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ABSTRACT: We propose to use the nuclear spin excitation in the ferromagnetic A; phase
of the superfluid He for the axion dark matter detection. This approach is striking in
that it is sensitive to the axion-nucleon coupling, one of the most important features of the
QCD axion introduced to solve the strong CP problem. We review a quantum mechanical
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out that this approach gives good sensitivity to the axion dark matter with the mass of
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of experimental setups, e.g., the detector volume and the amplitude of squeezing, required
to reach the QCD axion parameter space.
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1 Introduction

Axion [1] is a proposed solution to the strong CP problem, namely to explain why the quantum
chromodynamics (QCD) does not violate the time-reversal symmetry. The experimental
upper limit on the neutron electric dipole moment d,, < 1.8 x 1072 e cm [2] implies that the
so-called vacuum angle of QCD to be extremely small ’5 ‘ < 10719, The theory assumes a
new global U(1) Peccei-Quinn symmetry broken spontaneously at the energy scale called the
axion decay constant f, as well as explicitly by the QCD anomaly. The effective operator
of the axion coupling to gluons is

2 -
c, = s (9 + ;) e e (1.1)

Switching to the chiral Lagrangian, it can be shown that the axion settles to the ground
state where 6 is dynamically canceled.

Interestingly, it was pointed out that the axion can also comprise the dark matter of
the Universe from misalignment mechanism or emission from topological defects [3, 4]. The



initial version of the theory assumed f, = vgw (electroweak scale) and was excluded by
beam dump experiments [5]. It was later proposed to take f, > vgw dubbed “invisible
axion” [6-9]. The axion abundance is higher for higher f,, and f, ~ 1012 GeV is typically
regarded as a preferred range. It translates to m, ~ eV scale.

Many direct detection experiments for the dark matter axion, such as refs. [10-27], rely
on the axion coupling to photons aFWF“” . Their prospect in the near future is becoming
exciting. Yet the axion coupling to photons is highly model-dependent. To fully verify that
the axion solves the strong CP problem, measuring its coupling to hadrons would be crucial.
In particular, the axion couples to the nucleon spins Va - 5y with relatively little model
dependence. Search for dark matter axion using the nuclear spins, or confirming detected
axion signal with nuclear signs, would be crucial to enhance our understanding of both the
strong CP problem as well as the nature of dark matter. In spite of its importance, there are
relatively few experiments and proposals including refs. [28-39] in this direction.

In this paper, we propose a new experimental technique to detect dark matter axions
using their coupling to nuclear spins. Interactions among the nuclear spins are very weak
because their magnetic moments are suppressed by the nucleon mass py = e/my rather
than the electron mass up = e/me. One needs to identify material where nuclear spins
play a major role at very low temperatures.

We point out that the A; phase of superfluid 3He is a unique material that has an
ordering of nuclear spins without relying on their coupling to electron spins. This is because
the Cooper pairs of 3He atoms are in the p-wave (anti-symmetric) with total spin S = 1
(symmetric) as required by Fermi statistics. In a high magnetic field, it becomes basically
a ferromagnet of nuclear spins. The corresponding nuclear magnon is gapped due to the
external magnetic field and the gap can be tuned to the axion mass. It is quite remarkable
that the gap happens to be in the range of the preferred axion mass for dark matter with an
achievable magnetic field. Then the magnon can be converted to a cavity photon resonantly
due to the polariton mixing between the magnon and photon. Again the size of the cavity
is such that it can be fitted in a laboratory. Note that our setup is distinct from other
proposals to use superfluid He for axion dark matter search [35, 36] in the superfluid phase
used and/or the signal detection method.

Because our experiments are performed at such low temperatures 7' < 3mK that the
target *He shows superfluidity, the quantum noise [40] becomes non-negligible. These days
several applications of quantum measurement techniques to axion detections have been
studied in order to circumvent the quantum noise [15, 41-48]. In this paper, we apply the
squeezing technique, which has been discussed in refs. [15, 41], and evaluate the improvement
in the sensitivity of our experiment.

This paper is organized as follows. In section 2, we review the properties of *He.
We analyze superfluid phases of *He using the spinor BEC formalism and understand the
properties of nuclear magnons in the ferromagnetic A; phase. In section 3, we discuss how
the axion dark matter signal can be detected using superfluid *He; we use a nuclear magnon
mode, which is converted into a cavity photon through the polariton mixing. We also discuss
how noise reduction is realized by using squeezing and the homodyne measurement. We show
sensitivities for several different setups in section 4 and conclude in section 5. A detailed



External magnetic field H Phases Magnetic property

H=0 A phase —
B phase —
H#0 A phase Ferromagnetic

A5 phase Anti-ferromagnetic

By phase Homogeneous precession [49]

Table 1. Superfluid phases of >He.

description of our noise estimate and statistical treatment is summarized in appendix A.
Finally, we review the Josephson parametric amplifier (JPA), which is a representative
apparatus for squeezing, in appendix B.

2 Understanding 3He via spinor BEC

In this section, we will describe the phase structure of the superfluid 3He using Ginzburg-
Landau formalism and simplified spinor BEC formalism. We summarize the phase structure
in table 1. We utilize an A; phase for axion detection, which has a ferromagnetic property,
in this paper.

