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We perform a blinded cosmology analysis with cosmic shear two-point correlation functions measured
from more than 25 million galaxies in the Hyper Suprime-Cam three-year shear catalog in four tomographic
redshift bins ranging from 0.3 to 1.5. After conservative masking and galaxy selection, the survey covers
416 deg2 of the northern sky with an effective galaxy number density of 15 arcmin−2 over the four redshift
bins. The 2PCFs adopted for cosmology analysis are measured in the angular range; 7.1 < θ=arcmin < 56.6
for ξþ and 31.2 < θ=arcmin < 248 for ξ−, with a total signal-to-noise ratio of 26.6. We apply a conservative,
wide, flat prior on the photometric redshift errors on the last two tomographic bins, and the relative
magnitudes of the cosmic shear amplitude across four redshift bins allow us to calibrate the photometric

redshift errors. With this flat prior on redshift errors, we find Ωm ¼ 0.256þ0.056
−0.044 and S8 ≡ σ8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm=0.3

p ¼
0.769þ0.031

−0.034 (both 68% C.I.) for a flat Λ cold dark matter cosmology. We find, after unblinding, that our
constraint on S8 is consistent with the Fourier space cosmic shear and the 3 × 2 pt analyses on the same HSC
dataset. We carefully study the potential systematics from astrophysical and systematic model uncertainties
in our fiducial analysis using synthetic data, and report no biases (including projection bias in the posterior
space) greater than 0.5σ in the estimation of S8. Our analysis hints that the mean redshifts of the two highest
tomographic bins are higher than initially estimated. In addition, a number of consistency tests are conducted
to assess the robustness of our analysis. Comparing our result with Planck-2018 cosmic microwave
background observations, we find a ∼2σ tension for the ΛCDM model.

DOI: 10.1103/PhysRevD.108.123518

I. INTRODUCTION

The flat Λ cold dark matter (ΛCDM) model, which is
now considered as concordance cosmology model, explains
a diverse set of observations with a nonzero cosmological
constant Λ (which drives the accelerating expansion of the
late-time Universe) and cold dark matter (which drives
large-scale structure formation). The observations include
the Hubble diagram of type Ia supernovae (e.g., [1]), big
bang nucleosynthesis (e.g., [2]), fluctuations in the cosmic
microwave background radiation (CMB; e.g., [3,4]), cosmic
shear e.g., [5–7] and galaxy clustering e.g., [8–12]. As the
precision of these observations has grown, we are now in the
era of precision cosmology, focusing on possible small
discrepancies between different observations when inter-
preted by the flat ΛCDM cosmology model. One such
tension is the so-called σ8 or S8 tension, which refers to the
fact that the ΛCDM models inferred from large-scale
structure probes consistently exhibit a lower value of σ8
or S8 see [13] for a recent review, which characterizes the
clustering amplitude in the present-day Universe, than do
cosmological models inferred from the Planck-2018 CMB
measurements [4]. A statistically significant discrepancy
after marginalizing over the known systematic uncertainties
could be an indication of physics beyond the flat ΛCDM
cosmology. However, the discrepancy could also be a sign
of unknown systematics in some of the observations or the
analyses.
Weak gravitational lensing is one of the most important

observations of large-scale structure at low redshifts. It
refers to the small but coherent distortion of images of
background galaxies due to the deflection of light when it
travels through an inhomogeneous foreground matter den-
sity field [14]. Since weak lensing is caused by gravity, it is

sensitive to the projected total matter (both dark matter and
baryons) distribution along the line of sight [15]. Cosmic
shear, namely the two-point statistics of lensing-shear
distortion measured from background galaxy images, are
related to the two-point statistics (i.e., the power spectrum)
of the projected foreground matter density field. Cosmic
shear measurements are particularly sensitive to the combi-
nation of cosmology parameters S8 ≡ σ8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm=0.3

p
, where

Ωm is the total matter density parameter.
The ongoing Stage-III large-scale multiband photometric

surveys which have weak lensing among their primary
science targets include the Kilo-Degree Survey (KiDS) [16],
the Dark Energy Survey (DES) [17], and the Hyper
Suprime-Cam survey (HSC) [18] which is the subject of
this paper. The HSC survey is an optical imaging survey
covering about 1; 100 deg2 using a 1.77 deg2 field-of-view
imager mounted on the 8.2-meter Subaru telescope [19–22].
The HSC survey is able to measure cosmic shear signals up
to z ∼ 2 from its i-band coadded images thanks to the
combination of its depth (5σ point-source magnitude of
i ∼ 26) and good seeing (mean seeing size of ∼0.6 arcsec)
for the HSC wide layer. In this paper, we focus on the Year 3
results of HSC (HSC-Y3), based on roughly 430 deg2

of sky.
Li et al. [23] presented the HSC-Y3 shear catalog for

weak-lensing science. We conducted a number of null
tests on the shear catalog against many possible system-
atics such as modeling errors in the point-spread function
(PSF) and shear estimation biases thus demonstrating
that the HSC-Y3 shear catalog meets the requirements
for weak-lensing science. Rau et al. [24] performed a
joint redshift distribution inference on the sample, com-
bining photometric redshift information with clustering
redshifts from the CAMIRA luminous red galaxy sample
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(CAMIRA-LRG; [25–27]). Zhang et al. [28] developed a
technique to correct for systematic bias in cosmic shear
analysis from fourth-order PSF modeling error and shape
leakage to shear estimation.
In this paper, we present results from a tomographic

cosmic shear analysis using the HSC-Y3 shear catalog. We
measure the two-point correlation functions (2PCFs) from
the HSC-Y3 shear catalog. Then we model the 2PCFs with
twenty-three cosmological, astrophysical, and nuisance
parameters. With a nested Bayesian sampling analysis,
we constrain the cosmological parameters, especially focus-
ing on S8, in the context of the flat ΛCDM cosmology.
In our likelihood model, we carefully marginalize over

various nuisance parameters quantifying systematic errors
in the cosmic shear analysis [29]. The systematic errors we
consider include systematic errors due to imperfect PSF
modeling and PSF shape leakage [28], shear calibration
uncertainties [23], and the photometric redshift (photo-z)
uncertainties [24]. In addition to systematic errors, we study
the modeling uncertainties in the matter power spectrum at
small scales, e.g., the model uncertainties in the nonlinear
power spectrum [30,31] and baryonic physics from star
formation, supernovae, and AGN feedback [32–34].
Specifically, we use our fiducial pipeline to analyze various
mock 2PCFs simulated using different nonlinear [31] and
baryonic models to quantify the systematic uncertainties
on the Ωm and S8 constraints. In addition, we adopt a
conservative model to marginalize intrinsic shape correla-
tions due to tidal alignment [35,36] and tidal torquing [37].

In order to obtain robust cosmological constraints, we
perform a blinded analysis to avoid confirmation biases
affecting our results. In particular, we conduct various
blinded internal consistency tests by analyzing data in
the context of the flat ΛCDM cosmology in different
subfields, with different angular scale cuts, and removing
each of the redshift bins to check the robustness of our
results. Furthermore, we look for sensitivity of the central
value and uncertainty in our S8 constraint for analyses with
flat priors on different cosmological parameters and prior
ranges, analyses with different models for the linear and
nonlinear matter power spectrum as well as different models
for baryonic physics, analyses with different intrinsic align-
ment models, and analyses with different systematics
models. After we confirm that there is no internal incon-
sistency in our cosmic shear 2PCFs analysis, we unblind our
analysis and check the consistency of our constraints with
the Planck-2018 CMB analysis [4] and other lensing
surveys such as DES [7,38] and KiDS [6].
Our paper is organized as follows. In Sec. II we describe

the basic characteristics of the HSC-Y3 dataset (including
galaxy shear, photo-z, star shape and mock catalogs) that we
use for the real space cosmic shear analysis. In Sec. III we
measure the two-point correlation functions from the HSC
shear catalog and the covariance from HSC mock catalogs.
In Sec. IV we provide a brief overview of the theoretical

model used in our likelihood. In Sec. V, we conduct internal
consistency checks. In Sec. VI, we present our main results
and compare them with constraints from external datasets.
Throughout this paper, we report the mode of the 1D
projected posterior distribution, along with 68% credible
interval (CI) for parameter values and uncertainties. In
addition, we also quote the maximum a posteriori (MAP)
estimate from the Monte Carlo (MC) chain.
We note that this paper is one of a series of HSC-Y3

cosmological analysis papers, alongside:
(i) A cosmic shear analysis using pseudo-Cl

measurement [39].
(ii) A 3 × 2 pt analysis combining galaxy clustering,

cosmic shear, and galaxy-galaxy lensing [40–42].
Those three cosmology analyses are conducted without
any comparison between the cosmology constraints before
unblinding. However, when performing model validation
tests on synthetic data vectors, we make sure that the two
cosmic shear analyses, from 2PCFs and pseudo-Cl, are
subject to the same criteria when making decisions on
analysis choices.

II. HSC-Y3 DATA

In this section we briefly introduce the HSC-Y3 data for
the cosmic shear analysis. The data is based on the S19A
internal data release, which was released in September 2019
and was acquired between March 2014 and April 2019.
First we introduce the galaxy shear catalog [23] that is used
to measure the cosmic shear two-point correlation functions
(2PCFs) is introduced in Sec. II A, the shear catalog
blinding is discussed in Sec. II B, and the photometric
redshift (photo-z) catalog [43] that is used to separate source
galaxies into four tomographic bins and infer the galaxy
redshift distribution is introduced in Sec. II C. The star
catalog that is used to quantify PSF systematics is intro-
duced in Sec. II D. Finally, we introduce the mock catalogs
that are used to estimate the statistical uncertainties on our
2PCFs measurement in Sec. II E.

A. Weak-lensing shear catalog

1. Basic characterization

The original HSC-Y3 shape catalog [23] contains more
than 35 million source galaxies covering 433 deg2 of the
northern sky. The galaxy sample is conservatively selected
for the weak-lensing science with a magnitude cut on
extinction-corrected CModel magnitude at i < 24.5, a
CModel signal-to-noise ratio (SNR) cut at SNR > 10
and a reGauss resolution cut at R2 > 0.3 [23].
After the production of the shear catalog, a few addi-

tional cuts are applied to improve the data quality. In
particular, we follow [44] to remove objects with extremely
large i-band ellipticity which are potentially unresolved
binary stars. To be more specific, we remove objects with
large ellipticity, jej > 0.8 and i-band determinant radius
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rdet < 10−0.1rþ1.8 arcsec (where r in the exponent is the
r-band magnitude), amounting to 0.46% of the galaxy
sample [23].
In addition, we remove a region in GAMA09H with

132.5 ½deg� < ra< 140 ½deg�, 1.6 ½deg� < dec < 5 ½deg�,
containing an area of ∼20 deg2. This region has very
good seeing size∼0.4 arcsec, but it has a smaller number of
single-frame exposures contributing to the coadded images.
In addition, we find significant PSF fourth-moment mod-
eling errors in this region [28]. We find that including
galaxy shapes in this region causes significant B-modes in
2PCFs at high redshifts and large scales.
Additionally, a number of galaxies are found to have

secondary solutions at very high redshifts in their esti-
mated photo-z posterior distributions, due to redshift
template degeneracies. These secondary solutions are
outside the redshift coverage of our CAMIRA-LRG
sample [26] making it difficult to calibrate with the
cross-correlation technique [24]. The details will be dis-
cussed in Sec. II C.
After these cuts, the final shear catalog contains 25 mil-

lion galaxies covering 416 deg2 of the northern sky. The
catalog is split into six subfields: XMM, GAMA09H,
WIDE12H, GAMA15H, VVDS and HECTOMAP. The
area and effective galaxy number densities, neff (as defined
in Ref. [45]), in different redshift bins of the subfields are
summarized in Table I. The number density maps for six
subfields are shown in Fig. 1. The effective standard
deviation of the error on the per-component shear per
galaxy is σγ ¼ 0.236.

2. Galaxy shear

The HSC-Y3 shear catalog contains galaxy shapes,
estimated with the re-Gaussianization (reGauss) PSF
correction method [46] from the HSC i-band wide-field
coadded images [47]. The reGauss estimator measures
the two components of galaxy ellipticity,

ðe1; e2Þ ¼
1 − ðrb=raÞ2
1þ ðrb=raÞ2

ðcos 2ϕ; sin 2ϕÞ; ð1Þ

where rb=ra is the axis ratio, and ϕ is the position angle of
the major axis with respect to the equatorial coordinate
system. The lensing shear distortion, denoted as γ, coher-
ently changes the galaxy ellipticities.
To control the shear estimation bias below 1% of the

shear distortion, the galaxy shapes are calibrated with
realistic image simulations downgrading galaxy images
from Hubble Space Telescope [48] to the HSC observing
conditions [49]. In the shear calibration, we modeled the
biases, including multiplicative (m) and additive (c) biases
from shear estimation, galaxy selection and galaxy detec-
tion as functions of galaxy properties (i.e., galaxy reso-
lution, galaxy SNR, and galaxy redshift). For a galaxy
sample distorted by a constant shear, the multiplicative bias
and additive bias are given by

m̂ ¼
P

iwimiP
iwi

;

ĉα ¼
P

iwiaie
psf
α;iP

iwi
; ð2Þ

respectively. Here, i refers to the galaxy index, and wi, mi,
ai, e

psf
α are the galaxy shape weight, multiplicative bias,

fractional additive bias, and PSF ellipticity for the galaxy
with index i. α ¼ 1; 2 are the two components of spin-2
properties (e.g., ellipticity, shear, and additive bias). The
galaxy shape weight for each galaxy is defined as

wi ¼
1

σ2e;i þ e2rms;i
; ð3Þ

where erms;i is the root-mean-square (rms) of the intrinsic
ellipticity per component for the ith galaxy. erms and σe are
modeled and estimated for each galaxy using the image
simulations. The estimated shear for the galaxy ensemble
after calibration is

γ̌α ¼
P

iwieα;i
2Rð1þ m̂ÞPiwi

−
ĉα

1þ m̂
; ð4Þ

TABLE I. The area and effective number density nðiÞeff (i ¼ 1;…; 4) [45] in each tomographic bin and in six
different subfields (i.e., XMM, VVDS, GAMA09H, WIDE12H, GAMA15H, HECTOMAP); and those for the
whole HSC-Y3 footprint across the four redshift bins.

