
Traditional methods leverage handcrafted features [41, 42]
to generate global descriptors [43]. However, in practice,
appearance variation and limited viewpoints can degrade
VPR performance. To address the challenge of appear-
ance variation, learning-based methods utilize deep fea-
ture representations [44—46]. In addition to image-based
VPR, video-based VPR approaches [47-49] are proposed
to achieve better robustness, mitigating the limited view-
points with video clips. Moreover, CoVPR [50] introduces
collaborative representation learning for VPR, bridging the
gap between multiagent collaboration and place recogni-
tion, and addressing limited viewpoints by leveraging infor-
mation from collaborators. Beyond 2D image inputs, Point-
NetVLAD [51] explores point-cloud-based VPR, offering a
unique perspective on place recognition. In this paper, we
evaluate both single-agent VPR and collaborative VPR.

NeRF for autonomous driving. Neural radiance fields
(NeRF) [52] in unbounded driving scenes has recently re-
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Figure 2. Sensor setup of the vehicle platform for data collection.

ceived a lot of attention, as it not only facilitates the de-
velopment of high-fidelity neural simulators [17] but also
enables high-resolution neural reconstruction of the envi-
ronment [53]. Regarding novel view synthesis (NVS), re-
searchers have addressed the challenges such as scalable
neural representations with local blocks [54, 55], dynamic
urban scene parsing with compositional fields [56, 57], and
panoptic scene understanding with object-aware fields [58,
59]. Regarding neural reconstruction, researchers have re-
alized decent surface reconstruction based on LiDAR point
cloud and image input [60, 61]. Meanwhile, several ef-
forts have been made in multi-view implicit surface recon-
struction without relying on LiDAR [53]. Existing methods
based on NeRF are constrained by limited visual observa-
tions, often relying on sparse camera views collected along
a narrow trajectory. There is significant untapped potential
in leveraging additional camera perspectives, whether from
multiple agents or repeated traversals, to enrich the visual
input and enhance the NVS or reconstruction performance.

3. Dataset Curation
3.1. Vehicle Setup

Sensor setup. May Mobility’s fleet of vehicles includes
four Toyota Sienna, each mounted with one LiDAR, three
narrow-angle RGB cameras, three wide-angle RGB fisheye
cameras, one IMU, and one GPS. The sensors have various
raw output frequencies, but all sensor data are eventually
sampled to 10Hz for synchronization. Camera images are
down-sampled to save storage. Detailed specifications of
these sensors are listed in Tab. 2. In general, the LiDAR is
located at the front top of the vehicle. The three narrow-
angle cameras are located at the front, front left, and front
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Figure 4. Multitraversal subset statistics.

right of the vehicle. Three fisheye cameras are on the back
center, left side, and right side of the vehicle; see Fig. 2. The
IMU and GPS are located at the center top of the vehicle.
The explicit extrinsic of these sensors are expressed as ro-
tations and translations that transform sensor data from its
own sensor frame to the vehicle’s ego frame. For each cam-
era on each vehicle, we provide camera intrinsic parameters
and distortion coefficients. The distortion parameters were
inferred by the AprilCal calibration method [62].
Coordinate system. There are four coordinate systems:
sensor frame, ego frame, local frame, and global frame.
Sensor frame represents the coordinate system whose ori-
gin is defined at the center of an individual sensor. The ego
frame represents the coordinate system whose origin is de-
fined at the center of the rear axle of an ego vehicle. The
local frame represents the coordinate system whose origin
is defined at the start point of an ego vehicle’s trajectory of
the day. The global frame is the world coordinate system.

3.2. Data Collection

May Mobility is currently focusing on micro-service trans-
portation, running shuttle vehicles on fixed routes in various
orders and directions. The full route is over 20 kilometers
long, encompassing residential, commercial, and university
campus areas with diverse surroundings in terms of traffic,
vegetation, buildings, and road marks. The fleet operates
every day between 2 to 8 p.m., therefore covering various
lighting and weather conditions. Altogether, May Mobil-
ity’s unique mode of operation enabled us to collect multi-
traversal and multiagent self-driving data.