2.1 Phases of superfluid 3He

Historically, after the success of the BCS theory [50], people tried to look for the description
of the superfluid 3He because it is liquid and has no lattice structure inside. Some people
considered the pairing states which are not s-wave. One is about the general anisotropic
case by Anderson and Morel [51]. This model has a peculiar feature that the nodes exist
on the Fermi surface for the axial p-wave state (refered to as the ABM state named after
Anderson, Brinkman, and Morel). It turned out that this theory describes what is called the
A phase nowadays. Later, Balian and Werthamer showed that the mixing of all substates of
the p-wave Cooper pair is favored energetically [52]. This state has an isotropic energy gap
unlike the ABM state and is called the BW state, which is now recognized as the B phase.
Experimentally, the A and B phases were discovered at 2.6 mK and 1.8 mK respectively [53],
which confirmed the existence of the phase structure of the superfluid *He.

The nucleus of a 3He atom consists of two protons and one neutron. The proton spins
are aligned anti-parallel with each other, while the neutron spin is isolated, making the total
spin angular momentum to be 1/2. In the superfluid phase, two 3He atoms form a Cooper
pair, whose ground state is a spin-triplet p-wave condensate [54]. The corresponding order
parameter is expressed in terms of annihilation operators of nuclei ag  as

3

<&7126&Ea> o AEaB = Z du(E)(inU2)a/3, (2.1)
pn=1

where k and o (B) are the momentum and the spin of a *He nucleus, respectively, and
0, is the Pauli matrix. Since a Cooper pair forms a spin-triplet L = 1 relative angular



momentum state, the vector du(lg) can be represented as a linear combination of spherical
harmonics Yi,,,(k/|k|) o k/|k|,

l

d, (k) = \/§§3: Auj’j‘. (2.2)
j=1 '

The phenomenological Lagrangian of the Cooper pairs, i.e., Ginzburg-Landau Lagrangian,

can be expressed in terms of the 3 x 3 order parameter matrix A,; [55, 56]. The index
uw = 1,2,3 refers to the S = 1 states while j = 1,2,3 to the L = 1 states, both in the
Cartesian basis. Namely A,; transforms as a bi-vector under SO(3)r x SO(3)g. Note that
A, is complex as its phase U(1), corresponds to the conserved number operator of the
Cooper pairs. Because the Lagrangian has to be Hermitian and invariant under the global
SO(3)r x SO(3)s x U(1)y symmetry, we have only one second-order term of A,,;

Iy = tr(AAT ) (2.3)
and five fourth-order terms
I = ]tr(AAT) ? (2.4)
I = [tr(AAT)]z, (2.5)
Iy = tr[(AAT)(AAT)"], (2.6)
Iy = tr[(445)?), (2.7)
I = tr[(AAT)(44T)’] (2.8)

in the effective potential. As a result, in the absence of any external fields, the effective
potential per volume is given by

10
Vo = a(T)Io + 5 ;@L‘ , (2.9)

where we neglect higher-order terms of A,;, which can be justified when we consider the
phenomenology of a system sufficiently close to the phase transition, and the numerical
values of |A,;| are small. The coeflicients o and 3; are determined by the microscopic
theory. For example, they have been calculated in the weak-coupling theory [54], and their
numerical values are

T _
o(T) ~ —10—3(1 — T) peVrAT? (2.10)
6 1
(BWC, gWC BWC gWC gWC) _ 550 (_2, 1,1,1, _1> , (2.11)
By ~ 1073 peV3A 77 (2.12)

where T, is the transition temperature ~ 2.6 mK in the absence of external magnetic fields.
The values of 3; can differ from those of @W C depending on pressure. Nevertheless, we will use
the numerical values in egs. (2.11) and (2.12) for ; below since the experimentally measured
values differ from B}VC by only O(1) factors, (8; — BVC) /By = O(1) [57).



As noted above, the effective Lagrangian has a global symmetry SO(3)r x SO(3)g x U(1),
which corresponds to the rotation in the momentum space, the rotation in the spin space,
and the overall phase rotation, respectively. It is known that, depending on the values of
coefficients in eq. (2.9), the matrix A acquires a non-zero expectation value in the ground
state, which spontaneously breaks the global symmetry and leads to different phases. Without
an external magnetic field, there are two superfluid phases for 3He, the A and B phases.
Their expectation values are expressed as

000
A phase: A, < —=|000|, (2.13)
V2 120
1 .
B phase: A, o —ewRM(ﬁ, 0), (2.14)

V3

where ¢ is an overall phase, and R,,; is a relative rotation of the spin and orbital spaces, repre-
sented by a rotation axis 77 and a rotation angle #. Note that there are more than one choice
of the order parameter in the A phase corresponding to the choices of particular directions of
spin and orbital spaces, both of which are assumed to be the z-axis in the above expression.

When we turn on an external magnetic field B , the potential V' has two more invari-

ant terms
FU =in " eunBuAy; Ay (2.15)
HUAJ
F® " B,A,;B, A}, . (2.16)
v

Note that the magnetic field B couples with A,,; only through the spin indices 1, v because
the 3He atoms are electrically neutral, and their orbital angular momentum does not have a
magnetic moment, while their spin angular momentum does. Assuming that B is along the z-
direction, one can see that F(1) and F® break the global symmetry to SO(3)7, x U(1)g, x U(1) 4.
Because these interaction terms F() and F® bring three types of spontaneous symmetry
breaking depending on the coefficients, there are three corresponding phases:

1 1 ¢ 0
Ay phase: A, 3 1 =101, (2.17)
000
1 p1oipr O
Ay phase: A, o - = ip2 —p2 0], (2.18)
2(lp1" +1p2l)\ 0 0 0
0 p1 p2 O
Bs phase: A,; +ps Fp1 0 |, (2.19)

2L+ Py + P\ o 0 gy

where the real parameters p1, p2, and p3 are uniquely determined as functions of the coefficients
a(T) and f;, as demonstrated in the next section.
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Figure 1. The P (pressure) - T' (temperature) - H (external magnetic field) phase diagram of 3He
taken from ref. [54].