Fields Area (deg2) nð1Þeff ðarcmin−2Þ nð2Þeff ðarcmin−2Þ nð3Þeff ðarcmin−2Þ nð4Þeff ðarcmin−2Þ All (arcmin−2)

XMM 33.17 3.44 4.46 3.66 1.94 13.51
VVDS 96.18 3.82 5.13 4.21 2.13 15.30
G09H 82.36 3.99 4.74 3.81 2.11 14.65
W12H 121.32 3.61 5.20 3.96 2.06 14.82
G15H 40.87 3.92 5.38 4.27 2.24 15.81
HECT 43.06 3.74 5.34 4.05 2.32 15.44
All 416.97 3.77 5.07 4.00 2.12 14.96
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where α ¼ 1, 2, and R is the shear responsivity for the
galaxy population, defined as

R ¼ 1 −
P

iwie2rms;iP
iwi

: ð5Þ

3. Selection bias

Selection bias refers to a bias induced by selection cuts
correlated with the true lensing shear and/or anisotropic
systematics (e.g., PSF anisotropy). As a result, the selected
galaxies that are sufficiently close to the edge of the cuts
coherently align in a direction that correlates with the
lensing shear and/or the systematics. The correlation with
lensing shear leads to multiplicative shear estimation bias,
whereas the correlation with anisotropic systematics leads
to additive shear estimation bias.
We quantify selection bias in terms of multiplicative bias

(msel) and fractional additive bias (asel) and estimate these
biases from image simulations [23]. The estimated shear is
corrected as

γ̂α ¼
γ̌α − ĉselα

1þmsel ; ð6Þ

where

ĉselα ¼ asel
P

iwie
psf
α;iP

iwi
ð7Þ

is the estimated additive selection bias [23].
Finally, the per-object shear (γα;i) for a single galaxy is

defined as

γα;i ¼
1

1þmsel

�
eα;i=ð2RÞ− aie

psf
α;i

1þ m̂
− aselepsfα;i

�
: ð8Þ

The shear estimation from an galaxy ensemble defined in
Eq. (6) is the weighted average of the per-galaxy shear.
In addition to the distortion of galaxy images from

lensing shear, the lensing convergence, denoted as κ,
isotropically distorts galaxy images and changes galaxy
sizes and fluxes. Since the intrinsic galaxy sizes are
unknown, we can only observe the reduced shear, denoted
as gα ≡ γα=ð1 − κÞ from distorted galaxy images. In our
work, we do not distinguish between the lensing shear and
the reduced shear since it is a higher-order systematic bias,
as shown in [50]. The bias caused by the reduced shear is
less than 0.15σ2D, where σ2D is the 1σ contour in the 2D
(Ωm, S8) plane for the DES fiducial cosmic shear analysis.

FIG. 1. The map of effective number density neff of galaxies across four redshift bins. A rectangular region in GAMA09H
(132.5 ½deg� < ra < 140 ½deg�, 1.6 ½deg� < dec < 5 ½deg� with very good seeing, a smaller number of input single exposures, and
significant fourth-order PSF shape residual is removed from the original catalog.
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B. Shear-catalog blinding

In order to avoid confirmation bias in our cosmic shear
analyses, we conduct our analysis with catalog-level blind-
ing and analysis-level blinding. That is, our results are
masked while conducting the analysis before unblinding.
For the catalog-level blinding, we measure 2PCFs and

constrain cosmology using three blinded catalogs. Each
catalog is blinded by adding a random additional multipli-
cative bias with a two-level catalog blinding scheme [23].
The first is a user-level blinding to prevent an accidental
comparison of blinded catalogs between different cosmo-
logical analyses (i.e., the cosmic shear 2PCFs analysis in
this paper, the cosmic shear Fourier space analysis [39] and
the 3 × 2 pt analysis [41,42]), whereas the second is a
collaboration-level blinding to prevent analysers knowing
which catalog of the three is the true catalog.
For the user-level blinding, a random additional multi-

plicative bias dm1 is generated for each catalog. The values
of dm1 are different for each analysis team, and they are
encrypted with the public keys from the principal inves-
tigators of the corresponding analysis teams. This single
value of dm1 is decrypted and subtracted from the multi-
plicative bias values for each catalog entry to remove the
user-level blinding before the cosmic shear analysis.
For the collaboration-level blinding, three blinded cata-

logs are generated with indexes j ¼ 0, 1, 2. The additional
multiplicative biases dmj

2 for these three blinded catalogs are
randomly selected from the following three different choices
of (dm1

2, dm2
2, dm3

2): ð−0.1;−0.05; 0Þ, ð−0.05; 0; 0.05Þ,
(0, 0.05, 0.1). Note, we set the difference in multiplicative
bias between three catalogs to be 0.05, corresponding to a
shift in S8 by∼0.05, in order to cover the S8 tension between
weak-lensing and CMB observations. The additional multi-
plicative biases are listed in an ascending order, in each case,
while the true catalog (with dm2 ¼ 0) has a different index
for the three options. The values of dm1;2;3

2 are encrypted by
a public key from one designated person who is not involved
in any cosmology analysis.
The final blinded multiplicative bias values for the

galaxies in each of these three catalogs are

mj
blind;i ¼ mtrue;i þ dmj

1 þ dmj
2; ð9Þ

where i is the galaxy index in each blinded catalog indexed
by j. We carry out the same analysis for all three catalogs
for internal consistency checks (see Sec. V) after decrypt-
ing and subtracting the dm1 from the multiplicative bias for
each catalog.
We adopt an analysis-level blinding for the internal

consistency tests in Sec. V. Specifically, we shift the
posteriors along each cosmological parameter, e.g., S8
and Ωm, by the corresponding projected mode estimate
from the fiducial chain. As a result, we only show the
difference between the internal tests and the fiducial chain.

In addition, we do not compare the measured 2PCFs with
predictions of any known cosmology. Moreover, the analy-
sis team did not compare the posterior of cosmology
parameters with any external results (e.g., Planck CMB,
DES and KiDS’s constraints) before unblinding.
The analysis team agreed that, once the results were

unblinded, they would be published regardless of the
outcome. In addition, the analysis method could not be
changed or modified after unblinding.

C. Photometric redshift catalog

In the following, we briefly summarize the three
methods for photometric redshift (photo-z) estimation at
the individual galaxy level. We refer the readers to
Nishizawa et al. [43] for more details.

dNNz is a photo-z conditional density estimation algo-
rithm based on a neural network. Its architecture consists
of multi-layer perceptrons with five hidden layers. The
code uses CModel fluxes, convolved fluxes, PSF fluxes,
galaxy sizes and galaxy shapes for the training. The photo-z
conditional density is constructed with 100 nodes in the
output layer, and each node represents a redshift histogram
bin spanning from z ¼ 0 to redshift z ¼ 7 ([51]).

The direct empirical photometric redshift code (DEmPz)
is an empirical algorithm for photo-z conditional density
estimation [52]. It uses quadratic polynomial interpolation
of 40 nearest neighboring galaxies in a training set, with
a distance estimated in a 10 dimensional feature space
(5 magnitudes, 4 colors, and 1 size information). DEmPz
estimates the error for the constructed photo-z conditional
densities with resampling procedures.
mizuki [53] is a photo-z algorithm adopting a spectral

energy distribution (SED) fitting technique. The method
uses an SED template set constructed with Bruzual-Charlot
models [54], a stellar population synthesis code using an
initial mass function following Chabrier [55], emission-line
modeling assuming solar metallicity [56], and a dust
attenuation model from Calzetti et al. [57]. It applies a
set of redshift-dependent Bayesian priors on the photo-z
estimation, and, to improve the accuracy, the photo-z
posteriors of galaxies are calibrated with the specXphot
dataset [58].
We divide the galaxies in the shear catalog introduced in

Sec. II A into four tomographic redshift bins by selecting
galaxies using the best estimate, minimizing the estimation
risk (see Nishizawa et al. [43] for more details), of the dNNz
photo-z algorithm within four redshift intervals—(0.3, 0.6],
(0.6, 0.9], (0.9, 1.2] and (1.2, 1.5]. We find ∼31% and ∼8%
galaxies in the first and second redshift bins, respectively,
have double peaks in the mizuki and dNNz photo-z
probability density function (PDF), and the secondary
peak corresponds to a significant fraction of outliers at
z≳ 3.0. We remove these galaxies from our sample for
2PCFs measurement since the secondary peaks are
outside the redshift coverage of the CAMIRA-LRGs [24]
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(see Sec. IV C) that is used to calibrate the galaxy redshift
distribution, and therefore can potentially produce large
systematic uncertainties.
To be more specific, galaxies with secondary peaks are

identified with the following selection criteria based on
the distance between the 0.025 and 0.975 quantiles of the
mizuki and dNNz photo-z PDF estimates

�
zmizuki
0.975;i − zmizuki

0.025;i

�
< 2.7 and

�
zdnnz0.975;i − zdnnz0.025;i

�
< 2.7;

ð10Þ

where zmizuki ðdnnzÞ
0.975;i and zmizuki ðdnnzÞ

0.025;i denote the 97.5 and
2.5 percentiles for galaxy i derived with the mizuki
(dNNz) photo-z PDF estimates, respectively. We do not
find a significant number of double solutions for DEmPz,
thus we do not include it in the criteria above. In Fig. 2, we
show the stacked photo-z posteriors from individual gal-
axies in each redshift bin for these three photo-z estimators,
after rejecting galaxies with double solutions. The nðzÞ
obtained by combining multiple photo-z’s and calibrated
with CAMIRA LRGs [24] is used for our fiducial analysis.
The calibrated nðzÞ is shown in Fig. 2.

D. Star catalog

The HSC-Y3 star catalog used to quantify the PSF
systematics in the estimation of the 2PCFs is selected from
the star samples described in Sec. V.1 of Li et al. [23], which
covers the same footprint as the galaxy shear catalog
described in Sec. II A. We briefly summarize the star sample
we used in this paper, and refer the readers to [23] for more
details.
The PSF models in the HSC-Y3 coadded images are

constructed by stacking the PSF models estimated in each
CCD exposure contributing to the coadded pixels, and the
PSF models in a CCD exposure are constructed by
interpolating star images on the same CCD. The selection
of stars used for PSF modeling is based on the k-means

clustering of high-SNR (i.e., SNR > 50) objects in size,
typically resulting in ∼80 star candidates per CCD chip (an
area of ∼60 arcmin2; see Bosch et al. [47] for more details).
In the single exposure CCD processing, ∼20% of the stars
in a given single exposure are randomly selected and
reserved for cross-validation, and are not used for PSF
modeling. Since the star sample used in PSF modeling is
derived on individual exposures, different exposures will
not necessarily select the same set of reserved stars. At
the coadded image level, stars that were used by ≥ 20% of
the input exposures are labelled as having been used in the
modeling, namely “i calib psf used ¼¼ True.”

The star sample that is used to quantify PSF syste-
matics on 2PCFs is selected by “i extendedness
value ¼¼ 0,” a cut indicating whether an object is an
extended galaxy or a pointlike star. After that, we apply an
i-band magnitude cut at 22.5 to select a star sample with
high SNR. Li et al. [23] further divide this magnitude
limited star sample into two subsamples; those flagged by
“i calib psf used ¼¼ True” are PSF stars and the
others are defined as non-PSF stars.
In this paper, we use the PSF star sample to estimate the

additive bias on 2PCFs from PSF systematics, since as
shown in Zhang et al. [28], the additive bias on 2PCFs
estimated from PSF stars is consistent with that estimated
with non-PSF stars. In addition, the estimation of the PSF
systematic error from PSF stars has higher SNR since there
are more stars in the PSF star sample. We give the details
of how we use PSF stars to estimate the additive PSF
systematic error and marginalize over it in our cosmologi-
cal analysis in Sec. IV E.

E. Mock catalogs

In this subsection, we introduce the HSC-Y3 galaxy
mock shear catalogs, which are used to accurately quantify
the uncertainties of our measured 2PCFs (both galaxy-
galaxy and galaxy-star shape correlations) due to cosmic
variance, galaxy shape noise, measurement errors due to

FIG. 2. The comparison between nðzÞ distributions (solid line) estimated by the joint calibration with CAMIRA-LRG sample [24] and
those estimated by stacking the DEmPz (dashed lines), dNNz (dot-dashed lines) and mizuki (dotted lines) photo-z posteriors from
individual galaxies. The shaded grey histogram is the number density as a function of redshift of CAMIRA-LRGs used to calibrate the
nðzÞ distributions of the solid lines. The median redshifts for the four redshift bins (solid black lines) are 0.44, 0.75, 1.03 and 1.31, and
the median redshift for the overall sample is 0.80. The dashed black lines in the last two redshift bins are the nðzÞ distributions after after
the self-calibration in parameter inference (see text for details).
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photon noise, and photometric redshift uncertainties. The
mock catalogs are generated following Shirasaki et al. [59]
with updates to incorporate the survey footprint, galaxy
shape noise, shape measurement error, and photometric
redshift error of the HSC-Y3 shear catalog.
The mock shear catalog uses simulations of the full-sky

shear map at 38 redshifts generated by the ray-tracing
simulation [60] with 108N-body simulations of the
WMAP9 cosmology (H0 ¼ 70 km=s=Mpc, Ωm ¼ 0.279,
Ωb ¼ 0.046, σ8 ¼ 0.82) [3]. The ray-tracing simulation
calculates the light-ray deflection on the celestial sphere
using the projected matter density field at the spherical
shells [61,62]. Each shell has a radial “thickness” of
150 h−1 Mpc. The angular resolution of the shear map is
0.43 arcmin.
In order to increase the number of realizations of the

mock catalogs, we extract 13 separate regions with the
same HSC three-year survey geometry from each full-sky
shear map, obtaining 108 × 13 ¼ 1404 mock catalogs in
total. These 1404 lensing-shear maps at 38 redshift planes
are combined with the observed angular positions, photo-z
s, and shapes of real galaxies [23] to generate mock shear
catalogs. To be more specific, source galaxies are popu-
lated on the lensing-shear maps using the original angular
positions and the dNNz “best-fit” redshift estimates of the
galaxies in the HSC shear catalog. Each galaxy is assigned
a source redshift estimate in the mock following the dNNz
photo-z posterior distribution. The shape noise on each
galaxy is generated with a random rotation of the galaxy’s
intrinsic shape following the intrinsic shape dispersion
estimated in the HSC shear catalog, and the measurement
error is generated as a zero-mean Gaussian random number
with the standard deviation measured in the HSC shear
catalog. We distort each galaxy’s intrinsic shape with the
shear value on the shear map and add measurement error to
the distorted shape to generate the final galaxy shape see
Sec. IV.2 in Ref. [59].
We note that our simulations use source galaxy posi-

tions from the real HSC data but unlike the real Universe,
the positions are not correlated with the density field
in the simulations. The correlation between the source
galaxy clustering and the shear signal [63] are neglected in
the mock.