Multitraversal data collection. We defined a total of 67
locations on the driving route, each spanning a circular area
of a 50-meter radius. These locations cover different driv-
ing scenarios such as intersections, narrow streets, and long-
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Figure 5. Number of traversals and frames at each location.
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straight roads with various traffic conditions. The traversals
at each location take place from different directions at dif-
ferent times of each day, promising physically and chrono-
logically comprehensive perceptions of the area. We de-
termine via the vehicle’s GPS location whether it is travel-
ing through a target location, and data is collected for the
full duration of the vehicle’s presence within the 50-meter-
radius area. Traversals are filtered such that each traversal
is between 5 seconds to 100 seconds long.

Multiagent data collection. A highlight of our dataset is
that we provide real-world synchronized multi-agent col-
laborative perception data that delivers extremely detailed
spatial coverage. Determining from vehicles’ GPS coordi-
nates, we extract 30-second-long scenes where two or more
ego vehicles have been less than 50 meters away from each
other for more than 9 seconds, collectively providing over-
lapping perceptions of the same area at the same time but
from different angles. For scenes where the encountering
persisted less than a full 30 seconds, the encountering seg-
ment is placed at the center of the 30-second duration, with
equal amount of non-encountering time filled before and
after it (e.g. 20 seconds of encountering gets extended to
a 30-second scene by adding 5 seconds before and 5 sec-
onds after). Such encountering can take place anywhere
around the map, constituting scenarios such as tailgating
along a straight road and meeting at intersections, as shown
in Fig. 7. Our method also ensures that at least one vehicle
in the scene travels over 10 meters within 30 seconds.

3.3. Dataset Statistics

The multitarversal subset covers data from 26 different days
between October 4th, 2023 and March 8th, 2024, 4 of which
were rainy. We collected a total of 5,757 traversals contain-
ing over 1.4 million frames of images for each camera and
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Figure 7. Multiagent scene visualizations with three front cameras and LiDAR point clouds in bird’s eye view (BEV). Typical
scenarios include straight road tailgating as well as meeting at intersections.

360-degree LiDAR point clouds. Among the 67 locations,
48 have over 20 traversals, 23 over 100 traversals, and 6
over 200 traversals. Each traversal has 250 frames (25 sec-
onds) on average, with the majority of traversals containing
100 to 400 frames (10 to 40 seconds). The specific dis-
tributions of traversals and frames across all locations are
shown in Fig. 4 and Fig. 5. The muitlagent subset covers
data from 20 different days between October 23rd, 2023
and March 8th, 2024. We collected 53 scenes of 30-second
duration, stably involving 297 to 300 frames in each scene,
accounting for over 15,000 frames of images and LiDAR
point clouds in total. Among the 53 scenes, 52 involve two
vehicles, and 1 involves three vehicles. The distance be-
tween each pair of ego vehicles is analyzed for every frame.
The distribution demonstrates that encountering takes place
mostly with two vehicles being less than 50 meters away
from each other, as shown in Fig. 3.

4. Benchmark Task and Model
4.1. Place Recognition

Problem definition. We consider a set of queries Q with
M images and a reference database D with N images. In
this task, the objective is to find I, € D given I, € Q such

that I, and I,. are captured at the same location.
Evaluation metric. We adopt recall at K as our evalua-
tion metric for VPR. For a query image I, we select K ref-
erence images with Top-K cosine similarities between X,
and { X}V ,. If at least one of the selected images is cap-
tured within S meters of I, (S = 20 in this paper), then we
count it as correct. The recall at K is computed as the ratio
between the total number of correct counts and M.
Benchmark models. We adopt NetVLAD [44], Point-
NetVLAD [51], MixVPR [45], GeM [63], Plain ViT [64],
and CoVPR [50] as benchmark models.

* NetVLAD consists of a CNN-based backbone and a
NetVLAD pooling layer. NetVLAD replaces the hard as-
signment in VLAD [43] with a learnable soft assignment,
taking features extracted by backbones as input and gen-
erating a global descriptor.

* MixVPR consists of a CNN-based backbone and a
feature-mixer. The output of the backbone is flattened to
C x H'W', fed to the feature-mixer with row-wise and
column-wise MLPs, flattened to a single vector, and L2-
normalized.

¢ PointNetVLAD consists of a backbone, a NetVLAD
pooling, and an MLP. We reduced the output dimension
of the backbone from 1024 to 256 and omitted the last



MLP layer for efficient computation.