The P (pressure) - T (temperature) - H (magnetic field) phase diagram of 3He has
been well studied [54], and we show it in figure 1. It should be noted that the By phase
can only exist under relatively weak external magnetic fields, H < 0.57T, while the A; and
Ay phases can exist under strong magnetic fields, especially even for H = O(10) T. In the
next section, we will see in more detail the criteria for which phase is realized, focusing
on the A, Ay, and As phases.

2.2 Spinor BEC description of magnetism in the A, A;, and A5 phases

Hereafter, we focus on the A, A;, and Ay phases, which have a unified description with the
so-called spinor BEC formalism by keeping only the spin degrees of freedom. The spinor BEC
refers to a Bose-Einstein condensate of atoms with integer spin, see e.g., for a review [58, 59].
This procedure is appropriate partly because the unbroken symmetries of these phases do
not mix the rotations in spin and orbital spaces unlike the B phases. Thus, if we do not
consider excitation of the orbital angular momentum of 3He, we can focus only on the spin
space. For this purpose, we define a spinor order parameter ¢ by fixing L, = +1 as

1

Ay = (@ i, 0). (2:20)



Here, we do not consider the invariants I7, I3, and F®) because these terms vanish for the A;
and As phases. Finally, we get a simplified effective potential with the external magnetic field

P45

V=a(T)(@" &)+ =" &% + %(5* x &2 +inB - (&* x d). (2.26)
Here, we have defined a new parameter,
Boas = P2+ s+ Bs - (2.27)

Note that (245 > 0 and 5 < 0 according to eq. (2.11). In the following, we discuss the
magnetism of the A; and As phases with this potential.

Using the simplified effective potential, we can easily analyze the potential form as a
function of parameters.! In the absence of an external magnetic field, only the temperature
plays an important role. For T' > T, since «(T") > 0 according to eq. (2.10), the potential V'
has a global minimum at & = 0, while for T < T, or a(T) < 0, there is a global minimum
at ¢ o (0,0,1)7 with the potential energy —a?/(2f245) < 0. The former corresponds to
the normal liquid phase, while the latter is consistent with the matrix structure of the
A-phase order parameter (2.13).

Next, we turn on the external magnetic field B = (0,0, B,)T with nB, > 0. Restricting
the form of ¢ to be (p1,ip2,0)” with p1,ps € R, we obtain local minima of V expressed as

V=0 at ¢=0, (2.28)
e W G Y v ERn ) 229
= = — - c=c1 = —————|1], .

! 20245 y(1 +y) ! 2B245(1 + y) 0
1 1— 22
voy,= ety at d=g=, 2O W (2.30)
= = — = = . 2 5 .
2 28045 Y ? 20045 | V1~ V1-a?
0
where we defined dimensionless variables
B2asn B ( T>1
r=—+———xB,[1—— , 2.31
O[(T)/Bg) Tc ( )
y=-22 (2.32)
Bs

The value of z determines which of the local minima is the global minimum of V' as shown
in figure 2. Note that for p; € R, the local minimum ¢ = ¢ exists only when z < —y or
x > 0. Similarly, the local minimum ¢ = ¢ exists when 0 < < 1. When 0 < x < 1, we have
Vi > Vs, and this region corresponds to the Ay phase (the blue region of figure 2). When
x > 1or x < —y, we have V45 > Vj, which corresponds to the A; phase (the red region).
When —y < z < 0, we obtain the normal liquid phase (the gray region).

!Note that there can be a deeper minimum of the potential, which cannot be described by the spinor BEC
formalism. Such a phase may correspond to the B or By phase due to the spin-orbit couplings which originate
from a long-distance dipole-dipole interaction among magnetic moments. However this effect is small and can
be ignored in the presence of a strong magnetic field. It is worth noting, however, that any of the A, A1, and
A phases can be a global minimum of V for reasonable choices of temperature, external magnetic field, and
pressure, such as T'~ T, and B, = O(1) T under the standard atmosphere.
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Figure 2. The schematics of the phase diagram focusing on A, A1, and A, phases of the superfluid
3He. Here we fix the orbital angular momentum at L, = 1, so the B and By phases do not appear in
this phase diagram. The white box in each phase schematically represents the spin configuration of
the Cooper pairs with the magnetic field B pointing down because of the negative g-factor. Note that
the spins are not equally spaced as shown in this figure since the 3He is not a solid in our setup.

For later convenience, we define a normalized order parameter

¢= VIC (2.33)

where A is a normalization factor with a dimension of energy defined as
A=+Ver- ¢, (2.34)

so that d_;* . qg = ng with nc¢ being the number density of Cooper pairs. Using the typical
size of the gap energy E, ~ 107%eV and the Fermi energy Er ~ 0.9 x 10~*¢eV, the number
density of Cooper pairs nc can be estimated as

FE, ns _oM3
g HeN10 2 He

~ — 2.
B 2 5 (2.35)

nec
where nap, =~ 2x 1072 A~ is the number density of 3He atoms [60-64]. Eq. (2.35) is consistent
with the experimental value [65] that shows superfluid density fraction is O(1072). The
effective potential is now written in terms of ¢ as

JUAE -, . - - .