III. TWO-POINT STATISTICS

The 2PCFs of galaxy shear [14], denoted as ξ�ðθÞ, are
two-point statistics that are widely used to constrain
cosmological parameters. In Sec. III A, we measure the
2PCFs from the galaxy shear catalog introduced in
Sec. II A; in Sec. III B, we derive the covariance matrix
of the 2PCFs using mock shear catalogs introduced in
Sec. II E; in Sec. III C, we measure the B-modes on 2PCFs
to test the systematics in our measurement.

A. Two-point correlation functions

The 2PCFs can be measured from the shear catalog using
the per-object shear defined in Eq. (8),

ξ̂�ðθÞ ¼
P

i;jwðriÞγþðriÞwðrjÞγþðrjÞP
i;jwðriÞwðrjÞ

�
P

i;jwðriÞγ×ðriÞwðrjÞγ×ðrjÞP
i;jwðriÞwðrjÞ

; ð11Þ

where the summation is over every galaxy pair ði; jÞ with
angular separation θ. For each galaxy pair, we decompose
the per-object shear estimates γαðriÞ into tangential com-
ponents, γþðriÞ, and cross components, γ×ðriÞ, with respect
to the direction connecting the two galaxies in a pair.
We use the public software TreeCorr

1 to measure both the
auto and cross-correlations from the four tomographic
redshift bins in equal log-intervals of Δ logðθÞ ¼ 0.29 in
the range 7.1 < θ=arcmin < 56.6 for ξþ, and 31.2 <
θ=arcmin < 248 for ξ−. The small-scale cut is determined
by the requirement to control the modeling error on the
matter power spectrum at small scales due to baryonic
physics (Sec. IVA); and the large-scale cut is determined by
the B-mode systematics (Sec. III C). For different redshift
bins, we use consistent scale cuts in θ for each of the
measured auto and cross-correlations ξþ and ξ−. It is worth
mentioning that the DES cosmic shear analysis [7,64]
adopts a redshift-dependent scale cut. Given that we have
not observed compelling evidence suggesting a specific
scale at any particular redshift introduces significant bias,
we choose to fix the scale cut across different bins, which
simplifies our decision-making process regarding scale cuts.
Figure 3 shows the 2PCFs (i.e., ξ̂ijþ and ξ̂ij−) measured from
the galaxy shear catalog in four tomographic bins. The i
and j specify the galaxy samples in two tomographic bins
(note, in the case of i ¼ j, the same tomographic bin) from
which the correlation function is calculated. The unshaded
region denotes the scales used for our fiducial analysis. We
have 7 angular bins for both ξþ and ξ−. In total, we have
ð7þ 7Þ × 10 ¼ 140 data points for the 10 auto and cross-
redshift bins, and the SNR of the 2PCFs is 26.6 including
the Hartlap correction when estimating the inverse of the
covariance matrix [65].
We note that although we focus on 2PCFs in this paper,

several alternative cosmic shear two-point statistics have
been used in the literature. These two-point statistics
include the angular power spectrum in Fourier space
e.g., [66–68] and the complete orthogonal sets of E=B-
integrals e.g., [69,70]. In particular, Dalal et al. [39] carry
out analysis in parallel to this paper using the angular
power spectrum in Fourier space with the same catalog.

1https://github.com/rmjarvis/TreeCorr.
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B. Covariance

We derive a covariance matrix of the estimated 2PCFs
using the 1404 HSC mock shear catalogs summarized in
Sec. II E with different realizations of galaxy intrinsic
shape, measurement error from image noise, and cosmic
shear signal [59]. We measure the 2PCFs from all 1404
realizations of mock catalogs in the same manner as the
measurement from the real HSC shear catalog and calculate
the covariance matrix from these 1404 measurements. The
covariance matrix is denoted as C, and the correlation
coefficients, defined as ρij ≡ Cij=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
CiiCjj

p
, are shown in

Fig. 4. We inspect the diagonal covariance elements with
bootstrap resampling and confirm that each element of the
covariance matrix has SNR greater than 21 (≲5% statistical
uncertainty), which indicates that the covariance is mini-
mally affected by the finite number of realizations.
Since the cosmic shear signal in the mock catalogs are

obtained from a large number of full-sky ray-tracing
simulations of the WMAP9 cosmology which takes into
account nonlinear structure formation [60], the derived
cosmic variance includes both Gaussian and non-Gaussian
information. Also, the galaxy positions and survey geom-
etry in the mock catalogs mimic those of the real data;
therefore the derived covariance includes super-survey
covariance [59,71]. Moreover, we generate random shape

noise and measurement error using the galaxy intrinsic
shapes and measurement error from the real shear catalog
[23]. We find that the shape noise covariance is prominent
at the smallest angular bins, while the cosmic variance
dominates the covariance at the largest angular bins.

FIG. 3. The ten 2PCFs including four autocorrelations and six cross-correlations between the four tomographic redshift bins (labeled
with 1–4). This plot shows the 2PCFs on scales 5.3 ½arcmin� < θ < 76 ½arcmin� for ξþ, and 23.2½arcmin� < θ < 248 [arcmin] for ξ−.
The unshaded region refers to the fiducial scale cut: 7.1 ½arcmin� < θ < 56.6 ½arcmin� for ξþ, and 31.2 ½arcmin� < θ < 248 ½arcmin�
for ξ−. The errorbars are estimated with mock catalogs. The total SNR of the measured 2PCFs is 26.6. The solid lines are the best-fit
model of our fiducial analysis, as discussed in Sec. VA.

FIG. 4. The normalized covariance matrix (correlation coeffi-
cients) estimated with mock catalogs. Note that this plot shows the
coefficients on scales 5.3 ½arcmin� < θ < 76 ½arcmin� for ξþ,
and 23.2 ½arcmin� < θ < 248 ½arcmin� for ξ−. The fiducial scale
cut—7.1 < θ < 56.6 ½arcmin� for ξþ, and 31.2 ½arcmin� < θ <
248 ½arcmin� for ξ−—is a subset of this scale range.
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The accuracy of the covariance matrix from the mocks
was studied in detail by Shirasaki et al. [59]. They found that
multiplicative bias of 10% can lead to a ∼20% difference in
the covariance from shape noise and measurement error.
We already adopted the real value of multiplicative bias in
the shear catalog, and thus have corrected for its effect. In
addition, we correct for the bias from the effects of shell
thickness, finite angular resolution and finite redshfit reso-
lution in the ray-tracing simulations (for more details see
Ref. [59]). Since we find the average 2PCFs measured from
our simulations are lower than the theory prediction, and the
ratio is approximately constant (0.81 on average) within our
scale cuts for each redshift bin, we divide the 2PCF from
each realization of mocks by the ratio in each bin.
One caveat in our covariance estimation is that we do not

include dependence of the covariance on the cosmological
parameters, since our mock catalogs are generated from a set
of ray-tracing simulations adopting only one WMAP9
cosmology [60]. Kodwani et al. [72] used a Fisher analysis
to study the dependence of the covariance matrix on the
cosmological parameters and the resulting bias in the
cosmology constraints when assuming a cosmology-
independent covariance. They reported that the cosmology
dependence of the covariance matrix does not significantly
impact the cosmology constraints (to be more specific,
parameters are only biased by ≤ 1% of statistical uncer-
tainties) for any current and future weak-lensing surveys.
Following Kodwani et al. [72], we neglect the parameter
dependence of the covariance matrix in our analysis.

C. B-modes

The measured 2PCFs ξ� include contributions from both
curl-free gradient component (E-mode) and curl compo-
nent (B-mode). However, the physical B-mode from a
gravitational lensing potential, which can be caused by
second-order lensing deflection [73], intrinsic alignments
[37] and redshift clustering of source galaxies [63], is
expected to be orders of magnitude smaller than the
E-modes. Therefore, an estimate of the B-mode component
can be used as a test for systematic errors. Following
Schneider et al. [63], we separate the E-mode and B-mode
components as

ξEþðθÞ ¼
1

2

�
ξþðθÞ þ ξ−ðθÞ þ

Z
∞

θ

dϕ
ϕ

ξ−ðϕÞ
�
4− 12

θ2

ϕ2

��
;

ξE−ðθÞ ¼
1

2

�
ξþðθÞ þ ξ−ðθÞ þ

Z
θ

0

dϕϕ
θ2

ξþðϕÞ
�
4− 12

ϕ2

θ2

��
;

ξBþðθÞ ¼
1

2

�
ξþðθÞ− ξ−ðθÞ−

Z
∞

θ

dϕ
ϕ

ξ−ðϕÞ
�
4− 12

θ2

ϕ2

��
;

ξB−ðθÞ ¼
1

2

�
ξþðθÞ− ξ−ðθÞ þ

Z
θ

0

dϕϕ
θ2

ξþðϕÞ
�
4− 12

ϕ2

θ2

��
;

ð12Þ

where ξþðθÞ ¼ ξEþðθÞ þ ξBþðθÞ and ξ−ðθÞ ¼ ξE−ðθÞ − ξB−ðθÞ.
In order to compute the integrals in Eq. (12), we use a
Riemann sum and measure ξ� with much finer log-intervals
of Δ logðθÞ ¼ 0.02 ranging from 0.2 arcmin to 415 arcmin.
To compute the integral in ξBþ (ξB−) beyond (below) θ ¼
415 arcmin (θ ¼ 0.2 arcmin), we extrapolate the measured
ξ− (ξþ) beyond the interval with a WMAP9 cosmology. We
confirm the result is not sensitive to the cosmology model
(WMAP or Planck cosmology) for the extrapolation. We use
the 1404 HSC-Y3 mock catalogs (introduced in Sec. II E) to
calculate the errors on the estimated B-modes. Specifically,
we conduct the same measurement on each mock realiza-
tion, and derive the covariance matrix from the 1404B-
modes measurement.
As seen in Fig. 5, the B-modes on the ξþ measurement

are significant at large angular scales, especially in the high
redshift bins. To reduce the influence of the B-modes on
our cosmology constraints, we apply a scale cut on ξþ at
scales with θ ≥ 56.6 arcmin. Although we do not find
significant B-modes on ξ−, we also apply a scale cut on ξ−
to remove scales with θ ≥ 248 arcmin since the data at such
large scales is dominated by cosmic variance and contrib-
utes little to the SNR of the 2PCFs. Note that the cuts at
small scales are imposed to reduce the modeling uncer-
tainties of baryonic physics as will be shown in Sec. IVG.
After the cuts at large scales, we find that the probability
that the B-modes in the fiducial scale range is consistent
with zero is p ¼ 0.143 for ξþ and 0.237 for ξ−,
respectively.

IV. MODEL

In this section, we introduce the model, containing
twenty-three free parameters as shown in Table II, to
predict the tomographic cosmic shear 2PCFs ξij�ðθÞ.
Note that we coordinate with the Fourier-space cosmic
shear analysis [39] when making the decision on model
choices, and our fiducial model is the same as the Fourier
space analysis. The parameters can be divided into two
categories; eleven physical parameters and twelve system-
atic parameters. The physical parameters include five
cosmological parameters, one baryonic feedback parameter
and five intrinsic alignment parameters; the systematic
parameters include four photo-z error parameters, four
shear calibration bias parameters and four PSF systematic
parameters. Our model is implemented in the public
software: CosmoSIS [74]. We note that the model choices
were set entirely before unblinding.
We coordinate our model choices with the parallel

cosmic shear analysis using the pseudo-Cl [39]. The
analysis tests and choices described below have also been
also adopted and described by [39].
With the flat-sky approximation, the 2PCFs can be

expressed as the E and B modes of angular power spectra
CE=BðlÞ via the Hankel transform,
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ξijþ=−ðθÞ ¼
1

2π

Z
dllJ0=4ðθlÞðCE;ijðlÞ � CB;ijðlÞÞ; ð13Þ

where J0=4 are the zeroth/fourth-order Bessel functions of
the first kind. In our analysis, the Hankel transform is
computed with FFTLog [75] implemented in CosmoSIS. In
Fig. 6, we demonstrate the integrands in Eq. (13) for
different scales of ξ�. As shown, ξ� in one angular bin
corresponds to an integral over a wide range of l s;
therefore, our cosmic shear analysis based on 2PCFs is
sensitive to information on different scales from the Fourier
space analysis [39]. In a companion paper [39], we measure
pseudo-Cls and reconstruct angular power spectra CE=B;ij

l
from the HSC-Y3 shear catalog.
The observed galaxy shapes are determined by both

foreground lensing shear and the intrinsic shapes induced
by the torques from the local environment. The spatial
correlation between intrinsic shapes is known as intrinsic
alignment (IA) [76]. Therefore, the E-mode angular power
spectra in Eq. (13) can be decomposed into lensing-lensing
autospectra (CE;ij

GG ), intrinsic-intrinsic autospectra (CE;ij
II )

and lensing-intrinsic cross-power spectra between lensing
and IA (CE;ij

GI ) [76]. Although the B-mode induced by
lensing shear is negligible, a significant B-mode angular
power spectrum can be produced by high-order IA models.

CE;ij ¼ CE;ij
GG þ CE;ij

II þ CE;ij
GI þ CE;ji

GI ;

CB;ij ¼ CB;ij
II : ð14Þ

As shown in Sec. III C, the measured B-mode signal
within our fiducial scale cuts is not significant, so we set this
component to zero in our analysis. The E-mode lensing
angular power spectra (CE

GG;ij) is related to the matter power
spectrum. Our implemented model for the matter power
spectra is introduced in Sec. IVA. Our implemented IA
model is introduced in Sec. IV B. Systematics are described
by twelve parameters in our model, which include uncer-
tainties in photo-z estimation (see Sec. IV C), uncertainties
in shear calibration (see Sec. IVD) and PSF related
systematic uncertainties (see Sec. IV E). Finally, the
Monte Carlo Bayesian analysis used to constrain the free
parameters is introduced in Sec. IV F.

