
J
H
E
P
0
9
(
2
0
2
4
)
1
9
1

Published for SISSA by Springer

Received: October 11, 2023
Revised: July 15, 2024

Accepted: September 11, 2024
Published: September 26, 2024

Axion detection via superfluid 3He ferromagnetic phase
and quantum measurement techniques

So Chigusa ,a,b Dan Kondo ,c Hitoshi Murayama ,a,b,c,1 Risshin Okabe c

and Hiroyuki Sudo d

aErnest Orlando Lawrence Berkeley National Laboratory,
Berkeley, CA 94720, U.S.A.
bDepartment of Physics, University of California,
Berkeley, CA 94720, U.S.A.
cKavli Institute for the Physics and Mathematics of the Universe (WPI),
The University of Tokyo Institutes for Advanced Study, The University of Tokyo,
Kashiwa, Chiba 277-8583, Japan

dInstitute for Solid State Physics, The University of Tokyo,
Kashiwa, Chiba 277-8581, Japan
E-mail: sochigusa@lbl.gov, dan.kondo@ipmu.jp, hitoshi@berkeley.edu,
risshin.okabe@ipmu.jp, h.sudo@issp.u-tokyo.ac.jp

Abstract: We propose to use the nuclear spin excitation in the ferromagnetic A1 phase
of the superfluid 3He for the axion dark matter detection. This approach is striking in
that it is sensitive to the axion-nucleon coupling, one of the most important features of the
QCD axion introduced to solve the strong CP problem. We review a quantum mechanical
description of the nuclear spin excitation and apply it to the estimation of the axion-induced
spin excitation rate. We also describe a possible detection method of the spin excitation in
detail and show that the combination of the squeezing of the final state with the Josephson
parametric amplifier and the homodyne measurement can enhance the sensitivity. It turns
out that this approach gives good sensitivity to the axion dark matter with the mass of
O(1) µeV depending on the size of the external magnetic field. We estimate the parameters
of experimental setups, e.g., the detector volume and the amplitude of squeezing, required
to reach the QCD axion parameter space.

Keywords: Axions and ALPs, Specific BSM Phenomenology

ArXiv ePrint: 2309.09160

1Hamamatsu Professor.

Open Access, © The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP09(2024)191

https://orcid.org/0000-0001-6005-4447
https://orcid.org/0000-0002-6268-3332
https://orcid.org/0000-0001-5769-9471
https://orcid.org/0000-0002-5351-174X
https://orcid.org/0000-0003-4744-3100
mailto:sochigusa@lbl.gov
mailto:dan.kondo@ipmu.jp
mailto:hitoshi@berkeley.edu
mailto:risshin.okabe@ipmu.jp
mailto:h.sudo@issp.u-tokyo.ac.jp
https://doi.org/10.48550/arXiv.2309.09160
https://doi.org/10.1007/JHEP09(2024)191


J
H
E
P
0
9
(
2
0
2
4
)
1
9
1

Contents

1 Introduction 1

2 Understanding 3He via spinor BEC 3
2.1 Phases of superfluid 3He 3
2.2 Spinor BEC description of magnetism in the A, A1, and A2 phases 6
2.3 Nuclear magnons in the ferromagnetic A1 phase 9

3 Axion detection 11
3.1 Axion-magnon conversion 11
3.2 Mixing between magnon and cavity modes 14
3.3 Quantum measurement techniques 15

4 Sensitivity 19

5 Conclusion and discussion 20

A Statistical treatment of noise 23
A.1 Formulation 23
A.2 Creation rate of magnons 26
A.3 Test statistic 28

B Josephson parametric amplifier (JPA) 29
B.1 Effective description 29
B.2 Flux-driven Josephson parametric amplifier 30
B.3 Resonator equation 33

1 Introduction
Axion [1] is a proposed solution to the strong CP problem, namely to explain why the quantum
chromodynamics (QCD) does not violate the time-reversal symmetry. The experimental
upper limit on the neutron electric dipole moment dn < 1.8 → 10−26 e cm [2] implies that the
so-called vacuum angle of QCD to be extremely small

∣∣∣ω̄
∣∣∣ < 10−10. The theory assumes a

new global U(1) Peccei-Quinn symmetry broken spontaneously at the energy scale called the
axion decay constant fa as well as explicitly by the QCD anomaly. The effective operator
of the axion coupling to gluons is

La = g2s
64π2

(
ω̄ + a

fa

)
ϑµωρσGb

µωG
b
ρσ . (1.1)

Switching to the chiral Lagrangian, it can be shown that the axion settles to the ground
state where ω̄ is dynamically canceled.

Interestingly, it was pointed out that the axion can also comprise the dark matter of
the Universe from misalignment mechanism or emission from topological defects [3, 4]. The
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initial version of the theory assumed fa = vEW (electroweak scale) and was excluded by
beam dump experiments [5]. It was later proposed to take fa " vEW dubbed “invisible
axion” [6–9]. The axion abundance is higher for higher fa, and fa # 1012GeV is typically
regarded as a preferred range. It translates to ma # µeV scale.

Many direct detection experiments for the dark matter axion, such as refs. [10–27], rely
on the axion coupling to photons aFµωF̃µω . Their prospect in the near future is becoming
exciting. Yet the axion coupling to photons is highly model-dependent. To fully verify that
the axion solves the strong CP problem, measuring its coupling to hadrons would be crucial.
In particular, the axion couples to the nucleon spins $∇a · $sN with relatively little model
dependence. Search for dark matter axion using the nuclear spins, or confirming detected
axion signal with nuclear signs, would be crucial to enhance our understanding of both the
strong CP problem as well as the nature of dark matter. In spite of its importance, there are
relatively few experiments and proposals including refs. [28–39] in this direction.

In this paper, we propose a new experimental technique to detect dark matter axions
using their coupling to nuclear spins. Interactions among the nuclear spins are very weak
because their magnetic moments are suppressed by the nucleon mass µN = e/mN rather
than the electron mass µB = e/me. One needs to identify material where nuclear spins
play a major role at very low temperatures.

We point out that the A1 phase of superfluid 3He is a unique material that has an
ordering of nuclear spins without relying on their coupling to electron spins. This is because
the Cooper pairs of 3He atoms are in the p-wave (anti-symmetric) with total spin S = 1
(symmetric) as required by Fermi statistics. In a high magnetic field, it becomes basically
a ferromagnet of nuclear spins. The corresponding nuclear magnon is gapped due to the
external magnetic field and the gap can be tuned to the axion mass. It is quite remarkable
that the gap happens to be in the range of the preferred axion mass for dark matter with an
achievable magnetic field. Then the magnon can be converted to a cavity photon resonantly
due to the polariton mixing between the magnon and photon. Again the size of the cavity
is such that it can be fitted in a laboratory. Note that our setup is distinct from other
proposals to use superfluid 3He for axion dark matter search [35, 36] in the superfluid phase
used and/or the signal detection method.

Because our experiments are performed at such low temperatures T ! 3mK that the
target 3He shows superfluidity, the quantum noise [40] becomes non-negligible. These days
several applications of quantum measurement techniques to axion detections have been
studied in order to circumvent the quantum noise [15, 41–48]. In this paper, we apply the
squeezing technique, which has been discussed in refs. [15, 41], and evaluate the improvement
in the sensitivity of our experiment.

This paper is organized as follows. In section 2, we review the properties of 3He.
We analyze superfluid phases of 3He using the spinor BEC formalism and understand the
properties of nuclear magnons in the ferromagnetic A1 phase. In section 3, we discuss how
the axion dark matter signal can be detected using superfluid 3He; we use a nuclear magnon
mode, which is converted into a cavity photon through the polariton mixing. We also discuss
how noise reduction is realized by using squeezing and the homodyne measurement. We show
sensitivities for several different setups in section 4 and conclude in section 5. A detailed

– 2 –



J
H
E
P
0
9
(
2
0
2
4
)
1
9
1

External magnetic field H Phases Magnetic property
H = 0 A phase —

B phase —
H %= 0 A1 phase Ferromagnetic

A2 phase Anti-ferromagnetic
B2 phase Homogeneous precession [49]

Table 1. Superfluid phases of 3He.

description of our noise estimate and statistical treatment is summarized in appendix A.
Finally, we review the Josephson parametric amplifier (JPA), which is a representative
apparatus for squeezing, in appendix B.

2 Understanding 3He via spinor BEC

In this section, we will describe the phase structure of the superfluid 3He using Ginzburg-
Landau formalism and simplified spinor BEC formalism. We summarize the phase structure
in table 1. We utilize an A1 phase for axion detection, which has a ferromagnetic property,
in this paper.

2.1 Phases of superfluid 3He

Historically, after the success of the BCS theory [50], people tried to look for the description
of the superfluid 3He because it is liquid and has no lattice structure inside. Some people
considered the pairing states which are not s-wave. One is about the general anisotropic
case by Anderson and Morel [51]. This model has a peculiar feature that the nodes exist
on the Fermi surface for the axial p-wave state (refered to as the ABM state named after
Anderson, Brinkman, and Morel). It turned out that this theory describes what is called the
A phase nowadays. Later, Balian and Werthamer showed that the mixing of all substates of
the p-wave Cooper pair is favored energetically [52]. This state has an isotropic energy gap
unlike the ABM state and is called the BW state, which is now recognized as the B phase.
Experimentally, the A and B phases were discovered at 2.6mK and 1.8mK respectively [53],
which confirmed the existence of the phase structure of the superfluid 3He.

The nucleus of a 3He atom consists of two protons and one neutron. The proton spins
are aligned anti-parallel with each other, while the neutron spin is isolated, making the total
spin angular momentum to be 1/2. In the superfluid phase, two 3He atoms form a Cooper
pair, whose ground state is a spin-triplet p-wave condensate [54]. The corresponding order
parameter is expressed in terms of annihilation operators of nuclei â$kα as

〈
â−$kβ â$kα

〉
∝ !$kαβ ≃

3∑

µ=1
dµ($k)(σµiσ2)αβ , (2.1)

where $k and α (φ) are the momentum and the spin of a 3He nucleus, respectively, and
σµ is the Pauli matrix. Since a Cooper pair forms a spin-triplet L = 1 relative angular
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momentum state, the vector dµ($k) can be represented as a linear combination of spherical
harmonics Y1m($k/|$k|) ∝ $k/|$k|,

dµ($k) =
√
3

3∑

j=1
Aµj

$kj

|$kj |
. (2.2)

The phenomenological Lagrangian of the Cooper pairs, i.e., Ginzburg-Landau Lagrangian,
can be expressed in terms of the 3 → 3 order parameter matrix Aµj [55, 56]. The index
µ = 1, 2, 3 refers to the S = 1 states while j = 1, 2, 3 to the L = 1 states, both in the
Cartesian basis. Namely Aµj transforms as a bi-vector under SO(3)L → SO(3)S . Note that
Aµj is complex as its phase U(1)φ corresponds to the conserved number operator of the
Cooper pairs. Because the Lagrangian has to be Hermitian and invariant under the global
SO(3)L → SO(3)S → U(1)φ symmetry, we have only one second-order term of Aµj

I0 = tr
(
AA†

)
, (2.3)

and five fourth-order terms

I1 =
∣∣∣tr
(
AAT

)∣∣∣
2
, (2.4)

I2 =
[
tr
(
AA†

)]2
, (2.5)

I3 = tr
[
(AAT )(AAT )∗

]
, (2.6)

I4 = tr
[
(AA†)2

]
, (2.7)

I5 = tr
[
(AA†)(AA†)∗

]
, (2.8)

in the effective potential. As a result, in the absence of any external fields, the effective
potential per volume is given by

V0 = α(T )I0 +
1
2

5∑

i=1
φiIi , (2.9)

where we neglect higher-order terms of Aµj , which can be justified when we consider the
phenomenology of a system sufficiently close to the phase transition, and the numerical
values of |Aµj | are small. The coefficients α and φi are determined by the microscopic
theory. For example, they have been calculated in the weak-coupling theory [54], and their
numerical values are

α(T ) ∼ −10−3
(
1 − T

Tc

)
µeV−1Å−3

, (2.10)

(φWC
1 ,φWC

2 ,φWC
3 ,φWC

4 ,φWC
5 ) = 6

5φ0
(

−1
2 , 1, 1, 1,−1

)
, (2.11)

φ0 ∼ 10−3 µeV−3Å−3
, (2.12)

where Tc is the transition temperature ∼ 2.6mK in the absence of external magnetic fields.
The values of φi can differ from those of φWC

i depending on pressure. Nevertheless, we will use
the numerical values in eqs. (2.11) and (2.12) for φi below since the experimentally measured
values differ from φWC

i by only O(1) factors, (φi − φWC
i )/φ0 = O(1) [57].
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As noted above, the effective Lagrangian has a global symmetry SO(3)L→SO(3)S →U(1)φ,
which corresponds to the rotation in the momentum space, the rotation in the spin space,
and the overall phase rotation, respectively. It is known that, depending on the values of
coefficients in eq. (2.9), the matrix A acquires a non-zero expectation value in the ground
state, which spontaneously breaks the global symmetry and leads to different phases. Without
an external magnetic field, there are two superfluid phases for 3He, the A and B phases.
Their expectation values are expressed as

A phase: Aµj ∝ 1√
2




0 0 0
0 0 0
1 i 0



 , (2.13)

B phase: Aµj ∝ 1√
3
eiφRµj($n, ω) , (2.14)

where φ is an overall phase, and Rµj is a relative rotation of the spin and orbital spaces, repre-
sented by a rotation axis $n and a rotation angle ω. Note that there are more than one choice
of the order parameter in the A phase corresponding to the choices of particular directions of
spin and orbital spaces, both of which are assumed to be the z-axis in the above expression.

When we turn on an external magnetic field $B, the potential V has two more invari-
ant terms

F (1) = iη
∑

µωλj

ϑµωλBµA
∗
ωjAλj , (2.15)

F (2) ∝
∑

µωj

BµAµjBωA
∗
ωj . (2.16)

Note that the magnetic field $B couples with Aµj only through the spin indices µ, ν because
the 3He atoms are electrically neutral, and their orbital angular momentum does not have a
magnetic moment, while their spin angular momentum does. Assuming that $B is along the z-
direction, one can see that F (1) and F (2) break the global symmetry to SO(3)L→U(1)Sz→U(1)φ.
Because these interaction terms F (1) and F (2) bring three types of spontaneous symmetry
breaking depending on the coefficients, there are three corresponding phases:

A1 phase: Aµj ∝ 1
2




1 i 0
i −1 0
0 0 0



 , (2.17)

A2 phase: Aµj ∝ 1

2(|p1|2 + |p2|2)




p1 ip1 0
ip2 −p2 0
0 0 0



 , (2.18)

B2 phase: Aµj ∝ eiφ

2
[
2(|p1|2 + |p2|2) + |p3|2

]




p1 p2 0
±p2 ∓p1 0
0 0 p3



 , (2.19)

where the real parameters p1, p2, and p3 are uniquely determined as functions of the coefficients
α(T ) and φi, as demonstrated in the next section.
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Figure 1. The P (pressure) - T (temperature) - H (external magnetic field) phase diagram of 3He
taken from ref. [54].