V=" -6+ 556" 6 — N3 x 6) +igunB - (&° x 9). (2.36)

Here we have defined some new parameters u = —a(T)A2%/ng, v? = —a(T)nc/(B2s5A2), and
= —[5A/ (Qn%) Typical sizes of parameters are estimated as u ~ neV, v ~ A3 , and



A ~neVA®. In the last term of the potential, g ~ —4.3 is the g-factor of the *He nucleus [66],
while px ~ 3.2 x 1078eV T~ is the nuclear magneton. This choice of the coefficient is
justified by the fact that the spin density is expressed as § = —z(gz_g* X qg) Indeed, the last
term describes the interaction between the magnetic field and the spin of the form gu ~B-5

We can now study the ordering of nuclear spins using gg and its expectation values in
different phases. In the Ay phase, the spin per Cooper pair is calculated as

. 0
S=—=10]. (2.37)
nc

xr

In the limit of B, — 0 or z — 0, this phase is smoothly connected to the A phase, which has
an anti-ferromagnetic ordering with S =0. In the A; phase, the spin per Cooper pair is

0
S=1lo], (2.38)
1

which shows that the spins of Cooper pairs are completely aligned along the direction of
gunB. Therefore, we conclude that the A; phase has a ferromagnetic ordering.

2.3 Nuclear magnons in the ferromagnetic A; phase

Depending on the symmetry-breaking patterns in different phases, there appear several
gapless modes, the so-called Nambu-Goldstone (NG) modes. These modes are classified as
type-A and type-B modes with characteristic dispersion relations at the long-wavelength
limit [67, 68]. For example, in the ferromagnetic A; phase, the coset space is given by

. SO(3)s x UL),
= 50

(2.39)

which corresponds to one type-A NG mode with a linear dispersion and one type-B NG mode
with a quadratic dispersion. The type-B mode is identified as an acoustic magnon mode, whose
gap can be generated by the soft symmetry-breaking effect, including the external magnetic
field. On the other hand, in the anti-ferromagnetic Ay phase, the coset space is given by

SO(3)s x U(1)g
SO(2)s.

S?xU(l)y = (2.40)
which corresponds to three type-A NG modes, two of which are identified as magnon modes
with S; and Sy. Since the magnon modes in the ferromagnetically-ordered phase have the
strongest interaction with the spatially uniform magnetic field, such as the one induced by
the axion dark matter, we will focus on the type-B magnon mode in the A; phase.

The excitation modes in the superfluid *He can be studied by treating the normalized

order parameter ¢ as a dynamical field. The field theory Lagrangian is given by

—
~

L=id0d -5 30 @) - V. (241)




where i = x,y,z are the space coordinates, and the potential V is given by eq. (2.36).
The effective mass m* depends on the pressure imposed on 3He and can be experimentally
determined through measurements of the specific heat. The typical value of m* is about
3 to 6 times larger than the 3He atomic mass [69].

In order to study the magnon excita_u’tion mode in the A; phase, we add a quantum

fluctuation v to the expectation value (¢) = /nc/2(1,i,0) as

. 2 — i) — g2
d=YIC (2 — gt 4 42) | (2.42)
21/2 — .
—24/2 — T

We also consider the fluctuation of the magnetic field as B= (0,0, —B,)T + 6B with B, > 0.
For simplicity, we assume that both 1[1 and 6B do not depend on the space coordinate. By
substituting the expansion in the Lagrangian (2.41) and picking up only the leading-order
terms of the fluctuation zﬁ and 5§, we obtain the following terms

L A 1 ~ ~ ~ ~
0L = gunnc BT + Jaamnne (6B (& + §T) = i6B, (- 41)), (2.43)

which originally come from the last term of the potential (2.36).
It is convenient to discuss in terms of the non-relativistic Hamiltonian described with
the magnon operators. For this purpose, we first obtain the relationship of the spin density

b4 = 8o +idy = nc\/2 — P o, (2.44)
5. =8, —i8, = nop/2 — Pleh, (2.45)
3, =nc(1—Pi). (2.46)

On the other hand, using the Holstein-Primakoff transformation with the spin size s = 1, we
can relate the spin operator of each Cooper pair labeled by ¢ to the magnon annihilation

Si = \/2 = blby by, (2.47)
Sy = b2 — blby, (2.48)

57 =1 —bhby, (2.49)

and creation operators as

with the canonical commutation relation of bosonic operators [Z)g, Z;Z/] = dypr. We are only inter-
ested in the spatially uniform mode obtained by the Fourier transformation d= Zé\’:cl [;g /v/Ng¢,
where No = ngVsy, is the total number of Cooper pairs with Vay, being the volume of the
superfluid *He. We find that this mode is related to the spatially uniform fluctuation 7 as

d=+/Nc. (2.50)

Note that eq. (2.50) is consistent when 1& obeys a bosonic commutation relation, which is
the case for the spinor BEC formalism.

