

1 Title:  
2 Functional insights of novel Bathyarchaeia reveal metabolic versatility in their role in Peatlands  
3 of the Peruvian Amazon

4 Authors: Michael J. Pavia<sup>1,2,3</sup>, Arkadiy I. Garber<sup>1,3</sup>, Sarah Avalle<sup>1</sup>, Franco Macedo-Tafur<sup>4</sup>, Rodil  
5 Tello-Espinoza<sup>4,5</sup>, Hinsby Cadillo-Quiroz<sup>1,2,3\*</sup>

6 <sup>1</sup>School of Life Sciences, Arizona State University, Tempe, AZ, United States

7 <sup>2</sup>Swette Center for Environmental Biotechnology, Biodesign Institute, Arizona State University,  
8 Tempe, AZ, United States

9 <sup>3</sup>Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State  
10 University, Tempe, AZ, United States

11 <sup>4</sup> Laboratory of Soil Research, Research Institute of Amazonia's Natural Resources, National  
12 University of the Peruvian Amazon, Iquitos, Loreto, Peru

13 <sup>5</sup> School of Forestry, National University of the Peruvian Amazon, Iquitos, Loreto, Peru

14 \*Corresponding Author: Hinsby Cadillo-Quiroz, [hinsby@asu.edu](mailto:hinsby@asu.edu)

15 Author Contributions:

16 MJP – data curation, data analyses, data visualization, and validation, writing original and  
17 editing draft; AIG – data analysis, review & editing draft; SC - data analysis, review & editing  
18 draft; FMT – field and molecular data collection, review & editing draft, RTE - field and  
19 molecular data collection, review & editing draft; HCQ – conceptualization, data collection and  
20 curation, funding acquisition, project supervision, writing, review & editing draft.

21 Funding:

22 This material is based upon work supported by the National Science Foundation under Grant No.  
23 CAREER-1749252 to HC-Q, and work (proposal: 10.46936/10.25585/60000849) conducted by

24 the U.S. Department of Energy Joint Genome Institute (<https://ror.org/04xm1d337>), a DOE  
25 Office of Science User Facility, is supported by the Office of Science of the U.S. Department of  
26 Energy operated under Contract No. DE-AC02-05CH11231.

27

28 **Abstract:**

29 The decomposition of soil organic carbon within tropical peatlands is influenced by the  
30 functional composition of the microbial community. In this study, building upon our previous  
31 work, we recovered a total of 28 metagenome-assembled genomes (MAGs) classified as  
32 Bathyarchaeia from the tropical peatlands of the Pastaza-Marañón Foreland Basin (PMFB) in the  
33 Amazon. Using phylogenomic analyses, we identified nine genus-level clades to have  
34 representatives from the PMFB, with four forming a putative novel family (“*Candidatus*  
35 *Paludivitaceae*”) endemic to peatlands. We focus on the *Ca.* *Paludivitaceae* MAGs due to the  
36 novelty of this group and the limited understanding of their role within tropical peatlands.  
37 Functional analysis of these MAGs reveals that this putative family comprises facultative  
38 anaerobes, possessing the genetic potential for oxygen, sulfide, or nitrogen oxidation. This  
39 metabolic versatility can be coupled to the fermentation of acetooin, propanol, or proline. The  
40 other clades, outside *Ca.* *Paludivitaceae* are putatively capable of acetogenesis, *de novo* amino  
41 acid biosynthesis, and encode a high amount of Fe<sup>3+</sup> transporters. Crucially, the *Ca.*  
42 *Paludivitaceae* are predicted to be carboxydrotrophic, capable of utilizing CO for energy  
43 generation or biomass production. Through this metabolism, they could detoxify the  
44 environment from CO, a byproduct of methanogenesis, or produce methanogenic substrates like  
45 CO<sub>2</sub> and H<sub>2</sub>. Overall, our results show the complex metabolism and various lineages of  
46 Bathyarchaeia within tropical peatlands pointing to the need to further evaluate their role in these  
47 ecosystems.

48 **Importance:**

49 With the expansion of the *Candidatus* *Paludivitaceae* family by the assembly of 28 new  
50 metagenome assembled genomes, this study provides novel insights into their metabolic

51 diversity and ecological significance in peatland ecosystems. From a comprehensive phylogenetic  
52 and functional analysis, we have elucidated their putative unique facultative anaerobic  
53 capabilities and CO detoxification potential. This research highlights their crucial role in carbon  
54 cycling and greenhouse gas regulation. These findings are essential for resolving the microbial  
55 processes affecting peat soil stability, offering new perspectives on the ecological roles of  
56 previously underexplored and underrepresented archaeal populations.

57

59 **Introduction:**

60 Peatlands, a type of wetland, are characterized by their large carbon storage capacity, in  
61 which the rates of primary production exceed decomposition rates (1). The slow process of  
62 organic matter (OM) decomposition in peatlands is a consequence of several limiting factors  
63 which include continuous water-logged soils leading to anoxic conditions (2), lower  
64 temperatures compared to surrounding soils from low conductive properties (3), acidification  
65 from biological metabolism (4), lower concentrations of nutrients from low input or depletion  
66 (5), and accumulation of phenolic compounds due to inhibition of phenol oxidases in the absence  
67 of oxygen (6).

68 The Pastaza-Marañón Foreland Basin (PMFB) is home to a large expanse of tropical  
69 peatlands ( $\sim 67,000 \text{ km}^2$ ) in the Amazon and is estimated to contain 3.1 Pg of stored soil carbon  
70 (7, 8). In addition to functioning as a terrestrial carbon reservoir, the PMFB emits 3.16 to 41.1 Tg  
71 of  $\text{CH}_4$  per year (9). Understanding the roles of distinct microbial populations in the  
72 transformation of stored organic carbon in these peatlands is essential to addressing the projected  
73 shift of this region from a carbon sink to a carbon source as a result of climate change (10, 11).  
74 Archaea constitute a significant proportion of the microbial community in the soils of the PMFB;  
75 most notably the Bathyarchaeia, which range in relative abundance from 3 to 8% in the shallow  
76 soils ( $\leq 20 \text{ cm}$  below surface) and up to 20% of the community in the deeper soils (12, 13).  
77 Previously classified as the 'Miscellaneous Crenarchaeotal Group', their presence has been  
78 detected in multiple terrestrial and aquatic environments, making them a potentially important  
79 contributor to sedimentary carbon cycling (14, 15). Despite their potential importance in the

80 carbon cycle, we currently lack axenic cultured representatives, hindering our ability to  
81 understand their physiology and functional role within the environment.

82 Metagenomic approaches have provided valuable information on the environmental  
83 distribution and metabolic diversity of Bathyarchaeia (16–20). Metabolic reconstructions predict  
84 a broad range of possible metabolisms within members of the Bathyarchaeia including, but not  
85 limited to, anaerobic methane oxidation (21), acetogenesis (22), phototrophy (16, 23),  
86 heterotrophy based on methylated compounds (19, 24), aromatic compounds (25), or detrital  
87 proteins (17, 26, 27). Furthermore, recovery of metagenome-assembled genomes (MAGs)  
88 classified as Bathyarchaeia from the Surat Basin (Eastern Australia) detected the potential for  
89 methylotrophic methanogenesis; yet, these MAGs contain few methanogenic marker genes and  
90 mostly ‘Mcr-like’ genes (24, 28). Cultivation-centered studies enriching for Bathyarchaeia have  
91 demonstrated their growth on various complex carbon substrates (29–32), as well as the  
92 production of acetate from guaiacol (33) so far only growing in mixed cultures. In addition to  
93 functioning in the cycling of carbon, the Bathyarchaeia are predicted to play a role in sulfur and  
94 nitrogen cycling, as well as vitamin B12 production (16).

95 While understanding the distribution and potential environmental drivers of the  
96 Bathyarchaeia is important, it remains unclear what metabolisms or functions they may carry out  
97 within tropical peatlands, such as the PMFB. Thus, to investigate the putative phylogenetic  
98 variation and metabolic potential of Bathyarchaeia in the PMFB region, we evaluated MAGs  
99 from shallow and deep peat soil layers from one nutrient-rich and three oligotrophic peatlands  
100 with distinct vegetation dominance respectively: mixed forest (Buena Vista), pole forest (San  
101 Jorge), palm swamp (Quistococha), and open (Maquía) peatland (34, 35). Using Bathyarchaeia  
102 MAGs from the PMFB plus nearly all publicly available high-quality MAGs, we conducted

103 phylogenomic, pangenomic, and functional analyses to understand (1) the phylogenetic and  
104 metagenomic-assembled gene content distribution of PMFB Bathyarchaeia within this diverse  
105 phylum and (2) predict the putative metabolisms unique to the PMFB Bathyarchaeia.

106

107 **Methods:**

108 *Study sites, Metagenomes, and MAG assembly*

109 We evaluated MAGs from metagenomes of four peatlands, previously described (12, 35,  
110 36) within the PMFB: Buena Vista (BVA), San Jorge (SJO), Quistococha (QUI), and Maquía  
111 (MAQ). The general characteristics of each site are detailed in Table S1. Earlier sampling and  
112 metagenome sequencing for shallow soils in BVA, QUI, and SJO are described in our earlier  
113 report (37). Briefly, soils of 0-10 and 10-20 cm were collected between July-October 2015 and  
114 January-February 2016, and extracted DNA was sequenced with Illumina Hi Seq 2500 2 x 151  
115 bp technologies at the Joint Genome Institute (JGI). To expand our studies, deep soil samples  
116 were collected at 60-100 cm deep in August 2016 for QUI, SJO, and August 2017 for MAQ,  
117 transported and stored frozen until DNA extraction using the previously reported method (37).  
118 Library preparation and Illumina sequencing were conducted under the same approach at JGI as  
119 above, all part of the JGI's Community Sequencing Program (proposal:  
120 doi:/10.46936/10.25585/60000849) and detailed in Supplementary File 1.