The P (pressure) - T (temperature) - H (magnetic field) phase diagram of 3He has
been well studied [54], and we show it in figure 1. It should be noted that the B2 phase
can only exist under relatively weak external magnetic fields, H ! 0.5T, while the A1 and
A2 phases can exist under strong magnetic fields, especially even for H = O(10) T. In the
next section, we will see in more detail the criteria for which phase is realized, focusing
on the A, A1, and A2 phases.

2.2 Spinor BEC description of magnetism in the A, A1, and A2 phases
Hereafter, we focus on the A, A1, and A2 phases, which have a unified description with the
so-called spinor BEC formalism by keeping only the spin degrees of freedom. The spinor BEC
refers to a Bose-Einstein condensate of atoms with integer spin, see e.g., for a review [58, 59].
This procedure is appropriate partly because the unbroken symmetries of these phases do
not mix the rotations in spin and orbital spaces unlike the B phases. Thus, if we do not
consider excitation of the orbital angular momentum of 3He, we can focus only on the spin
space. For this purpose, we define a spinor order parameter $c by fixing Lz = +1 as

Aµj =
1√
2
($c, i$c, 0) . (2.20)

We can rewrite invariant terms Ii and F (1) in terms of $c as

I0 = $c ∗ · $c , (2.21)
I2 = ($c ∗ · $c)2 , (2.22)
I4 = ($c ∗ · $c)2 , (2.23)
I5 = |$c · $c| 2 =

[
($c ∗ → $c)2 + ($c ∗ · $c)2

]
, (2.24)

F (1) = iη $B · ($c ∗ → $c) . (2.25)
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Here, we do not consider the invariants I1, I3, and F (2) because these terms vanish for the A1
and A2 phases. Finally, we get a simplified effective potential with the external magnetic field

V = α(T )($c ∗ · $c) + φ245
2 ($c ∗ · $c)2 + φ5

2 ($c ∗ → $c)2 + iη $B · ($c ∗ → $c) . (2.26)

Here, we have defined a new parameter,

φ245 ≃ φ2 + φ4 + φ5 . (2.27)

Note that φ245 > 0 and φ5 < 0 according to eq. (2.11). In the following, we discuss the
magnetism of the A1 and A2 phases with this potential.

Using the simplified effective potential, we can easily analyze the potential form as a
function of parameters.1 In the absence of an external magnetic field, only the temperature
plays an important role. For T > Tc, since α(T ) > 0 according to eq. (2.10), the potential V
has a global minimum at $c = $0, while for T < Tc or α(T ) < 0, there is a global minimum
at $c ∝ (0, 0, 1)T with the potential energy −α2/(2φ245) < 0. The former corresponds to
the normal liquid phase, while the latter is consistent with the matrix structure of the
A-phase order parameter (2.13).

Next, we turn on the external magnetic field $B = (0, 0, Bz)T with ηBz > 0. Restricting
the form of $c to be (p1, ip2, 0)T with p1, p2 ∈ R, we obtain local minima of V expressed as

V = 0 at $c = $0 , (2.28)

V = V1 ≃ −α(T )2
2φ245

(x+ y)2
y(1 + y) at $c = $c1 ≃


−α(T )(x+ y)
2φ245(1 + y)




1
i

0



 , (2.29)

V = V2 ≃ −α(T )2
2φ245

x2 + y

y
at $c = $c2 ≃


−α(T )
2φ245






1 +

√
1 − x2

i

1 −

√
1 − x2

0



 , (2.30)

where we defined dimensionless variables

x ≃ φ245ηBz

α(T )φ5
∝ Bz

(
1 − T

Tc

)−1
, (2.31)

y ≃ −φ245
φ5

> 0 . (2.32)

The value of x determines which of the local minima is the global minimum of V as shown
in figure 2. Note that for p1 ∈ R, the local minimum $c = $c1 exists only when x < −y or
x > 0. Similarly, the local minimum $c = $c2 exists when 0 < x < 1. When 0 < x < 1, we have
V1 ≥ V2, and this region corresponds to the A2 phase (the blue region of figure 2). When
x > 1 or x < −y, we have V2 ≥ V1, which corresponds to the A1 phase (the red region).
When −y < x < 0, we obtain the normal liquid phase (the gray region).

1Note that there can be a deeper minimum of the potential, which cannot be described by the spinor BEC
formalism. Such a phase may correspond to the B or B2 phase due to the spin-orbit couplings which originate
from a long-distance dipole-dipole interaction among magnetic moments. However this effect is small and can
be ignored in the presence of a strong magnetic field. It is worth noting, however, that any of the A, A1, and
A2 phases can be a global minimum of V for reasonable choices of temperature, external magnetic field, and
pressure, such as T ! Tc and Bz = O(1)T under the standard atmosphere.
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1− T/Tc

ηBz

O

x = 1x = −y

Normal liquid phase

A phase

A1 phase

A2 phase

Lz = 1

Figure 2. The schematics of the phase diagram focusing on A, A1, and A2 phases of the superfluid
3He. Here we fix the orbital angular momentum at Lz = 1, so the B and B2 phases do not appear in
this phase diagram. The white box in each phase schematically represents the spin configuration of
the Cooper pairs with the magnetic field $B pointing down because of the negative g-factor. Note that
the spins are not equally spaced as shown in this figure since the 3He is not a solid in our setup.

For later convenience, we define a normalized order parameter

$φ ≃
√
nC
! $c , (2.33)

where ! is a normalization factor with a dimension of energy defined as

! ≃
√
$c ∗ · $c , (2.34)

so that $φ∗ · $φ = nC with nC being the number density of Cooper pairs. Using the typical
size of the gap energy Eg ∼ 10−6 eV and the Fermi energy EF # 0.9 → 10−4 eV, the number
density of Cooper pairs nC can be estimated as

nC ∼ Eg

EF

n3He
2 ∼ 10−2n3He

2 , (2.35)

where n3He # 2→10−2Å−3 is the number density of 3He atoms [60–64]. Eq. (2.35) is consistent
with the experimental value [65] that shows superfluid density fraction is O


10−2. The

effective potential is now written in terms of $φ as

V = −µ$φ∗ · $φ+ µ

2v2 (
$φ∗ · $φ)2 − λ($φ∗ → $φ)2 + igµN

$B · ($φ∗ → $φ). (2.36)

Here we have defined some new parameters µ ≃ −α(T )!2/nC, v2 ≃ −α(T )nC/(φ245!2), and
λ ≃ −φ5!4/(2n2

C). Typical sizes of parameters are estimated as µ ∼ neV, v ∼ Å−3/2, and
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λ ∼ neVÅ3. In the last term of the potential, g # −4.3 is the g-factor of the 3He nucleus [66],
while µN # 3.2 → 10−8 eVT−1 is the nuclear magneton. This choice of the coefficient is
justified by the fact that the spin density is expressed as $s ≃ −i($φ∗ → $φ). Indeed, the last
term describes the interaction between the magnetic field and the spin of the form gµN

$B · $s.
We can now study the ordering of nuclear spins using $φ and its expectation values in

different phases. In the A2 phase, the spin per Cooper pair is calculated as

$S ≃ $s

nC
=




0
0
x



 . (2.37)

In the limit of Bz → 0 or x → 0, this phase is smoothly connected to the A phase, which has
an anti-ferromagnetic ordering with $S = $0. In the A1 phase, the spin per Cooper pair is

$S =




0
0
1



 , (2.38)

which shows that the spins of Cooper pairs are completely aligned along the direction of
gµN

$B. Therefore, we conclude that the A1 phase has a ferromagnetic ordering.

2.3 Nuclear magnons in the ferromagnetic A1 phase

Depending on the symmetry-breaking patterns in different phases, there appear several
gapless modes, the so-called Nambu-Goldstone (NG) modes. These modes are classified as
type-A and type-B modes with characteristic dispersion relations at the long-wavelength
limit [67, 68]. For example, in the ferromagnetic A1 phase, the coset space is given by

RP 3 = SO(3)S → U(1)φ

SO(2)Sz−φ
, (2.39)

which corresponds to one type-A NG mode with a linear dispersion and one type-B NG mode
with a quadratic dispersion. The type-B mode is identified as an acoustic magnon mode, whose
gap can be generated by the soft symmetry-breaking effect, including the external magnetic
field. On the other hand, in the anti-ferromagnetic A2 phase, the coset space is given by

S2 → U(1)φ = SO(3)S → U(1)φ

SO(2)Sz

, (2.40)

which corresponds to three type-A NG modes, two of which are identified as magnon modes
with Sx and Sy. Since the magnon modes in the ferromagnetically-ordered phase have the
strongest interaction with the spatially uniform magnetic field, such as the one induced by
the axion dark matter, we will focus on the type-B magnon mode in the A1 phase.

The excitation modes in the superfluid 3He can be studied by treating the normalized
order parameter $̂φ as a dynamical field. The field theory Lagrangian is given by

L = i$̂φ† · ∂t $̂φ− 1
2m)

∑

i

(∂i $̂φ†) · (∂i $̂φ) − V, (2.41)

– 9 –



J
H
E
P
0
9
(
2
0
2
4
)
1
9
1

where i = x, y, z are the space coordinates, and the potential V is given by eq. (2.36).
The effective mass m) depends on the pressure imposed on 3He and can be experimentally
determined through measurements of the specific heat. The typical value of m) is about
3 to 6 times larger than the 3He atomic mass [69].

In order to study the magnon excitation mode in the A1 phase, we add a quantum
fluctuation ψ̂ to the expectation value ∝$̂φ〉 =

√
nC/2(1, i, 0) as

$̂φ =
√
nC

2
√
2





2 − ψ̂†ψ̂ − ψ̂2

i(2 − ψ̂†ψ̂ + ψ̂2)
−2

2 − ψ̂†ψ̂ ψ̂



. (2.42)

We also consider the fluctuation of the magnetic field as $B = (0, 0,−Bz)T + δ $B with Bz > 0.
For simplicity, we assume that both ψ̂ and δ $B do not depend on the space coordinate. By
substituting the expansion in the Lagrangian (2.41) and picking up only the leading-order
terms of the fluctuation ψ̂ and δ $B, we obtain the following terms

δL = gµNnCBzψ̂
†ψ̂ + 1√

2
gµNnC

(
δBx(ψ̂ + ψ̂†) − iδBy(ψ̂ − ψ̂†)

)
, (2.43)

which originally come from the last term of the potential (2.36).
It is convenient to discuss in terms of the non-relativistic Hamiltonian described with

the magnon operators. For this purpose, we first obtain the relationship of the spin density

ŝ+ ≃ ŝx + iŝy = nC


2 − ψ̂†ψ̂ ψ̂, (2.44)

ŝ− ≃ ŝx − iŝy = nCψ̂
†

2 − ψ̂†ψ̂, (2.45)

ŝz = nC(1 − ψ̂†ψ̂). (2.46)

On the other hand, using the Holstein-Primakoff transformation with the spin size s = 1, we
can relate the spin operator of each Cooper pair labeled by / to the magnon annihilation
and creation operators as

Ŝ+
* =


2 − b̂†* b̂* b̂*, (2.47)

Ŝ−
* = b̂†*


2 − b̂†* b̂*, (2.48)

Ŝz
* = 1 − b̂†* b̂*, (2.49)

with the canonical commutation relation of bosonic operators [b̂*, b̂
†
*′ ] = δ**′ . We are only inter-

ested in the spatially uniform mode obtained by the Fourier transformation d̂ ≃
∑NC

*=1 b̂*/
√
NC,

where NC ≃ nCV3He is the total number of Cooper pairs with V3He being the volume of the
superfluid 3He. We find that this mode is related to the spatially uniform fluctuation ψ̂ as

d̂ =
√
NCψ̂. (2.50)

Note that eq. (2.50) is consistent when ψ̂ obeys a bosonic commutation relation, which is
the case for the spinor BEC formalism.
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Finally, substituting the magnon operator (2.50) in the Lagrangian (2.43), we obtain
the relevant part of the Hamiltonian

H = ωLd̂
†d̂ −


NC
2 gµN

(
δBx(d̂+ d̂†) − iδBy(d̂ − d̂†)

)
+ · · · , (2.51)

where ωL ≃ −gµNBz is the Larmor frequency. As we will see below, the second term causes
the magnon excitation by the axion-induced effective magnetic field.

3 Axion detection

In this section, we explain the details of our axion detection experiment using superfluid
3He. A brief overview is as follows: (i) axions excite the magnon modes in the A1 phase
of 3He; (ii) these magnons mix with cavity photon modes; (iii) the signal photons are
amplified and detected. We also discuss the amplification of the signal using quantum
measurement techniques.