,10,



Finally, substituting the magnon operator (2.50) in the Lagrangian (2.43), we obtain
the relevant part of the Hamiltonian

A A N, ~ oA A~ oA
H=wydd— ,/TCWN (6Bu(d+d") —idB,(d—d") + -, (2.51)
where wy, = —gun B, is the Larmor frequency. As we will see below, the second term causes

the magnon excitation by the axion-induced effective magnetic field.

3 Axion detection

In this section, we explain the details of our axion detection experiment using superfluid
3He. A brief overview is as follows: (i) axions excite the magnon modes in the A; phase
of 3He; (ii) these magnons mix with cavity photon modes; (iii) the signal photons are
amplified and detected. We also discuss the amplification of the signal using quantum

measurement techniques.

3.1 Axion-magnon conversion

As is mentioned above, the spin angular momentum of a 3He nucleus originates from the
neutron spin. As a result, the axion-proton coupling can be neglected in our discussion,
which generally has a different value from the axion-neutron coupling. The axion-neutron
dynamics is described by the Lagrangian

L= %(8Ha)2 - %maaQ + ﬁ(@@ - mn)n + Cann?}aﬁfyuﬁ%nv (3'1>

where a and n are the axion and the neutron fields with masses m, and m,,, respectively,
Cann is a model-dependent O(1) coupling coefficient, and f, is the axion decay constant. For
the QCD axion, there is a relationship between m, and f, [70]:

e (3.2)

We assume that the axion field explains all of the dark matter abundance through the

1 12
mg =~ 5.7peV ( 0 GeV) .

misalignment mechanism [3, 71, 72]; accordingly, the axion field can be treated as a classical
field with coherent oscillation

a(t, ) ~ agsin(mgt — ma¥, - T + @), (3.3)

where v, is the velocity of axion, while ¢ is a random phase. Here, we utilize the fact that
the axion is non-relativistic to approximate the axion energy to be m,. Using these variables,
the local dark matter density p, ~ 0.45GeV/cm? can be expressed as p, = (mga0)?/2.
The expression of a(t,¥) tells us that the coherent length of the axion field is given by
Ao = 1/(mqv,). Since A\g ~ 100m for m, = 1peV and v, ~ 1073 [73], the axion field can
be regarded as a spatially uniform field within an experimental apparatus, which allows
us to neglect the second argument of the sine function. Also, the coherence time of the
axion field is 7, ~ 1/(mqv?) ~ 1ms for m, = 1peV, during which the velocity #, and the
phase ¢ can be treated as constant.

— 11 -



In the non-relativistic limit, we obtain the following effective Hamiltonian density de-
scribing the axion-nucleus interaction:

%Ua - 8 sin(mgt + @), (3.4)
a

where 5y is the spin density operator of 3He nuclei, which can be identified as the spin

Heff = — Ccmn

operator of neutrons in the *He. Note that the interaction strength is proportional to
maao = v/2p, and independent of m,. The interaction term can be rewritten in the form
of the ordinary spin-magnetic field coupling, H = nga - §n sin(mgt 4+ ¢), where vy = gun
is the gyromagnetic ratio of a nucleus. The effective axion magnetic field that exclusively
couples to the neutron spins is given by

—

204 o .
YN Ba(t) = —C’annipva sin(mgt + ©). (3.5)

Ja

Thus, by substituting 5B by B, in eq. (2.51), we obtain the Hamiltonian of the axion-nuclear
magnon coupled system

H(t) = Ho + Hint (1), (3.6)
Ho = chZTci,
Camn 7 .
Hin(t) = Tm (v:dT + h.c.) sin(mgt + ¢), (3.8)

where v = v? + Y.
We define the ground state |0) and the one-magnon state |1) of 3He with d[0) = 0 and
1) = d|0).2 Then, the magnon production amplitude is calculated as

t o
—iM = (1|U(t)|0) = —i/ dt’ (1| Hin(t') | 0) e ™21, (3.9)
0
where t < 7, is the observation time and the evolution matrix is defined as

U(t) = exp {—i /0 t dt'H(t/)} . (3.10)

Since the axion spectrum is approximately monochromatic with energy m,, the magnon
production rate is resonantly enhanced when m, = wy. In this limit, the amplitude is
evaluated as

.Cann
M=,

where we assumed ¢ > wzl so that the oscillatory term can be dropped. Then the transition

VpaNcvlett, (3.11)

probability is

Cann
2fa

2States with more than one magnon can be safely neglected due to the smallness of the magnon excitation

2
P =M= < ) paNct?v?sin? 6, (3.12)

rate for the axion parameter region of our interest.
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where 6, is the relative angle between the external magnetic field and axion wind. This
result is consistent with ref. [74] where the spatially uniform mode (the Kittel mode) of
the electronic magnons is considered.