121 For MAG assemblies, metagenomic reads were decontaminated, trimmed, and quality  
122 score filtered following the Joint Genome Institute IMG protocol (38). Quality control  
123 metagenomes were assembled using MEGAHIT (v1.1.3) (39) using the default settings and  
124 quality was assessed with QUAST (v3) (40). MAQ metagenomes were co-assembled by transect,  
125 while SJO and QUI were a single assembly due to low DNA and low sequencing yield of

126 replicates. Contigs were quality-controlled as described elsewhere (37) and binned using  
127 MetaBAT2 (v2.12.1) (41) with a minimum cut-off length of 2000bp. The resulting bins were  
128 dereplicated and curated using Anvi'o (v6.1) (42). MAGs, >50% completeness and <10%  
129 redundant as determined by CheckM (43) were classified using GTDB-tk (44) against the  
130 Genome Taxonomy Database release 07-RS207. The relative abundance of MAGs was  
131 calculated by mapping metagenomes back to MAGs using bowtie2 (45), and the JGI script  
132 provided in MetaBAT2 (41) was used to calculate the total contig coverage; total coverage was  
133 then normalized by MAG size. MAG analysis code is available at  
134 <https://github.com/Hinsby/BathyarchaeaMAGs2023>.

135 *Phylogenetic Inference and Average Amino Acid Identity (AAI) Comparisons*

136 To determine the distribution of PMFB Bathyarchaeia within the class, we performed  
137 phylogenetic inference using an in-group of 238 Bathyarchaeia MAGs, which included both  
138 those from this study and publicly available ones (Supplementary File 2). Prior to phylogenetic  
139 analysis, Bathyarchaeia MAGs were filtered for bias based on genome size (>1Mb), redundancy  
140 (<10%), completeness (>50%), and AAI scores greater than 95% from MAGs sampled from the  
141 same environment. In instances where more than one MAG from the same environment had an  
142 AAI greater than 95%, we considered them replicates and selected the MAG with higher  
143 completeness and lower contamination. The outgroup consisted of 37 publicly available genomes  
144 representing both Thermoproteota and Euryarchaeota organisms. Anvi'o (v6.1) (46) was used to  
145 identify, concatenate, and align 54, single copy genes (Table S3) that were found in at least 82%  
146 (191) of MAGs (as determined from the mean completeness score for just Bathyarchaeia  
147 MAGs). The alignment was used for Maximum likelihood inference supported by bootstrap-  
148 resampling 300 times using RAxML (v8.2.12)(47) with the PROTCATBLOSUM62 model of

149 amino acid substitution. AAI scores, calculated using [github.com/mooreryan/aai](https://github.com/mooreryan/aai), were clustered  
150 based on  $\geq 65\%$  similarity, and clusters were assigned an operational taxonomic rank at the genus  
151 level, previously proposed by Konstantinidis et al. (48). In this study, we have denoted each  
152 putative genus-level cluster as a Bathyarchaeia clade (BC). A chi-squared test was used to detect  
153 if there was a significant association between BCs and ecosystem type. GC% and predicted  
154 genome size were assessed for significance to BC's with Kruskal-Wallis and Tukey's multiple  
155 comparison and were used on BCs that contained more than four MAGs. All differences were  
156 considered significant at a P-value  $< 0.05$  and visualized with ggstatsplot (49).

157 *Meta-pangenome and Functional Enrichment Analysis of Bathyarchaeia*

158 The Aniv'o pangenomic workflow (46) was used to identify gene clusters within BCs  
159 that contained MAGs from the PMFB (9 BCs in total). Briefly, this workflow calculates  
160 similarities across all open reading frames and removes weak hits with a chosen minbit heuristic  
161 score of 0.6, and uses the MCL algorithm for gene cluster identification, partial genes were  
162 excluded (50). Completion and contamination statistics were used for operational cutoffs to  
163 designate gene clusters as relaxed-core, shell, cloud, and singletons (Table S4). Gene clusters  
164 were annotated using eggNOG (v5) (51) and the nr database (*accessed August 2021*) (52) using a  
165 consensus sequence built from the alignments of each gene cluster. Briefly, the consensus  
166 sequence was built on the frequency of amino acids present at each position, and in positions  
167 where there was a tie, a residue was chosen at random.

168

169 **Results and Discussion:**

170 *Microbial community composition from assemblies of new MAGs*

171        New assemblies were completed for deeper soils' metagenomes from QUI and SJO, and  
172        shallow soil metagenome from MAQ, followed by genome binning resulting in a total of 122  
173        high-quality (HQ) and medium-quality (MQ) MAGs (53) (Figure S1). Acidobacteriae and  
174        Nitrososphaeria were highly represented in MAGs recovered across all three sites. Moreover, we  
175        recovered fourteen novel MAGs belonging to the Bathyarchaeia and three HQ MAGs classified  
176        as Lokiarchaeia (Figure S1). Consistent with previous studies utilizing 16S rRNA gene  
177        amplicons (12, 13), Bathyarchaeia were found to be abundant in deep peat, accounting for ~15%  
178        of the community. This study extends these findings by recovering HQ and MQ MAGs,  
179        providing a more detailed genomic representation of the Bathyarchaeia populations within  
180        peatlands from QUI, SJO, and MAQ from the PMFB (12, 13).

181

#### 182        *Taxonomic placement of PMFB Bathyarchaeia*

183        Bathyarchaeia MAGs from the PMFB (28 in total, seven from the new assemblies  
184        passing inclusion criteria) were evaluated in combination with 210 other MAGs from published  
185        studies with a median completeness of 81.9% and redundancy 3.3% (detailed in Supplementary  
186        File 2). Phylogenomic clades within the Bathyarchaeia were inferred from the robustness of tree  
187        topology based on a 54 single-copy gene (SCG) maximum likelihood (ML) phylogenomic tree in  
188        combination with AAI between MAGs (Figure 1 and Figure S2). Consensus between the  
189        phylogenomic tree and AAI suggests there are 60 distinct clades (operational taxonomic units at  
190        the genus level) within our Bathyarchaeia dataset. This is consistent with a recent report on the  
191        phylogenetic diversity of Bathyarchaeia (Hou et al., 2023). We note the clade equivalents with  
192        Hou et al., 2023 but expand the analysis by advancing predictions for novel Bathyarchaeia from  
193        Amazon peatlands. Among the Bathyarchaeia clades (BCs), nine contained MAGs from the

194 PMFB, with three comprised exclusively of PMFB MAGs (BC15, BC39, and BC42). Found  
195 within BC1 and BC3 (also noted as Baizomonadales), are Bathyarchaeia MAGs from both the  
196 PMFB and other environments such as hot springs, termite guts, and permafrost. BC36 (also  
197 noted as Houtuarculales), is primarily comprised of MAGs from grasslands, with only one from  
198 the PMFB. While the PMFB MAGs span the diversity of Bathyarchaeia several shallow  
199 branches (BC38 – BC42), within the noted Houtuarculales, were comprised primarily of our  
200 tropical peatland populations. BC15, also noted as Baizomonadales, and BC39 and BC42,  
201 located within the Houtuarculales group, have not been previously reported thus representing  
202 novel lineages of Bathyarchaeia inhabit the soils of the PMFB.

203 The distribution of MAGs recovered by environment and the sequence composition  
204 among BC's exhibited non-random distribution by source and clade-specific genomic signatures  
205 (Figure 2 and Figure S3). A Chi-squared test showed that among the 16 BCs with more than four  
206 representative MAGs, 13 BCs are significantly associated with one ecosystem type (Figure 2).  
207 The BCs that show the strongest association with an ecosystem were BC18 (also noted as  
208 Baizomonadales), BC5 (also noted as Baizomonadales), and BC47 (also noted as  
209 Houtuarculales) in hot springs; BC19 (also noted as Baizomonadales), in hydrothermal vents;  
210 BC29, BC8, and BC12 (all in the group also noted as Baizomonadales) in marine zones; BC36  
211 (also noted as Houtuarculales) in grasslands; and BC38 (also noted as Houtuarculales) in  
212 peatlands. Other BCs (particularly BC1, BC11, and BC24, all in the group also noted  
213 Baizomonadales) are less significant and show a widespread distribution across multiple  
214 environments. Previous studies have suggested that Bathyarchaeia are non-randomly distributed  
215 along salinity and oxygen concentrations (54, 55), which may be applicable for BC8 and BC24  
216 which were recovered from estuarine environments. Other studies have also indicated that total

217 organic carbon influences lineage distribution (56, 57). In line with these observations, BC11 is  
218 primarily comprised of MAGs recovered from estuarine sediment ecosystems including an  
219 enrichment culture on lignin.

220 Specialization in genomic characteristics, such as genome size and GC content, are  
221 consistent within archaeal species (58, 59). To assess whether the environment is a predictor of  
222 genomic signatures in Bathyarchaeia, we performed a Kruskal-Wallis test on clades containing  
223 more than four representative MAGS (Figure S3). Minimal significant differences were observed  
224 in both predicted genome size and GC content between MAGs recovered from different  
225 ecosystems, with many being indiscernible from each other. The weak relationship between  
226 archaeal genome size and phylogeny has been observed in other groups and may be influenced  
227 by the complexity of archaeal genomes (60). Alternatively, we found that GC content can be a  
228 strong indicator for BC. Many basal BCs have a GC content within 40-50%, whereas shallower  
229 branching clades (BC25, BC27, BC29, and BC36) have a significantly higher GC%, ranging  
230 from 50-60%. These four clades were also found to be significantly associated with specific  
231 ecosystems and may have undergone selective pressures linked to chronic energy stress (61).  
232 These clades are primarily recovered from marine sediment, littoral marine zones, and grasslands  
233 which are characteristic of being anoxic with low primary production and are energy-starved  
234 ecosystems. Commonly found in hot springs, BC47 has the lowest GC content, which to our  
235 knowledge differs from what is a common trait of thermophilic archaea (62, 63). Distribution of  
236 BCs by ecosystem and significant differences in GC content between BCs suggest divergent  
237 evolutionary trajectories across clades and potential for distinct functions in the Bathyarchaeia.

238

239 *Metabolic comparison and putative differences between PMFB clades (and associated MAGs)*

240 To investigate the relationship between phylogenetic distance and functional potential  
241 within BC clades containing PMFB MAGs, gene clusters from a meta-pangenomic analysis were  
242 annotated using a combination of eggNOG (v5) (51) and the nr database (52). We observed a  
243 weak correlation between phylogenetic distance and functional dissimilarities between the nine  
244 BCs tested (Mantel statistic r: 0.03198 P-value < 0.05). Below we detail common metabolic  
245 pathways and distinct functions between BC1, BC3, and BC38-41, which include multiple  
246 PMFB MAGs (singleton BCs, BC15, and BC42, were excluded from this step), and additionally  
247 recognize BC36 as a distinct cluster with one PMFB MAG but comprised primarily of other  
248 environments. We build upon and refine previous metabolic models of these groups (64) with  
249 specific emphasis on metabolism found within the PMFB.