3.1 Axion-magnon conversion
As is mentioned above, the spin angular momentum of a 3He nucleus originates from the
neutron spin. As a result, the axion-proton coupling can be neglected in our discussion,
which generally has a different value from the axion-neutron coupling. The axion-neutron
dynamics is described by the Lagrangian

L = 1
2(∂µa)

2 − 1
2maa

2 + n̄(i/∂ − mn)n+ Cann
∂µa

2fa
n̄γµγ5n, (3.1)

where a and n are the axion and the neutron fields with masses ma and mn, respectively,
Cann is a model-dependent O(1) coupling coefficient, and fa is the axion decay constant. For
the QCD axion, there is a relationship between ma and fa [70]:

ma # 5.7µeV

1012GeV

fa



. (3.2)

We assume that the axion field explains all of the dark matter abundance through the
misalignment mechanism [3, 71, 72]; accordingly, the axion field can be treated as a classical
field with coherent oscillation

a(t, $x) # a0 sin(mat − ma$va · $x+ ϕ), (3.3)

where va is the velocity of axion, while ϕ is a random phase. Here, we utilize the fact that
the axion is non-relativistic to approximate the axion energy to be ma. Using these variables,
the local dark matter density ρa ∼ 0.45GeV/cm3 can be expressed as ρa = (maa0)2/2.
The expression of a(t, $x) tells us that the coherent length of the axion field is given by
λa ≃ 1/(mava). Since λa ∼ 100m for ma = 1 µeV and va ∼ 10−3 [73], the axion field can
be regarded as a spatially uniform field within an experimental apparatus, which allows
us to neglect the second argument of the sine function. Also, the coherence time of the
axion field is τa # 1/(mav2a) ∼ 1ms for ma = 1 µeV, during which the velocity $va and the
phase ϕ can be treated as constant.
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In the non-relativistic limit, we obtain the following effective Hamiltonian density de-
scribing the axion-nucleus interaction:

Heff # −Cann
maa0
fa

$va · $sN sin(mat+ ϕ), (3.4)

where $sN is the spin density operator of 3He nuclei, which can be identified as the spin
operator of neutrons in the 3He. Note that the interaction strength is proportional to
maa0 = √2ρa and independent of ma. The interaction term can be rewritten in the form
of the ordinary spin-magnetic field coupling, H = γN $Ba · $sN sin(mat+ ϕ), where γN = gµN

is the gyromagnetic ratio of a nucleus. The effective axion magnetic field that exclusively
couples to the neutron spins is given by

γN $Ba(t) = −Cann

√2ρa
fa

$va sin(mat+ ϕ). (3.5)

Thus, by substituting δ $B by $Ba in eq. (2.51), we obtain the Hamiltonian of the axion-nuclear
magnon coupled system

H(t) = H0 +Hint(t), (3.6)
H0 = ωLd̂

†d̂, (3.7)

Hint(t) =
Cann

fa

√
ρaNC

(
v+a d̂

† + h.c.
)
sin(mat+ ϕ), (3.8)

where v+a ≃ vxa + ivya.
We define the ground state |0〉 and the one-magnon state |1〉 of 3He with d̂ |0〉 = 0 and

|1〉 ≃ d̂† |0〉.2 Then, the magnon production amplitude is calculated as

−iM = ∝1|U(t) |0〉 = −i
 t

0
dt′


1
∣∣Hint(t′)

∣∣ 0

e−iωLt′ , (3.9)

where t < τa is the observation time and the evolution matrix is defined as

U(t) ≃ exp

−i
 t

0
dt′ H(t′)


. (3.10)

Since the axion spectrum is approximately monochromatic with energy ma, the magnon
production rate is resonantly enhanced when ma = ωL. In this limit, the amplitude is
evaluated as

M # −i
Cann

2fa
√
ρaNCv

+
a e

iϕt, (3.11)

where we assumed t " ω−1
L so that the oscillatory term can be dropped. Then the transition

probability is

P = |M|2 =
(
Cann

2fa

)2
ρaNCt

2v2a sin2 ωa, (3.12)

2States with more than one magnon can be safely neglected due to the smallness of the magnon excitation
rate for the axion parameter region of our interest.
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where ωa is the relative angle between the external magnetic field and axion wind. This
result is consistent with ref. [74] where the spatially uniform mode (the Kittel mode) of
the electronic magnons is considered.

The transition probability grows as P ∝ t2 as far as the coherence of the signal is
maintained. The typical coherence time τ can be estimated as

τ ∼ min (τa, τmag, τexp) , (3.13)

where τmag is the lifetime of magnons, and τexp denotes the minimum relaxation time scale
of excitation modes used for the magnon detection. Since we use the mixing between a
nuclear magnon and a cavity photon as is discussed in section 3.2, the cavity quality factor Q
contributes to τexp in the form of Q/ma. The magnon lifetime τmag is identified as the spin
relaxation time. In general, there are two types of spin relaxation times; the longitudinal and
transverse spin relaxation time T1 and T2, which characterize the relaxation of the longitudinal
and transverse component of the magnetization vector, respectively. For experiments that
utilize nuclear magnetic resonance, such as our experiment, the crucial factor is T2 as can be
seen in eq. (2.51). For the A1 phase of superfluid 3He, T1 has been decided experimentally
as an order of O(1-10) s [75, 76]. However, T2 has not been measured because of some
experimental difficulties [77]. One of the difficulties in measuring the intrinsic T2 is due to
the inhomogeneity of the magnetic field, which is significant under a high magnetic field such
as in the A1 phase. Another difficulty is caused by the effect called “motional narrowing”,
which appears in an inhomogeneous medium such as liquid samples and makes T2 longer.
Since T2 is typically shorter than T1 by an order of O


10−2-10−1, we use τmag = 1 s in this

paper, which is much longer than the axion coherence time τa = O(1) ms for the region of
our interest. We also assume τa < τexp and use τ = τa for the following calculation, which is
reasonable for Q " 106. Of course, before actually performing our experiment, the transverse
spin relaxation time T2 should be measured first in the fixed setup.

Finally, the signal rate for the total observation time t " τ is evaluated as

dNsig
dt = NC

4 C2
ann

ρav2a sin2 ωa
f2
a

τ, (3.14)

where sin2 ωa should be replaced by the averaged value if t " τa. Hereafter, we assume this
is the case and simply average out the directional dependence, though it might be interesting
to study it further in light of the modulation of the axion signal. Note that the total number
of Cooper pairs for superfluid 3He of mass M is calculated as NC ∼ 10−2M/(2m3He) ∼
1.0 → 1023(M/100 g) according to eq. (2.35). For the QCD axion, for example, the external
magnetic field Bz = 10T corresponds to the Larmor frequency ωL = ma # 1.3µeV and
fa # 4.3 → 1012GeV, which result in

dNsig
dt = 1.1 → 10−5 s−1 → C2

ann

(
M

100 g

)(
va

10−3

)2 ( τ

1ms

)
sin2 ωa. (3.15)

We also show the expression of the signal power:

Psig = 2.2 → 10−30W → C2
ann

(
M

100 g

)(
va

10−3

)2 ( τ

1ms

)
sin2 ωa. (3.16)
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3.2 Mixing between magnon and cavity modes

When one of the cavity modes has the same frequency as the magnons of our interest,
ωcavity = ωL, there is a large mixing between these modes. This can be understood similarly
as the formation of the magnon-polariton of electron spins [78–80]. Let ĉ (ĉ†) be the
annihilation (creation) operator of the cavity mode. Assuming that all the other cavity
modes have frequencies largely deviated from ωL, we can safely neglect them and write down
the relevant part of the Hamiltonian

H = ωLd̂
†d̂+ ωcavityĉ

†ĉ+Hmix. (3.17)

The mixing term is sourced from the interaction between nucleon spin and the magnetic
field of the cavity mode and is given by

Hmix = igµN



3He
dV

(
$φ∗($r) → $φ($r)

)
· $B0($r)(ĉ+ ĉ†), (3.18)

where the volume integral is performed over the volume of the superfluid 3He, while $B0($r)
is the profile of the magnetic field of the cavity mode. If we consider as an example the
cavity mode with $B0($r) = B0($r)$ux with $ux being the unit vector along the x-axis, terms
linear in the magnon mode is obtained similarly to eq. (2.51) as

Hmix #


NC
2 gµNB0(d̂+ d̂†)(ĉ+ ĉ†), (3.19)

where the averaged magnetic field over the superfluid 3He is defined as

B0 ≃ 1
V3He



3He
dV B0($r). (3.20)

We finally find the quadratic part of the Hamiltonian

H # ωLd̂
†d̂+ ωcavityĉ

†ĉ+ geff(ĉd̂† + ĉ†d̂), (3.21)

geff =


NC
2 gµNB0, (3.22)

where we used the rotating wave approximation to neglect the fast oscillation terms. Note
that the typical size of the magnetic field can be estimated by matching the electromagnetic
energy with a cavity mode frequency. Defining


B2

0


≃ 1
Vcavity

∫
cavity dV B2

0($r) with integration
over the cavity volume, we obtain


B2

0


∼ 4 fT
(
ωcavity

102MHz

)1/2103 cm3

Vcavity

1/2
. (3.23)

For the order estimation of the physics scales, we can approximate that B0 ∼


B2
0

, though

there can be an O(1) geometry factor difference. Indeed, this estimation is consistent with
ref. [80], which shows that B0 ∼ 5 pT in one of the figures, while a rough estimation gives

B2
0


∼ 1 pT.
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By diagonalizing the Hamiltonian (3.21), we obtain the energy eigenstates. In particular,
the maximal mixing is realized when ωL = ωcavity with the corresponding energy eigenvalues
|ωL ± geff |. Compared with the magnon-polariton of electron spins, the energy scale of the
system is smaller by a factor of µN/µB ∼ 10−3 with µB being the Bohr magneton. This affects
the time scale of the conversion of the magnon mode into the cavity mode. The time scale can
be estimated by evaluating the energy gap !E = 2min (ωL = ωcavity, geff) between two energy
eigenstates. Assuming V3He ∼ Vcavity for simplicity, and the above estimation of B0, we have

geff
2π ∼ 0.3MHz

(
M

100 g

)1/2 ( ωL

102MHz

)1/2
, (3.24)

where the ωL = ωcavity dependence comes from that of


B2
0

. This expression, together

with ωL ∼ 200MHz for B = 1T, shows that the conversion time scale, which is usually
set by g−1

eff ∼ µs, can be much shorter than the typical coherence time τ ∼ ms. Thus, it is
expected that half of magnons excited by the axion DM are converted to cavity modes, which
can be observed by the following detector. Note, however, that geff highly depends on the
detector setup including its geometry, and should carefully be estimated once the setup is
fixed. In appendix A, we show the detailed calculation of the dynamics of the magnon-cavity
mixed system including various loss factors and quantum measurement techniques briefly
introduced in the next subsection.

3.3 Quantum measurement techniques

In the following, we consider two noise sources for our experimental setup according to the
discussion in refs. [15, 41]. The first is thermal noise, or Johnson-Nyquist noise, sourced from
the internal loss of the cavity, and the second is thermal noise sourced from a termination
resistor. Each of their spectral densities is given by the formula

nT + 1
2 ≃ 1

exp(ω/kBT ) − 1 + 1
2 , (3.25)

where T is the temperature of the cavity. Even at zero temperature, the noise has a nonzero
value known as quantum noise, which originates from the quantum fluctuation. This is
known as the standard quantum limit (SQL), and the noise floor is expressed in terms of
a temperature [81]

TSQL ≃ ω

kB
# 12mK

(
ω

1µeV

)
. (3.26)

Thus, the quantum noise dominates the thermal noise (3.25) for setups below 12mK when
we want to look for signals from 1µeV axions. For our setup, in which the cavity is cooled
to about 2.6mK, the quantum noise dominates for the axion mass ma " 0.22µeV. This
quantum noise does not seem to be able to be further reduced under temperatures below TSQL,
but this SQL can be circumvented by using quantum measurement techniques (see ref. [82]
for a review). Specifically, we use two quantum measurement techniques; the squeezing
of states and the homodyne measurement, as introduced in ref. [41]. We will summarize
these techniques in this section.
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axion

magnon

d̂ ĉ

Figure 3. Schematic of our experimental setup for axion detection with superfluid 3He. The operators
ĉ, d̂, B̂, · · · correspond to the annihilation operators used in our paper.

3.3.1 Squeezing of states
The starting point is introducing quadratures X̂ and Ŷ defined in terms of the annihilation
(creation) operator of photons â (â†) as

X̂ ≃ â+ â†√
2

, Ŷ ≃ â − â†√
2i

. (3.27)

Because of the commutation relation [â, â†] = 1, quadratures satisfy [X̂, Ŷ ] = i . This
commutation relation results in the uncertainty relation of quadratures

(!X̂)2(!Ŷ )2 ≥ 1
4 . (3.28)

Since many of the ordinary measurement techniques measure both quadratures of the input
signal at each time, the quantum noise !X̂ ∼ !Ŷ ∼ 1/2 must appear and contribute to
the SQL. However, quantum measurement techniques can decrease this quantum noise by
focusing on only one of the quadratures. For example, a larger part of the uncertainty can
be imposed on Ŷ , as !X̂ ∼ 1/(2

√
G) and !Ŷ ∼

√
G/2 with G " 1, which reduces the

uncertainty on the observable X̂ and remains consistent with eq. (3.28). This operation is
called squeezing. Squeezing can be performed by, e.g., phase-sensitive amplifiers such as
Josephson parametric amplifiers (JPAs); see appendix B for details.

A possible experimental setup, which is similar to the setup of the HAYSTAC experi-
ment [14–16], is schematically shown in figure 3. We also summarize in figure 4 how the state
is squeezed in the XY plane. In this setup, squeezing is performed twice by JPAs. First,
we assume that the input vacuum state (X̂in,m, Ŷin,m),3 is a state of thermal photon that is

3The meaning of subscript m is described in appendix A.
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X̂in,m

Ŷin,m

X̂s,m

Ŷs,m

X̂o,m

Ŷo,m

X̂out,m

Ŷout,m

noise

× 1/
√
Gs

×
√
Gs

signal

×
√
Ga

× 1/
√
Ga

Figure 4. Distribution of the four states in the XY plane. The subscripts of quadratures correspond
to those in figure 3. The input state (X̂in,m, Ŷin,m) is Gaussian, which is the distribution of thermal
photons. This state will be squeezed by the SQ JPA and becomes the squeezed state (X̂s,m, Ŷs,m).
The third state (X̂o,m, Ŷo,m) is the state after the signal from the cavity is received. Finally, we get
the output state (X̂out,m, Ŷout,m) after squeezing by the AMP JPA.

sourced from the termination resistor and distributes like Gaussian in the XY plane. The first
JPA called SQ in figure 3 squeezes the vacuum state along, e.g., the X direction. When we
define the squeezing parameter of the SQ JPA as Gs, the squeezed state (X̂s,m, Ŷs,m) becomes

X̂s,m = 1√
Gs

X̂in,m , Ŷs,m =
√
GsŶin,m . (3.29)

This squeezing reduces the noise !X̂.
When this squeezed state receives the signal photon from the cavity, the state is displaced

in the phase of the signal photon (from the second figure to the third figure in figure 4).
Because the noise has been suppressed by a factor 1/

√
Gs, the signal-to-noise ratio is enhanced

by a factor
√
Gs compared to the case without squeezing. The second JPA called AMP

squeezes the displaced state (X̂o,m, Ŷo,m). This JPA amplifies the state in the X direction,
the opposite direction to the SQ, and we get the output state (X̂out,m, Ŷout,m). Defining the
squeezing parameter of the AMP JPA as Ga, we get

X̂out,m =
√
GaX̂o,m , Ŷout,m = 1√

Ga
Ŷo,m . (3.30)

Note that this second squeezing does not affect the signal-to-noise ratio because it amplifies
both the signal and noise at the same time. Instead, the AMP JPA plays a role in overwhelming
the noise added by the following circuits, including the amplifier.

Technically, the direction of squeezing by JPAs is determined by the phase of the AC
power input to them. In order to give a difference to the direction of amplification by the
SQ and AMP JPA, the phase shifter between the microwave generator and the SQ JPA
shifts the phase of the microwaves by π/2.

3.3.2 Homodyne measurement
Now we need to measure the X̂ quadrature exclusively to obtain a high signal-to-noise ratio
beyond the SQL. This is possible by using another quantum measurement technique, the
homodyne measurement. We will briefly review the theory of the homodyne measurement. A
schematic of the homodyne measurement is shown in the lower right part of figure 3.