A. Matter power spectra

We first connect the lensing angular power spectrum
Cij
GGðlÞ in Eq. (14) to the power spectrum Pmðk; zÞ of the

matter distribution in the Universe at different redshifts. In a
spatially flat universe, the lensing angular power spectrum
encodes information of the matter power spectrum,
Pmðk; χÞ according to the Limber approximation [77,78],

FIG. 5. B-modes on 2PCFs measured from the HSC-Y3 catalog in four tomographic bins. The p-value of the measured B-modes
relative to a model of exactly zero is 0.1143 for ξþ and 0.1237 for ξ−, as shown in the legend. The errorbars are estimated with mock
catalogs. The unshaded region refers to the fiducial scale cut.
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Cij
GGðlÞ ¼

Z
χH

0

dχ
qiðχÞqjðχÞ

χ2
Pm

�
k¼ lþ 1=2

χ
;χ

�
; ð15Þ

where χ is the radial comoving distance, χH is the distance
to the horizon (the maximum distance one could possibly
observe2), and qiðχÞ is the lensing efficiency in the ith
redshift bin defined as

qiðχÞ ¼
3

2
Ωm

�
H0

c

�
2 χ

aðχÞ
Z

χH

χ
dχ0niðχ0Þ

χ0− χ

χ0
; ð16Þ

where Ωm and H0 are the matter density and Hubble
parameter (H0 ¼ 100 h0 ½km=s=Mpc�) at redshift zero, a is
the cosmology scale factor, and niðχÞ is the normalized
redshift distribution of the galaxy in the ith redshift bin [see
Sec. IV C for the modeling of niðzÞ]. Note that χ is given as

a function of redshift as χ ¼ χðzÞ, so we compute the
nonlinear matter power spectrum Pmðk; zÞ for an input set
of k and z given χ ¼ χðzÞ.

1. Linear and nonlinear power spectra

At large scales in the early Universe, the structure grows
according to linear perturbation theory. For a flat ΛCDM
cosmology, the linear matter power spectrum is determined
by the five cosmological parameters in Table II, including
the matter density parameter (Ωm), the amplitude (As)
and the tilt (ns) parameters of the power spectrum of the
primordial curvature perturbations, the dimensionless
Hubble parameter (h) and ωb ≡Ωbh2, where Ωb is the
baryon density parameter. In our analyses, we set the sum
of neutrino mass

P
mν ¼ 0.06 eV. The linear power

spectrum can be accurately computed by solving the
Einstein-Boltzmann equations which describe the coevo-
lution of the different components in the Universe (e.g.,
dark energy, dark matter, baryonic matter, radiation). The
linear power spectrum of matter density field can be
computed with public codes such as CAMB [79], and
CLASS [80,81]. These public codes solve the coupled set
of differential equations at first order according to linear
perturbation theory, and compute the linear matter power
spectrum.

TABLE II. Model parameters and priors used in our fiducial
cosmological parameter inference. The label Uða; bÞ denotes a
noninformative flat prior between a and b, andN ðμ; σÞ denotes a
normal distribution with mean μ and width σ.

Parameter Prior

Cosmological parameters (Sec. IV A)
Ωm Uð0.1; 0.7Þ
Asð×10−9Þ Uð0.5; 10Þ
ns Uð0.87; 1.07Þ
h0 Uð0.62; 0.80Þ
ωb Uð0.02; 0.025Þ
Baryonic feedback parameters (Sec. IV A)
Ab Uð2; 3.13Þ
Intrinsic alignment parameters (Sec. IV B)
A1 Uð−6; 6Þ
η1 Uð−6; 6Þ
A2 Uð−6; 6Þ
η2 Uð−6; 6Þ
bta Uð0; 2Þ
Photo-z systematics (Sec. IV C)
Δz1 N ð0; 0.024Þ
Δz2 N ð0; 0.022Þ
Δz3 Uð−1; 1Þ
Δz4 Uð−1; 1Þ
Shear calibration biases (Sec. IV D)
Δm1 N ð0.0; 0.01Þ
Δm2 N ð0.0; 0.01Þ
Δm3 N ð0.0; 0.01Þ
Δm4 N ð0.0; 0.01Þ
PSF systematics (Sec. IV E)
α0ð2Þ N ð0; 1Þ
β0ð2Þ N ð0; 1Þ
α0ð4Þ N ð0; 1Þ
β0ð4Þ N ð0; 1Þ

FIG. 6. The integrands in Eq. (13) which transform angular
power spectra to correlation functions. We show the integrands
for the smallest and largest angular bins for ξþ and ξ−,
respectively, for the correlation functions of the second redshift
bin with itself.

2We note that, in this paper, we only model the structure
up to z ¼ 4.
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At small scales, structure growth is nonlinear and cannot
be described by a linear perturbation theory. Therefore,
one has to resort to cosmological N-body simulations to
model the matter power spectrum at nonlinear scales.
Many empirical models calibrated against high-resolution
N-body simulations have been proposed to calculate the
nonlinear matter power spectrum, including HaloFit [82]
and HMCode [30,83,84]. In modern cosmology analysis
pipelines, emulators are broadly adopted to improve the
computational speed of the matter power spectrum. They
are constructed by running a large number of cosmological
simulations with different input cosmological and astro-
physical parameters, and interpolating the power spectrum
between these parameters. These emulators can efficiently
compute both linear [85–87] and nonlinear [31,87–89]
power spectra with percent-level accuracy.
In our fiducial analysis, we adopt the public BACCO

emulator [85] (version 1.0.0)3 to compute the linear matter
power spectrum. BACCO is a neural network emulator
trained with more than 200,000 linear-matter power spectra
computed with CLASS in the wave-number range between
10−4 and 50½h Mpc−1�. The supported range of the cos-
mological parameters of the BACCO emulator is shown in
Table III. The BACCO emulator is not limited by boundaries
in As and ns since it emulates the transfer function of the
linear power spectrum [85]. In order to model the nonlinear
matter power spectrum, we use HMCode [84] 2016, which is
a variant of the halo model with physically motivated
parameters calibrated with N-body and hydrodynamical
simulations [30,83,84].
In our analysis pipeline, we adopt wide flat priors on the

five cosmological parameters: Ωm, As, ns, h, and ωb.
However, we note that a flat prior on As leads to an
informative prior on Ωm and S8 due to the degeneracies
between these parameters. In order to obtain a chain with
uniform prior on the ðΩm; S8Þ plane, we follow Sugiyama
et al. [8] to apply a weight w ¼ σ8=As, which is the
determinant of the Jacobian for the coordinate transform
from (Ωm, As,…) to (Ωm, S8,…), to the MC chain sampled
with the flat prior on As to obtain a chain with uniform prior
onΩm and S8. We refer the readers to Sugiyama et al. [8] for
more details. Our priors are coordinated to be the same with

Dalal et al. [39], and the reasons for adopting flat prior onAs
are discussed in details in Dalal et al. [39].

2. Baryonic feedback

The matter power spectrum at small scales is signifi-
cantly supressed by baryonic effects such as feedbacks
from supernova and active galactic nuclei (AGN) (at
k ∼ 10 h=Mpc) as well as cooling and star formation.
We follow Asgari et al. [6] to adopt HMCode 2016 [84]

to empirically model baryonic effects on the matter power
spectrum. HMCode 2016 parameterizes the effect of baryonic
feedback with a halo bloating parameter ηb and the ampli-
tude of the halo mass-concentration relation Ab [83,84]. This
baryonic model is calibrated with hydrodynamical simula-
tions. We follow Joachimi et al. [90] to set the bloating
parameter as a function of the amplitude parameter:

ηb ¼ 0.98 − 0.12Ab: ð17Þ

To be more specific, we use HMCode 2016 to model the
supression from baryonic feedbacks on small scales of
power spectrum with a flat prior: Ab ∈ ½2; 3.13� as shown
in Table II. We marginalize over the amplitude parameter Ab
when constraining our cosmological parameters. In HMCode

2016, Ab ¼ 3.13 corresponds to the matter power spectrum
without baryonic feedback (i.e. the spectrum obtained from
dark matter only simulations). The latest version of HMCode

is HMCode 2020 [30], which improves the modeling of the
nonlinear matter power spectrum with very large neutrino
mass, i.e., mν > 0.5 eV. However, our analysis focuses on
the ΛCDM cosmology with

P
mν ¼ 0.06 eV, and the

computational speed of HMCode 2016 is about 1.5 times
faster than HMCode 2020. Therefore, we adopt HMCode 2016
as our fiducial model.
It is worth noting that that there are other approaches to

model the baryonic effects on the matter power spectrum,
including baryonic correction models [91] and approaches
based on principal component analysis (PCA) [92].

B. Intrinsic alignment

In a spatially flat universe, the IA angular power
spectrum between two redshift bins i and j is related to
the integrated 3D IA power spectrum via the Limber
approximation:

Cij
IIðlÞ ¼

Z
χH

0

dχ
niðχÞnjðχÞ

χ2
PII

�
k¼ lþ 1=2

χ
;χ

�
;

Cij
GIðlÞ ¼

Z
χH

0

dχ
qiðχÞnjðχÞ

χ2
PGI

�
k¼ lþ 1=2

χ
;χ

�
; ð18Þ

where qi is the lensing efficiency defined in Eq. (16). The II
(GI) refers to the correlation between intrinsic shape and
intrinsic shape (lensing shear and intrinsic shape). There are

TABLE III. The supported range for five cosmological param-
eters in BACCO emulator, where Ωb ¼ ωb=h2.

Parameter Supported range

Ωm Uð0.06; 0.7Þ
Asð×10−9Þ � � �
h0 Uð0.5; 0.9Þ
Ωb Uð0.03; 0.07Þ
ns � � �

3https://bitbucket.org/rangulo/baccoemu/src/master/.

HYPER SUPRIME-CAM YEAR 3 RESULTS: COSMOLOGY FROM … PHYS. REV. D 108, 123518 (2023)

123518-13

https://bitbucket.org/rangulo/baccoemu/src/master/
https://bitbucket.org/rangulo/baccoemu/src/master/


many ways to model the II and GI power spectra, and, in
this paper, we consider two model choices:

(i) the tidal alignment and tidal torque model (TATT;
[37]); and

(ii) the nonlinear alignment model (NLA; [35,36]).
TATT is built on nonlinear perturbation theory assuming

the intrinsic galaxy shapes are determined by the tidal field
and the density field of matter. Following Secco et al. [7],
we only keep the quadratic perturbation terms, and the IA
power spectra are given by

PE
GIðkÞ ¼ c1PδðkÞ þ btac1P0j0EðkÞ þ c2P0jE2ðkÞ;
PE
IIðkÞ ¼ c21PδðkÞ þ 2btac21P0j0EðkÞ

þ b2tac21P0Ej0EðkÞ þ c22PE2jE2ðkÞ
þ 2c1c2P0jE2ðkÞ þ 2btac1c2P0EjE2ðkÞ;

PB
IIðkÞ ¼ b2taðkÞc21P0Bj0BðkÞ þ c22PB2jB2ðkÞ

þ 2btac1c2P0BjB2ðkÞ: ð19Þ

The subscripts of the tidal field power spectra on the right-
hand side indicate correlations between different order
terms in the expansion of the matter field, and these power
spectra are calculated to one-loop order using the public
software; FAST-PT v2.1 [93,94].4 We refer the readers to
Blazek et al. [37] for more details. The redshift-dependent
amplitudes c1 and c2 are defined as

c1ðzÞ ¼ −A1

C̄ρcΩm

DðzÞ
�
1þ z
1þ z0

�
η1
;

c2ðzÞ ¼ 5A2

C̄ρcΩm

D2ðzÞ
�
1þ z
1þ z0

�
η2
; ð20Þ

where DðzÞ is the growth function, ρcrit is the critical
density, z0 ¼ 0.62 is the pivot redshift, and C̄ ¼
5 × 10−14M⊙h−2 Mpc2 is obtained from SuperCOSMOS
[95]. The TATT IA model has five free parameters;
A1; A2; η1; η2; bta. The power-law terms in Eq. (20) with
two free parameters ðη1; η2Þ are used to model the possible
redshift evolution beyond what is already encoded in the
model; A1 and A2 capture the IA power spectra that scale
linearly and quadratically with the tidal field. The bias
parameter bta models the fact that galaxies are oversampled
in the highly clustered regions. In this paper, we adopt
wide flat priors on the TATT model parameters;
A1; A2; η1; η2 ∈ ½−6; 6�, bta ∈ ½0; 2�. This is because the IA
signal is very sensitive to the properties (e.g., color,
magnitude) of the galaxy sample [96,97], thus it is very
difficult to derive reliable Gaussian priors on the TATT
model parameters for the galaxy sample in the shear
catalog.

NLA is a more commonly used IA model, which is a
subspace of TATT with A2 ¼ 0 and bta ¼ 0. The NLA
model is built upon the assumption that intrinsic galaxy
shapes are aligned linearly with the tidal field. Under this
assumption, the GI and II power spectra are

PE
GI ¼ c1ðzÞPδ; PE

II ¼ c21ðzÞPδ; ð21Þ

where the redshift-dependent amplitude c1ðzÞ is defined in
Eq. (20). Our implementation of the NLA model has two
free parameters, A1 and η1, and we adopt wide flat priors on
them: A1; η1 ∈ ½−6; 6�. The NLA model here is different
from the original linear alignment model [35,36] as Pδ in
Eq. (21) is not the linear matter power spectrum but the full
matter power spectrum including nonlinear structure growth
and baryonic feedback (in our fiducial analysis, the matter
power spectrum is predicted by HMCode). Another difference
to the original model is that our implementation of NLA
also includes a redshift evolution described by a power law
in c1ðzÞ to capture additional redshift evolution as shown
in Eq. (20).
Campos et al. [98] proposed to select the proper IA

model with an empirical approach based on the difference
in χ2 between models applied to the real data. We analyze
all the blinded data vectors with both TATT and NLA. For
each setup, we look at the difference in the S8 estimates and
the resulting χ2 of the analyses. We do not see a significant
difference in the projected posterior of S8 (ΔS8 ∼ 0.4σ) nor
significant difference in χ2 between these two setups.
Furthermore, TATT and NLA also give comparable errors
on the projected posterior of S8. We decide to use TATT as
our fiducial model, since it is a more complete model of IA,
and it does not degrade our constraints.