250

### 251 Carbon Metabolism

252 Within the evaluated clades most MAGs possess a partial Embden-Meyerhof-Parnas  
253 (EMP) glycolysis pathway but lack hexokinase (*glk*) which is used for the initial phosphorylation  
254 of glucose (Supplementary File 3). Loh et al. (19) has suggested that due to the incomplete EMP  
255 pathway and the presence of phosphoenolpyruvate synthetase (*pps*) and fructose-1,6-  
256 bisphosphate aldolase (*fbaAB*) (FBP), these genes function exclusively in gluconeogenesis.  
257 Phylogenetic analysis shows that most MAGs within BC1, BC3, BC36, and BC38-41 have a  
258 class 2 FBP, while some from BC1, BC3, and one from BC40 have a class 1 FBP (Figure S4A).  
259 Class 1 FBP activity can be induced in *Escherichia coli* when grown on gluconeogenic carbon  
260 substrates, while class 2 is constitutively expressed and indicative of a primary use with  
261 glycolytic substrates (65). The presence of a class 1 FBP in only some populations of BC1, BC3,  
262 and BC40 suggests that a gluconeogenic function is less common in *Bathyarchaeia*. Sugar-

263 phosphate utilization may be possible in class 2 FBP-containing populations from BC1, BC3,  
264 BC36, and BC38-41, although sugar transporters could not be identified. While different  
265 isoforms of FBP are found within *Bathyarchaeia* experimental evidence is required to identify if  
266 sugar utilization is possible.

267 BC36 lacks phosphofructokinase (*pfk*) but encodes the full glyoxylate pathway; an  
268 alternative route for sugar-phosphate utilization in Bathyarchaeia (15). Findings in Haloarchaea  
269 (66, 67) suggest that the glyoxylate pathway and incomplete EMP function in neither anaplerotic  
270 nor gluconeogenic pathways, but rather used for growth on acetate. Carbohydrate utilization  
271 varies greatly across BCs, with BC38-41 putatively using EMP for gluconeogenic purposes.

272 Alternative to carbohydrate utilization many MAGs from BC38-41 possess the genetic  
273 potential for acetoin degradation (Figure 3). This is evidenced by the presence of genes *acoL*,  
274 *acoC*, and *acoAB*, which facilitate the conversion of acetoin into acetaldehyde and acetyl-CoA.  
275 Furthermore, in 65% of BC38-41 MAGs, the oxidation of propanol to acetaldehyde might be  
276 possible via *adhP*, an alcohol dehydrogenase with preference for propanol. The resulting  
277 acetaldehyde, formed either from acetoin or propanol, could undergo further conversion to  
278 acetate via an aldehyde dehydrogenase present in MAGs from BC38 and BC40. The likelihood  
279 of alcohol fermentation in BC38-41 is further supported by the presence of an acetyl-CoA  
280 synthetase (*acs*). We note that acetate formation from acetyl-CoA is a common feature in most  
281 MAGs from the seven BCs.

282

### 283 Carbon Fixation

284 Autotrophic lifestyles appear common among the Bathyarchaeia. The archaeal Wood-  
285 Ljungdahl (WL) pathway was found in most MAGs from BC1 and BC3 (Supplementary File 3).

286 However, previous reports have suggested that the absence of the *fmdE* subunit in the  
287 Bathyarchaeia Formyl-MFR dehydrogenase complex is characteristic of this group (19), yet our  
288 findings suggest this to be the case only for BC1 because in BC3 a homolog of *fmdE* was  
289 detected. The lack of Methylene-H<sub>4</sub>MPT reductase (*mer*) in 13% of BC1 or BC3 MAGs supports  
290 proposals (19) that deeper branching Bathyarchaeia have lost the capacity to reduce CO<sub>2</sub> all the  
291 way to the methyl level. The carbonyl branch of the WL pathway is carried out by the CO  
292 dehydrogenase complex (*cdhABCE*) which condenses CO with a methyl group and CoA to form  
293 acetyl-CoA. The *cdhABCE* complex was found in almost all MAGs from BC1 and BC3.

294 In comparison to the CO dehydrogenase complex present in BC1 and BC3, all but one  
295 MAG from BC38-41 have a putative aerobic molybdenum containing CO dehydrogenase,  
296 *coxMSL* capable of producing CO<sub>2</sub> and H<sub>2</sub> (Figure 3). A phylogenetic analysis of the large  
297 subunit (*coxL*) indicates that BC38-40, clusters closely with other thermophilic CO-oxidizing  
298 archaea (68, 69) (Figure S5). We note that we could not identify a *coxL* homolog in MAGs from  
299 BC41, but they did have the other two subunits *coxM* and *coxS*. High concentrations of CO,  
300 approximately 4mM, have been shown to inhibit methanogenesis (70). These concentrations are  
301 not uncommon in natural environments (71) and suggest a potential for BC38-41 populations to  
302 alleviate CO stress and provide metabolites to peatland methanogens. As a byproduct of  
303 methanogenesis CO could be detoxified by BC38-41 and in turn produce compounds CO<sub>2</sub> and  
304 H<sub>2</sub> that could be used to fuel methanogen metabolism.

305 Alternatively, CO oxidation can be coupled to CO<sub>2</sub> fixation (72) through the Calvin cycle  
306 via ribulose-1,5-bisphosphate carboxylase (*rbcL*) which was present in clades BC38, BC39, and  
307 BC40. However, only two MAGs have the genetic potential for the near full cycle, lacking only  
308 phosphoribulokinase (*prkB*). *Archaeoglobus fulgidus* grows on CO with formate as an

309 intermediate (73), via a novel type of formate dehydrogenase (FDH); yet only two out of 13  
310 *BC38-41* MAGs have FDH homologs. Instead, BC36 and BC38-41 have both methylene-H<sub>4</sub>F  
311 reductase (*metF*) and methenyltetrahydrafolat cyclohydrogenases (*folD*), involved in the  
312 bacterial WL pathway, which suggests the potential for formate utilization. While no formate  
313 transporters were found, it is plausible that *BC38-41* can convert formate to 5,10-methylene-THF  
314 and subsequently feed into the glycine cleavage system.

315 **Oxygen, Nitrogen and Sulfur metabolism**

316 *BC38-41* are facultative anaerobes inhabiting water-logged peatland ecosystems. The  
317 low-affinity O<sub>2</sub> cytochrome aa3 oxidase was present in most of the MAGs in BC38-41, with four  
318 having all subunits (Figure 3). This is consistent with our findings that *BC38-41* can putatively  
319 fix CO aerobically. Bathyarchaeia has only been suggested to tolerate aerobic conditions (74),  
320 but our findings suggest that BC38-41 may prefer to occupy oxygen-rich niches, which is in  
321 agreement with the recent analysis from Hou et. al., 2023.

322 Existence in anaerobic soil by BC38-41 is also possible through alternative chemotrophic  
323 mechanisms. MAGs from BC36 and BC38 encode a flavocytochrome sulfide dehydrogenase  
324 (FCSD) and BC40 harbors a type 3 sulfide:quinone oxidoreductase (SQR) (Figure S4B). This  
325 suggests these two clades in BC38-41 can potentially utilize H<sub>2</sub>S as an electron donor facilitating  
326 sulfide-dependent respiration (75). Bathyarchaeia have been found in sulfur rich environments  
327 (76, 77), and they may be playing a direct role in sulfur cycling in PMFB peatlands. N reduction,  
328 via *nosZ* or *nirK*, was identified in many MAGs from BC36 and BC38 but only in one MAG in  
329 BC39 and two in BC40. Direct fixation of N was only found in three MAGs from BC1 and  
330 BC41 and is likely a sparse function. Contrary to the report of Pan et. al. 2020, a significant  
331 contribution of NH<sub>4</sub> by Bathyarchaeia is not a common characteristic. The respiratory potential

332 to occupy either aerobic or anaerobic soil conditions is common in BC38-41 MAGs. These  
333 adaptations are well suited for changes in O<sub>2</sub> availability brought on by the seasonality of flood-  
334 driven tropical peatlands (2).

335 Amino acids and Transport

336 Amino acids have been suggested as a primary carbon source for the Bathyarchaeia (17).  
337 However, this appears unlikely for BC1 which has mostly complete *de novo* biosynthesis  
338 pathways for 11 amino acids (Figure 3). Additionally, BC1 has a low gene copy number of  
339 amino acid transporters relative to the other BCs (Figure 4). Peptide/Ni<sup>+</sup> and amino acid  
340 transporters were observed to be two-fold more abundant in BC38-41 compared to the other  
341 clades (Figure 4, Supplementary File 3). MAGs from BC3, BC36, and BC38-41 have the genetic  
342 potential for histidine to glutamate conversion; however, in most BC38-41 we find gene copies  
343 for glutamate dehydrogenase allowing for the conversion of glutamate to oxaloacetate. The gene  
344 copy number for *aspB* (involved in the interconversion between aspartate and oxaloacetate) was  
345 found two-fold higher in BC38-41. In addition, BC38-41 also harbors *iaaA*, which catalyzes the  
346 conversion of asparagine to aspartate. BC38-41 encodes two cytosolic peptidases (*pip* and *pepP*)  
347 with the capacity to cleave proline from imported peptides. The liberated proline may be  
348 converted to glutamate, as evidenced by the presence of both *putB* and *rocA*. Collectively, this  
349 suggests that BC38-41 are adapted for growth on peptides, for either biosynthetic requirements  
350 and/or gluconeogenic purposes, with oxaloacetate serving as a key intermediate metabolite in  
351 their metabolism. The PMFB Bathyarchaeia BC38-41 harbor genomic evidence for the  
352 utilization of proline. Proline accumulation in plants is a common response to abiotic stressors  
353 such as extreme heat and drought (78). Projections of increased drought frequency and heat  
354 severity in the PMFB (11), suggest that local vegetation may accumulate more proline in

355 response to these conditions. When these stressed plants die and decompose, soil proline levels  
356 will increase providing a selective advantage and favor the growth of BC38-41 populations.