First, let |ψ〉 be the signal state of our setup, i.e., the squeezed state output from the
AMP JPA. Also, in this subsection, we use the abbreviation for notation of the corresponding
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annihilation operator and quadratures, â, X̂, and Ŷ , representing âout,m, X̂out,m, and Ŷout,m,
respectively. The homodyne measurement requires a local oscillator that has the same mode
as that of the signal photons. We write the annihilation operator of the local oscillator by
B̂, and set the initial state of the local oscillator to a coherent state

|φ〉 ≃ e−|β|2/2
∞∑

n=0

φn√
n!

|n〉 . (3.31)

Here, φ ≃ |φ|eiθ and |n〉 is the Fock state of n photons. The initial state of the total system
is defined as |Ψ〉 ≃ |ψ〉 |φ〉.

The signal photons and the local oscillator are split in half and mixed by a beam splitter.
As a result, we obtain two beams whose annihilation operators are

â′ = â − B̂√
2

, B̂′ = â+ B̂√
2

. (3.32)

Next, we observe the difference R̂ between the amplitudes of those two beams by a differential
amplifier:

R̂ ≃ B̂′†B̂′ − â′†â′

= â+ â†√
2

B̂ + B̂†
√
2

+ â − â†√
2i

B̂ − B̂†
√
2i

. (3.33)

The expectation value of R̂ is calculated as

∝Ψ|R̂|Ψ〉 = ∝ψ|

â+ â†√

2
φ + φ∗

√
2

+ â − â†√
2i

φ − φ∗
√
2i



|ψ〉

=
√
2|φ| ∝ψ|(X̂ cos ω + Ŷ sin ω)|ψ〉 . (3.34)

This equation means that we can measure only one component of quadratures by observing
R̂. For example, if ω = 0, we can measure only the X̂ quadrature. If we tune the phase ω
to be the same as the phase of amplification by the AMP JPA, we can measure only the
amplified quadrature. This tuning is possible by using the same microwave generator for the
AMP JPA and the local oscillator of the homodyne measurement; see figure 3. Thus, the
expectation value of the normalized observable R̂′ ≃ R̂/

√
2|φ| becomes

∝Ψ|R̂′|Ψ〉 = ∝ψ|X̂|ψ〉 . (3.35)

Furthermore, the measurement error of the operator R̂′ is

∝Ψ|(R̂′ − X̂)2|Ψ〉 = ∝ψ|â†â|ψ〉
2|φ|2

, (3.36)

which converges to zero in the limit of |φ| → ∞. Therefore, X̂ can be accurately measured
through the homodyne measurement using the local oscillator with a large number of photons.

– 18 –



J
H
E
P
0
9
(
2
0
2
4
)
1
9
1

4 Sensitivity

We determine the sensitivity of our setup using a test statistic that is introduced in refs. [36, 83]
by developing the log-likelihood-ratio test. Based on the discussion by refs. [36, 83], we
calculate the following test statistic in order to determine the 95% exclusion limits,

q = Tint
π

 ∞

0
dω
(

1 − B(ω)
S(ω) +B(ω)

)
− ln

(
1 + S(ω)

B(ω)

)
, (4.1)

where Tint is the experimental integration time, and S(ω) and B(ω) are the signal and noise
power spectral density respectively, which are computed in appendix A. The 95% exclusion
limits are obtained by solving q = −2.71.

According to the calculation in appendix A, we obtain

q # −32g3effN2
Cg

4
annτ

5/2
magρ2aTintG

1/2
s Q3/2

9m4
nm

7/2
a

# −3.5 → 1059g4ann
(

Tint
1min

)(
ma

1µeV

)−2(Gs

102
)1/2( M

100 g

)7/2( Q

106
)3/2

, (4.2)

where gann ≃ Cannmn/fa, and we have used NC = 1023(M/100 g), τmag = 1 s, ρa =
0.45GeV/cm3, and eq. (3.24) for geff . Note that since the cavity is placed under a low
temperature T ! Tc = O(1)mK, the sensitivity does not depend on T but is limited by
the quantum fluctuation. Solving q = −2.71, we estimate the expected exclusion limits
on the axion-neutron coupling as

gann # 1.7 → 10−15
(

Tint
1min

)−1/4( ma

1µeV

)1/2(Gs

102
)−1/8( M

100 g

)−7/8( Q

106
)−3/8

. (4.3)

In our setup, we scan the magnetic field Bz and the cavity size so that the axion dark
matter with mass ma # ωL = ωcavity can be searched for. Each scan step has a sensitivity
on the axion mass width ∼ 1/τ around the Larmor frequency

ma ∼ 0.13µeV
(
Bz

1T

)
. (4.4)

For simplicity, we approximate the sensitivity curve for each scan by a rectangle with width
1/τ instead of using a Breit-Wigner shape. The typical size of the cavity Lcavity is estimated
by evaluating the corresponding Compton length as

Lcavity ∼ 1.2m
(1µeV

ma

)
. (4.5)

The upper limit of the axion mass that can be searched by our experiment is determined by
the upper limit of the magnetic field Bz. We adopt 25T as the maximum of Bz, which can
be regarded as realistic as planned for example in CAPP25T by IBS/BNL [84].4

The squeezing level Gs is also crucial for sensitivity estimation. Here, we summarize
the current status of the squeezing level in various experiments including the gravitational

4As a more optimistic option, ∼ 45T is also planned to be developed [85].
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wave telescope. The squeezing levels are usually represented in the unit of dB, and xdB
of squeezing corresponds to Gs = 10x/10 in our setup. In the context of the gravitational
wave detection, 6 dB quantum noise reduction (corresponding to Gs = 100.6) has already
been reported [86], while the HAYSTAC experiment of the axion dark matter detection has
achieved 4 dB [16]. Even larger values have already been achieved for the squeezed state
production of light, such as 8 dB for the microwave and the terahertz range [87, 88], and 15 dB
for the megahertz range [89]. It is notable, however, that a hindrance to using the squeezing
state for the quantum measurement is the optical loss, which is one of the main obstacles
that we have to tackle to improve the sensitivity further (see the discussion in section 5).

In figure 5, we show the 95% exclusion limits on the axion-neutron coupling gann with
five benchmark setups with the total integration time fixed to Ttot = 2years. The blue
regions show the sensitivities for ideal setups with Tint = 30 s, M = 100 g, and Q = 106,
with the magnetic field scanned within the range of 3.1T ! Bz ! 25T. The red regions
show other ideal setups aiming at smaller couplings of µeV axions using longer integration
time Tint = 300 s, scanning the magnetic field within 6.2T ! Bz ! 7.7T. The light-colored
and dark-shaded regions for both colors represent the setups with and without quantum
measurement techniques, respectively, and the former assumes the squeezing parameter of
Gs = 20dB. Here we used Q = 106 as the cavity quality factor. This value is realistic
compared to the state-of-the-art value of Q = 13 → 107 at a high magnetic field of 8T, which
has been very recently reported by ref. [95]. Besides, we put a sensitivity for a more realistic
setup with Tint = 30 s, M = 3 g, Q = 106, and Gs = 0dB. The 3 g of 3He corresponds to about
1mol of 3He nuclei, a typical amount used in superfluid experiments. All setups scan the
axion mass region with a scan width corresponding to the axion width 1/τ = 1/τa = 10−6ma

for each scan based on the discussion around eq. (3.13). We can see that our experiment can
cover the predicted values of |gann| by the KSVZ model around ma ∼ µeV, and for the DFSZ
axion, a broader range can be searched. It can also seen that, even in a realistic setup, the
parameter space can be explored beyond bounds from astronomical observations.

5 Conclusion and discussion

In this paper, we proposed to use the nuclear magnon modes in the ferromagnetic A1 phase of
the superfluid 3He for axion DM detection. We stressed the importance of this approach as a
way to detect the axion-nucleon coupling, which is one of the most important features of the
QCD axion. As a detection method of the nuclear magnon, we proposed to use the mixing
between the magnon and the cavity photon modes, which then allows us to use quantum
measurement techniques such as squeezing and the homodyne measurement to enhance the
DM-induced signal. We showed the quantum mechanical description of our approach and
derived the corresponding sensitivity on the axion-neutron coupling gann. The result shows
that our proposed approach has a sensitivity to axions with masses of about µeV, which
exceeds the current best constraints by stellar physics and reaches the prediction of the KSVZ
and DFSZ axion model. Furthermore, quantum measurement techniques turned out to be
useful for enhancing the sensitivity to weak signals induced by the axion DM.

In section 4, we have used the squeezing parameter Gs = 20dB for benchmark setups
with quantum measurement techniques. Currently, Gs has reached 15 dB [89], and it is
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We may have two difficulties in our experimental setup. One concerns the performance of
the refrigerator. We have assumed that the meter-sized cavity is cooled to about 2mK, where
the 3He sample becomes the A1 phase. Actually, there is no such refrigeration technology
yet. The CUORE experiment, which searches for neutrinoless double beta decay events, is
the most successful in cooling such a large volume. In this experiment, a cooper vessel of
1m3 was cooled to 6mK for 15 days using a dilution refrigerator [97]. In order to reach a
lower temperature, we need a nuclear demagnetization refrigerator. This type of refrigerator
is currently under rapid development, and a refrigerator that continuously reaches sub-mK
has recently been developed [98]. Further development of refrigeration technology must be
awaited to achieve the 2mK cavity.

The other concerns the dynamic range of JPAs. The tunable frequency for common
JPAs is the so-called circuit quantum electrodynamics [99] range of about 4 - 8GHz, which is
larger than the Larmor frequency with the 25T magnetic field. We need a JPA for sub-GHz
frequency to search for the axion within the mass range of our interest using the squeezing
technique. The development of sub-GHz JPAs is seen in some recent papers [100–102], but
the noise for them remains inferior to a SQUID amplifier. Therefore, the implementation
of JPAs in our experiment requires further refinement of the technology of sub-GHz JPAs.
Alternatively, a semi-monolithic optical parametric oscillator, which has been reported to
exhibit 6.2 dB of squeezing at 2MHz [103], could be used instead of the JPA.

Finally, we comment that there are several other quantum measurement techniques that
can also be applied to DM detection. These techniques include two-mode squeezing and
state-swapping interactions [42, 47]. For a higher frequency range, single photon counting
is also a viable approach [48]. There is an attempt using superconducting qubits, which
have reduced the noise to 15.7 dB below the standard quantum limit through the repeated
quantum non-demolition measurements [46].
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A Statistical treatment of noise

A.1 Formulation
In this section, we derive the expression eq. (4.2) of our test statistic q. This quantity has been
introduced as a parameter for a log-likelihood ratio test in ref. [36]. We consider a quantum
formulation of our system including the magnon and the cavity modes and apparatuses
for squeezing and the homodyne measurement, and use it to evaluate the signal and the
background spectral densities. We start with the following Hamiltonian for the cavity mode
ĉ and background modes interacting with the cavity mode:

Htot = Hsys +Hint +HB , (A.1)

Hsys = ωLĉ
†ĉ+ ωLd̂

†d̂ − i
Γmag
2 d̂†d̂+ igeff(ĉ†d̂ − ĉd̂†), (A.2)

Hint = i
∑

j=m,l


κj
2π


dω
[
ĉ†âj(ω) − ĉâ†j(ω)

]
+ i


κa
2π


dω
[
d̂†âa(ω) − d̂â†a(ω)

]
, (A.3)

HB =
∑

j=m,l,a


dω ω â†j(ω)âj(ω), (A.4)

where d̂ is the annihilation operator of magnon defined by eq. (2.50) and Γmag ≃ τ−1
mag is

the bandwidth of magnon, and we used the rotating wave approximation. The last term of
eq. (A.2) describes the mixing of magnons and cavity modes, and the magnon field d̂ has
been redefined in comparison to eq. (3.21) for later convenience. Eq. (A.3) represents the
measurement of the cavity mode, the loss of the cavity electromagnetic field, and the magnon
excitation by axions as interactions with three ports: the measurement port âm, the loss
port âl, and the axion port âa, respectively. The coupling constant for the loss port κl is
determined with the cavity quality factor Q as κl = ma/Q.

In Heisenberg picture, the equations of motion for ĉ(t), d̂(t), and âj(ω, t) are
dĉ(t)
dt = −iωLĉ(t) + geff d̂(t) +

∑

j=m,l


κj
2π


dω âj(ω), (A.5)

dd̂(t)
dt = −iωLd̂(t) − geff ĉ(t) − Γmag

2 d̂(t) +

κa
2π


dω âa(ω), (A.6)

dâj(ω, t)
dt = −iωâj(ω, t) −


κj
2π


ĉ(t) (j = m, l)
d̂(t) (j = a)

. (A.7)

The formal solution of eq. (A.7) is written with an initial time tin (< t) as

âj(ω, t) = e−iω(t−tin)âj(ω, tin) −

κj
2π

 t

tin
dt′ e−iω(t−t′)


ĉ(t′) (j = m, l)
d̂(t′) (j = a)

. (A.8)

Substituting eq. (A.8) into eqs. (A.5) and (A.6), we get the Heisenberg-Langevin equations,
dĉ(t)
dt = −iωLĉ(t) − κc

2 ĉ(t) + geff d̂(t) +
∑

j=m,l


κj
2π


dω e−iω(t−tin)âj(ω, tin), (A.9)

dd̂(t)
dt = −iωLd̂(t) − κd

2 d̂(t) − geff ĉ(t) +

κa
2π


dω e−iω(t−tin)âj(ω, tin), (A.10)
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where κc ≃ κm + κl and κd ≃ κa + Γmag. We define the so-called input field as

âs,j(t) ≃ 1√
2π


dω e−iω(t−tin)âj(ω, tin). (A.11)

The input field of the measurement port is shown in figure 3. In terms of the input fields,
eqs. (A.9) and (A.10) are rewritten as

dĉ(t)
dt = −iωLĉ(t) − κc

2 ĉ(t) + geff d̂(t) +
∑

j=m,l

√
κj âs,j(t), (A.12)

dd̂(t)
dt = −iωLd̂(t) − κd

2 d̂(t) − geff ĉ(t) +
√
κaâs,a(t). (A.13)

We can formally solve eq. (A.7) with another time tout (> t > tin) as

âj(ω, t) = e−iω(t−tout)âj(ω, tout) −

κj
2π

 t

tout
dt′ e−iω(t−t′)


ĉ(t′) (j = m, l)
d̂(t′) (j = a)

, (A.14)

and we can also define the output field as

âo,j(t) ≃ 1√
2π


dω e−iω(t−tout)âj(ω, tout). (A.15)

Noting that the right-hand sides of eqs. (A.8) and (A.14) have the same form, we find the
input-output relation by integrating them by ω:

âo,j(t) = âs,j(t) − √
κj


ĉ(t) (j = m, l)
d̂(t) (j = a)

. (A.16)

The output field of the measurement port is also shown in figure 3. Transforming into the
rotating frame, i.e., Â(t) → Â(t)e−iωLt for all annihilation operators, we can eliminate the
first terms in eqs. (A.12) and (A.13). Thus, in the Fourier domain, we can solve eq. (A.13) as

d̂(!ω) = 1
κd/2 − i!ω [−geff ĉ(!ω) +

√
κaâs,a(!ω)], (A.17)

where !ω ≃ ω − ωL. Substituting this into eq. (A.12) and using the input-output relation
for the measurement port, we get