* GeM consists of a CNN-based backbone and a Gell\/[
pooling. The GeM pooling is defined as %(Zil XPyv,
where X; is the patch feature, and we select p = 3 here.

¢ Plain ViT [64] consists of standard transformer encoder
layers and a L? normalization over cls toekn.

* CoVPR [50] consists of a VPR model and a similarity-
regularized fusion. The VPR model generates descriptors
for the ego agent and collaborators, and the fusion module
fuses them into a single descriptor.

4.2. Neural Reconstruction

Problem definition. Based on the number of available
traversals, we divided the reconstruction task into two sce-
narios. The first is single-traversal (dynamic scene recon-
struction), where the input is a sequence of images 7 =
{I, 15, - I} captured as one traversal video. And the
goal is to reconstruct photorealistic scene views, including
moving objects. The second is multitraversal (environment
reconstruction), where the input is a collection of image se-
quences {Z1,Z3, -+ ,Zp, : Ly = {Im1, - s Imk,, }} of
the same scene. The objective in this task is to reconstruct
the environment and remove dynamic objects.

Evaluation metrics. Building on the methods used in ear-
lier works [65]. we use PSNR, SSIM and LPIPS metrics for
our experiments of dynamic reconstruction. PSNR, defined

as PSNR = 10 - log, (%), assesses image qual-

ity by comparing maximum pixel value M AX; and mean
squared error M SE. SSIM, calculated by SSIM (z,y) =
(papry+c1)(200y+c2)

(u2+p2+ci)(o2+02+c2)’
thesized and ground truth images, factoring in mean, vari-
ance, and covariance. LPIPS, unlike the two metrics before,
uses a pretrained neural network model to evaluate the per-
ceptual similarity between two images.

Benchmark models. For the single-traversal task, we adopt
EmerNeRF [66] and PVG [65] as benchmark models. Ad-
ditionally, for comparison, we conduct experiments using
iNGP [67] and 3DGS [68], which do not directly target this
problem. Regarding multitraversal reconstruction, there are
no algorithms specifically designed for this task. Therefore,
we adopt iNGP as the basic model. Furthermore, to enhance
the model’s ability to remove dynamic objects, we also test
RobustNeRF [69] and iNGP with Segformer [70].

* Single-traversal: Dynamic scene reconstruction.

— EmerNeRF. Based on neural fields, EmerNeRF is a
self-supervised method for effectively learning spatial-
temporal representations of dynamic driving scenes.
EmerNeRF builds a hybrid world representation by
breaking scenes into static and dynamic fields. By uti-
lizing an emergent flow field, temporal information can
be further aggregated, enhancing the rendering preci-
sion of dynamic components. The 2D visual founda-

measures similarity between syn-

tion model features are lifted into 4D space-time to
augment EmerNeRF’s semantic scene understanding.

— PVG. Building upon 3DGS, PVG introduces periodic
vibration into each Gaussian point to model the dy-
namic motion of these points. To handle the emergence
and vanishing of objects, it also sets a time peak and a
lifespan for each point. By learning all these param-
eters, along with the mean, covariance, and spherical
harmonics of the Gaussians, PVG is able to reconstruct
dynamic scenes in a memory-efficient way.

* Multitraversal: Environment reconstruction.

— RobustNeRF RobustNeRF replaces the loss function
of the original NeRF to ignore distractors, and we con-
sider dynamic objects as distractors in our case. Ad-
ditionally, RobustNeRF applies a box kernel in its loss
estimator to prevent high-frequency details from being
recognized as outliers.

— SegNeRF. SegNeRF utilizes the pretrained semantic
model SegFormer [70] to remove movable objects.

5. Experimental Results
5.1. Visual Place Recognition

Dataset details. We conduct experiments in VPR tasks
with both multitraversal and multiagent data. In the multi-
traversal case, intersections numbered higher than or equal
to 52 are used for testing. In the multiagent setting, scenes
numbered higher than or equal to 50 are used for testing. In-
put images are resized to 400 x 224, and input point clouds
are downsampled to 1024 points.