357 The high-affinity phosphate transport system (*ptsABCS*) was universally present in all  
358 BC's, indicating an adaptation for low phosphate environments. BC1 has many transports for  
359 various inorganic ions, with a high prevalence of Fe<sup>3+</sup> transporters (Figure 4). In summary, a  
360 diverse array of nutrient acquisition and metabolic capabilities are exhibited among BCs, with  
361 BC38-41 potentially relying on the presence of amino acids within their niche.

362

363 Methanogenesis

364 We recovered many genes that are accessory to methanogenesis, such as *hrdABCD*, *acdAB*,  
365 *mchADG*, and *mtrH* in all clades excluding BC36 and BC39 (Supplementary File 3). However,  
366 no homologs for *mcrA* or 'MCR-like' genes were detected in any of the MAGs from this study.  
367 These findings suggest that a functional methanogenic pathway in the Bathyarchaeia is unlikely  
368 in tropical peatlands (19, 26, 79).

369 *Metapangenomic analysis of PMFB Bathyarchaeia clades*

370 To extend our understanding of the functional partitioning between tropical peatlands'  
371 Bathyarchaeia we conducted a metapangenomic analysis on the nine BCs containing MAGs  
372 from the PMFB. Anvi'o identified 50,379 gene clusters across all BCs, with 19,338 found in at  
373 least one MAG from PMFB (Figure 5). Due to the fragmented nature of MAGs and the  
374 evolutionary distance between BCs in analysis, no gene clusters were found in all PMFB MAGs.  
375 Only one gene cluster was found in 82 MAGs (88%) and another in 25 MAGS (89%) from the  
376 PMFB. Then under this status, the metapangenome of all MAGs from the PMFB represents an  
377 open pangenome whose analysis can mainly provide general trends (Figure S6).

378        The Bathyarchaeia metapangenome identified a distinct distribution of gene clusters  
379        within the relaxed-core of PMFB BCs (Figure 5, with Table S3 detailing each cluster  
380        membership and annotation). Gene clusters were highly conserved within BC1 and BC3 MAGs,  
381        while BC38-BC41 showed a comparable high prevalence of conserved genes within their cluster  
382        evidencing a noticeable gene pool separation of these clades. BC15 and BC42, which are  
383        represented by a single MAG from the PMFB share only a third of their gene clusters (not  
384        including singletons), 41% and 28% respectively, with at least one other PMFB MAG. More  
385        than half of the gene clusters in the relaxed-core and shell of BC36 were exclusive to this clade  
386        pointing to its uniqueness although deeper sampling can better test this observation. The relaxed-  
387        core gene clusters for all BCs accounted for 0.3%-21% of gene clusters found in each of the nine  
388        clades. The small percentage of gene clusters categorized as relaxed-core is analogous to  
389        previously reported thresholds at the class level (80). However, given our chosen completeness  
390        cut-off of >50%, we assume that many gene clusters categorized as shell are likely core genes  
391        misclassified because of the effects of assembly or binning errors. This assumption would bring  
392        the BC relaxed-core gene clusters to thresholds that are consistent with those reported for pan-  
393        genomes at the genus level (46, 81–83).

394

395        *Proposal of BC38-41 as Candidatus Paludivitaceae*

396        Multiple lines of evidence in this study show that clades BC38-41 represent a distinct and  
397        cohesive group of Bathyarchaeia with unique genomic and metabolic features that seem  
398        specifically adapted to peatland environments. Several characteristics set them apart from other  
399        Bathyarchaeia and justify the proposal of a putative novel family within the phylum abundant in  
400        Amazon peatlands (Bathyarchaeia has an average read mapping frequency of 4.6%, QUI:6.9%,

401 SJO: 7.1% in BVA, QUI and SJO metagenomes respectively). Genomic data for BC38-41 show  
402 that AAI scores between all 16 MAGs average 64.3%, which is below the cut-off for genus-level  
403 classification (48). Furthermore, these clades display minimal variation in GC content (46.7 -  
404 51.8%) and coding density (84.3 - 90.4%). The MAGs are phylogenetically grouped based on 54  
405 single-copy genes within a clade supported by a bootstrap value of 100. In addition, there are  
406 1135 gene clusters shared only among the 21 MAGs highlighting their relatedness.

407 Metabolically, BC38-41 would use the EMP for gluconeogenic purposes with the  
408 potential to degrade acetoin or ferment propanol. Members are carboxydrophic and putatively  
409 capable of carbon fixation through a proposed pathway of CO reduction to the Calvin cycle. In  
410 addition, BC38-41 are facultative anaerobes, having the respiratory potential to occupy both  
411 aerobic (*coxABCD*) and anaerobic (*nirK*, *nosZ*, and SQR) niches which may fluctuate seasonally  
412 in flooding tropical peatlands. Moreover, BC38-41 seem to be adapted for growth on peptides,  
413 particularly peptides with a terminal proline, given their high gene copy number of amino acid  
414 transporters and interconversions that lead to oxaloacetate.

415 This putative family of Bathyarchaeia has been recently proposed as in the order  
416 Houttuarciales [55], but given their persistent recovery from peatland environments and their  
417 potential unique metabolic adaptations for this type of environment we delineate and propose the  
418 BC38-41 as the novel putative family *Candidatus* Paludivitaceae. The standing taxonomic name  
419 of this BC or *Candidatus* family (or order) is to be established along with the future isolation of a  
420 culture representative. The *Ca.* Paludivitaceae's name is derived from the Latin words "palus"  
421 referring to marsh or swamp environments and "vita" meaning life. Together this implies the  
422 commonality of both ecological dwelling and metabolic traits suited for life found in peatland  
423 environments .

424

425 **Conclusions**

426 Bathyarchaeia are abundant within PMFB soils, yet our knowledge of their metabolic  
427 potential and ecological functions is limited. Here we detail the presence of nine clades within  
428 the Bathyarchaeia in PMFB. Genomic evidence points out that key groups (BC38-41 or *Ca.*  
429 *Paludivitaceae*) are facultative anaerobic carboxydrotrophs capable of conserving energy through  
430 the aerobic oxidation of CO. Moreover, they are mixotrophic able to generate energy from  
431 organic compounds such as acetoin, propanol, or peptides with terminal prolines. The *Ca.*  
432 *Paludivitaceae* has also the genomic potential to use CO for both energy and biomass in aerobic  
433 environments. These various metabolic findings propose that *Ca. Paludivitaceae* can play a  
434 significant role through various interactions including those with methanogenesis in the carbon  
435 cycle of tropical peatland environments.

436

437 References:

438 1. Limpens J, Berendse F, Blodau C, Canadell JG, Freeman C, Holden J, Roulet N, Rydin H,  
439 Schaeppman-Strub G. 2008. Peatlands and the carbon cycle: from local processes to global  
440 implications – a synthesis. *Biogeosciences* 5:1475–1491.

441 2. Page SE, Baird AJ. 2016. Peatlands and global change: response and resilience. *Annu Rev*  
442 *Environ Resour* 41:35–57.

443 3. Kelly TJ, Baird AJ, Roucoux KH, Baker TR, Honorio Coronado EN, Ríos M, Lawson IT.  
444 2014. The high hydraulic conductivity of three wooded tropical peat swamps in northeast  
445 Peru: Measurements and implications for hydrological function. *Hydrol Process* 28:3373–  
446 3387.

447 4. Marwanto S, Watanabe T, Iskandar W, Sabiham S, Funakawa S. 2018. Effects of seasonal  
448 rainfall and water table movement on the soil solution composition of tropical peatland.  
449 *Soil Sci Plant Nutr* 64:386–395.

450 5. Lähteenoja O, Ruokolainen K, Schulman L, Alvarez J. 2009. Amazonian floodplains  
451 harbour minerotrophic and ombrotrophic peatlands. *Catena* 79:140–145.

452 6. Freeman C, Ostle NJ, Fenner N, Kang H. 2004. A regulatory role for phenol oxidase  
453 during decomposition in peatlands. *Soil Biol Biochem* 36:1663–1667.

454 7. Hergoualc'h K, Dezzeo N, Verchot L V., Martius C, van Lent J, del Aguila-Pasquel J,  
455 López Gonzales M. 2020. Spatial and temporal variability of soil N<sub>2</sub>O and CH<sub>4</sub> fluxes  
456 along a degradation gradient in a palm swamp peat forest in the Peruvian Amazon. *Glob  
457 Chang Biol* 26:7198–7216.

458 8. Draper FC, Roucoux KH, Lawson IT, Mitchard ETA, Honorio Coronado EN, Lähteenoja  
459 O, Montenegro LT, Sandoval EV, Zaráte R, Baker TR. 2014. The distribution and amount  
460 of carbon in the largest peatland complex in Amazonia. *Environ Res Lett* 9.

461 9. Page SE, Rieley JO, Banks CJ. 2011. Global and regional importance of the tropical  
462 peatland carbon pool. *Glob Chang Biol* 17:798–818.

463 10. Davidson EA, De Araújo AC, Artaxo P, Balch JK, Brown IF, Mercedes MM, Coe MT,  
464 Defries RS, Keller M, Longo M, Munger JW, Schroeder W, Soares-Filho BS, Souza CM,  
465 Wofsy SC. 2012. The Amazon basin in transition. *Nature* 481:321–328.

466 11. Wang S, Zhuang Q, Lähteenoja O, Draper FC, Cadillo-Quiroz H. 2018. Potential shift  
467 from a carbon sink to a source in Amazonian peatlands under a changing climate. *Proc  
468 Natl Acad Sci U S A* 115:12407–12412.

469 12. Finn DR, Ziv-El M, van Haren J, Park JG, del Aguila-Pasquel J, Urquiza-Muñoz JD,

470 Cadillo-Quiroz H. 2020. Methanogens and methanotrophs show nutrient-dependent  
471 community assemblage patterns across tropical peatlands of the Pastaza-Marañón Basin,  
472 Peruvian Amazonia. *Front Microbiol* 11:746.

473 13. Buessecker S, Zamora Z, Sarno AF, Finn DR, Hoyt AM, van Haren J, Urquiza Muñoz JD,  
474 Cadillo-Quiroz H. 2021. Microbial communities and interactions of nitrogen oxides with  
475 methanogenesis in diverse peatlands of the Amazon Basin. *Front Microbiol* 12:1564.