C. Photometric redshift

As shown in Eq. (16), the redshift distributions in four
redshift bins, niðzÞ (i ¼ 1; 2; 3; 4), of the source galaxies are
essential ingredients for modeling the shear-shear angular
power spectra Cij

l , where i and j are the indices of the
tomographic redshift bins. The HSC-Y3 redshift distribu-
tions and their uncertainties are inferred jointly by the
photometric redshift estimation, described in Sec. II C, and
by spatial cross-correlations between the HSC-Y3 shape
catalog and the CAMIRA-LRG catalog [25,26,99]. Here we
provide a brief overview of the inference process, and we
refer the readers to Rau et al. [24] for the details.
The redshift distribution of each tomographic bin is

modeled as a discrete probability density function on
redshift grids ranging from z ¼ 0 to z ¼ 4, with a 0.025
step size. In Fig. 2 (black lines), we show the niðzÞ
distributions of the joint redshift estimation. The redshift
distributions shown are modeled as a logistic Gaussian
process, of which the parameters are inferred by

(i) the dNNz photo-z estimation and a model for the
cosmic variance for all redshifts; and4https://github.com/JoeMcEwen/FAST-PT.
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(ii) cross-correlation between the photometric samples
and the CAMIRA-LRG samples between z ¼ 0.0
and 1.2.

We note that the CAMIRA-LRG sample (the grey histo-
gram in Fig. 2), which is used for cross-correlation
calibration, covers only part of the redshift range of bin
3, and does not cover any of bin 4.
In order to quantify and marginalize over the redshift

distribution uncertainty, we allow the mean redshift dis-
tribution of each bin to shift by Δzi, namely,

niðzÞ → niðzþ ΔziÞ: ð22Þ

Zhang et al. [100] demonstrated that this shift model is
sufficient for capturing the uncertainty in redshift distri-
bution for the HSC-Y3 cosmic shear analysis, and is
computationally inexpensive, thus we use it here. As a
result, four extra redshift parameters corresponding to four
tomographic bins are included in the fiducial analysis of
this work.
Rau et al. [24] derived the priors on Δzi using the model

difference, i.e., differences of the inferred niðzÞ between
three photometric redshift models (see Fig. 2) and the
reference CAMIRA-LRG sample. We refer the readers to
Sec. V.7 of Rau et al. [24] for more details on how the
priors are determined.
Taking into account the fact that the redshift distributions

of galaxies in bin 3 and bin 4 are only partially calibrated by
spatial cross-correlation with CAMIRA-LRGs, we com-
pare the cosmological constraints with two types of priors
on the redshift shifting errors Δzi in Sec. V D. These two
types of priors are summarized as follows:

(i) Informative Gaussian priors estimated by Rau et al.
[24] for four redshift bins. The priors for the first two
redshift bins are shown in Table II, and the last two
redshift bins are N ð0; 0.031Þ and N ð0; 0.034Þ,
respectively.

(ii) Informative Gaussian priors [24] for bin 1 and bin 2;
and uninformative flat priors between −1 and 1 for
bin 3 and bin 4.

As will be shown in Sec. V D, we find that when adopting
the uninformative flat prior on bin 3 and bin 4, the posteriors
on Δz3 and Δz4 are not consistent with zero, indicating that
the true redshift distributions of the last two redshift bins are
higher by Δz ∼ 0.1 than that estimated by [24]. This result
is seen in each of the three blinded catalogs. In Sec. V D,
we simulate noisy mock data vectors for the three blinded
catalogs and find that such large positive values for Δz3 and
Δz4 are not likely be due to statistical uncertainties, and thus
are likely to be real. Furthermore, the estimate of S8 is ∼1σ
higher for the analysis using the informative Gaussian priors
on bin 3 and bin 4. Therefore, we suspect that the photo-z
inferred redshift distributions of the last two redshift bins
are systematically biased. We leave the calibration of high

redshift bins and their impact on cosmic shear to future
studies. The fiducial priors on the Δzi are listed in Table II.

D. Shear calibration bias

As presented in [23], our shear catalog is calibrated
with image simulations downgrading the HST images in
F814W band to the HSC observational conditions.
Specifically, we model and calibrate the shear estimation
bias including galaxy model bias [101], noise bias [102],
selection bias [103], and detection bias [104] using
realistic image simulations. In addition, we confirm that
the shear estimation bias due to the blending of galaxies
located at different redshifts is small for the HSC-Y3
weak-lensing science.
We also model and marginalize over the uncertainties

from the multiplicative bias residual after the aforemen-
tioned calibration due to the assumptions and the limited
galaxy number in the simulations. To be more specific, we
follow [38] to introduce a nuisance parameter ΔmðiÞ to the
ith redshift bin (where i ¼ 1;…4) to represent the redshift-
dependent multiplicative bias residual. The theoretical
prediction for the cosmic shear 2PCFs is modified as

ξijðθÞ → ð1þ ΔmiÞð1þ ΔmjÞξijðθÞ: ð23Þ

The prior range of Δmi is taken to be Gaussian with zero
mean and a standard deviation of 0.01, which is motivated
by the calibration of the HSC-Y3 shear catalog based on
image simulations [23] since it is confirmed that the
multiplicative bias residual is controlled below the 1% level.

E. PSF systematics model

In this section, we describe the model for PSF-related
additive systematics in this work. The additive bias changes
the shear signal as γ → γ þ γsys. As Zhang et al. [28] found,
in addition to the second-order radial moments of the PSF,
the spin-2 component of the fourth-order PSF moments can
also cause significant leakage and modeling errors in shear
for the reGauss shear estimator. Therefore, we include
both second-order and fourth-order PSF shapes in the
model for the PSF additive bias as

γsys ¼ αð2Þeð2Þpsf þ βð2ÞΔeð2Þpsf þ αð4ÞMð4Þ
psf þ βð4ÞΔMð4Þ

psf ; ð24Þ

where the first and third terms are the PSF leakage bias by
the PSF second- and fourth-order moments, and the second
and fourth terms are the PSF modeling error in the second-
and fourth-order moments.
We find the prior on the PSF systematics parameters by

cross-correlating the shapes and the shape modeling errors
of PSF stars with the galaxy shapes. The cross-correlations
are modeled by
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hγ̂galeð2Þpsfi ¼ αð2Þheð2Þpsfe
ð2Þ
psfi þ βð2ÞhΔeð2Þpsfe

ð2Þ
psfi

þ αð4ÞhMð4Þ
psfe

ð2Þ
psfi þ βð4ÞhΔMð4Þ

psfe
ð2Þ
psfi ð25Þ

hγ̂galΔeð2Þpsfi ¼ αð2Þheð2ÞpsfΔe
ð2Þ
psfi þ βð2ÞhΔeð2ÞpsfΔe

ð2Þ
psfi

þ αð4ÞhMð4Þ
psfΔe

ð2Þ
psfi þ βð4ÞhΔMð4Þ

psfΔe
ð2Þ
psfi ð26Þ

hγ̂galMð4Þ
psfi ¼ αð2Þheð2ÞpsfM

ð4Þ
psfi þ βð2ÞhΔeð2ÞpsfM

ð4Þ
psfi

þ αð4ÞhMð4Þ
psfM

ð4Þ
psfi þ βð4ÞhΔMð4Þ

psfM
ð4Þ
psfi ð27Þ

hγ̂galΔMð4Þ
psfi ¼ αð2Þheð2ÞpsfΔM

ð4Þ
psfi þ βð2ÞhΔeð2ÞpsfΔM

ð4Þ
psfi

þ αð4ÞhMð4Þ
psfΔM

ð4Þ
psfi þ βð4ÞhΔMð4Þ

psfΔM
ð4Þ
psfi:
ð28Þ

The left-hand side of Eqs. (25)–(28) are correlation
functions between the galaxy shape and PSF moments,
which we call the “g-p correlation.” The correlation
functions on the right hand side are PSF-PSF correlation
functions, which we call the “p-p correlation.” We show
the measurements and the best-fit models of all four g-p
correlations in Fig. 7 using the catalog with blinding ID 0,
which incidentally happened to be the true shear catalog
after unblinding. To find the prior for the PSF systematics
parameters, we calculate covariance matrices for the g-p
correlations of all three blinded catalogs using the mock
catalogs described in Sec. II E. The prior of the true
catalog (blinded catalog 0) are listed in Table II. Since
Zhang et al. [28] found that αð2Þ and αð4Þ are correlated, we

include the correlation between all PSF parameters in the
prior. The correlation between the PSF parameters does
not impact the results significantly, which is consistent
with the finding in Zhang et al. [28].
Zhang et al. [28] find significant bias on ξþ due to PSF

systematics, whereas the bias on ξ− to be negligible. We
model the impact of PSF additive bias on ξþ by

ξþðθÞ → ξþðθÞ þ
X4
k¼1

X4
q¼1

pkpqhSkSqi; ð29Þ

where p ¼ ðαð2Þ; βð2Þ; αð4Þ; βð4ÞÞ is the parameter vector, and

S ¼ ðeð2Þpsf ;Δe
ð2Þ
psf ;M

ð4Þ
psf ;ΔM

ð4Þ
psfÞ is the PSF moments vector.

We note that the PSF additive systematics are added to the
2PCFs after the rescaling from multiplicative bias.
In order to account for the correlation in the prior of

PSF systematic parameters, we sample four uncorrelated
parameters, p0 ¼ ðα0ð2Þ; β0ð2Þ; α0ð4Þ; β0ð4ÞÞ, with uncorrelated
Gaussian priors. We then transform these parameters
into our original parameters by the following invertible
transform:

p ¼ T · p0 þ p̄; ð30Þ

where p̄ is the average of the original PSF systematic
parameters, T ¼ V

1
2U, V is a diagonal matrix with eigen-

values of p − p̄’s covariance matrix as the diagonal
elements, and each column of U is a eigenvector of the
covariance matrix. In Sec. V D, we show that the bias from

� �

FIG. 7. Galaxy-star correlations, including cross-correlations between galaxy shape and star shape (left panel), and also between
galaxy shape and star shape errors (right panel). We show the correlations to both second- (eð2Þpsf ) and fourth-order (M

ð4Þ
psf ) star shapes and

star shape errors. The points are the measurements from HSC data, and the solid lines are the best-fit model using star-star correlations
[see Eqs. (25)–(28)].
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not including the correlation between αð2Þ and αð4Þ is
negligible for HSC-Y3 cosmic shear analysis.
Zhang et al. [28] conducted other extensive mock tests,

where they investigated PSF systematics models taking
into account redshift dependency, second-order terms, and
PSF versus non-PSF stars. They found that the above
modeling of PSF additive systematics is sufficient for the
HSC-Y3 cosmic shear analysis. We refer the readers to
Zhang et al. [28] for further details about PSF additive
systematics in the HSC-Y3 shear catalog.

F. Bayesian inference

We use a Monte Carlo Bayesian analysis to sample the
posterior in the 23-dimensional space of the cosmological,
astrophysical and systematic parameters. We denote the
vector of parameters asΘ ¼ ðΩm; As; h0;…Þ, and the model
prediction of 2PCFs, with 140 dimensions (14 angular bins
for each of the 10 correlation functions across 4 redshift
bins), as ξ�ðΘÞ. We adopt a Gaussian likelihood L:

lnLðξ̂�jΘÞ ¼ −
1

2
ðξ̂� − ξ�ðΘÞÞTC−1ðξ̂� − ξ�ðΘÞÞ; ð31Þ

where ξ̂� is the measured 2PCFs as shown in Fig. 3 and
C is the covariance matrix estimated from 1404 mock
catalogs with the WMAP9 cosmology, which is shown in
Fig. 4. Note, as discussed in Sec. III B, we neglect the
dependency of the covariance matrix on cosmological
parameters. C−1 is the precision matrix, namely the inverse
of the covariance matrix. When estimating the inverse
matrix, we correct for noise bias by multiplying the
numerical inverse of the noisy estimate of covariance by
the Hartlap factor [65]: ð1404−140−2Þ=ð1404−1Þ∼0.9.
With Bayesian inference, we construct a posterior proba-
bility distribution, denoted as PðΘjξ̂�Þ for the parametersΘ,
given the data vector ξ̂�,

PðΘjξ̂�Þ ∝ Lðξ̂�jΘÞΠðΘÞ; ð32Þ

where ΠðΘÞ is the prior distribution of Θ.
Markov Chain Monte Carlo (MCMC) and nested sam-

pling are widely used in the cosmology community to
sample posteriors in high-dimensional parameter space.
MCMC methods directly generate samples from the
posterior in high-dimensional parameter space, whereas
nested samplers map the high-dimensional posterior onto a
one-dimensional space and divide the posterior into many
nested “slices.” After generating samples from the “slices,”
they recombine the samples with appropriate weights to
reconstruct the posterior. In this paper, we compare the
constraints from three different samplers, EMCEE [105],
MultiNest [106], and PolyChord [107] implemented
in CosmoSIS:

(i) EMCEE is an affine-invariant ensemble sampler
for MCMC.

(ii) MultiNest is a nested sampler using a k-means
clustering algorithm with ellipsoid bounds.

(iii) PolyChord is a nested sampler using slice sam-
pling to sample within the nested isolikelihoods
contours.