Implementation details. We evaluate our dataset on mod-
els mentioned in Sec. 4, where CoVPR [50] is evaluated
with multiagent data, and all others are evaluated with
multitraversal data. Backbones are pre-trained on Ima-
geNet1K [71]. We use ResNetl8 [72] as the backbone for
NetVLAD and CoVPR, ResNet50 [72] for MixVPR and
GeM, and PointNet [73] for PointNetVLAD. The number
of clusters in NetVLAD-based methods is 32. Models are
trained with Adam [74] optimizer with le-3 Ir for Point-
NetVLAD, le-4 Ir for others, and 1e-4 decay rate until con-
vergence. The batch size is 20 for NetVLAD-based meth-
ods and 10 for others.

Result discussions. Quantitative results are shown
in Tab. 3. Although GeM achieves lightweight charac-
teristics in its pooling methods, it underperforms com-
pared to NetVLAD with a smaller backbone. ViT demon-
strates weaker performance in VPR without task-specific
pooling methods, despite being a stronger backbone than
ResNet. MixVPR achieves the best performance, as its
feature-mixing mechanism provides richer features. Point-
NetVLAD, leveraging point clouds, attains better perfor-
mance with smaller input sizes than NetVLAD. In the con-
text of multiagent data, CoVPR consistently outperforms
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Figure 8. Qualitative result of VPR. We use MixVPR to obtain this qualitative result and mark incorrect results with red frames. Our
dataset contains hard cases such as nighttime, back-lighting, and blurred cameras due to weather conditions.

Table 3. Quantitative results of VPR.

Data Model Recall @1 Recall @5 Recall @10
NetVLAD [44] 63.51 69.60 72.42
MixVPR [45] 71.73 75.38 77.20
Multitraversal GeM [63] 61.00 68.47 71.73
ViT [64] 53.33 58.79 62.37
PointNetVLAD [51] 66.45 72.82 7591
Multiagent NetVLAD [44] 91.85 94.89 95.44
g CoVPR [50] 9227 9530 95.86

its single-agent counterparts. Qualitative results are de-
picted in Fig. 8. Our dataset encompasses both daytime and
nighttime scenes, under various weather conditions such as
sunny, cloudy, and rainy. Hard examples stem from night-
time scenarios and cameras affected by rain or backlighting.

5.2. Neural Reconstruction

Dataset details. In our single-traversal dynamic scene re-
construction experiments, we selected 10 different loca-
tions, each with one traversal, aiming to capture and rep-
resent complex urban environments. For our multitraversal
environment reconstruction experiments, we selected a to-
tal of 50 traversals. This comprised 10 unique locations,
with 5 traversals for each location, enabling us to capture
variations in illuminating conditions and weather.

Implementation Details. Throughout all reconstruction
experiments, we utilize 100 images from the three front
cameras, along with LiDAR data, as input for each traver-
sal. Single-traversal experiments: Both iNGP and EmerN-
eRF models undergo training for 10,000 iterations utiliz-
ing the Adam [74] optimizer with a learning rate of 0.01
and a weight decay rate of 0.00001. For EmerNeRF, we
leverage the dino feature from the DINOv2 ViT-B/14 [75]

Table 4. Quantitative results of neural reconstruction. We com-
pute the average PSNR, SSIM and LPIPS of ten locations to assess
the reconstructed appearance.

Task Model PSNR 1 SSIM 1 LPIPS |
Single-traversal iNGP [67] 28.66  0.821 0.256
3DGS [68] 27.77 0.867 0.235
EmerNeRF [66] 29.63 0.839 0.237
PVG [65] 29.28 0.900 0.197
Multitraversal iNGP [67] 26.04 0.759 0.346

RobustNeRF [69]  16.17 0.674 0.459
SegNeRF [70] 24.44 0.748 0.358

foundation model. The estimator employed in this model
is PropNet, incorporating linear disparity and uniform sam-
pling. For 3DGS and PVG, we set the training iteration
number to be 20000, with the learning rate the same as in
the original work [65]. We treat 3DGS as a special case
of the PVG method, with a 0 periodic motion amplitude
and an infinite lifespan, which we set to 10® in our exper-
iments. Multitraversal experiments: Our NeRF model in
this experiment is iNGP [67] with image embedding and
DINO features. For RobustNeRF, we implement the ro-
bust loss and patch sample as described in the original pa-
per [69]. In SegNeRF, we apply the SegFormer-B5 [70]
model, trained on the Cityscapes [76] dataset. Among the
19 categories in the SegFormer model, we identify ’person’,
‘rider’, ’car’, "truck’, “bus’, ’train’, *motorcycle’ and *bicy-
cle’ as dynamic classes and generate masks for them.