The transition probability grows as P o t? as far as the coherence of the signal is
maintained. The typical coherence time 7 can be estimated as

T ~ Min (Tq, Tmag, Texp) » (3.13)

where 7,,¢ is the lifetime of magnons, and 7ey;, denotes the minimum relaxation time scale
of excitation modes used for the magnon detection. Since we use the mixing between a
nuclear magnon and a cavity photon as is discussed in section 3.2, the cavity quality factor @
contributes to Texp in the form of QQ/m,. The magnon lifetime 7, is identified as the spin
relaxation time. In general, there are two types of spin relaxation times; the longitudinal and
transverse spin relaxation time 77 and 75, which characterize the relaxation of the longitudinal
and transverse component of the magnetization vector, respectively. For experiments that
utilize nuclear magnetic resonance, such as our experiment, the crucial factor is T5 as can be
seen in eq. (2.51). For the A; phase of superfluid *He, T} has been decided experimentally
as an order of O(1-10) s [75, 76]. However, T has not been measured because of some
experimental difficulties [77]. One of the difficulties in measuring the intrinsic 75 is due to
the inhomogeneity of the magnetic field, which is significant under a high magnetic field such
as in the A; phase. Another difficulty is caused by the effect called “motional narrowing”,
which appears in an inhomogeneous medium such as liquid samples and makes 75 longer.
Since T is typically shorter than T by an order of O(1072-107!), we use Tiae = 1s in this
paper, which is much longer than the axion coherence time 7, = O(1) ms for the region of
our interest. We also assume 7, < Texp and use 7 = 7, for the following calculation, which is
reasonable for Q > 10%. Of course, before actually performing our experiment, the transverse
spin relaxation time 75 should be measured first in the fixed setup.
Finally, the signal rate for the total observation time t > 7 is evaluated as
dNse Nc o pav?sin? f,

= — . 14

where sin? §, should be replaced by the averaged value if ¢ > 7,. Hereafter, we assume this
is the case and simply average out the directional dependence, though it might be interesting
to study it further in light of the modulation of the axion signal. Note that the total number
of Cooper pairs for superfluid *He of mass M is calculated as N¢ ~ 1072M/(2mag,) ~
1.0 x 10%3(M/100 g) according to eq. (2.35). For the QCD axion, for example, the external
magnetic field B, = 10T corresponds to the Larmor frequency wy = m, ~ 1.31eV and
fa ~ 4.3 x 102 GeV, which result in

dNaig s ) M va \2/ T .9
e 1.1x107°s7" x Copn <100g> (10_3) <1ms> sin” ,. (3.15)
We also show the expression of the signal power:
_ M ) 2 T .
Pig =22x1070W x C2, (100g) (10“_3> (1ms) sin? 6. (3.16)
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3.2 Mixing between magnon and cavity modes

When one of the cavity modes has the same frequency as the magnons of our interest,
Weavity = W, there is a large mixing between these modes. This can be understood similarly
as the formation of the magnon-polariton of electron spins [78-80]. Let ¢ (¢f) be the
annihilation (creation) operator of the cavity mode. Assuming that all the other cavity
modes have frequencies largely deviated from wy, we can safely neglect them and write down
the relevant part of the Hamiltonian

H = wrd'd + Weavity ¢ ¢ + Humix. (3.17)

The mixing term is sourced from the interaction between nucleon spin and the magnetic
field of the cavity mode and is given by

Hune = igu [ aV (8(7) x 6(7)) - Bo()(e+ ) (318)

e
where the volume integral is performed over the volume of the superfluid 3He, while EO(F)
is the profile of the magnetic field of the cavity mode. If we consider as an example the

cavity mode with Bo(7) = By(7)i@, with @, being the unit vector along the z-axis, terms
linear in the magnon mode is obtained similarly to eq. (2.51) as

N, N ~
Hiix = \| - gpnBo(d + d') (e + &), (3.19)

where the averaged magnetic field over the superfluid *He is defined as

By = dV By(7). (3.20)

Vage J3He

We finally find the quadratic part of the Hamiltonian

H~wrdd+ wcavityéTé + geﬁr(éaff + éTcZ), (3.21)

INc  —
gett = \| = gun Do, (3.22)

where we used the rotating wave approximation to neglect the fast oscillation terms. Note
that the typical size of the magnetic field can be estimated by matching the electromagnetic
energy with a cavity mode frequency. Defining <B8> = ‘/c%vlty /. cavity dV B3(7) with integration
over the cavity volume, we obtain

) 1/2 /103 em? 1/2
2\ Weavity cm
J(B2) ~ 41T (102 MHZ) ( ) . (3.23)

‘/Cavity

For the order estimation of the physics scales, we can approximate that By ~ <B§>, though
there can be an O(1) geometry factor difference. Indeed, this estimation is consistent with
ref. [80], which shows that By ~ 5pT in one of the figures, while a rough estimation gives

(B3) ~ 1pT.
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By diagonalizing the Hamiltonian (3.21), we obtain the energy eigenstates. In particular,
the maximal mixing is realized when wy, = Weavity With the corresponding energy eigenvalues
|wr, + gef|. Compared with the magnon-polariton of electron spins, the energy scale of the
system is smaller by a factor of px/up ~ 1073 with g being the Bohr magneton. This affects
the time scale of the conversion of the magnon mode into the cavity mode. The time scale can
be estimated by evaluating the energy gap AE = 2min (W, = Weavity, geff) between two energy
eigenstates. Assuming Vsy, ~ Veavity for simplicity, and the above estimation of By, we have

Geff M 1/2( wr, >1/2
et 0.3MH 24
o~ 0-3MHz <100 g) 102MHz) (3.24)

where the wr, = weavity dependence comes from that of <Bg>. This expression, together
with wy, ~ 200 MHz for B = 1T, shows that the conversion time scale, which is usually
set by ge_f_g ~ s, can be much shorter than the typical coherence time 7 ~ ms. Thus, it is
expected that half of magnons excited by the axion DM are converted to cavity modes, which
can be observed by the following detector. Note, however, that g.g highly depends on the
detector setup including its geometry, and should carefully be estimated once the setup is
fixed. In appendix A, we show the detailed calculation of the dynamics of the magnon-cavity
mixed system including various loss factors and quantum measurement techniques briefly
introduced in the next subsection.