We use PolyChord for our fiducial analysis since, as
pointed out by Lemos et al. [108], the marginalized posterior
widths for Ωm and σ8 estimated by MultiNest are
10% smaller and are probably underestimated. Moreover,
MultiNest gives a biased estimation of evidence.
However, MultiNest is about five times faster than
PolyChord, so we utilize MultiNest for our internal
consistency tests. Since the estimated posterior widths from
MultiNest are systematically smaller, it is conservative to
use the posteriors from MultiNest for internal consis-
tency tests. In addition, we compare the posteriors estimated
from PolyChord and MultiNest to the estimation
from EMCEE.
To assess the convergence of our chains, we check that,

at the end of the chains, the normalized nested weight
(the weight, at each estimation, divided by the maximum
weight in the chains) has stopped increasing and is close to
zero. In addition, we also use nestcheck [109], a public
software,5 to confirm that the posterior mass has peaked
out, which indicates that most of the posterior mass
contribution is well-sampled. Also, we confirm that the
uncertainty of the S8 posterior distribution is reasonably
small. The setups for the three MC samplers are shown
in Table IV.
We report the 1D marginalized mode and its asymmetric

�34% confidence intervals, together with the MAP esti-
mated as the maximum of the posterior in the chain
returned by the nested sampler,

1Dmodeþ34%CI
−34%CI ðMAP fromnested chainÞ: ð33Þ

We note that the DES cosmic shear analysis [7,64] reported
a projected mean estimated from the nested chain sampled
with PolyChord; whereas KiDS reported the MAP
estimated with MaxLike implemented in CosmoSIS as their
reported point estimation, and they report a hybrid

TABLE IV. The setups of the three MC samplers. PolyChord
has three hyperparameters; the number of live points, number of
repetitions nrepeat, and tolerance tol. Efr is the sampling
efficiency for MultiNest. EMCEE uses 10,000 samples with
80 walkers and nstep¼ 5.

PolyChord MultiNest EMCEE

nlive ¼ 500 nlive ¼ 500 nsample ¼ 104

nrepeat ¼ 20 nefr ¼ 0.3 nwalker ¼ 80

tol ¼ 0.01 tol ¼ 0.05 nstep ¼ 5

5https://github.com/ejhigson/nestcheck.
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confidence interval that is estimated on the joint, multi-
dimensional highest posterior density region, but projected
onto the marginal posterior of the parameter under con-
sideration [110]. We choose to report the projected mode
since it is less sensitive than the projected mean to the tails
of the projected 1D posterior. In addition, the projected
mode is more stable than the MAP, and its confidence
interval is mathematically well-defined and simple to
estimate.

G. Model validation

In our fiducial analysis, we use the BACCO emulator to
model the linear matter power spectrum (Sec. IVA);
HMCode 2016 for nonlinear matter power spectrum and
baryonic feedback (Sec. IVA); and TATT for intrinsic
alignment (Sec. IV B). The redshift distributions are cali-
brated by cross-correlating with CAMIRA-LRGs, and the
redshift estimation error is modeled with shifting errors Δz,
adopting a flat prior in the last two redshift bins (Sec. IV C).
Additionally, we use redshift-dependent multiplicative bias
residuals (Sec. IV D) and a PSF systematic model with
fourth-order shape leakage and shape error (Sec. IV E).
We perform Bayesian analysis using the nested sampler
PolyChord (Sec. IV F).
We validate our model with noiseless synthetic 2PCFs

simulated with different models for the matter power
spectrum. We first make a baseline (systematics-free)
simulation using the fiducial model and the Ωm and As
from the WMAP9 cosmology, and other parameters are
from the MAP of the cosmology constraint using the
blinded catalog 0 with our fiducial setup. Then we change
the models in the simulation pipeline to simulate “con-
taminated” data vectors, and check the biases of analyses
on Ωm and S8 for these “contaminated” data. Specifically,
we test the following “contaminated” models:

(i) Simulation with CAMB linear power spectrum in-
stead of the BACCO emulator.

(ii) Simulation with baryonic rescaling from OWLS-AGN

[111,112] instead of HMCode 2016.
(iii) Simulation with nonlinear power spectrum from

MiraTitan II emulator [31] and baryonic rescal-
ing from OWLS-AGN instead of HMCode 2016.

We add the baryonic feedback into our synthetic data
vectors using a rescaling scheme proposed by Amon et al.
[64]. Specifically, the power spectrum with baryonic
physics is simulated by multiplying a scale-dependent sup-
pression factor to the dark-matter-only power spectrum—
namely the HMCode 2016 nonlinear power spectrum without
baryonic feedback (Ab ¼ 3.13) for our case,

Pm;bðk; zÞ ¼
Phydroðk; zÞ
PDMðk; zÞ

Pmðk; zjAb ¼ 3.13Þ; ð34Þ

where Phydroðk; zÞ is the power spectrum measured
from hydrodynamic simulations (e.g., OWLS-AGN [111],

COWLS [113], Illustris [114], MassiveBlack-II [115], Eagle
[116], Horizon-AGN [117], and IllustrisTNG [118]), and
PDMðk; zÞ is the power spectrum measured from dark
matter only simulations of the same suite.
In order to assure that the modeling errors from both

baryonic physics and nonlinear structures for our fiducial
scale cut defined in Sec. III A are not significant in our
analysis, we follow the DES-Y3 cosmic shear analysis to
check whether the amplitude of the 2D MAP estimation
bias (denoted as b2D) on the plane of (Ωm, S8) is less than
0.3σ, when applying our fiducial model to the OWLS-AGN,
CAMB, and MiraTitan II simulations:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bT2DΣ−1b2D

q
< 0.3; ð35Þ

where Σ is the covariance matrix of the 2D posterior on the
plane of (Ωm, S8) estimated from the first blinded catalog. In
addition, to make sure that our model is not significantly
influenced by the modeling, we test our fiducial model and
scale cut with the synthetic simulation using both OWLS-AGN

baryonic suppression and the MiraTitan II nonlinear
power spectrum. In this paper, we adopt the CosmoSIS

implementation of MaxLike
6 which is a wrapper of the

SciPy minimizer, to estimate MAPs. To be more specific,
we use the Nelder-Mead minimizer [119] with tolerance set
to 10−6. In order to reduce the numerical error in the MAP
estimation, we follow Joachimi et al. [110] to run the
minimizer with 50 different starting points and take the final
MAP to be the result with the largest posterior. The starting
points are varied in the parameters of interest in relation to
the model choice, including three cosmology parameters
Ωm, As, Ab and four intrinsic alignment parameters, A1, A2,
η1 and η2. Note, all 23 parameters vary during each MAP
estimation, although the starting points are randomly
sampled in only these seven dimensions. We find that the
MAP estimate does not change when adding additional
points for ∼30 starting points. Our results are shown as “þ”
points in Fig. 8, and the maximum 2D bias we found is
∼0.2σ for the OWLS-AGN þ MiraTitan II simulation,
which is less than the requirement threshold of 0.3σ.
Furthermore, we check the influence of modeling errors

on the 1D projected mode since it is the point estimation we
will report as discussed in Sec. IV F. The results are shown
as “×” points in Fig. 8. We find that the 1D biases on S8 are
about −0.14σ for all the simulations with our fiducial scale
cut; however, the 1D biases on Ωm range from −0.4σ to
−0.8σ for different simulations. The differences between the
biases on MAPs and the biases on projected modes are
mainly caused by projection effects in the projected point
estimation. As shown in Joachimi et al. [110], the projection
effects can cause about a 1σ bias on the 1D projected point

6https://github.com/joezuntz/cosmosis/tree/main/cosmosis/
samplers/maxlike.
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estimation. Based on the tests shown here we conclude that
the bias (due to both modeling error and projection effects)
on the 1D projected mode of S8 is less than 0.15σ, which is
not significant; however, the systematic uncertainty (from
modeling error and projection effects) on the 1D projected
mode of Ωm is significant. We note that the projected 1D
mode of Ωm can be biased low by up to −0.8σ. Therefore,
when reporting cosmology constraint, we do not focus
on Ωm.
In addition to OWLS-AGN, we also show the bias in

projected 1D mode of S8 with a few other extreme
simulations (e.g., COWLS 8.5 and Eagle) as a function of
small-scale cuts on ξ� in Fig. 9. As shown, the COWLS 8.5

simulation has a heating temperature for AGN feedback of
logðΘAGNÞ ¼ 8.5, and the bias in S8 is about 0.5σ but larger
than OWLS-AGN for our fiducial scale cut. The bias may be
caused by the extreme baryonic physics model of the
COWLS 8.5 simulation.

V. FIDUCIAL CONSTRAINT AND INTERNAL
CONSISTENCY

In this section, we present our cosmology constraints
with the 2PCFs measured in Sec. III and the models
introduced in Sec. IV. First we report our cosmology
constraint with our fiducial setup in Sec. VA.

In order to make sure that our fiducial analysis is robust,
we conduct various internal consistency tests by analyzing
different subsets of our catalog and with different analysis
setups (e.g., different astrophysical and systematic models)
in the context of the flat ΛCDM cosmology. First we look
into the differences in our cosmology constraints, espe-
cially focusing on S8, for analyses with different samplers
(Sec. V E); flat priors on different cosmological parameters
(Sec. V B); different astrophysical models (Sec. V C); and
different systematic models (Sec. V D). Then we analyze
data in different subfields, with different angular scale cuts,
and removing each of the redshift bins to check the
robustness of our results in Sec. V F. The results of our
consistency tests are summarized in Figs. 12 and 17. In
addition, we test the influence of B-mode errors in our
cosmology constraint.
Note that, we specifically focus on the 1D projected

modes of S8 but not Ωm in these tests since, as we saw in
Sec. IVG, the constraint on Ωm is sensitive to projection
effects and modeling errors in Sec. VG.
Even though we report our constraints obtained from the

PolyChord sampler in Sec. VA, we adopt MultiNest
for most of the consistency tests in the rest of this section
since MultiNest is much faster than PolyChord.

A. Fiducial constraint

Our fiducial cosmology constraint is conducted with the
setup outlined at the start of Sec. IVG. First we report the
constraints for the cosmological parameters, from our
fiducial analysis, following the format defined in Eq. (33):

FIG. 8. The modeling errors (estimated parameters—true
parameters) in the MAP (“×”) and projected 1D mode (“þ”)
when applying our model to different synthetic mocks of 2PCFs
including (from left to right in the legend) the baseline simulation,
simulation with the CAMB linear power spectrum, OWLS-AGN
suppression, and the MiraTitan II nonlinear power spectrum.
The gray lines are 0.3σ and 0.5σ contours of the 2D projected
posterior in the parameter space of (Ωm, S8).

FIG. 9. Tests applying our fiducial model to synthetic mocks of
2PCFs from different hydrodynamic simulations. The y-axis is
the modeling errors in the projected 1D mode (estimation—truth)
relative to the 1σ uncertainty in the projected mode estimated by
analyzing real data. The x-axis is the small-scale cut that we
applied. We simultaneously vary the cut on ξþ (denoted as θþmin)
and the cut on ξ− (denoted as θ−min).
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Ωm∶ 0.256þ0.056
−0.044 ð0.304Þ;

σ8∶ 0.818þ0.089
−0.091 ð0.776Þ;

S8∶ 0.769þ0.031
−0.034 ð0.782Þ: ð36Þ

The marginalized 2D posterior and the point estimates
(including the projected mode and the MAP) of these
cosmological parameters are shown in Fig. 10. We find the
projected mode of Ωm (S8) is less than the MAP by ∼0.9σ
(∼0.4σ). It is consistent with what we found in Fig. 8 using
noiseless mock 2PCFs that the projected modes are lower
than the MAP. In addition to the cosmological parameters,
the redshift shifting errors for the last two redshift bins
estimated with a wide flat prior are

Δz3∶ − 0.115þ0.052
−0.058 ð−0.120Þ;

Δz4∶ − 0.192þ0.088
−0.088 ð−0.190Þ: ð37Þ

In both Fourier [39] and real space cosmic shear analyses,
we employ the ChainConsumer package [120] to analyze the
MC chains and visualize the marginalized posteriors. After
unblinding, we found that the outcomes from ChainConsumer

differ mildly with those from GetDist [121]. This discrepancy
arises because ChainConsumer lacks corrections for boundary
effects and biases stemming from chain smoothing.
Specifically, for ChainConsumer, boundary effects lead to
inaccuracies in the 1D marginalized posterior near param-
eter boundaries predominantly influenced by top-hat priors.
The high-level summary of the significance for our main
reported results on S8 is that the mode value does not change
but the estimated uncertainty on S8 is approximately 10%

larger in ChainConsumer due to the kernel density estimation
smoothing. Nonetheless, we retain in this paper the original
parameters and plots, as unblinded, for transparency. We
direct readers to Appendix A for an in-depth discussion of
these effects.
We evaluate the goodness-of-fit with the value of χ2 at

MAP obtained from the fiducial MC chain returned by
PolyChord, denoted as χðΘMAPÞ. Since many of the
parameters are prior-dominated (see figures in Appendix B),
the calculation of the number of degrees of freedom is not
straightforward. Therefore, we use noisy mocks of 2PCFs
simulated according to the covariance matrix for the
goodness-of-fit estimation. As the cosmological parameters
were blinded when we did this test, we use the matter
amplitude and matter density parameters from the WMAP9
cosmology but other parameters are from the MAP esti-
mation of the first blinded catalog. We find, after unblind-
ing, that our best-fit cosmology is very close to theWMAP9
cosmology. Noises with different realizations are added to
the data vector according to the covariance (corrected by
the Hartlap factor) of the blinded catalog estimated from
mocks. We analyze these 50 mocks using our fiducial model
and, to save computational time, we sample them with
MultiNest. We obtain the reference χ2 distribution from
the histogram of the MAPs estimated from the 100
MultiNest chains as shown in Fig. 11. By comparing
the χ2 value of 150 obtained from the real data, to the
reference χ2 distribution, we find the p-value p ¼ 0.18. In
conclusion, our measured 2PCFs can be well described by
the best-fit model. In addition, we fit a χ2 distribution to the
histogram and find that the best-fit effective degrees of
freedom amount to 134. Given that the number of data
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FIG. 10. Posterior contours (68% and 95% C.I. [For all the 2D posteriors shown in this paper, we plot the 68% and 95% C.I.]) of the
2D projected posterior in the (Ωm, σ8) plane (left panel) and (Ωm, S8) plane (right panel) for our fiducial analysis, where
S8 ¼ σ8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm=0.3

p
. In addition, we show the projected 1D mode (“þ”) and the MAP estimated from PolyChord chains (“×”).
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points is 140, the effective number of free parameters is
calculated to be 140 − 134 ¼ 6.

Due to an oversight in the code design, the MAPs of As
and Ωm were accidentally not blinded when using them as
inputs to generate the noisy mocks. However, we note that
the estimated S8, on which our analysis has the strongest
constraining power, was blinded in the analysis process.