âo,m(!ω) =
∑

j=m,l,a

χj(!ω)âs,j(!ω), (A.18)

where

χj(!ω) = δmj −

κc
2 + g2eff

κd/2 − i!ω − i!ω
−1

→ √
κmκj






1 (j = m, l)
geff

κd/2 − i!ω (j = a) . (A.19)

Note that the susceptibility χj(!ω) satisfies χ∗
j (−!ω) = χj(!ω).
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We move to the quadrature basis by

X̂(!ω)
Ŷ (!ω)



= 1√
2


1 1

−i i


â(!ω)

â†(−!ω)



≃ P


â(!ω)

â†(−!ω)



. (A.20)

We would like to relate the output operator X̂out,m, which goes out from the AMP JPA, with
the input operator X̂in,m, which comes into the SQ JPA, by an SSR/cavity susceptibility
Ξj as X̂out,m = ∑

j ΞjX̂in,j . First, the SQ JPA squeezes X̂in,m:

$̂Xs,m(!ω) = 1√
Gs

$̂Xin,m(!ω), (A.21)

while leaving the operators at other ports unaffected. The SQ JPA amplifies the other quadra-
ture at the measurement port Ŷin,m by

√
Gs, but we do not track the Ŷ quadratures because

we will only measure the X̂ quadrature. Using eq. (A.18), we find that the susceptibility in
the quadrature basis is the same as that in the original basis χj(!ω):


X̂o,m(!ω)
Ŷo,m(!ω)



= P

∑
j χj(!ω) 0

0 ∑
j χ

∗
j (−!ω)



P−1

X̂s,j(!ω)
Ŷs,j(!ω)



=
∑

j


χj(!ω) 0

0 χj(!ω)


X̂s,j(!ω)
Ŷs,j(!ω)



. (A.22)

Hence, X̂o,m(!ω) = ∑
j χj(!ω)X̂s,j(!ω). Finally, the AMP JPA performs amplification

with a squeezing parameter Ga as

X̂out,m(!ω) =
√
GaX̂o,m(!ω). (A.23)

As a result, we get the SSR/cavity susceptibility,

Ξj(!ω) =







Ga

Gs
χj(!ω) (j = m)

√
Gaχj(!ω) (j = l, a)

, (A.24)

and accordingly,

X̂out,m(!ω) =
∑

j=m,l,a

Ξj(!ω)X̂in,j(!ω)

=
√
Ga



χm(!ω)√
Gs

X̂in,m(!ω) +
∑

j=l,a

χj(!ω)X̂in,j(!ω)



. (A.25)

Next, we calculate the output power spectral density (PSD), P (!ω). Eq. (A.25) leads to

P (!ω) ≃ 1
Tint

〈
X̂†

out,m(!ω)X̂out,m(!ω)
〉

= Ga

Tint

[
|χmm(!ω)|2

Gs

〈
X̂†

in,m(!ω)X̂in,m(!ω)
〉

+
∑

j=l,a

|χmj(!ω)|2
〈
X̂†

in,j(!ω)X̂in,j(!ω)
〉]

, (A.26)
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where Tint is the integration time for each scan. The input spectral densities are

1
Tint

〈
X̂†

in,m(!ω)X̂in,m(!ω)
〉
= 1

Tint

〈
X̂†

in,l(!ω)X̂in,l(!ω)
〉
= nT + 1

2 , (A.27)
1

Tint

〈
X̂†

in,a(!ω)X̂in,a(!ω)
〉
= na +

1
2 , (A.28)

where nT and na are the numbers of the input thermal photon and the axion per unit time per
unit bandwidth, respectively. We assumed that the thermal noise dominates the input noise for
the measurement port and the loss port. Note that nT and 1/2s in the spectral density matrix
correspond to the thermal and the quantum noises, respectively. We also assume nT ∈ 1/2
since our experiment is operated under a low temperature T < Tc = O(1) mK, which is lower
than the SQL temperature TSQL = ma/kB = O(10) mK. Decomposing the PSD into the
signal and the noise part, we get the signal and the noise spectral densities S(!ω) and B(!ω),

S(!ω) = Ga

Tint

∣∣∣∣∣
κc
2 + g2eff

κd/2− i!ω − i!ω
∣∣∣∣∣

−2
g2effκm

(κd/2)2+(!ω)2κana, (A.29)

B(!ω) = Ga

2Tint

∣∣∣∣∣
κc
2 + g2eff

κd/2− i!ω − i!ω
∣∣∣∣∣

−2

→



 1
Gs







−κm+κl

2 + g2eff
(κd/2)2+(!ω)2

κd
2

2
+


g2eff
(κd/2)2+(!ω)2 −1

2
(!ω)2






+κmκl+
g2effκmκa

(κd/2)2+(!ω)2



 . (A.30)

A.2 Creation rate of magnons

Let us compute the creation rate of magnons in order to estimate κana. We start with the
equation of motion for the magnon operator,

dd̂(t)
dt = −iωLd̂(t) − Γmag

2 d̂(t) − i
Cann

fa

√
ρaNCv

+
a (t) sin[ωLt+ ϕ(t)], (A.31)

where the last term comes from the axion-magnon interaction derived in eq. (3.8). Under
the assumption d̂(0) = 0, the formal solution is

d̂(t) = −i
Cann

fa

√
ρaNC

 t

0
dt′ e(−iωL−Γmag/2)(t−t′)v+a (t′) sin[ωLt

′ + ϕ(t′)]. (A.32)

It is convenient to introduce the autocorrelation function C(t, t′) ≃
〈
d̂†(t)d̂(t′)

〉
, where the

expectation value is taken for the stochastic values: the axion velocity va(t) and the phase ϕ(t).
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For t, t′ " τa, where τa is the axion coherence time τa # (mav2a)−1, we can compute C(t, t′) as

C(t, t′) =
(
Cann

fa

)2
ρaNC

 t

0
dt̄
 t′

0
dt̄′ e(+iωL−Γmag/2)(t−t̄)e(−iωL−Γmag/2)(t′−t̄′)

→
〈
v−
a (t̄)v+a (t̄′) sin[ωLt̄+ ϕ(t̄)] sin[ωLt̄

′ + ϕ(t̄′)]
〉

#
(
Cann

fa

)2
ρaNC

 t

0
dt̄
 t′

0
dt̄′ e(+iωL−Γmag/2)(t−t̄)e(−iωL−Γmag/2)(t′−t̄′)

→ 1
3v

2
a cos[ωL(t̄ − t̄′)]Θ(τa −

∣∣t̄ − t̄′
∣∣)

# 2
3

(
Cann

fa

)2
ρaNCv

2
aτae

iωL(t−t′)e−(Γmag/2)(t+t′)Γ−1
mag

[
eΓmag min[t,t′] − 1

]
. (A.33)

In order to get the second line, we used an assumption that stochastic quantities do not
correlate unless

∣∣t̄ − t̄′
∣∣ < τa. The spectral density is obtained by Fourier-transforming C(t, t′),

1
Tint

〈
d̂†(ω)d̂(ω)

〉
= 1

Tint

 Tint

0
dt
 Tint

0
dt′ e−iω(t−t′)C(t, t′)

# 8
3

(
Cann

fa

)2
ρaNCv

2
aτa

1
Γ2mag + 4!ω2 . (A.34)

Here, we used Tint " τmag = Γ−1
mag.

Next, we will estimate κana. The solution of eq. (A.13) in the Fourier domain with
ĉ = 0 leads to

âs,a(!ω) =
κd/2 − i!ω

√
κa

d̂(!ω) # Γmag/2 − i!ω
√
κa

d̂(!ω), (A.35)

where we assumed κa ∈ Γmag. Thus, na is estimated as

na = 1
Tint

〈
â†in,a(!ω)âin,a(!ω)

〉

# (Γmag/2)2 + !ω2

κa

1
Tint

〈
d̂†(!ω)d̂(!ω)

〉

= 2
3κa

(
Cann

fa

)2
ρaNCv

2
aτa, (A.36)

and hence,

κana # 2
3

(
Cann

fa

)2
ρaNCv

2
aτa. (A.37)

Considering that na has a bandwidth !a # mav2a, which reflects the axion coherence, we
should modify eq. (A.37) as

κana # 2
3

(
Cann

fa

)2
ρaNCv

2
aτaΘ(!a/2 − |!ω|). (A.38)
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A.3 Test statistic
In order to determine the 95% exclusion limit, we introduce a log-likelihood ratio test statistic
q [36, 83]. It is computed in the limits of Tint " {τmag, τa} and S(!ω) ∈ B(!ω) as

q # Tint
π

 ∞

0
dω
(

1 − B(ω)
S(ω) +B(ω)

)
− ln

(
1 + S(ω)

B(ω)

)

# −Tint
2π

 ∞

0
d(!ω)

(
S(!ω)
B(!ω)

)2
. (A.39)

When we assume κa ∈ {geff ,Γmag,κm,κl}, we can approximate q as

q # −8g4effκ2mN2
Cg

4
annρ

2
av

4
aτ

2
aTint

9πm4
n

G2
s

→
 ∆a/2

−∆a/2
d(!ω)

[

(!ω)4 +
(−κm + κl

2

)2
+
(Γmag

2

)2
− 2g2eff +Gsκmκl

}

(!ω)2

+
(−κm + κl

2
Γmag
2 + g2eff

)2
+Gsκmκl

(Γmag
2

)2]−2

. (A.40)

The 95% exclusion limit corresponds to the point q # −2.71.
The parameter κm determines the speed of the signal readout, and we can choose the

optimal coupling κm so that the size of the test statistic |q| is maximized. For this purpose,
we discuss the maximization of the following integral,

I(κm) = κ2m

 ∆a/2

−∆a/2
d(!ω)

[

(!ω)4

+
(−κm + κl

2

)2
+
(Γmag

2

)2
− 2g2eff +Gsκmκl

}

(!ω)2

+
(−κm + κl

2
Γmag
2 + g2eff

)2
+Gsκmκl

(Γmag
2

)2]−2

≃ κ2m

 ∆a/2

−∆a/2
d(!ω)

[
(!ω)4 + ξ(κm)(!ω)2 + ζ(κm)

]−2
. (A.41)

The integral (A.41) is enhanced when κm is fine-tuned to κm # κl + 4g2eff/Γmag ≃ κ∗
m. With

such fine-tuning, the width of the integrand of eq. (A.41) becomes sufficiently smaller than
!a, and hence the integration range is approximated as −∞ to +∞:

I(κ∗
m) # (κ∗

m)2
 ∞

−∞
d(!ω) 1

[!ω4 + ξ(κ∗
m)!ω2 + ζ(κ∗

m)]2

= (κ∗
m)2 π

2
√
ξ(κ∗

m)ζ(κ∗
m)3

. (A.42)

Therefore, substituting κm = κ∗
m into eq. (A.40), we obtain

q # −64g4effN2
Cg

4
annρ

2
av

4
aτ

2
aTintG

1/2
s

9m4
nΓ5mag

→
(
γ2eff + γl

)2(
γ2eff − 1

)2
+ 4Gsγl

(
γ2eff + γl

)−1/2[
γl
(
γ2eff + γl

)]−3/2
, (A.43)
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where we have defined the following dimensionless variables,

γeff ≃ 2geff
Γmag

= O
(
106
)
, (A.44)

γl ≃ κl
Γmag

= O
(
103
)( ma

µeV

)(
Q

106
)−1

. (A.45)

Since γ2eff is sufficiently larger than γl for ma ∼ µeV, we can approximate q as

q # −64g4effN2
Cg

4
annρ

2
av

4
aτ

2
aTintG2

s

9m4
nΓ1/2

mag
γ−1
eff γ

−3/2
l

= −32g3effN2
Cg

4
annρ

2
aTintG

1/2
s Q3/2

9m4
nΓ5/2

magm
7/2
a

# −3.5 → 1059g4ann
(

Tint
1min

)(
ma

1µeV

)−2(Gs

102
)1/2( M

100 g

)7/2( Q

106
)3/2

. (A.46)

Here we have used geff/2π = 0.3MHz, NC = 1023(M/100 g), Γmag = 1Hz, and ρa =
0.45GeV/cm3 to get the last line.

B Josephson parametric amplifier (JPA)

Here, we will review Josephson parametric amplifier (JPA).

B.1 Effective description

Let us imagine that the circuit model has two junctions at x1 and x2. The effective Hamiltonian
is given by

H =


d3x
 1
2m | $DΨ1|2 + V (Ψ1) +

1
2m | $DΨ2|2 + V (Ψ2)


(B.1)

+ αΨ∗
2Ψ1 [δ(x − x1) + δ(x − x2)] + h.c., (B.2)

where x1, x2 represent the places of the junctions, and Ψ1,Ψ2 are the wave functions of Cooper
pairs, where Ψ1(x) lives within the interval x1 < x < x2, while Ψ2(x) within x2 < x < x1 (note
that this is a loop). In the case of a circuit without any junctions, energy minimization requires

$0 = $DΨ = $∇Ψ − i2e $AΨ = i|Ψ|($∇ω − 2e $A), (B.3)

where ω is the phase of Ψ and $A is the photon field. Integrating along the circuit, we get

2πn =
∮
$∇ω · d$r =

∮
2e $A · d$r = 2eΦ, (B.4)

with an integer n. We used the single-valuedness of the wave function for the left equation,
and Φ is the magnetic flux. For the Josephson junction, however, $∇ω1,2 need to be treated
independently and hence the magnetic flux does not need to be quantized,

2eΦ =
∮
$∇ω =

 x2

x1

$∇ω1 +
 x1

x2

$∇ω2 = ω1(x2) − ω1(x1) + ω2(x1) − ω2(x2). (B.5)
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For our purposes, we are not interested in the dynamics in the bulk of the superconductor
where all excitations are gapped but rather only in the junctions where the phase degrees of
freedom can have much smaller excitation energies. Noting the canonical commutation relation

[Ψ(x),Ψ†(y)] = δ(x − y), (B.6)

and rewriting it as Ψ(x) =
√
N(x)eiθ(x), we can derive5

[ω(x), N(y)] = iδ(x − y). (B.7)

In addition, we are only interested in the phase differences across the junction. Therefore
we reduce the degrees of freedom down to ϑ1 = ω2(x1) − ω1(x1) and ϑ2 = ω1(x2) − ω2(x2)
subject to the constraint ϑ1 + ϑ2 = 2eΦ.