3.3 Quantum measurement techniques

In the following, we consider two noise sources for our experimental setup according to the
discussion in refs. [15, 41]. The first is thermal noise, or Johnson-Nyquist noise, sourced from
the internal loss of the cavity, and the second is thermal noise sourced from a termination
resistor. Fach of their spectral densities is given by the formula

1 1 1
= = 2
2 exp(w/kpT) —1 ty (3:25)

nr +

where T is the temperature of the cavity. Even at zero temperature, the noise has a nonzero
value known as quantum noise, which originates from the quantum fluctuation. This is
known as the standard quantum limit (SQL), and the noise floor is expressed in terms of
a temperature [81]

TsqL = % ~ 12mK <1;JeV)' (3.26)
Thus, the quantum noise dominates the thermal noise (3.25) for setups below 12 mK when
we want to look for signals from 1€V axions. For our setup, in which the cavity is cooled
to about 2.6 mK, the quantum noise dominates for the axion mass m, 2 0.22peV. This
quantum noise does not seem to be able to be further reduced under temperatures below Tsqr,,
but this SQL can be circumvented by using quantum measurement techniques (see ref. [82]
for a review). Specifically, we use two quantum measurement techniques; the squeezing
of states and the homodyne measurement, as introduced in ref. [41]. We will summarize

these techniques in this section.
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Figure 3. Schematic of our experimental setup for axion detection with superfluid *He. The operators
¢,d, B, --- correspond to the annihilation operators used in our paper.

3.3.1 Squeezing of states

The starting point is introducing quadratures X and Y defined in terms of the annihilation
(creation) operator of photons @ (a!) as

. _a+at o a-—al
X = , Y= 3.27
V2 V3 (3.27)
Because of the commutation relation [a,af] = 1, quadratures satisfy [X,Y] = i. This
commutation relation results in the uncertainty relation of quadratures
N N 1
(AX)?(AY)? > 1 (3.28)

Since many of the ordinary measurement techniques measure both quadratures of the input
signal at each time, the quantum noise AX ~ AY ~ 1 /2 must appear and contribute to
the SQL. However, quantum measurement techniques can decrease this quantum noise by
focusing on only one of the quadratures. For example, a larger part of the uncertainty can
be imposed on Y, as AX ~ 1/(2/G) and AY ~ /G/2 with G > 1, which reduces the
uncertainty on the observable X and remains consistent with eq. (3.28). This operation is
called squeezing. Squeezing can be performed by, e.g., phase-sensitive amplifiers such as
Josephson parametric amplifiers (JPAs); see appendix B for details.

A possible experimental setup, which is similar to the setup of the HAYSTAC experi-
ment [14-16], is schematically shown in figure 3. We also summarize in figure 4 how the state
is squeezed in the XY plane. In this setup, squeezing is performed twice by JPAs. First,
we assume that the input vacuum state (Xin,m, }Afimm),?’ is a state of thermal photon that is

3The meaning of subscript m is described in appendix A.
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Figure 4. Distribution of the four states in the XY plane. The subscripts of quadratures correspond

A

to those in figure 3. The input state ()A(mm17 Yin,m) is Gaussian, which is the distribution of thermal

A

photons. This state will be squeezed by the SQ JPA and becomes the squeezed state (X, Yém)
The third state ()A(Oym, )A/(,m) is the state after the signal from the cavity is received. Finally, we get
the output state (Xout,m, Yout’m) after squeezing by the AMP JPA.

sourced from the termination resistor and distributes like Gaussian in the XY plane. The first
JPA called SQ in figure 3 squeezes the vacuum state along, e.g., the X direction. When we
define the squeezing parameter of the SQ JPA as G, the squeezed state (X 8, )Afsm) becomes

Xs,m = Xin,m7 sz,m = \/@ﬁn,m . (329)

This squeezing reduces the noise AX.

When this squeezed state receives the signal photon from the cavity, the state is displaced
in the phase of the signal photon (from the second figure to the third figure in figure 4).
Because the noise has been suppressed by a factor 1/1/Gy, the signal-to-noise ratio is enhanced
by a factor v/Gs compared to the case without squeezing. The second JPA called AMP

A A

squeezes the displaced state (X, m, Yo,m). This JPA amplifies the state in the X direction,

the opposite direction to the SQ, and we get the output state (Xout,m, onut’m). Defining the
squeezing parameter of the AMP JPA as G,, we get

1 .
—Y, ..
VG, ™

Note that this second squeezing does not affect the signal-to-noise ratio because it amplifies

Xout,m =V GaXo,m ; )A/out,m = (330>

both the signal and noise at the same time. Instead, the AMP JPA plays a role in overwhelming
the noise added by the following circuits, including the amplifier.

Technically, the direction of squeezing by JPAs is determined by the phase of the AC
power input to them. In order to give a difference to the direction of amplification by the
SQ and AMP JPA, the phase shifter between the microwave generator and the SQ JPA
shifts the phase of the microwaves by 7/2.