B. Priors

In our fiducial analysis, we apply a wide top-hat prior
on the normalization parameter of the linear power spec-
trum; As ∈ ½0.5; 10� × 10−9. Different cosmic shear analyses
apply top-hat priors on different normalization parameters,
including As (see [7]), lnðAsÞ, logðAsÞ (see [5,44,122]) and
S8 (see [6]). Here, we compare the fiducial analysis with the
following two priors:

(i) lnðAs × 1010Þ∈ ½1.7; 5.0�; and
(ii) S8 ∈ ½0.1; 2.0�.
After obtaining an MC chain from the nested sampling

for the analyses with flat priors on As and lnðAsÞ, we
reweight the chain in order to obtain a flat prior on the 2D
plane of ðΩm; S8Þ as discussed in Sec. IVA. Following
Sugiyama et al. [8], the corrections for flat prior on As and
lnðAsÞ involve multiplying the weight of each sample by
σ8=As and σ8, respectively. We refer the readers to
Sugiyama et al. [8] for the derivation of the correction
factors. We find, for a flat prior on As, the reweighting shifts
the posterior to larger Ωm.
In Appendix B 1, we show the marginalized 2D poste-

riors for different priors using both MultiNest and
PolyChord. When using the MultiNest sampler, the
uncertainties in Ωm for the analyses with the As [lnðAsÞ]
prior are smaller by 15% (10%) compared to the analysis
with the S8 prior; while the constraints on S8 show little

difference. This is consistent with the finding of Longley
et al. [123]. In addition, for the analyses with PolyChord,
the marginalized 2D posteriors for these three different
priors are more consistent with each other than with to the
analyses with MultiNest. It is likely that MultiNest
neglects the tails of the 2D posteriors for As and logðAsÞ
priors, leading to underestimated uncertainties for these
two analyses. We show the 1D summary statistics of the
PolyChord posteriors between analyses with different
priors in the second group of Fig. 12. As shown, our
constraints on S8 and Ωm are insensitive to the prior and the
choices of sampling cosmological parameters.

C. Physical models

We now compare the cosmology constraints as we vary
the model, especially focusing on S8 between different
physical models; the linear and nonlinear matter power
spectrum, baryonic feedback (see Sec. IVA) and IA (see
Sec. IV B). The 1D summary statistics for the comparisons
are shown in Fig. 12, and the 2D contour plots are shown
in Sec. B 2.

1. Power spectrum and baryonic feedback

In our fiducial analysis, we use the BACCO emulator [85]
to model the linear matter power spectrum, and HMCode

2016 [84], implemented in pyhmcode [124], to model the
nonlinear power spectrum and baryonic feedback. Here, we
test the modeling uncertainties by comparing the constraints
on cosmology parameters with other models for the matter
power spectrum, including (i) changing the linear power
spectrum modeling to CAMB [79] and (ii) changing the
nonlinear modeling to HMCode 2020 [30] with a flat prior
on the baryonic feedback parameter; ΘAGN ∈ ½7.3; 8.3�. In
addition, we test the impact of not modeling baryonic
feedback by (iii) continuing to use the BACCO emulator and
HMCode 2016, but fixing the Ab parameter to 3.13.
The 1D summary statistics of the constraints are shown

in the third group of Fig. 12, where the tests (i)–(iii) are
labeled as “CAMB,” “Mead 2020” and “DM only,” respec-
tively. In addition, the marginalized 2D posteriors are
shown in Appendix B 2. We find that the shifts in
cosmology parameters, i.e., Ωm, σ8 and S8, are less than
0.5σ, and we conclude that the errors due to uncertainties in
matter power spectrum modeling are not significant. This is
consistent with our finding in Sec. IVG that our analysis is
not sensitive to modeling errors in the matter power
spectrum.

2. Intrinsic alignments

In our fiducial analysis, we use the TATT [37] to model
the intrinsic alignment effect (see Sec. IV B). In order to
test the robustness of our cosmological constraints to the IA
modeling errors, we compare our fiducial analysis with the
cosmology constraints obtained with two simpler models:

FIG. 11. The evaluation of goodness-of-fit with the χ2 value at
the maximum a posteriori (MAP) obtained from the chain of the
fiducial analysis (red vertical line). The reference distribution
(blue histogram) is obtained by analyzing the 100 noisy mock-
data vectors. The p-value is 0.18. The green cure is the best-fit χ2

distribution with effective degrees of freedom of 134.
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(i) the NLA model [36], which is a subset of TATT (see
Sec. IV B for a detailed description); and (ii) No intrinsic
alignment model is used (“no IA”) i.e., intrinsic alignments
are assumed to be negligible. The other parts of our analysis
pipeline are the same as the fiducial analysis. For the NLA
model, we use the same priors for the IA parameters
(A1 ∈ ½−6; 6� and η1 ∈ ½−6; 6�) as summarized in Table II.
The “no IA” configuration is a nonphysical case, which is
used to test the difference in cosmology constraint under
the extreme condition that IA effect is fully neglected.
The marginalized 2D posteriors are shown in Fig. 13, and

the 1D summary statistics are shown in the third group of
Fig. 12, where the tests (i)–(ii) are labeled as “NLA” and
“no IA,” respectively. We find no significant difference in
our S8 constraint when changing the IA model, although the
constraints are stronger when using these simpler models.
We find a smaller Ωm and larger σ8 for the constraint
without modeling the IA effect. However, the shifts in these
two parameters are less than 0.5σ; therefore, we conclude
that Ωm and σ8 are not significantly influenced by the IA
modeling error. In Fig. 13, we only show the leading order
amplitudes (A1) of the IA model for TATT. As shown, the

A1 parameter is detected with only 1.1σ and 2.1σ signifi-
cance for TATT and NLA, respectively. We show the
95% confidence intervals of the IA signal in the 2PCFs
using our fiducial model in Fig. 14. The contribution from
IA to the 2PCFs is not significant. Therefore, we conclude
that we do not find a significant detection of the IA signal.
We note that the conclusion can be different for a higher-
order IA model (e.g., Bakx et al. [125]). In addition to
model-dependent analysis, numerous model-independent
methods exist for detecting the IA signal in cosmic shear
analysis [126–129]. We defer the validation of our con-
clusions using these methods on HSC data to future studies.

3. Massive neutrinos

Unlike the internal tests above, the test shown here on
cosmology model with free neutrino mass is performed after
unblinding. Massive neutrinos suppress the structure growth
by smoothing the matter density field and changing the
matter power spectrum at small scales; therefore, neutrino
mass influences the constraint on cosmology parameters
e.g., S8. In our fiducial analysis, we fix the total neutrino

FIG. 12. The 68% C.I. of the 1D projected posterior on each of the parametersΩm, σ8, S8,Δz3, andΔz4 for different analysis setups. In
total we have four groups divided by horizontal dashed lines: The first group is the fiducial setup; the second group is for different
physical models; the third group is for different systematic models; the fourth group is for different samplers. The results with “�” (“†”)
are sampled with PolyChord (EMCEE) and the others are sampled with MultiNest.
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mass—
P

mν ¼ 0.06 eV, which is the lower limit obtained
by neutrino oscillation experiments [130,131]. We note that
in the DES-Y3 analysis [7], they constrain neutrino mass
with a flat prior. To make sure that our analysis is not

sensitive to the difference in the prior on the sum of neutrino
mass, we run an analysis with flat prior on the sum of
neutrino mass, namely

P
mν ∈ ½0.06 eV; 0.6 eV�. The

results are shown in Fig. 15.
The marginalized 2D posteriors are shown in Fig. 15, and

the 1D summary statistics are shown as “free
P

mν” in the
third group of Fig. 17. We find very little change in our S8
constraint when changing the prior on the neutrino mass.
Our constraint on neutrino mass is weak and degenerate
with Ωm. This is because weak-lensing 2PCFs are only
sensitive to the projected mass along the line of sight, and,
due to the limited number of redshift bins, we lose the
information on the redshift evolution of the large-scale
structure. We note that the constraint on neutrino mass can
be significantly improved by combining weak lensing,
CMB and baryon acoustic oscillation (BAO) observations
[132], but that is beyond the scope of this work.

D. Models of systematic effects

We compare the cosmology constraints, especially
focusing on S8, between different models for PSF system-
atics and systematics in modeling of redshift distributions.

1. PSF systematics

In our fiducial analysis, we adopt a PSF systematic
model including PSF modeling error and PSF leakage from
fourth-order PSF shapes. Additionally, we fully take into

FIG. 13. The marginalized 2D posteriors of analyses with the
TATT model (fiducial), the NLA model (NLA) and without
modeling of IA (no IA).

FIG. 14. The contribution from IA (including both the GG and GI terms), based on resampling from our fiducial posterior, to our
2PCFs. The IA signal is shown in red, where the solid lines are the mean, and the shaded reg regions are the 95% confidence intervals.
The blue points are the measured 2PCFs and the black lines are the model prediction with the MAP, which are the same as in Fig. 3.
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account the correlation between PSF systematic parame-
ters. Here, we check the dependence of our cosmology
constraint on the model choice of PSF systematics with the
following two tests: (i) We determine the constraint without
taking into account the correlation between the original
PSF systematic parameters by sampling the correlated
parameters with the uncorrelated prior; and (ii) we deter-
mine the constraint without modeling PSF systematics
at all.
The marginalized 2D posteriors are shown in

Appendix B 3, and the 1D summary statistics are shown
in the fourth group of Fig. 12, where the tests (i)–(ii) are
labeled as “psf uncorr” and “no PSF,” respectively. We find
that the “no PSF” analysis shows ∼0.15σ and ∼0.3σ
increases from the baseline analysis in S8 and Ωm, respec-
tively. We emphasize that the “no PSF” test is not realistic;
we know that the PSF systematics are important for the
analysis. The increase in Ωm is consistent with our finding
in Zhang et al. [28] using noiseless mock 2PCFs, and the
increase in S8 is too small to be statistically significant.
In addition, we do not find significant difference in cosmo-
logy constraints from the “psf uncorr” test. Therefore, we
conclude that, within the choice of models we have
considered, our cosmology constraint is not sensitive to
the choice of PSF systematics model.

2. Photo-z systematics

Our fiducial analysis uses the redshift distribution of
galaxies in four redshift bins obtained from a joint estima-
tion using photo-z and cross-correlations between weak-
lensing galaxies and CAMIRA-LRGs. The uncertainties on

the redshift number densities were estimated based on
comparison of different photo-z methods, and do not
encompass the full range of systematic uncertainty. As
described in Sec. IV C, there are potential biases on the
redshift estimations in our third and fourth tomographic
redshift bins, since the third bin is only partially calibrated,
and the fourth bin is not calibrated by the CAMIRA-LRGs
since the LRG sample extends only to z ¼ 1.2. To be
conservative, in our fiducial analysis, we adopt an unin-
formative, wide flat prior ranging from −1 to 1 for the mean
redshift shifts in these two tomographic redshift bins.
Here, we compare the fiducial cosmology constraint

with the one using the Gaussian prior recommended by
Rau et al. [24] for Δz3 and Δz4. The result is labeled as
“N ðΔz3;4Þ” in Fig. 12. As shown, we find a ∼2σ difference
in S8 between these two setups. Furthermore, the constraints
on Δz3;4 show shifts in the mean redshift estimation of the
last two redshift bins. To assess the possibility that the shifts
in Δz3;4 are caused by statistical errors, we use 50 noisy
mock 2PCFs generated using the WMAP9 cosmology and
the best-fit fiducial model for nuisance parameters with Δz3
andΔz4 set to 0.We run the fiducial analysis on these mocks
(Fig. 16) and find that it is not likely to obtain redshift
shifts as large as our fiducial analysis—Δz3 ¼ −0.115 and
Δz4 ¼ −0.192. Note that according to the definition in
Eq. (22) negative values of Δz3;4 indicate that the true mean
redshift is higher than the mean redshift estimated by the
joint calibration. Our results indicate that these shifts in the
third and fourth redshift bin are statistically significant. We
leave the study and calibration of these biases to our future
work. Comparing “N ðz3;4Þ” with the fiducial constraints in
Fig. 12, the conservative flat priors on Δz3;4 are a large part
of the reason why our constraints on S8 are not improved

FIG. 15. The marginalized 2D posteriors of the flat ΛCDM
cosmology with fixed neutrino mass (fiducial; mν ¼ 0.06) and
free neutrino mass; mν ∈ ½0.06; 0.6�.

FIG. 16. The evaluation of statistical significance of the shifts in
Δz3;4. Blue points show the Δz3;4 estimations by conducting our
fiducial analysis on noisy mock 2PCFs. The red point is the
estimation from our fiducial analysis on HSC-Y3 real data.
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over the HSC-Y1 analyses [5], although the HSC-Y3 2PCF
measurement has significantly higher SNR.
Additionally, we test the analysis by comparing the

fiducial cosmology constraint with analyses using straight-
up stackings of photometric posteriors (without deconvo-
lution of photo-z error and calibration from LRGs as our
redshift number density. In this test, we still use flat priors
on Δz3;4. As shown by “dNNz,” “DEmPz,” and “mizuki”
in the fourth group of Fig. 12, we find that the difference in
S8 constraint is smaller than 0.5σ. Although directly using
the stacked photo-z posterior is not mathematically correct
[133], this test attempts to assess the possible bias from the
error in the shape of nðzÞs. However, we note that none of
these nðzÞs are well-calibrated at high redshift; therefore,
this test is not able to capture potential bias for galaxies
at z > 1.2.

E. Samplers

We adopt PolyChord as our fiducial sampler, and
several internal consistent tests are conducted with
MultiNest to save computational resources. Here, we
check the consistency of the analysis between different
samplers. Specifically, we compare the cosmology con-
straints between the three samplers summarized in
Sec. IV F, namely PolyChord, MultiNest, and
EMCEE. The 1D marginalized posteriors are shown in
the fifth group of Fig. 12, and the 2D marginalized
posteriors are shown in Appendix B 7. As shown, the
confidence intervals on Ωm and σ8 from MultiNest are
∼15% smaller than PolyChord and EMCEE, while the
confidence intervals from PolyChord and EMCEE are
consistent; Lemos et al. [108] found similar results. In
addition, we find the 1D projected modes from these three
samplers are consistent. Therefore, we conclude that it is
conservative to use MultiNest for our internal consis-
tency tests as any inconsistency is more significant for
results from MultiNest due to the smaller confidence
intervals.