476 14. Ochsenreiter T, Selezi D, Quaiser A, Bonch-Osmolovskaya L, Schleper C. 2003.  
477 Diversity and abundance of Crenarchaeota in terrestrial habitats studied by 16S RNA  
478 surveys and real time PCR. *Environ Microbiol* 5:787–797.

479 15. Zhou Z, Pan J, Wang F, Gu JD, Li M. 2018. Bathyarchaeota: Globally distributed  
480 metabolic generalists in anoxic environments. *FEMS Microbiol Rev* 42:639–655.

481 16. Pan J, Zhou Z, Béjà O, Cai M, Yang Y, Liu Y, Gu JD, Li M. 2020. Genomic and  
482 transcriptomic evidence of light-sensing, porphyrin biosynthesis, Calvin-Benson-Bassham  
483 cycle, and urea production in Bathyarchaeota. *Microbiome* 8.

484 17. Yin X, Zhou G, Cai M, Zhu QZ, Richter-Heitmann T, Aromokeye DA, Liu Y, Nimzyk R,  
485 Zheng Q, Tang X, Elvert M, Li M, Friedrich MW. 2022. Catabolic protein degradation in  
486 marine sediments confined to distinct archaea. *ISME J* 2022 1–10.

487 18. Mohapatra M, Yadav R, Rajput V, Dharne MS, Rastogi G. 2021. Metagenomic analysis  
488 reveals genetic insights on biogeochemical cycling, xenobiotic degradation, and stress  
489 resistance in mudflat microbiome. *J Environ Manage* 292:112738.

490 19. Loh HQ, Hervé V, Brune A. 2021. Metabolic potential for reductive acetogenesis and a  
491 novel energy-converting [NiFe] hydrogenase in Bathyarchaeia from termite guts – A  
492 genome-centric analysis. *Front Microbiol* 11:3644.

493 20. Feng X, Wang Y, Zubin R, Wang F. 2019. Core metabolic features and hot origin of  
494 Bathyarchaeota. *Engineering* 5:498–504.

495 21. Harris RL, Lau MCY, Cadar A, Bartlett DH, Cason E, van Heerden E, Onstott TC. 2018.  
496 Draft genome sequence of “Candidatus Bathyarchaeota” archaeon BE326-BA-RLH, an  
497 uncultured denitrifier and putative anaerobic methanotroph from South Africa’s deep  
498 continental biosphere. *Microbiol Resour Announc* 7.

499 22. He Y, Li M, Perumal V, Feng X, Fang J, Xie J, Sievert SM, Wang F. 2016. Genomic and  
500 enzymatic evidence for acetogenesis among multiple lineages of the archaeal phylum  
501 Bathyarchaeota widespread in marine sediments. *Nat Microbiol*  
502 <https://doi.org/10.1038/nmicrobiol.2016.35>.

503 23. Wang F, Meng J, Wang F, Zheng Y, Peng X, Zhou H, Xiao X. 2009. An uncultivated  
504 crenarchaeota contains functional bacteriochlorophyll a synthase. *ISME J* 3:106–116.

505 24. Borrel G, Adam PS, McKay LJ, Chen LX, Sierra-García IN, Sieber CMK, Letourneau Q,  
506 Ghozlane A, Andersen GL, Li WJ, Hallam SJ, Muyzer G, de Oliveira VM, Inskeep WP,  
507 Banfield JF, Gribaldo S. 2019. Wide diversity of methane and short-chain alkane  
508 metabolisms in uncultured archaea. *Nat Microbiol* <https://doi.org/10.1038/s41564-019-0363-3>.

510 25. Meng J, Xu J, Qin D, He Y, Xiao X, Wang F. 2014. Genetic and functional properties of  
511 uncultivated MCG archaea assessed by metagenome and gene expression analyses. *ISME*  
512 *J* 8:650–659.

513 26. Lazar CS, Baker BJ, Seitz K, Hyde AS, Dick GJ, Hinrichs KU, Teske AP. 2016. Genomic  
514 evidence for distinct carbon substrate preferences and ecological niches of Bathyarchaeota  
515 in estuarine sediments. *Environ Microbiol* 18:1200–1211.

516 27. Lloyd KG, Schreiber L, Petersen DG, Kjeldsen KU, Lever MA, Stepanauskas  
517 R, Richter M, Kleindienst S, Lenk S, Schramm A, Jorgensen BB. 2013. Predominant  
518 archaea in marine sediments degrade detrital proteins. *Nat* 2013 496:444 496:215–218.

519 28. Evans PN, Parks DH, Chadwick GL, Robbins SJ, Orphan VJ, Golding SD, Tyson GW.  
520 2015. Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-  
521 centric metagenomics. *Science*. 350:434–438.

522 29. Compte-Port S, Fillol M, Gich F, Borrego CM. 2020. Metabolic versatility of freshwater  
523 sedimentary archaea feeding on different organic carbon sources. *PLoS One* 15:e0231238.

524 30. Li Y, Zhao J, Achinas S, Zhang Z, Krooneman J, Euverink GJW. 2020. The  
525 biomethanation of cow manure in a continuous anaerobic digester can be boosted via a  
526 bioaugmentation culture containing Bathyarchaeota. *Sci Total Environ* 745:141042.

527 31. Suominen S, van Vliet DM, Sánchez-Andrea I, van der Meer MTJ, Sinninghe Damsté JS,  
528 Villanueva L. 2021. Organic matter type defines the composition of active microbial  
529 communities originating from anoxic Baltic Sea sediments. *Front Microbiol* 12.

530 32. Yu T, Wu W, Liang W, Lever MA, Hinrichs KU, Wang F. 2018. Growth of sedimentary  
531 Bathyarchaeota on lignin as an energy source. *Proc Natl Acad Sci U S A* 115:6022–6027.

532 33. Yu T, Hu H, Zeng X, Wang Y, Pan D, Deng L, Liang L, Hou J, Wang F. 2023.  
533 Widespread Bathyarchaeia encode a novel methyltransferase utilizing lignin-derived  
534 aromatics. *mLife* 2:272–282.

535 34. Lähteenoja O, Ruokolainen K, Schulman L, Alvarez J. 2009. Amazonian floodplains  
536 harbour minerotrophic and ombrotrophic peatlands. *Catena* 79:140–145.

537 35. Lahteenoja O, Page S. 2011. High diversity of tropical peatland ecosystem types in the  
538 Pastaza-Marañón basin, Peruvian Amazonia. *J Geophys Res Biogeosciences* 116:2025.

539 36. Lähteenoja O, Page S. 2011. High diversity of tropical peatland ecosystem types in the  
540 Pastaza-Marañón basin, Peruvian Amazonia. *J Geophys Res Biogeosciences* 116:2025.

541 37. Pavia MJ, Finn D, Macedo-Tafur F, Tello-Espinoza R, Penaccio C, Bouskill N, Cadillo-  
542 Quiroz H. 2023. Genes and genome-resolved metagenomics reveal the microbial  
543 functional make up of Amazon peatlands under geochemical gradients. *Environ Microbiol*  
544 1–16.

545 38. Markowitz VM, Chen IMA, Palaniappan K, Chu K, Szeto E, Grechkin Y, Ratner A, Jacob  
546 B, Huang J, Williams P, Huntemann M, Anderson I, Mavromatis K, Ivanova NN,  
547 Kyrpides NC. 2012. IMG: The integrated microbial genomes database and comparative  
548 analysis system. *Nucleic Acids Res* 40.

549 39. Li D, Luo R, Liu CM, Leung CM, Ting HF, Sadakane K, Yamashita H, Lam TW. 2016.  
550 MEGAHIT v1.0: A fast and scalable metagenome assembler driven by advanced  
551 methodologies and community practices. *Methods*. Academic Press Inc.  
552 <https://doi.org/10.1016/j.ymeth.2016.02.020>.

553 40. Gurevich A, Saveliev V, Vyahhi N, Tesler G. 2013. QUAST: Quality assessment tool for  
554 genome assemblies. *Bioinformatics* 29:1072–1075.

555 41. Kang DD, Froula J, Egan R, Wang Z. 2015. MetaBAT, an efficient tool for accurately  
556 reconstructing single genomes from complex microbial communities. *PeerJ* 2015:e1165.

557 42. Eren AM, Kiefl E, Shaiber A, Veseli I, Miller SE, Schechter MS, Fink I, Pan JN, Yousef  
558 M, Fogarty EC, Trigodet F, Watson AR, Esen ÖC, Moore RM, Clayssen Q, Lee MD,  
559 Kivenson V, Graham ED, Merrill BD, Karkman A, Blankenberg D, Eppley JM, Sjödin A,  
560 Scott JJ, Vázquez-Campos X, McKay LJ, McDaniel EA, Stevens SLR, Anderson RE,  
561 Fuessel J, Fernandez-Guerra A, Maignien L, Delmont TO, Willis AD. 2021. Community-

562 led, integrated, reproducible multi-omics with anvi'o. *Nat Microbiol* 6:3–6.

563 43. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. 2015. CheckM:  
564 Assessing the quality of microbial genomes recovered from isolates, single cells, and  
565 metagenomes. *Genome Res* 25:1043–1055.

566 44. Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH. 2020. GTDB-Tk: a toolkit to classify  
567 genomes with the genome taxonomy database. *Bioinformatics* 36:1925–1927.

568 45. Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. *Nat Methods*  
569 9:357–359.

570 46. Delmont TO, Eren EM. 2018. Linking pangenomes and metagenomes: The  
571 Prochlorococcus metapangenome. *PeerJ* 6:e4320.

572 47. Stamatakis A, Hoover P, Rougemont J. 2008. A rapid bootstrap algorithm for the RAxML  
573 web servers. *Syst Biol* 57:758–771.

574 48. Konstantinidis KT, Tiedje JM. 2005. Towards a genome-based taxonomy for prokaryotes.  
575 *J Bacteriol* 187:6258–6264.

576 49. Patil I. 2021. Visualizations with statistical details: The “ggstatsplot” approach. *J Open*  
577 *Source Softw* 6:3167.

578 50. Van Dongen S, Abreu-Goodger C. 2012. Using MCL to extract clusters from networks.  
579 *Methods Mol Biol* 804:281–295.