3.3.2 Homodyne measurement

Now we need to measure the X quadrature exclusively to obtain a high signal-to-noise ratio
beyond the SQL. This is possible by using another quantum measurement technique, the
homodyne measurement. We will briefly review the theory of the homodyne measurement. A
schematic of the homodyne measurement is shown in the lower right part of figure 3.
First, let |¢) be the signal state of our setup, i.e., the squeezed state output from the
AMP JPA. Also, in this subsection, we use the abbreviation for notation of the corresponding
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annihilation operator and quadratures, a, X , and f/, representing Qout,m Xout,m, and }Afout,m,
respectively. The homodyne measurement requires a local oscillator that has the same mode
as that of the signal photons. We write the annihilation operator of the local oscillator by
3, and set the initial state of the local oscillator to a coherent state

8P 5~ B
18) = e I8"/2 Z —In) . (3.31)
n=0 ﬁ
Here, 3 = |Ble and |n) is the Fock state of n photons. The initial state of the total system
is defined as |¥) = [¢)|B).
The signal photons and the local oscillator are split in half and mixed by a beam splitter.
As a result, we obtain two beams whose annihilation operators are

, a—-B ., a+B
azi’ B:
V2 V2

Next, we observe the difference R between the amplitudes of those two beams by a differential

(3.32)

amplifier:

R=B"TB —ata
a+at B+BT a—-al B-Bf

= NG NG + NGT T (3.33)
The expectation value of R is calculated as
N a+a' p+p*  a-al p-p*
= V2|8 (1|(X cos + YV sin ) [¢)) . (3.34)

This equation means that we can measure only one component of quadratures by observing
R. For example, if § = 0, we can measure only the X quadrature. If we tune the phase 6
to be the same as the phase of amplification by the AMP JPA, we can measure only the
amplified quadrature. This tuning is possible by using the same microwave generator for the
AMP JPA and the local oscillator of the homodyne measurement; see figure 3. Thus, the
expectation value of the normalized observable R/ = R/ v/2|8| becomes

(TIR|T) = (] X]e) . (3.35)
Furthermore, the measurement error of the operator R is

(O|(R — X)?|W) = M (3.36)

2|8

which converges to zero in the limit of |3| — co. Therefore, X can be accurately measured
through the homodyne measurement using the local oscillator with a large number of photons.
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4 Sensitivity

We determine the sensitivity of our setup using a test statistic that is introduced in refs. [36, 83]
by developing the log-likelihood-ratio test. Based on the discussion by refs. [36, 83], we
calculate the following test statistic in order to determine the 95% exclusion limits,

qu:t /Ooodle—S&%)—ln(lerﬂ, (4.1)

where Tiy is the experimental integration time, and S(w) and B(w) are the signal and noise

power spectral density respectively, which are computed in appendix A. The 95% exclusion
limits are obtained by solving ¢ = —2.71.
According to the calculation in appendix A, we obtain

5/2 1/2
N _32923N%93nn7m/agpgﬂntcs/ Q3/2

q ~
9m%m2/ 2

T ma \"2/ G \Y2 1 M N2/ Q\3?
~ _ 59 4 int a Ls M &
= =35 x10 gam(mm) <1peV> (102) (100g) (106) (42

where gaunn = Cannmn/fa, and we have used No = 10%3(M/100g), Tmag = 18, po =

0.45GeV/cm?3, and eq. (3.24) for gog. Note that since the cavity is placed under a low
temperature T < T, = O(1) mK, the sensitivity does not depend on T' but is limited by
the quantum fluctuation. Solving ¢ = —2.71, we estimate the expected exclusion limits
on the axion-neutron coupling as

T U4 \NY2 G\ M ON\TTE QR
w1100 (0) O (0e) () (o) (o) - @
9 A T 1 eV 102 100g 106 (43)

In our setup, we scan the magnetic field B, and the cavity size so that the axion dark

matter with mass m, ~ wr, = Weavity can be searched for. Each scan step has a sensitivity
on the axion mass width ~ 1/7 around the Larmor frequency

B.
o~ 0.1 . 4.4
Mg ~ 0.13 peV (1T> (4.4)

For simplicity, we approximate the sensitivity curve for each scan by a rectangle with width
1/7 instead of using a Breit-Wigner shape. The typical size of the cavity Lecavity is estimated
by evaluating the corresponding Compton length as

1 peV)

Mg,

Leaity ~ 1.2m ( (4.5)
The upper limit of the axion mass that can be searched by our experiment is determined by
the upper limit of the magnetic field B,. We adopt 25T as the maximum of B,, which can
be regarded as realistic as planned for example in CAPP25T by IBS/BNL [84].%

The squeezing level G is also crucial for sensitivity estimation. Here, we summarize
the current status of the squeezing level in various experiments including the gravitational

“As a more optimistic option, ~ 45T is also planned to be developed [85].
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wave telescope. The squeezing levels are usually represented in the unit of dB, and = dB
of squeezing corresponds to G5 = 10%/10 in our setup. In the context of the gravitational
wave detection, 6 dB quantum noise reduction (corresponding to G5 = 10%%) has already
been reported [86], while the HAYSTAC experiment of the axion dark matter detection has
achieved 4dB [16]. Even larger values have already been achieved for the squeezed state
production of light, such as 8 dB for the microwave and the terahertz range [87, 88|, and 15dB
for the megahertz range [89]. It is notable, however, that a hindrance to using the squeezing
state for the quantum measurement is the optical loss, which is one of the main obstacles
that we have to tackle to improve the sensitivity further (see the discussion in section 5).
In figure 5, we show the 95% exclusion limits on the axion-neutron coupling