Result discussions. Single-traversal experiments: Based
on the results presented in Tab. 4, PVG achieves higher
SSIM scores and better LPIPS scores, indicating enhanced
structural details. This superior performance by PVG is
likely attributed to its flexible Gaussian points setup, which
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Figure 9. Qualitative results of single-traversal reconstruction. We stack the rendered image and the corresponding rendered depth
vertically. Each column corresponds to one baseline method and the last column is the ground truth. The ground truth depth is obtained by

projecting LiDAR points in the camera view.

adeptly captures linear motions, and the emergence and dis-
appearance of objects. EmerNeRF, on the other hand, ex-
cels in PSNR. This is likely due to its novel approach of
dynamic-static decomposition. As shown in Fig. 9, EmerN-
eRF and PVG both demonstrate the ability to perfectly ren-
der dynamic objects like moving cars, whereas iNGP and
3DGS exhibit relatively poor performance in this regard.
Multitraversal experiments: Thanks to image embedding,
iNGP can render diversely illuminated scenes. However, it
struggles with rendering dynamic objects accurately or re-
moving them. As shown in Tab. 4, iNGP achieves the best
similarity metrics since it preserves the most information
about dynamic objects. RobustNeRF performs best in elim-
inating dynamic objects, albeit at the cost of rendering static
objects with less detail. SegFormer, leveraging semantic in-
formation, achieves superior visual results compared to the
other two methods. Yet the shadows of cars are not com-
pletely removed, likely due to the inadequate recognition of
shadows by semantic segmentation models.

6. Opportunities and Challenges

Our MARS dataset introduces novel research opportunities
with multiagent driving recordings, as well as a large num-
ber of repeated traversals of the same location. We outline
several promising research directions and their associated
challenges, opening new avenues for future study.

3D reconstruction. Repeated traversals can yield numer-

ous camera observations for a 3D scene, facilitating corre-
spondence search and bundle adjustment in multiview re-
construction. Our dataset can be utilized to study camera-
only multitraversal 3D reconstruction, which is crucial for
autonomous mapping and localization. The main chal-
lenge is to handle appearance variations and dynamic ob-
jects across repeated traversals over time. For instance, one
recent work, 3D Gaussian Mapping [77], leverages multi-
traversal consensus to decompose the scene into a 3D en-
vironmental map represented by Gaussian Splatting and 2D
object masks, without any external supervision.

Neural simulation. Multiagent and multitraversal record-
ings are valuable for crafting neural simulators that can
reconstruct and simulate scenes and sensor data. High-
fidelity simulations are essential for developing perception
and planning algorithms. The main challenge lies in repli-
cating real-world dynamics and variability, such as mod-
eling the behavior of dynamic objects, environmental con-
ditions, and sensor anomalies, ensuring that the simulated
data provides a comprehensive and realistic testbed. For in-
stance, one recent work proposes a neural scene representa-
tion that scales to large-scale dynamic urban areas, handles
heterogeneous input data collected from multiple traversals,
and substantially improves rendering speeds [36]. One con-
current work proposes a multi-level neural scene graph rep-
resentation that scales to thousands of images from dozens
of sequences with hundreds of fast-moving objects [35].



Unsupervised perception. Exploiting scene priors in un-
supervised 3D perception offers significant value, espe-
cially in multitraversal driving scenarios where abundant
data from prior visits can enhance online perception. This
approach not only facilitates a deeper understanding of the
environment through the accumulation of knowledge over
time but also enables unsupervised perception without the
need for training with manual annotations.

7. Conclusion

Our MARS dataset represents a notable advancement in au-
tonomous vehicle research, moving beyond traditional data
collection methods by integrating multiagent, multitraver-
sal, and multimodal dimensions. MARS opens new avenues
for exploring 3D reconstruction and neural simulation, col-
laborative perception and learning, unsupervised perception
with scene priors, efc. Future works include providing an-
notations for online perception tasks such as semantic occu-
pancy prediction in scenarios of multiagent and multitraver-
sal. We strongly believe MARS will establish a new bench-
mark in Al-powered autonomous vehicle research.
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