On the other hand, across the junctions we expect a capacitance C so that the Hamiltonian
contains

Q(x1,2)2
2C = (2e)2

2C n2
1,2, (B.8)

where we defined n1 = 1
2N2(x1) − 1

2N1(x1) and n2 = 1
2N1(x2) − 1

2N2(x2). Here we made a
simplification that the capacitance is the same for both junctions. Combining them together,
we find the simplified Hamiltonian

H = 2e2
C

(n2
1 + n2

2) + 2α
(

N1(x1)N2(x1) cosϑ1 +

N1(x2)N2(x2) cosϑ2

)
. (B.9)

We define ϑ ≃ (ϑ1 − ϑ2)/2 and its canonical conjugate n = n1 − n2. Assuming that two
Josephson energies are same, 2α

√
N1(x1)N2(x1) = 2α

√
N1(x2)N2(x2) = −EJ , we get

H = e2

C
n2 − 2EJ cos(eΦ) cos(ϑ). (B.10)

Here we neglected the term proportional to (n1 + n2)2 since the value of n1 + n2 is conserved.

B.2 Flux-driven Josephson parametric amplifier

In the following, we explain how the flux-driven Josephson parametric amplifiers (FJPA)
work in squeezing and amplifying the signal. We consider the simplified theoretical model of
the FJPA (figure 6). The FJPA consists of a SQUID biased by the external flux Φext and
a shunting capacitance Ct and is connected to the input/output port.

Similarly to eq. (B.10), The Hamiltonian describing the resonator part of FJPA is

Hsys =
(2en)2
2Ct

− EJ cosϑ1 − EJ cosϑ2

= 4ECn
2 − Eeff

J (Φext) cosϑ, (B.11)
5Considering the periodicity of θ, the right commutation relation of these variables is

[eiθ(x), N(y)] = eiθ(x)δ(x − y).
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Figure 6. Schematic of a flux-driven Josephson parametric amplifier (FJPA). It consists of a SQUID
biased by the external flux Φext = ΦDC + ΦAC cos(αωct) and a shunting capacitance Ct, and is
connected to the input/output port. We assume two junctions in the SQUID have the same Josephson
energies EJ .

where EC = e2/(2Ct), Eeff
J (Φext) = 2EJ cos(eΦext) = 2EJ cos(πΦext/Φ0). We set the DC

part of Φext to the quarter of magnetic flux quantum, i.e., bias the amplifier at ΦDC = Φ0/4.
In the absence of a pump,

Hsys = 4ECn
2 −

√
2EJ cosϑ. (B.12)

Expanding cosϑ to order ϑ2, we can write the Hamiltonian by the ladder operator.

Hsys = ωcâ
†â, (B.13)

where

ϑ =
√

2EC

EJ

1/4
(â† + â), (B.14)

n = i

2

(
EJ√
2EC

)1/4
(â† − â), (B.15)

ωc = 2

2
√
2ECEJ . (B.16)

Next, we consider including the AC part of the external field Φext due to the pumping

Φext = ΦDC + ΦAC cos(αωct). (B.17)

We set the AC part of Φext smaller than the DC part ΦAC ∈ ΦDC, and evaluate Eeff
J (Φext) as

Eeff
J (Φext) # Eeff

J (ΦDC) +
∂Eeff

J (Φ)
∂Φ

∣∣∣∣∣
Φ=ΦDC

ΦAC cos(αωct)

=
√
2EJ −

(
πΦAC

Φ0

)√
2EJ cos(αωct). (B.18)
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signal in
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Internal loss

Figure 7. Schematic of the parametric amplifier. Here we use opto-mechanical analogy (resonator
consisting of the cavity) instead of Josephson parametric amplifier.

Thus, Hamiltonian Hsys becomes

Hsys # ωcâ
†â+ µr cos(αωct)(â† + â)2, (B.19)

where µr = πΦAC
Φ0

(
ECEJ√

2

) 1
2 . We focus on the parametric amplifier region (α # 2). Applying

rotating wave approximation, we can estimate Hsys as

Hsys # ωcâ
†â+ µr

2 eiαωctâ2 + µr

2 e−iαωctâ†2. (B.20)

We assume the resonator has a semi-infinite waveguide mode (the annihilation operator
of which is denoted as b̂k) connected as an input/output port and also has internal losses
in the resonator (the annihilation operator of which is denoted as ĉk). The schematic of
this parametric amplifier using opto-mechanical analogy is figure 7. The total Hamiltonian
describing this is

Htot = Hsys +Hsig +Hloss, (B.21)

Hsys = ωcâ
†â+ µr

2 eiαωctâ2 + µr

2 e−iαωctâ†2, (B.22)

Hsig =


dω

ωb̂†(ω)b̂(ω) + i


κe
2π (â

†b̂(ω) − b̂†(ω)â)

, (B.23)

Hloss =


dω

ωĉ†(ω)ĉ(ω) + i


κi
2π (â

†ĉ(ω) − ĉ†(ω)â)

. (B.24)

Here, κe is the external loss rate of the resonator, and κi is the internal loss rate of the
resonator. As we did in appendix A, we get Heisenberg equations for the resonator mode
â and the input-output relationship of the waveguide:

dâ(t)
dt =

(
−iωc − κ

2

)
â(t) − iµre

−iαωctâ†(t) + √
κeb̂in(t) +

√
κiĉin(t), (B.25)

b̂out(t) = b̂in(t) −
√
κeâ(t), (B.26)

where κ ≃ κi + κe.
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B.3 Resonator equation

In this subsection, we neglect the internal loss (κ = κe) and switch to a frame rotating at
the angular frequency αωc/2, and define the following operators:

Â(t) = ei
α
2 ωctâ(t), (B.27)

B̂in (out)(t) = ei
α
2 ωctb̂in (out)(t). (B.28)

Assuming α = 2 for simplicity, the resonator equation (B.25) and the input-output rela-
tion become

dÂ(t)
dt = −κ

2 Â(t) − iµrÂ
†(t) +

√
κB̂in(t),

B̂out(t) = B̂in(t) −
√
κÂ(t). (B.29)

We consider the case with monochromatic incident light, i.e.,

B̂in(t) = B̂in(0)e−i∆ω, (B.30)

where !ω ≃ ω − ωc. In this case, the stationary solution of Â(t) has only two Fourier
components e±i∆ωt. The resonator equations for these components are

−i!ω


Â(!ω)
Â†(−!ω)



=


−κ/2 −iµr

+iµr −κ/2


Â(!ω)

Â†(−!ω)



+
√
κ


B̂in(0)

0



, (B.31)

and
+i!ω


Â(−!ω)
Â†(!ω)



=


−κ/2 −iµr

+iµr −κ/2


Â(−!ω)
Â†(!ω)



+
√
κ


0

B̂†
in(0)



. (B.32)

Solving these equations, we obtain

Â(t) =
κ
2 − i!ω

κ
2 − i!ω

2 − µ2
r

√
κB̂in(0)e−i∆ωt + −iµrκ

2 + i!ω
2 − µ2

r

√
κB̂†

in(0)e+i∆ωt. (B.33)

The output field is derived using eq. (B.29) as

B̂out(t) =
[

1 −
κ
2 − i!ω


κ

κ
2 − i!ω

2 − µ2
r

]

B̂in(0)e−i∆ωt

+ −iµrκκ
2 + i!ω

2 − µ2
r

B̂†
in(0)e+i∆ωt. (B.34)

The first term represents the signal component, and the second term represents the idler
component.

When !ω = 0, these two modes degenerate. In this case, the output gain shows the
phase-sensitivity. In order to verify this, we define the following quadratures:

X̂θ ≃ B̂e−iθ + B̂†eiθ√
2

, (B.35)

Ŷθ ≃ B̂e−iθ − B̂†eiθ√
2i

. (B.36)

– 33 –



J
H
E
P
0
9
(
2
0
2
4
)
1
9
1

From eq. (B.34) with !ω = 0, we find

X̂θ, out =
[

1 −
κ2
2

κ2
4 − µ2

r

− µrκ sin(2ω)
κ2
4 − µ2

r

]

X̂θ, in − µrκ cos(2ω)
κ2
4 − µ2

r

Ŷθ, in, (B.37)

Ŷθ, out =
[

1 −
κ2
2

κ2
4 − µ2

r

+ µrκ sin(2ω)
κ2
4 − µ2

r

]

Ŷθ, in − µrκ cos(2ω)
κ2
4 − µ2

r

X̂θ, in. (B.38)

When ω = (1/4 + n)π (n ∈ Z) in particular, they take the following form:

X̂θ,out =
√
GX̂θ,in, Ŷθ,out =

1√
G
Ŷθ,in, (B.39)

where the parameter G is

G =

µr + κ

2
µr − κ

2

2
. (B.40)

Eq. (B.39) represents the squeezing by a JPA and is what we used in refs. eqs. (3.29) and (3.30).

Open Access. This article is distributed under the terms of the Creative Commons Attri-
bution License (CC-BY4.0), which permits any use, distribution and reproduction in any
medium, provided the original author(s) and source are credited.

References
[1] R.D. Peccei and H.R. Quinn, CP Conservation in the Presence of Instantons, Phys. Rev. Lett.

38 (1977) 1440 [INSPIRE].

[2] C. Abel et al., Measurement of the Permanent Electric Dipole Moment of the Neutron, Phys.
Rev. Lett. 124 (2020) 081803 [arXiv:2001.11966] [INSPIRE].

[3] J. Preskill, M.B. Wise and F. Wilczek, Cosmology of the Invisible Axion, Phys. Lett. B 120
(1983) 127 [INSPIRE].

[4] A. Vilenkin and A.E. Everett, Cosmic Strings and Domain Walls in Models with Goldstone and
PseudoGoldstone Bosons, Phys. Rev. Lett. 48 (1982) 1867 [INSPIRE].

[5] Y. Asano et al., Search for a Rare Decay Mode K+ → π+νv and Axion, Phys. Lett. B 107
(1981) 159 [INSPIRE].

[6] J.E. Kim, Weak Interaction Singlet and Strong CP Invariance, Phys. Rev. Lett. 43 (1979) 103
[INSPIRE].

[7] M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Can Confinement Ensure Natural CP
Invariance of Strong Interactions?, Nucl. Phys. B 166 (1980) 493 [INSPIRE].

[8] M. Dine, W. Fischler and M. Srednicki, A Simple Solution to the Strong CP Problem with a
Harmless Axion, Phys. Lett. B 104 (1981) 199 [INSPIRE].

[9] A.R. Zhitnitsky, On Possible Suppression of the Axion Hadron Interactions (in Russian), Sov. J.
Nucl. Phys. 31 (1980) 260 [INSPIRE].

[10] ADMX collaboration, A SQUID-based microwave cavity search for dark-matter axions, Phys.
Rev. Lett. 104 (2010) 041301 [arXiv:0910.5914] [INSPIRE].

– 34 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1103/PhysRevLett.38.1440
https://doi.org/10.1103/PhysRevLett.38.1440
https://inspirehep.net/literature/119084
https://doi.org/10.1103/PhysRevLett.124.081803
https://doi.org/10.1103/PhysRevLett.124.081803
https://doi.org/10.48550/arXiv.2001.11966
https://inspirehep.net/literature/1778151
https://doi.org/10.1016/0370-2693(83)90637-8
https://doi.org/10.1016/0370-2693(83)90637-8
https://inspirehep.net/literature/179499
https://doi.org/10.1103/PhysRevLett.48.1867
https://inspirehep.net/literature/182105
https://doi.org/10.1016/0370-2693(81)91172-2
https://doi.org/10.1016/0370-2693(81)91172-2
https://inspirehep.net/literature/168335
https://doi.org/10.1103/PhysRevLett.43.103
https://inspirehep.net/literature/140128
https://doi.org/10.1016/0550-3213(80)90209-6
https://inspirehep.net/literature/142732
https://doi.org/10.1016/0370-2693(81)90590-6
https://inspirehep.net/literature/165061
https://inspirehep.net/literature/157263
https://doi.org/10.1103/PhysRevLett.104.041301
https://doi.org/10.1103/PhysRevLett.104.041301
https://doi.org/10.48550/arXiv.0910.5914
https://inspirehep.net/literature/835633


J
H
E
P
0
9
(
2
0
2
4
)
1
9
1

[11] ADMX collaboration, A Search for Invisible Axion Dark Matter with the Axion Dark Matter
Experiment, Phys. Rev. Lett. 120 (2018) 151301 [arXiv:1804.05750] [INSPIRE].

[12] ADMX collaboration, Extended Search for the Invisible Axion with the Axion Dark Matter
Experiment, Phys. Rev. Lett. 124 (2020) 101303 [arXiv:1910.08638] [INSPIRE].

[13] ADMX collaboration, Search for Invisible Axion Dark Matter in the 3.3–4.2 µeV Mass Range,
Phys. Rev. Lett. 127 (2021) 261803 [arXiv:2110.06096] [INSPIRE].

[14] HAYSTAC collaboration, Results from phase 1 of the HAYSTAC microwave cavity axion
experiment, Phys. Rev. D 97 (2018) 092001 [arXiv:1803.03690] [INSPIRE].

[15] HAYSTAC collaboration, A quantum-enhanced search for dark matter axions, Nature 590
(2021) 238 [arXiv:2008.01853] [INSPIRE].

[16] HAYSTAC collaboration, New results from HAYSTAC’s phase II operation with a squeezed
state receiver, Phys. Rev. D 107 (2023) 072007 [arXiv:2301.09721] [INSPIRE].

[17] B.T. McAllister et al., The ORGAN Experiment: An axion haloscope above 15 GHz, Phys. Dark
Univ. 18 (2017) 67 [arXiv:1706.00209] [INSPIRE].

[18] A.P. Quiskamp et al., Direct search for dark matter axions excluding ALP cogenesis in the 63-
to 67-µeV range with the ORGAN experiment, Sci. Adv. 8 (2022) abq3765 [arXiv:2203.12152]
[INSPIRE].

[19] D. Alesini et al., Galactic axions search with a superconducting resonant cavity, Phys. Rev. D
99 (2019) 101101 [arXiv:1903.06547] [INSPIRE].

[20] D. Alesini et al., Search for invisible axion dark matter of mass ma = 43 µeV with the
QUAX-aγ experiment, Phys. Rev. D 103 (2021) 102004 [arXiv:2012.09498] [INSPIRE].

[21] D. Alesini et al., Search for Galactic axions with a high-Q dielectric cavity, Phys. Rev. D 106
(2022) 052007 [arXiv:2208.12670] [INSPIRE].

[22] S. Lee et al., Axion Dark Matter Search around 6.7 µeV, Phys. Rev. Lett. 124 (2020) 101802
[arXiv:2001.05102] [INSPIRE].

[23] J. Jeong et al., Search for Invisible Axion Dark Matter with a Multiple-Cell Haloscope, Phys.
Rev. Lett. 125 (2020) 221302 [arXiv:2008.10141] [INSPIRE].

[24] CAPP collaboration, First Results from an Axion Haloscope at CAPP around 10.7 µeV, Phys.
Rev. Lett. 126 (2021) 191802 [arXiv:2012.10764] [INSPIRE].

[25] Y. Lee et al., Searching for Invisible Axion Dark Matter with an 18 T Magnet Haloscope, Phys.
Rev. Lett. 128 (2022) 241805 [arXiv:2206.08845] [INSPIRE].