580 51. Huerta-Cepas J, Szklarczyk D, Heller D, Hernández-Plaza A, Forslund SK, Cook H,  
581 Mende DR, Letunic I, Rattei T, Jensen LJ, Von Mering C, Bork P. 2019. EggNOG 5.0: A  
582 hierarchical, functionally and phylogenetically annotated orthology resource based on  
583 5090 organisms and 2502 viruses. *Nucleic Acids Res* 47:D309–D314.

584 52. Sayers EW, Bolton EE, Brister JR, Canese K, Chan J, Comeau DC, Connor R, Funk K,

585 Kelly C, Kim S, Madej T, Marchler-Bauer A, Lanczycki C, Lathrop S, Lu Z, Thibaud-

586 Nissen F, Murphy T, Phan L, Skripchenko Y, Tse T, Wang J, Williams R, Trawick BW,

587 Pruitt KD, Sherry ST. 2022. Database resources of the national center for biotechnology

588 information. *Nucleic Acids Res* 50:D20.

589 53. Bowers RM, Kyrpides NC, Stepanauskas R, Harmon-Smith M, Doud D, Reddy TBK,

590 Schulz F, Jarett J, Rivers AR, Eloë-Fadrosch EA, Tringe SG, Ivanova NN, Copeland A,

591 Clum A, Becroft ED, Malmstrom RR, Birren B, Podar M, Bork P, Weinstock GM, Garrity

592 GM, Dodsworth JA, Yooseph S, Sutton G, Glöckner FO, Gilbert JA, Nelson WC, Hallam

593 SJ, Jungbluth SP, Ettema TJG, Tighe S, Konstantinidis KT, Liu WT, Baker BJ, Rattei T,

594 Eisen JA, Hedlund B, McMahon KD, Fierer N, Knight R, Finn R, Cochrane G, Karsch-

595 Mizrachi I, Tyson GW, Rinke C, Lapidus A, Meyer F, Yilmaz P, Parks DH, Eren AM,

596 Schriml L, Banfield JF, Hugenholtz P, Woyke T. 2017. Minimum information about a

597 single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of

598 bacteria and archaea. *Nat Biotechnol* 2017 35:725–731.

599 54. Fillol M, Auguet JC, Casamayor EO, Borrego CM. 2016. Insights in the ecology and

600 evolutionary history of the Miscellaneous Crenarchaeotic Group lineage. *ISME J* 10:665–

601 677.

602 55. Liu J, Yang H, Zhao M, Zhang XH. 2014. Spatial distribution patterns of benthic

603 microbial communities along the Pearl Estuary, China. *Syst Appl Microbiol* 37:578–589.

604 56. Yu T, Liang Q, Niu M, Wang F. 2017. High occurrence of Bathyarchaeota (MCG) in the

605 deep-sea sediments of South China Sea quantified using newly designed PCR primers.

606 *Environ Microbiol Rep* 9:374–382.

607 57. Xiang X, Wang R, Wang H, Gong L, Man B, Xu Y. 2017. Distribution of Bathyarchaeota

608 Communities Across Different Terrestrial Settings and Their Potential Ecological  
609 Functions. *Sci Rep* 7:45028.

610 58. Campbell A, Mrázek J, Karlin S. 1999. Genome signature comparisons among prokaryote,  
611 plasmid, and mitochondrial DNA. *Proc Natl Acad Sci U S A* 96:9184–9189.

612 59. Karlin S, Mrázek J, Campbell AM. 1997. Compositional biases of bacterial genomes and  
613 evolutionary implications. *J Bacteriol* 179:3899–3913.

614 60. Kellner S, Spang A, Offre P, Szöllösi GJ, Petitjean C, Williams TA. 2018. Genome size  
615 evolution in the Archaea. *Emerg Top Life Sci* 2:595.

616 61. Valentine DL. 2007. Adaptations to energy stress dictate the ecology and evolution of the  
617 Archaea. *Nat Rev Microbiol* 5:316–323.

618 62. Miralles F. 2010. Compositional properties and thermal adaptation of SRP-RNA in  
619 bacteria and archaea. *J Mol Evol* 70:181–189.

620 63. Kreil DP, Ouzounis CA. 2001. Identification of thermophilic species by the amino acid  
621 compositions deduced from their genomes. *Nucleic Acids Res* 29:1608–1615.

622 64. Hou J, Wang Y, Zhu P, Yang N, Liang L, Yu T, Niu M, Konhauser K, Woodcroft BJ,  
623 Wang F. 2023. Taxonomic and carbon metabolic diversification of Bathyarchaeia during  
624 its coevolution history with early Earth surface environment. *Sci Adv* 9:1–18.

625 65. Scamuffa MD, Caprioli RM. 1980. Comparison of the mechanisms of two distinct  
626 aldolases from *Escherichia coli* grown on gluconeogenic substrates. *Biochim Biophys  
627 Acta* 614:583–590.

628 66. Kuprat T, Johnsen U, Ortjohann M, Schönheit P. 2020. Acetate Metabolism in Archaea:  
629 Characterization of an Acetate Transporter and of Enzymes Involved in Acetate  
630 Activation and Gluconeogenesis in *Haloferax volcanii*. *Front Microbiol* 11:3102.

631 67. Borjian F, Han J, Hou J, Xiang H, Berg IA. 2016. The methylaspartate cycle in  
632 haloarchaea and its possible role in carbon metabolism. *ISME J* 10:546.

633 68. Nishimura H, Nomura Y, Iwata E, Sato N, Sako Y. 2010. Purification and characterization  
634 of carbon monoxide dehydrogenase from the aerobic hyperthermophilic archaeon  
635 *Aeropyrum pernix*. *Fish Sci* 76:999–1006.

636 69. Sorokin DY, Merkel AY, Messina E, Tugui C, Pabst M, Golyshin PN, Yakimov MM.  
637 2022. Anaerobic carboxydotrophy in sulfur-respiring haloarchaea from hypersaline lakes.  
638 *ISME J* 16:1534–1546.

639 70. Esquivel-Elizondo S, Miceli J, Torres CI, Krajmalnik-Brown R. 2018. Impact of carbon  
640 monoxide partial pressures on methanogenesis and medium chain fatty acids production  
641 during ethanol fermentation. *Biotechnol Bioeng* 115:341–350.

642 71. Stegenta-Dąbrowska S, Drabczyński G, Sobieraj K, Koziel JA, Białowiec A. 2019. The  
643 biotic and abiotic carbon monoxide formation during aerobic co-digestion of dairy cattle  
644 manure with green waste and sawdust. *Front Bioeng Biotechnol* 7:283.

645 72. Weber CF, King GM. 2007. Physiological, ecological, and phylogenetic characterization  
646 of *Stappia*, a marine CO-oxidizing bacterial genus. *Appl Environ Microbiol* 73:1266–  
647 1276.

648 73. Henstra AM, Dijkema C, Stams AJM. 2007. *Archaeoglobus fulgidus* couples CO  
649 oxidation to sulfate reduction and acetogenesis with transient formate accumulation.  
650 *Environ Microbiol* 9:1836–1841.

651 74. Gagen EJ, Huber H, Meador T, Hinrichs KU, Thomm M. 2013. Novel cultivation-based  
652 approach to understanding the Miscellaneous Crenarchaeotic Group (MCG) archaea from  
653 sedimentary ecosystems. *Appl Environ Microbiol* 79:6400–6406.

654 75. Brito JA, Sousa FL, Stelter M, Bandeiras TM, Vonrhein C, Teixeira M, Pereira MM,  
655 Archer M. 2009. Structural and functional insights into sulfide:quinone oxidoreductase.  
656 Biochemistry 48:5613–5622.

657 76. Dahle H, Økland I, Thorseth IH, Pedersen RB, Steen IH. 2015. Energy landscapes shape  
658 microbial communities in hydrothermal systems on the Arctic Mid-Ocean Ridge. ISME J  
659 2015 97 9:1593–1606.

660 77. Kubo K, Lloyd KG, F Biddle J, Amann R, Teske A, Knittel K. 2012. Archaea of the  
661 Miscellaneous Crenarchaeotal Group are abundant, diverse and widespread in marine  
662 sediments. ISME J 2012 610 6:1949–1965.

663 78. Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A. 2012. Role of proline  
664 under changing environments. Plant Signal Behav 7:1456–1466.

665 79. Maus I, Rummeling M, Bergmann I, Heeg K, Pohl M, Nettmann E, Jaenicke S, Blom J,  
666 Pühler A, Schlueter A, Sczyrba A, Klocke M. 2018. Characterization of Bathyarchaeota  
667 genomes assembled from metagenomes of biofilms residing in mesophilic and  
668 thermophilic biogas reactors. Biotechnol Biofuels Bioprod 11:167.

669 80. Zhang Y, Sievert SM. 2014. Pan-genome analyses identify lineage- and niche-specific  
670 markers of evolution and adaptation in Epsilonproteobacteria. Front Microbiol 0:110.

671 81. Delmont TO, Kiefl E, Kilinc O, Esen OC, Uysal I, Rappé MS, Giovannoni S, Eren AM.  
672 2019. Single-amino acid variants reveal evolutionary processes that shape the  
673 biogeography of a global SAR11 subclade. Elife 8.

674 82. Bezuidt OK, Pierneef R, Gomri AM, Adesioye F, Makhalanyane TP, Kharroub K, Cowan  
675 DA. 2016. The Geobacillus Pan-Genome: Implications for the Evolution of the Genus.  
676 Front Microbiol 0:723.

677 83. Gaba S, Kumari A, Medema M, Kaushik R. 2020. Pan-genome analysis and ancestral  
678 state reconstruction of class halobacteria: probability of a new super-order. *Sci Reports*  
679 2020 101 10:1–16.

680 84. Conway JR, Lex A, Gehlenborg N. 2017. UpSetR: An R package for the visualization of  
681 intersecting sets and their properties. *Bioinformatics* 33:2938–2940.