[26] J. Kim et al., Near-Quantum-Noise Axion Dark Matter Search at CAPP around 9.5 µeV, Phys.
Rev. Lett. 130 (2023) 091602 [arXiv:2207.13597] [INSPIRE].

[27] A.K. Yi et al., Axion Dark Matter Search around 4.55µeV with
Dine-Fischler-Srednicki-Zhitnitskii Sensitivity, Phys. Rev. Lett. 130 (2023) 071002
[arXiv:2210.10961] [INSPIRE].

[28] D.F. Jackson Kimball et al., Overview of the Cosmic Axion Spin Precession Experiment
(CASPEr), Springer Proc. Phys. 245 (2020) 105 [arXiv:1711.08999] [INSPIRE].

[29] T. Wu et al., Search for Axionlike Dark Matter with a Liquid-State Nuclear Spin
Comagnetometer, Phys. Rev. Lett. 122 (2019) 191302 [arXiv:1901.10843] [INSPIRE].

[30] A. Garcon et al., Constraints on bosonic dark matter from ultralow-field nuclear magnetic
resonance, Sci. Adv. 5 (2019) eaax4539 [arXiv:1902.04644] [INSPIRE].

– 35 –

https://doi.org/10.1103/PhysRevLett.120.151301
https://doi.org/10.48550/arXiv.1804.05750
https://inspirehep.net/literature/1667010
https://doi.org/10.1103/PhysRevLett.124.101303
https://doi.org/10.48550/arXiv.1910.08638
https://inspirehep.net/literature/1760320
https://doi.org/10.1103/PhysRevLett.127.261803
https://doi.org/10.48550/arXiv.2110.06096
https://inspirehep.net/literature/1943806
https://doi.org/10.1103/PhysRevD.97.092001
https://doi.org/10.48550/arXiv.1803.03690
https://inspirehep.net/literature/1662068
https://doi.org/10.1038/s41586-021-03226-7
https://doi.org/10.1038/s41586-021-03226-7
https://doi.org/10.48550/arXiv.2008.01853
https://inspirehep.net/literature/1810188
https://doi.org/10.1103/PhysRevD.107.072007
https://doi.org/10.48550/arXiv.2301.09721
https://inspirehep.net/literature/2626039
https://doi.org/10.1016/j.dark.2017.09.010
https://doi.org/10.1016/j.dark.2017.09.010
https://doi.org/10.48550/arXiv.1706.00209
https://inspirehep.net/literature/1602167
https://doi.org/10.1126/sciadv.abq3765
https://doi.org/10.48550/arXiv.2203.12152
https://inspirehep.net/literature/2057453
https://doi.org/10.1103/PhysRevD.99.101101
https://doi.org/10.1103/PhysRevD.99.101101
https://doi.org/10.48550/arXiv.1903.06547
https://inspirehep.net/literature/1725229
https://doi.org/10.1103/PhysRevD.103.102004
https://doi.org/10.48550/arXiv.2012.09498
https://inspirehep.net/literature/1837080
https://doi.org/10.1103/PhysRevD.106.052007
https://doi.org/10.1103/PhysRevD.106.052007
https://doi.org/10.48550/arXiv.2208.12670
https://inspirehep.net/literature/2142339
https://doi.org/10.1103/PhysRevLett.124.101802
https://doi.org/10.48550/arXiv.2001.05102
https://inspirehep.net/literature/1775743
https://doi.org/10.1103/PhysRevLett.125.221302
https://doi.org/10.1103/PhysRevLett.125.221302
https://doi.org/10.48550/arXiv.2008.10141
https://inspirehep.net/literature/1812976
https://doi.org/10.1103/PhysRevLett.126.191802
https://doi.org/10.1103/PhysRevLett.126.191802
https://doi.org/10.48550/arXiv.2012.10764
https://inspirehep.net/literature/1837601
https://doi.org/10.1103/PhysRevLett.128.241805
https://doi.org/10.1103/PhysRevLett.128.241805
https://doi.org/10.48550/arXiv.2206.08845
https://inspirehep.net/literature/2097498
https://doi.org/10.1103/PhysRevLett.130.091602
https://doi.org/10.1103/PhysRevLett.130.091602
https://doi.org/10.48550/arXiv.2207.13597
https://inspirehep.net/literature/2126697
https://doi.org/10.1103/PhysRevLett.130.071002
https://doi.org/10.48550/arXiv.2210.10961
https://inspirehep.net/literature/2167890
https://doi.org/10.1007/978-3-030-43761-9_13
https://doi.org/10.48550/arXiv.1711.08999
https://inspirehep.net/literature/1638372
https://doi.org/10.1103/PhysRevLett.122.191302
https://doi.org/10.48550/arXiv.1901.10843
https://inspirehep.net/literature/1717699
https://doi.org/10.1126/sciadv.aax4539
https://doi.org/10.48550/arXiv.1902.04644
https://inspirehep.net/literature/1720077


J
H
E
P
0
9
(
2
0
2
4
)
1
9
1

[31] NASDUCK collaboration, New constraints on axion-like dark matter using a Floquet quantum
detector, Sci. Adv. 8 (2022) abl8919 [arXiv:2105.04603] [INSPIRE].

[32] I.M. Bloch, Y. Hochberg, E. Kuflik and T. Volansky, Axion-like Relics: New Constraints from
Old Comagnetometer Data, JHEP 01 (2020) 167 [arXiv:1907.03767] [INSPIRE].

[33] J. Lee, M. Lisanti, W.A. Terrano and M. Romalis, Laboratory Constraints on the Neutron-Spin
Coupling of feV-Scale Axions, Phys. Rev. X 13 (2023) 011050 [arXiv:2209.03289] [INSPIRE].

[34] P.W. Graham et al., Storage ring probes of dark matter and dark energy, Phys. Rev. D 103
(2021) 055010 [arXiv:2005.11867] [INSPIRE].

[35] C. Gao et al., Axion Wind Detection with the Homogeneous Precession Domain of Superfluid
Helium-3, Phys. Rev. Lett. 129 (2022) 211801 [arXiv:2208.14454] [INSPIRE].

[36] J.A. Dror, S. Gori, J.M. Leedom and N.L. Rodd, Sensitivity of Spin-Precession Axion
Experiments, Phys. Rev. Lett. 130 (2023) 181801 [arXiv:2210.06481] [INSPIRE].

[37] C. Brandenstein et al., Towards an electrostatic storage ring for fundamental physics
measurements, EPJ Web Conf. 282 (2023) 01017 [arXiv:2211.08439] [INSPIRE].

[38] K. Wei et al., Dark matter search with a strongly-coupled hybrid spin system,
arXiv:2306.08039 [INSPIRE].

[39] S. Chigusa, T. Moroi, K. Nakayama and T. Sichanugrist, Dark matter detection using nuclear
magnetization in magnet with hyperfine interaction, Phys. Rev. D 108 (2023) 095007
[arXiv:2307.08577] [INSPIRE].

[40] C.M. Caves, Quantum limits on noise in linear amplifiers, Phys. Rev. D 26 (1982) 1817
[INSPIRE].

[41] M. Malnou et al., Squeezed vacuum used to accelerate the search for a weak classical signal,
Phys. Rev. X 9 (2019) 021023 [Erratum ibid. 10 (2020) 039902] [arXiv:1809.06470] [INSPIRE].

[42] K. Wurtz et al., Cavity Entanglement and State Swapping to Accelerate the Search for Axion
Dark Matter, PRX Quantum 2 (2021) 040350 [arXiv:2107.04147] [INSPIRE].

[43] H. Zheng et al., Accelerating dark-matter axion searches with quantum measurement technology,
arXiv:1607.02529 [INSPIRE].

[44] T. Ikeda et al., Axion search with quantum nondemolition detection of magnons, Phys. Rev. D
105 (2022) 102004 [arXiv:2102.08764] [INSPIRE].

[45] A.O. Sushkov, Quantum Science and the Search for Axion Dark Matter, PRX Quantum 4
(2023) 020101 [arXiv:2304.11797] [INSPIRE].

[46] A.V. Dixit et al., Searching for Dark Matter with a Superconducting Qubit, Phys. Rev. Lett. 126
(2021) 141302 [arXiv:2008.12231] [INSPIRE].

[47] H. Shi and Q. Zhuang, Ultimate precision limit of noise sensing and dark matter search, npj
Quantum Inf. 9 (2023) 27 [arXiv:2208.13712] [INSPIRE].

[48] S.K. Lamoreaux, K.A. van Bibber, K.W. Lehnert and G. Carosi, Analysis of single-photon and
linear amplifier detectors for microwave cavity dark matter axion searches, Phys. Rev. D 88
(2013) 035020 [arXiv:1306.3591] [INSPIRE].

[49] Y.M. Bunkov and G. Volovik, Spin superfluidity and magnon bose-einstein condensation, Int.
Ser. Monogr. Phys. 156 (2013) 253.

[50] J. Bardeen, L.N. Cooper and J.R. Schrieffer, Theory of superconductivity, Phys. Rev. 108
(1957) 1175 [INSPIRE].

– 36 –

https://doi.org/10.1126/sciadv.abl8919
https://doi.org/10.48550/arXiv.2105.04603
https://inspirehep.net/literature/1862800
https://doi.org/10.1007/JHEP01(2020)167
https://doi.org/10.48550/arXiv.1907.03767
https://inspirehep.net/literature/1742975
https://doi.org/10.1103/PhysRevX.13.011050
https://doi.org/10.48550/arXiv.2209.03289
https://inspirehep.net/literature/2148219
https://doi.org/10.1103/PhysRevD.103.055010
https://doi.org/10.1103/PhysRevD.103.055010
https://doi.org/10.48550/arXiv.2005.11867
https://inspirehep.net/literature/1797630
https://doi.org/10.1103/PhysRevLett.129.211801
https://doi.org/10.48550/arXiv.2208.14454
https://inspirehep.net/literature/2144145
https://doi.org/10.1103/PhysRevLett.130.181801
https://doi.org/10.48550/arXiv.2210.06481
https://inspirehep.net/literature/2165163
https://doi.org/10.1051/epjconf/202328201017
https://doi.org/10.48550/arXiv.2211.08439
https://inspirehep.net/literature/2182751
https://doi.org/10.48550/arXiv.2306.08039
https://inspirehep.net/literature/2668858
https://doi.org/10.1103/PhysRevD.108.095007
https://doi.org/10.48550/arXiv.2307.08577
https://inspirehep.net/literature/2677645
https://doi.org/10.1103/PhysRevD.26.1817
https://inspirehep.net/literature/839624
https://doi.org/10.1103/PhysRevX.9.021023
https://doi.org/10.48550/arXiv.1809.06470
https://inspirehep.net/literature/1694534
https://doi.org/10.1103/PRXQuantum.2.040350
https://doi.org/10.48550/arXiv.2107.04147
https://inspirehep.net/literature/1880954
https://doi.org/10.48550/arXiv.1607.02529
https://inspirehep.net/literature/1475016
https://doi.org/10.1103/PhysRevD.105.102004
https://doi.org/10.1103/PhysRevD.105.102004
https://doi.org/10.48550/arXiv.2102.08764
https://inspirehep.net/literature/1847170
https://doi.org/10.1103/PRXQuantum.4.020101
https://doi.org/10.1103/PRXQuantum.4.020101
https://doi.org/10.48550/arXiv.2304.11797
https://inspirehep.net/literature/2653761
https://doi.org/10.1103/PhysRevLett.126.141302
https://doi.org/10.1103/PhysRevLett.126.141302
https://doi.org/10.48550/arXiv.2008.12231
https://inspirehep.net/literature/1813617
https://doi.org/10.1038/s41534-023-00693-w
https://doi.org/10.1038/s41534-023-00693-w
https://doi.org/10.48550/arXiv.2208.13712
https://inspirehep.net/literature/2142626
https://doi.org/10.1103/PhysRevD.88.035020
https://doi.org/10.1103/PhysRevD.88.035020
https://doi.org/10.48550/arXiv.1306.3591
https://inspirehep.net/literature/1238806
https://doi.org/10.1103/PhysRev.108.1175
https://doi.org/10.1103/PhysRev.108.1175
https://inspirehep.net/literature/3541


J
H
E
P
0
9
(
2
0
2
4
)
1
9
1

[51] P.W. Anderson and P. Morel, Generalized bardeen-cooper-schrieffer states and the proposed
low-temperature phase of liquid He3, Phys. Rev. 123 (1961) 1911.

[52] R. Balian and N.R. Werthamer, Superconductivity with Pairs in a Relative p Wave, Phys. Rev.
131 (1963) 1553 [INSPIRE].

[53] D.D. Osheroff, W.J. Gully, R.C. Richardson and D.M. Lee, New magnetic phenomena in liquid
He3 below 3 mk, Phys. Rev. Lett. 29 (1972) 920.

[54] D. Vollhardt, P. Wölfle and R.B. Hallock, The Superfluid Phases of Helium 3, Taylor & Francis
(1990).

[55] W.F. Brinkman and P.W. Anderson, Anisotropic superfluidity in 3He: Consequences of the
spin-fluctuation model, Phys. Rev. A 8 (1973) 2732.

[56] N.D. Mermin and C. Stare, Ginzburg-Landau Approach to L %= 0 Pairing, Phys. Rev. Lett. 30
(1973) 1135 [INSPIRE].

[57] H. Choi et al., Strong Coupling Corrections to the Ginzburg-Landau Theory of Superfluid 3He,
Phys. Rev. B 75 (2007) 174503 [arXiv:0711.3225].

[58] Y. Kawaguchi and M. Ueda, Spinor Bose-Einstein condensates, Phys. Rept. 520 (2012) 253
[INSPIRE].

[59] D.M. Stamper-Kurn and M. Ueda, Spinor Bose gases: Symmetries, magnetism, and quantum
dynamics, Rev. Mod. Phys. 85 (2013) 1191.

[60] H. Godfrin and E. Krotscheck, The Dynamics of Quantum Fluids, arXiv:2206.06039.

[61] M.A. Lee, K.E. Schmidt, M.H. Kalos and G.V. Chester, Green’s function monte carlo method
for liquid 3He, Phys. Rev. Lett. 46 (1981) 728.

[62] R.M. Panoff and J. Carlson, Fermion monte carlo algorithms and liquid 3He, Phys. Rev. Lett.
62 (1989) 1130.

[63] V.R. Pandharipande and R.B. Wiringa, Variations on a theme of nuclear matter, Rev. Mod.
Phys. 51 (1979) 821 [INSPIRE].

[64] E. Manousakis, S. Fantoni, V.R. Pandharipande and Q.N. Usmani, Microscopic calculations for
normal and polarized liquid 3He, Phys. Rev. B 28 (1983) 3770 [INSPIRE].

[65] H. Kojima and H. Ishimoto, Spin polarized superfluid 3He A1, J. Phys. Soc. Jap. 77 (2008)
111001.