682

683 *Figure 1. Maximum likelihood phylogenetic inference of 233 Bathyarchaeia MAGs constructed*  
684 *using 54 concatenated protein sequences. The robustness of MAG placement was assessed using*  
685 *300 bootstrapping support. Bootstrap support of  $\geq 70\%$  and  $< 70\%$  (black) is represented by*  
686 *hollow and black circles, respectively. Clades with gray backgrounds and that are labeled*  
687 *represent potential genera (based on tree topology and AAI) with more than four MAGs. MAGs*  
688 *recovered from the PMFB are in red. Orders with representatives from the PMFB are labeled at*  
689 *the node. Corresponding heatmaps display the predicted genome size and GC%, for each along*  
690 *with the environmental source from which each MAG was recovered.*

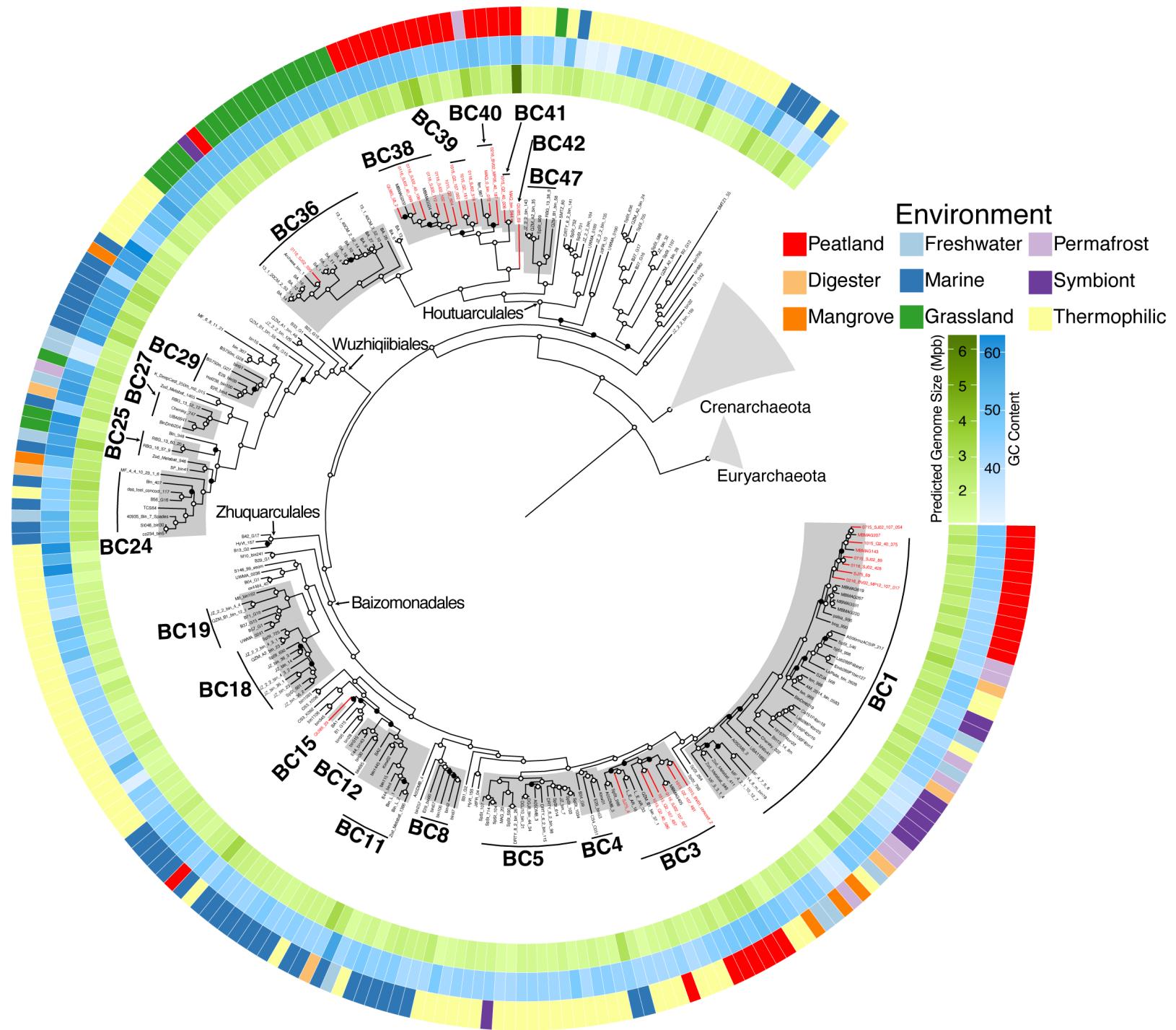
691

692 *Figure 2. Mosaic plot of the frequency of MAGs recovered by ecosystems in BCs with more than*  
693 *four representatives. BC labels in red represent clades with PMFB MAG representatives.*  
694 *Asterisks above each column represent the significance level of the relationship of an ecosystem*  
695 *to BC. Significance scale is as follows: \*\*\* - [0,0.001], \*\* - (0.002,0.01], \* - (0.01,0.05], ns -*  
696 *not significant.*

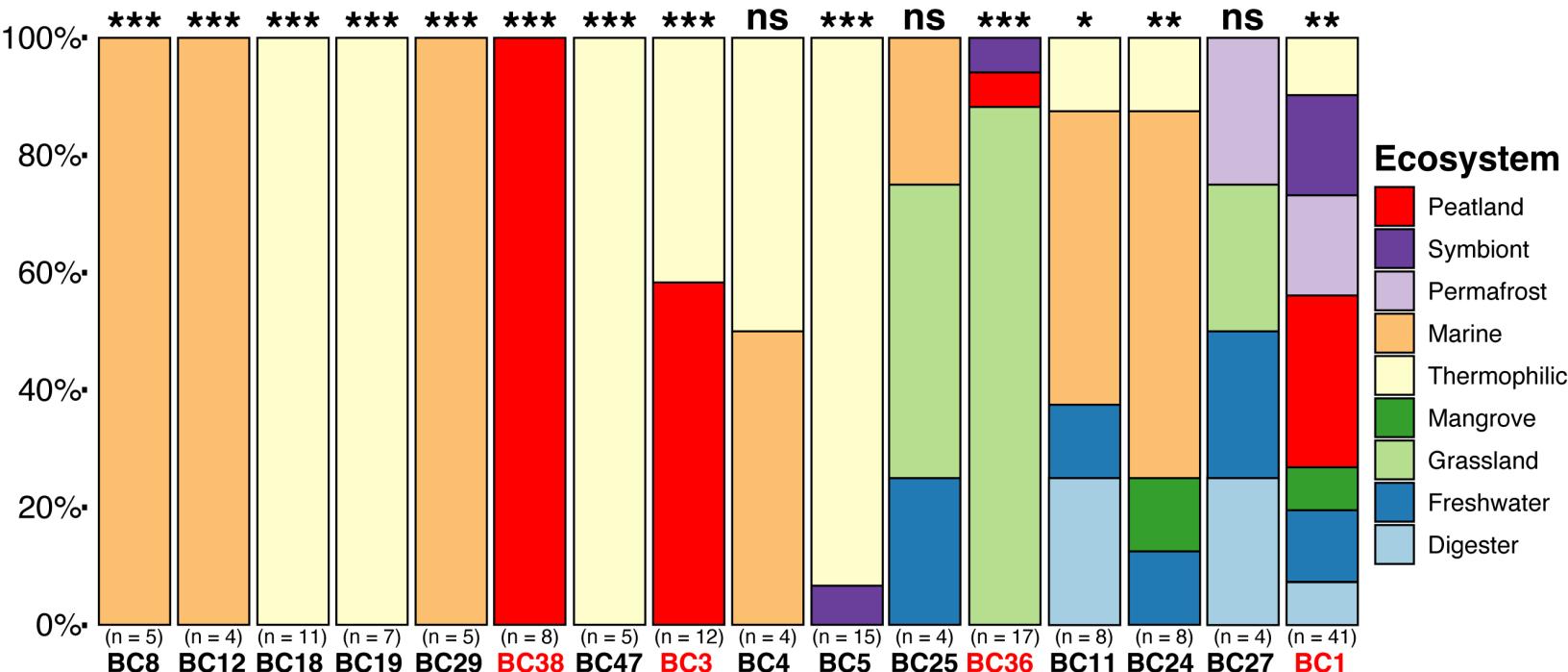
697

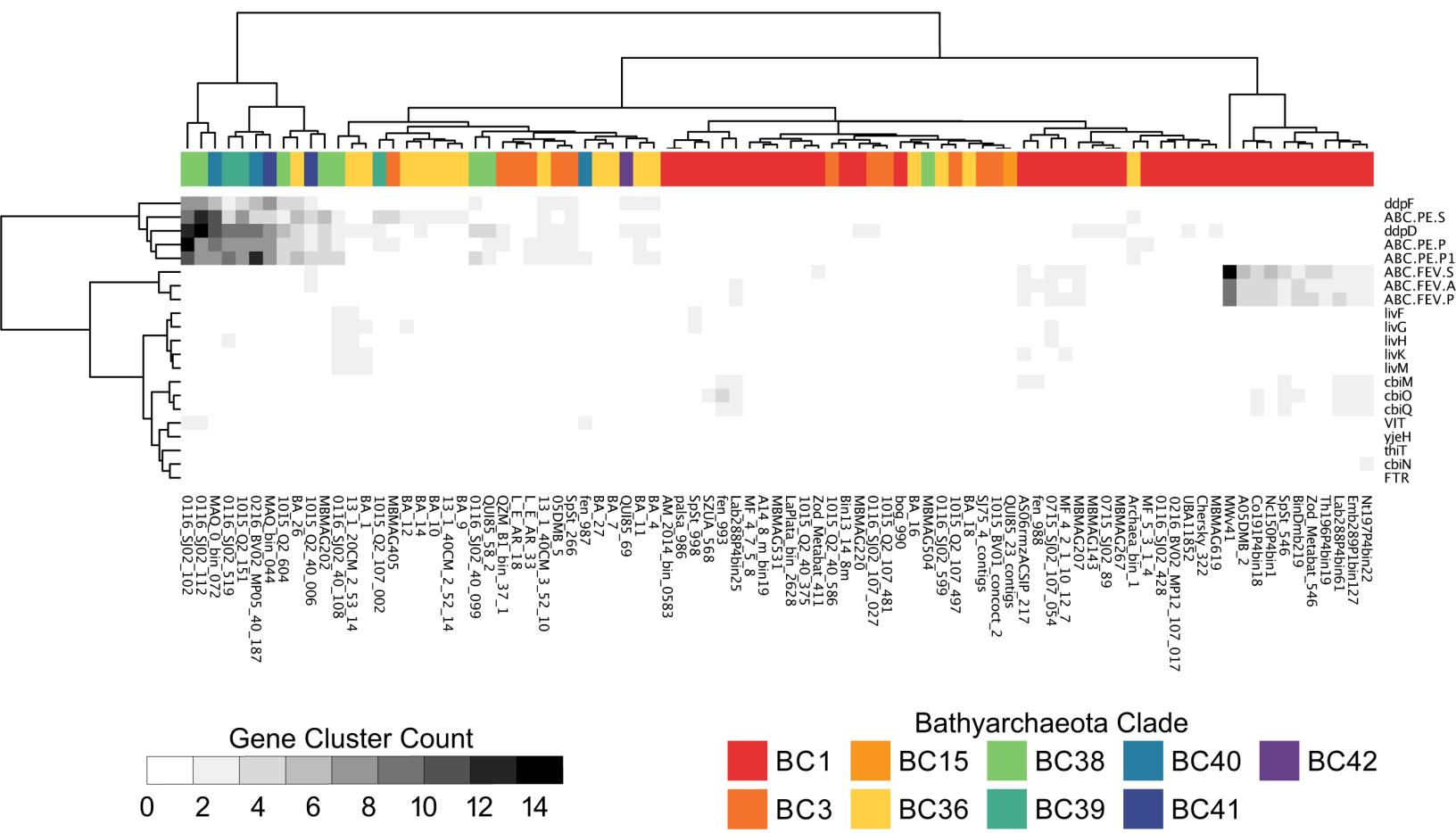
698 *Figure 3. Proposed key (high frequency) and variable metabolic characteristics in Ca.*  
699 *Paludivitaceae. Gene names are color-coded by the frequency of MAGs with that gene by BC.*  
700 *Key intermediates and pathway outputs are displayed in green. Question mark symbol represents*  
701 *an unknown function. A detailed list of corresponding KEGG numbers, gene names, and*  
702 *presence/absence in respective MAGs are listed in Supplementary File 3.*

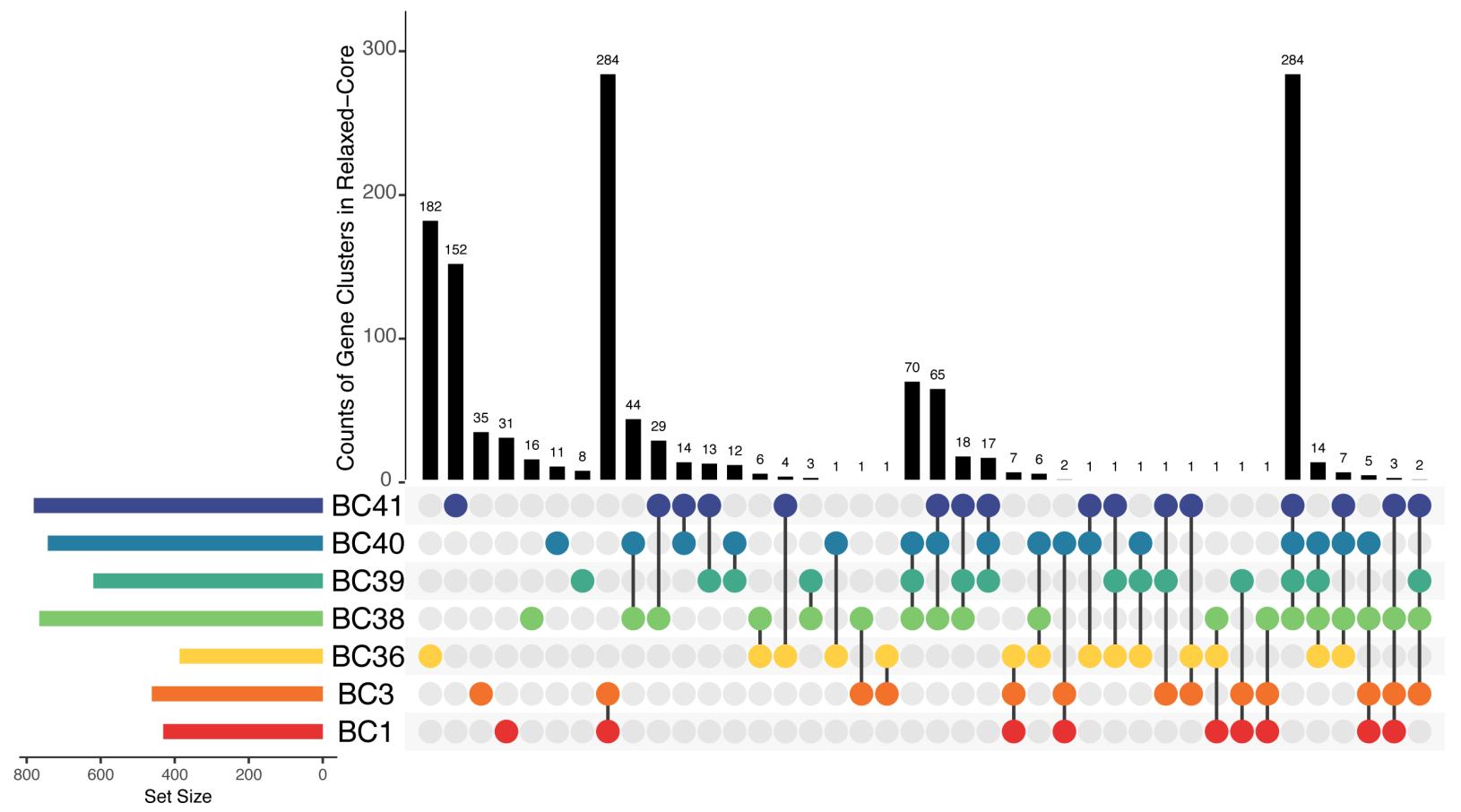
703

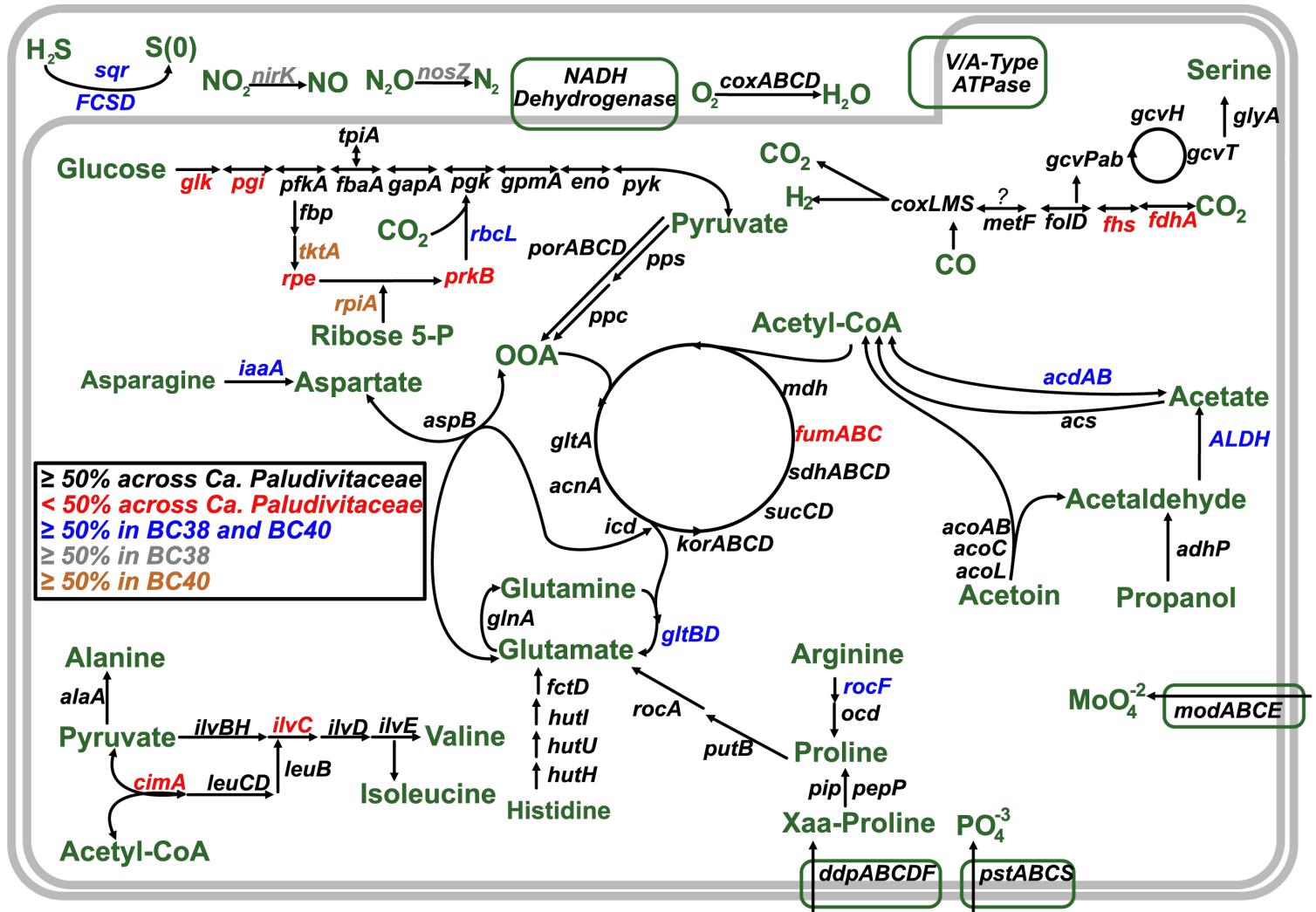

704 *Figure 4. Analysis of abundance of cations and amino acid transport gene clusters. Clustering*  
705 *analysis was completed for gene cluster frequency (side dendrogram) and the phylogenetic*

706 affiliation of MAGs is depicted in the top dendrogram. The colored bar on the top indicates the  
707 BC of MAG.


708


709 Figure 5. Meta-pangenome analysis of selected BC clades: BC1, BC3, BC36, BC38, BC39,  
710 BC40, and BC41. Upset plots (84), show the distribution (upper black columns) and overlap of  
711 gene clusters between BCs (connected circles) found within the relaxed-core of clades  
712 (indicating the size of the set of genes in lower left bars).


713




### Chi-squared test, p-value = < 0.001