[66] A. Schneider et al., Direct measurement of the 3He+ magnetic moments, Nature 606 (2022) 878
[arXiv:2206.05943] [INSPIRE].

[67] H. Watanabe and H. Murayama, Unified Description of Nambu-Goldstone Bosons without
Lorentz Invariance, Phys. Rev. Lett. 108 (2012) 251602 [arXiv:1203.0609] [INSPIRE].

[68] Y. Hidaka, Counting rule for Nambu-Goldstone modes in nonrelativistic systems, Phys. Rev.
Lett. 110 (2013) 091601 [arXiv:1203.1494] [INSPIRE].

[69] D.S. Greywall, 3He specific heat and thermometry at millikelvin temperatures, Phys. Rev. B 33
(1986) 7520.

[70] M. Gorghetto and G. Villadoro, Topological Susceptibility and QCD Axion Mass: QED and
NNLO corrections, JHEP 03 (2019) 033 [arXiv:1812.01008] [INSPIRE].

[71] L.F. Abbott and P. Sikivie, A Cosmological Bound on the Invisible Axion, Phys. Lett. B 120
(1983) 133 [INSPIRE].

– 37 –

https://doi.org/10.1103/physrev.123.1911
https://doi.org/10.1103/PhysRev.131.1553
https://doi.org/10.1103/PhysRev.131.1553
https://inspirehep.net/literature/46552
https://doi.org/10.1103/physrevlett.29.920
https://doi.org/10.1103/physreva.8.2732
https://doi.org/10.1103/PhysRevLett.30.1135
https://doi.org/10.1103/PhysRevLett.30.1135
https://inspirehep.net/literature/88845
https://doi.org/10.1103/PhysRevB.75.174503
https://doi.org/10.48550/arXiv.0711.3225
https://doi.org/10.1016/j.physrep.2012.07.005
https://inspirehep.net/literature/1206077
https://doi.org/10.1103/revmodphys.85.1191
https://doi.org/10.48550/arXiv.2206.06039
https://doi.org/10.1103/physrevlett.46.728
https://doi.org/10.1103/physrevlett.62.1130
https://doi.org/10.1103/physrevlett.62.1130
https://doi.org/10.1103/RevModPhys.51.821
https://doi.org/10.1103/RevModPhys.51.821
https://inspirehep.net/literature/143156
https://doi.org/10.1103/PhysRevB.28.3770
https://inspirehep.net/literature/199019
https://doi.org/10.1143/JPSJ.77.111001
https://doi.org/10.1143/JPSJ.77.111001
https://doi.org/10.1038/s41586-022-04761-7
https://doi.org/10.48550/arXiv.2206.05943
https://inspirehep.net/literature/2094773
https://doi.org/10.1103/PhysRevLett.108.251602
https://doi.org/10.48550/arXiv.1203.0609
https://inspirehep.net/literature/1092745
https://doi.org/10.1103/PhysRevLett.110.091601
https://doi.org/10.1103/PhysRevLett.110.091601
https://doi.org/10.48550/arXiv.1203.1494
https://inspirehep.net/literature/1093119
https://doi.org/10.1103/physrevb.33.7520
https://doi.org/10.1103/physrevb.33.7520
https://doi.org/10.1007/JHEP03(2019)033
https://doi.org/10.48550/arXiv.1812.01008
https://inspirehep.net/literature/1706754
https://doi.org/10.1016/0370-2693(83)90638-X
https://doi.org/10.1016/0370-2693(83)90638-X
https://inspirehep.net/literature/12562


J
H
E
P
0
9
(
2
0
2
4
)
1
9
1

[72] M. Dine and W. Fischler, The Not So Harmless Axion, Phys. Lett. B 120 (1983) 137 [INSPIRE].

[73] Particle Data Group collaboration, Review of Particle Physics, PTEP 2022 (2022) 083C01
[INSPIRE].

[74] S. Chigusa, T. Moroi and K. Nakayama, Detecting light boson dark matter through conversion
into a magnon, Phys. Rev. D 101 (2020) 096013 [arXiv:2001.10666] [INSPIRE].

[75] L. Corruccini and D. Osheroff, Pulsed nmr experiments in superfluid 3He, Phys. Rev. B 17
(1978) 126.

[76] S. Lu, Q. Jiang and H. Kojima, Spin-density relaxation in superfluid 3A1, Phys. Rev. Lett. 62
(1989) 1639.

[77] S. Murakawa, personal communication.

[78] X. Zhang, C.-L. Zou, L. Jiang and H.X. Tang, Strongly Coupled Magnons and Cavity
Microwave Photons, Phys. Rev. Lett. 113 (2014) 156401.

[79] Y. Tabuchi et al., Hybridizing Ferromagnetic Magnons and Microwave Photons in the Quantum
Limit, Phys. Rev. Lett. 113 (2014) 083603 [INSPIRE].

[80] Y. Tabuchi et al., Quantum magnonics: The magnon meets the superconducting qubit, Comptes
Rendus Physique 17 (2016) 729 [INSPIRE].

[81] K. van Bibber, K. Lehnert and A. Chou, Putting the squeeze on axions, Phys. Today 72 (2019)
48.

[82] A.A. Clerk et al., Introduction to quantum noise, measurement, and amplification, Rev. Mod.
Phys. 82 (2010) 1155 [arXiv:0810.4729] [INSPIRE].

[83] J.W. Foster, N.L. Rodd and B.R. Safdi, Revealing the Dark Matter Halo with Axion Direct
Detection, Phys. Rev. D 97 (2018) 123006 [arXiv:1711.10489] [INSPIRE].

[84] Y.K. Semertzidis et al., Axion Dark Matter Research with IBS/CAPP, arXiv:1910.11591
[INSPIRE].

[85] M.D. Bird, Ultra-High Field Solenoids and Axion Detection, Springer Proc. Phys. 245 (2020) 9
[INSPIRE].

[86] J. Lough et al., First Demonstration of 6 dB Quantum Noise Reduction in a Kilometer Scale
Gravitational Wave Observatory, Phys. Rev. Lett. 126 (2021) 041102 [arXiv:2005.10292]
[INSPIRE].

[87] R. Dassonneville et al., Dissipative Stabilization of Squeezing Beyond 3 dB in a Microwave
Mode, PRXQuantum 2 (2021) 020323 [arXiv:2102.02863] [INSPIRE].

[88] T. Kashiwazaki et al., Over-8-dB squeezed light generation by a broadband waveguide optical
parametric amplifier toward fault-tolerant ultra-fast quantum computers, Appl. Phys. Lett. 122
(2023) 234003 [arXiv:2301.12658] [INSPIRE].

[89] H. Vahlbruch, M. Mehmet, K. Danzmann and R. Schnabel, Detection of 15 dB Squeezed States
of Light and their Application for the Absolute Calibration of Photoelectric Quantum Efficiency,
Phys. Rev. Lett. 117 (2016) 110801 [INSPIRE].

[90] P. Carenza et al., Improved axion emissivity from a supernova via nucleon-nucleon
bremsstrahlung, JCAP 10 (2019) 016 [Erratum ibid. 05 (2020) E01] [arXiv:1906.11844]
[INSPIRE].

– 38 –

https://doi.org/10.1016/0370-2693(83)90639-1
https://inspirehep.net/literature/179461
https://doi.org/10.1093/ptep/ptac097
https://inspirehep.net/literature/2106994
https://doi.org/10.1103/PhysRevD.101.096013
https://doi.org/10.48550/arXiv.2001.10666
https://inspirehep.net/literature/1777759
https://doi.org/10.1103/PhysRevB.17.126
https://doi.org/10.1103/PhysRevB.17.126
https://doi.org/10.1103/PhysRevLett.62.1639
https://doi.org/10.1103/PhysRevLett.62.1639
https://doi.org/10.1103/physrevlett.113.156401
https://doi.org/10.1103/PhysRevLett.113.083603
https://inspirehep.net/literature/2730964
https://doi.org/10.1016/j.crhy.2016.07.009
https://doi.org/10.1016/j.crhy.2016.07.009
https://inspirehep.net/literature/2725347
https://doi.org/10.1063/PT.3.4227
https://doi.org/10.1063/PT.3.4227
https://doi.org/10.1103/revmodphys.82.1155
https://doi.org/10.1103/revmodphys.82.1155
https://doi.org/10.48550/arXiv.0810.4729
https://inspirehep.net/literature/1822409
https://doi.org/10.1103/PhysRevD.97.123006
https://doi.org/10.48550/arXiv.1711.10489
https://inspirehep.net/literature/1639383
https://doi.org/10.48550/arXiv.1910.11591
https://inspirehep.net/literature/1761117
https://doi.org/10.1007/978-3-030-43761-9_2
https://inspirehep.net/literature/1810838
https://doi.org/10.1103/PhysRevLett.126.041102
https://doi.org/10.48550/arXiv.2005.10292
https://inspirehep.net/literature/1797276
https://doi.org/10.1103/PRXQuantum.2.020323
https://doi.org/10.48550/arXiv.2102.02863
https://inspirehep.net/literature/1865088
https://doi.org/10.1063/5.0144385
https://doi.org/10.1063/5.0144385
https://doi.org/10.48550/arXiv.2301.12658
https://inspirehep.net/literature/2627977
https://doi.org/10.1103/PhysRevLett.117.110801
https://inspirehep.net/literature/1485839
https://doi.org/10.1088/1475-7516/2019/10/016
https://doi.org/10.48550/arXiv.1906.11844
https://inspirehep.net/literature/1742075


J
H
E
P
0
9
(
2
0
2
4
)
1
9
1

[91] M.V. Beznogov, E. Rrapaj, D. Page and S. Reddy, Constraints on Axion-like Particles and
Nucleon Pairing in Dense Matter from the Hot Neutron Star in HESS J1731-347, Phys. Rev. C
98 (2018) 035802 [arXiv:1806.07991] [INSPIRE].

[92] C.-Y. Chen and S. Dawson, Exploring Two Higgs Doublet Models Through Higgs Production,
Phys. Rev. D 87 (2013) 055016 [arXiv:1301.0309] [INSPIRE].

[93] B. Brahmachari, Recent direct measurement of the top quark mass and quasiinfrared fixed point,
Mod. Phys. Lett. A 12 (1997) 1969 [hep-ph/9706494] [INSPIRE].

[94] C. O’Hare, cajohare/axionlimits: Axionlimits, https://cajohare.github.io/AxionLimits/ (2020)
[DOI:10.5281/zenodo.3932430].

[95] CAPP collaboration, Extensive Search for Axion Dark Matter over 1 GHz with CAPP’S Main
Axion Experiment, Phys. Rev. X 14 (2024) 031023 [arXiv:2402.12892] [INSPIRE].

[96] T. Kashiwazaki et al., Fabrication of low-loss quasi-single-mode PPLN waveguide and its
application to a modularized broadband high-level squeezer, Appl. Phys. Lett. 119 (2021) 251104
[arXiv:2201.01457] [INSPIRE].

[97] CUORE collaboration, Status of CUORE Experiment and latest results from CUORE-0, Nuovo
Cim. C 39 (2017) 375 [INSPIRE].

[98] R. Toda et al., Superconducting zinc heat switch for continuous nuclear demagnetization
refrigerator and sub-mK experiments, arXiv:2209.08260 [INSPIRE].

[99] A. Blais, A.L. Grimsmo, S.M. Girvin and A. Wallraff, Circuit quantum electrodynamics, Rev.
Mod. Phys. 93 (2021) 025005 [arXiv:2005.12667] [INSPIRE].

[100] V. Vesterinen et al., Lumped-element Josephson parametric amplifier at 650 MHz for
nano-calorimeter readout, Supercond. Sci. Technol. 30 (2017) 085001.

[101] S. Simbierowicz, V. Vesterinen, L. Grönberg, J. Lehtinen, M. Prunnila and J. Hassel, A
flux-driven Josephson parametric amplifier for sub-Ghz frequencies fabricated with side-wall
passivated spacer junction technology, Supercond. Sci. Technol. 31 (2018) 105001.

[102] V. Vesterinen et al., A Sub-GHz Impedance-Engineered Parametric Amplifier for the Readout of
Sensors and Quantum Dots, IEEE Trans. Appl. Superconduct. 32 (2022) 1.

[103] N. Takanashi, W. Inokuchi, T. Serikawa and A. Furusawa, Generation and measurement of a
squeezed vacuum up to 100 MHz at 1550 nm with a semi-monolithic optical parametric
oscillator designed towards direct coupling with waveguide modules, Opt. Express 27 (2019)
18900 [arXiv:1904.09777] [INSPIRE].

– 39 –

https://doi.org/10.1103/PhysRevC.98.035802
https://doi.org/10.1103/PhysRevC.98.035802
https://doi.org/10.48550/arXiv.1806.07991
https://inspirehep.net/literature/1678878
https://doi.org/10.1103/PhysRevD.87.055016
https://doi.org/10.48550/arXiv.1301.0309
https://inspirehep.net/literature/1209133
https://doi.org/10.1142/S0217732397002016
https://doi.org/10.48550/arXiv.hep-ph/9706494
https://inspirehep.net/literature/444718
https://cajohare.github.io/AxionLimits/
https://doi.org/10.5281/zenodo.3932430
https://doi.org/10.1103/PhysRevX.14.031023
https://doi.org/10.48550/arXiv.2402.12892
https://inspirehep.net/literature/2759938
https://doi.org/10.1063/5.0063118
https://doi.org/10.48550/arXiv.2201.01457
https://inspirehep.net/literature/2001837
https://doi.org/10.1393/ncc/i2016-16375-9
https://doi.org/10.1393/ncc/i2016-16375-9
https://inspirehep.net/literature/1514425
https://doi.org/10.48550/arXiv.2209.08260
https://inspirehep.net/literature/2153768
https://doi.org/10.1103/RevModPhys.93.025005
https://doi.org/10.1103/RevModPhys.93.025005
https://doi.org/10.48550/arXiv.2005.12667
https://inspirehep.net/literature/1865082
https://doi.org/10.1088/1361-6668/aa73ed
https://doi.org/10.1088/1361-6668/aad4f2
https://doi.org/10.1109/tasc.2022.3148965
https://doi.org/10.1364/OE.27.018900
https://doi.org/10.1364/OE.27.018900
https://doi.org/10.48550/arXiv.1904.09777
https://inspirehep.net/literature/1748873

	Introduction
	Understanding **(3)He via spinor BEC
	Phases of superfluid **(3)He
	Spinor BEC description of magnetism in the A, A(1), and A(2) phases
	Nuclear magnons in the ferromagnetic A(1) phase

	Axion detection
	Axion-magnon conversion
	Mixing between magnon and cavity modes
	Quantum measurement techniques

	Sensitivity
	Conclusion and discussion
	Statistical treatment of noise
	Formulation
	Creation rate of magnons
	Test statistic

	Josephson parametric amplifier (JPA)
	Effective description
	Flux-driven Josephson parametric amplifier
	Resonator equation