F. Subfields, tomographic bins, scales

1. Subfields

The HSC-Y3 survey footprint has six different subfields
as summarized in Table I. Here, we assess the consistency
in the cosmology constraints, especially focusing on S8, by
performing analyses on each subfield separately with our
fiducial model.
The 1D summary statistics for the six subfields are shown

in Fig. 17, which are labelled as “XMM,” “GAMA09H,”
“GAMA09H,” “WIDE12H,” “VVDS,” and “HECTOMAP,”
respectively. In addition, the marginalized 2D posteriors are
shown in Appendix B 4.
We note that these fields have very different areas (see

Table I for details); therefore, the 1σ errors are different
among individual fields, and they are different from the

fiducial analysis using all of the fields. Additionally, the
constraints from these individual fields are approximately
independent of each other since they are from different
regions of sky; therefore, the errors are not significantly
correlated. As shown in Fig. 17, XMM, GAMA15H,
VVDS and HECTOMAP show ∼1σ differences in S8 from
the average. However, we note that each shift in S8 is offset
by less than 1σ given the uncertainty in the corresponding
individual field. Taking into account that the errors are not
significantly correlated, it is not likely for the scatters to be
a flag of systematic errors.

2. Tomographic bins

Here, we exclude one tomographic redshift bin at a time
and check whether the constraints are consistent with the
fiducial constraint with all the four redshift bins. Our
fiducial analysis adopts wide, flat priors on Δz3 and Δz4.
We find that when removing one of the first two redshift

bin, the constraining power of the test is significantly
degraded since we apply conservative flat priors on
Δz3;4 and use the measurements in the first two redshift
bins to calibrate the redshift density estimations in the last
two bins. Therefore, we adopt Gaussian priors on Δz3
and Δz4, taken from the posteriors of these parameters
from the fiducial analysis, Δz3 ¼ −0.115� 0.055 and
Δz4 ¼ −0.192� 0.088. This test is used to assess the
robustness to our cosmology constraint across different
redshift bins with the recalibrated redshift densities. When
we remove each redshift bin in turn, we have no con-
straints on the correspondingΔz. In Fig. 17, we do not plot
any Δz posterior when that bin is removed.
The 1D summary statistics are shown in Fig. 17, which

are labeled as “no z1,” “no z2,” “no z3,” “no z4,” respec-
tively. The marginalized 2D posteriors are shown in
Appendix B 6. We find that the maximum shifts in S8
constraints from removing each redshift bin are ∼0.5σ of
the fiducial S8 constraint. We note that these constraints
with tomographic-bin removal are not independent.
However, the differences in the S8 constraints are less than
1.7%, which is small compared to the statistical error on our
fiducial S8 constraint.
While the “no z3” case shows a significant shift in Ωm,

our analysis primarily emphasizes 1D constraints on S8,
rather than on Ωm, similar to Dalal et al. [39]. This
preference is due to the strong degeneracy between Ωm
and σ8. As depicted in Fig. 18, for both the “no z3” and
fiducial scenarios, there is a pronounced uncertainty ellipse
in the (Ωm, σ8) plane. Moreover, the 1D posteriors ofΩm do
not follow a Gaussian distribution. In addition, we sample
the “no z3” case with both MultiNest and PolyChord.
As shown in Fig. 18, the confidence interval on Ωm from
MultiNest is significantly underestimated compared to
PolyChord due to the assumptions in MultiNest
[108]. The “no z3” results shown in Fig. 17 are based
on MultiNest.
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FIG. 17. The 68% C.I.s of 1D projected modes on the parameters Ωm, σ8, S8, Δz3 and Δz4 for different splits of the HSC-Y3 data. We
have four groups divided by horizontal dashed lines. The first group is the fiducial setup; the second group examines different subfields,
the third group is for removal of different redshift bins, and the fourth group is for different scale cuts. The fiducial results (marked
with “�”) are sampled with PolyChord and the others are sampled with MultiNest. The Δz3 and Δz4 for “no z3” and “no z4” are
missing, respectively, since the redshift bins are removed from the analysis.

FIG. 18. The 2D posterior in the (Ωm; σ8) plane for the fiducial
analysis sampled with PolyChord, “no z3” analysis sampled
with both PolyChord (with �) and MultiNest (without �).
The MultiNest sampler significantly underestimates the error
on the parameters, particularly Ωm.

FIG. 19. The evaluation of the statistical significance of the
shift in S8 for the test with large scale cut using 50 mock 2PCFs.
The reference distribution (blue histogram) is obtained by
analyzing the noisy mocks with the fiducial scale cut, and
keeping large scales only. The red vertical line is the estimation
of ΔS8 from real data. The probability of finding ΔS8 larger than
the real analysis is 13%.
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When we compare the data vector for the “no z3” case
against model predictions based on our fiducial MAP
constraint, the chi-squared value is 72.1. In contrast, the
chi-squared value is 69.8 for the “no z3” MAP. Given that
the effective degrees of freedom are around 79, both sets
of parameters fit the data well. Therefore, even though the
“no z3” scenario indicates a noticeable deviation in Ωm
compared to the fiducial constraint, the data does not
strongly favor either scenario over the other.

3. Scale cuts

Our fiducial scale cuts are 7.1 < θ=arcmin < 56.6 for
ξþ and 31.2 < θ=arcmin < 248 for ξ−. Here, we change
the angular scale cuts and check the consistency of the
cosmology constraints, especially focusing on constraint on
S8. The scale cuts we test include:

(i) θmax cut: θþ ∈ ½7.1; 75.9� and θ− ∈ ½31.3; 247.8�,
(ii) θmin cut: θþ ∈ ½5.3; 56.5� and θ− ∈ ½23.3; 247.8�,
(iii) Large scales only: θþ ∈ ½17.3; 56.5� and θ− ∈

½75.9; 247.8�, and
(iv) Small scales only: θþ ∈ ½7.1; 23.3� and θ− ∈

½31.3; 102.1�,
where all numbers are in units of arcminutes. The 1D
summary statistics of the tests are shown in Fig. 17, which
are labeled as “θmax cut,” “θmin cut,” “Large scales,” “Small
scales,” respectively. The marginalized 2D posteriors are
shown in Appendix B 5. We find a ∼1σ difference in S8 for
the analysis using large scale data only. In order to quantify
the statistical significance of this difference, we perform
our fiducial analysis on 50 noisy mock 2PCFs using the
fiducial scale cut and the large scales only. To be more
specific, the noisy mocks are generated with the WMAP9
cosmology but the best-fit nuisance parameters from the
fiducial analysis. We record the difference in S8 estimation
for each noisy mock realization, and the probability
distribution of the difference in S8, denoted as ΔS8 is
shown in Fig. 19. As shown, there is a 13% probability of
ΔS8 being larger than the real analysis; therefore, this
difference is not statistically sufficient to be a bias. We find
that the differences in S8 constraints are negligible for the
other tests on scale cuts. The shifting error is less significant
at large scales, and this is also the case for the pseudo-Cl
analysis in Dalal et al. [39].

G. B-mode errors

To assess the robustness of our cosmology constraint, we
test the influence of B-mode residuals shown in Fig. 5 to our
constraint. Specifically, we subtract the estimated B-mode
residuals in Fig. 5 from our 2PCFs and analysis the data
vector with our fiducial setup. This test is performed after
the unblinding. To save the computational time, we do not
reestimate the covariance of the derivedE-mode 2PCFs, and
we use the fiducial covariance matrix. The fiducial con-
straint and the constraint with E-mode 2PCFs is shown in
Fig. 20. As shown, the difference between the two con-
straints on S8 is less than 0.5σ, which indicates that the
B-mode residuals shown in Fig. 5 are not likely to cause
significant error on our cosmology constraint.

VI. COSMOLOGICAL CONSTRAINTS
AND EXTERNAL ANALYSIS

After having verified that the HSC-only constraints are
robust, we check the consistency of our constraints with
other observations and quantify any tension. The external
observations include weak-lensing surveys such as
DES [7,38] and KiDS [6] (see Sec. VI A), the Planck-
2018 CMB analysis [4] (see Sec. VI B), and the eBOSS
BAO analysis (see Sec. VI C). We summarize the external
observations as follows:

(i) DES-Y3: The DES-Y3 weak-lensing data contains
about 100 million galaxies (with neff ∼ 5.6 arcmin−2)
over more than 4,000 square degress [134]. We focus
on the posterior from the cosmic shear 2PCFs
presented in [7,64].

(ii) KiDS-1000: The KiDS-1000 weak-lensing data con-
tains 21 million galaxies (with neff ∼ 6.2 arcmin−2)
over 1000 square degrees [135]. Their cosmic shear
paper [6] present cosmic shear analyses using three
different statistics (i.e., COSEBIs, 2PCFs, and
pseudo-Cl). We use the analysis with COSEBIs,
which is the fiducial result from KiDS, in this paper.

(iii) Planck-2018: This is the final data release from the
Planck cosmic microwave background experiment
[4]. We incorporate the primary TT data on scales
30 < l < 2508, and also the joint temperature and
polarization measurements (TT, TE, EE and BB) at
scales 2 < l < 30.

FIG. 20. Similar to Figs. 12 and 17. The 68% C.I. of the 1D projected posterior on each of the parameters Ωm, σ8, S8, Δz3 and Δz4 for
the fiducial constraint (first row) and the constraint with E-mode-only 2PCFs (second row) after removing the B-mode signal in Fig. 5.
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(iv) eBOSS DR16: We include spectroscopic baryon
acoustic oscillation measurements from the eBOSS
galaxy sample. We recompute the posterior in our
choice of cosmological parameter space (summa-
rized in Table II), and we combine it with our cosmic
shear 2PCFs constraints assuming that these two
measurements are independent.

A. Other weak-lensing analyses

We first compare our fiducial constraints on Ωm and S8
with other ongoing weak-lensing surveys (i.e., KiDS and
DES). As shown in Fig. 21, our result is consistent in
general with the DES-Y3 and KiDS-1000 results.
Specifically, the difference in the 2D plane of Ωm and
S8 is within the confidence region, even though the contour
size of HSC-Y3 is larger than DES-Y3 and KiDS-1000.
We note that the larger contour size is partly due to the use

of a flat prior on the photo-z shifting error parameters on
the last two redshfit bins (i.e., Δz3 and Δz4). If we employ
the Gaussian informative prior with σðΔz3;4Þ ∼Oð10−2Þ as
derived in [24] on these redshift error parameters, our
constraint becomes 15% tighter; however, as shown in
Sec. V D, the posterior shows a non-negligible shift toward
the direction of larger S8.

B. Planck CMB analysis

We next compare our fiducial constraint with Planck-
2018. As shown in Fig. 21, our constraint on S8 appears to
be in tension with Planck-2018. To quantify the tension, we
perform importance sampling to generate chains of equal
length from our fiducial and the Planck-2018 chains. We
then assume that the cosmological constraints are indepen-
dent and create a new probability distribution with the

FIG. 21. Comparison between our fiducial cosmology constraint and contemporary weak-lensing observations (i.e., KiDS-1000 and
DES-Y3) and Planck-2018 CMB observation. The posterior data are plotted as published by each collaboration. These analyses have
slightly different priors and astrophysical and systematic models.
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difference in S8 between these two chains—ΔS8 ¼
S8ðHSCÞ − S8ðPlanckÞ following Charnock et al. [136].
The probability of our fiducial analysis being in tension with
Planck-2018 is defined as the posterior probability enclosed
within the contour intersecting the point ΔS8 ¼ 0. We find
a 95.3% chance of being in tension with Planck-2018,
corresponding to a 1.98σ tension.
In addition, we quantify the possible tension between

our constraint and the Planck-2018 using the eigen-
tension method developed in Park and Rozo [137] with
the assumption that these two constraints are independent.
We first diagonalize the posterior covariance matrix in the
space spanned by the cosmological parameters to find the
eigenvectors and the corresponding eigenvalues. Since ns,
ωb and h0 in our analysis are prior dominated, we focus on
the two parameters that are well-constrained and not prior-
dominated: Ωm, and σ8. After diagonalizing the covariance
matrix of these parameters, we find the two eigenvectors,
defined as e1 ¼ σ8ðΩmÞ0.56 and e2 ¼ Ωmðσ8Þ−0.56. We
compute the posterior distribution of the difference in
the eigenvector, which is defined as

ðΔe1;Δe2Þ≡ ðe1; e2ÞHSC − ðe1; e2Þplanck: ð38Þ

By estimating the posterior probability above the contour
intersecting the point ðΔe1;Δe2Þ ¼ ð0; 0Þ, we find our
constraint has a 94.5% chance of being in tension with
Planck-2018, which corresponds to a 1.92σ tension.

C. eBOSS BAO analysis

Finally, we compare our fiducial constraint with the
extended Baryon Oscillation Spectroscopic Survey
(eBOSS) DR16 analysis [138]. The eBOSS analysis uses
galaxies as direct tracers of the density field to measure
baryon acoustic oscillation up to z ∼ 3. We reanalyze the
BAO measurements with the prior summarized in Table II
using different types of galaxies, including SDSS main
galaxy sample (MCGs; [139]), BOSS DR12 galaxies [140],
eBOSS galaxies [including luminous red galaxies (LRGs)
[141], emission line galaxies (ELGs) [142], quasars [143]
and Lyman-α forest samples [144]]. The analysis adopts the
likelihood implemented in CosmoSIS. The projected 2D
posteriors for the BAO analysis is shown in Fig. 22.
Then we quantify the tension between our fiducial

constraint and the BAO constraint on both S8 and
ðe1; e2Þ. We do not find significant tension between these
two analyses—0.23σ and 0.19σ tensions for S8 and
ðe1; e2Þ, respectively. Since these two constraints are
independent and do not show strong tension, we perform
a joint analysis between the cosmic shear 2PCFs and the
BAO measurements assuming that the two observations are
independent. The joint HSC-eBOSS analysis is shown in
Fig. 22. We find our constraint on S8 does not change since
BAO does not constrain S8; however, the constraint on Ωm
significantly improves.

VII. SUMMARY AND OUTLOOK

This paper presents the cosmological constraints from
cosmic shear 2PCFs with over ∼1 million galaxies from
the three-year Hyper Suprime-Cam (HSC-Y3) data, which
covers 416 deg2 up to redshift z ∼ 2.
By using our fiducial model to analyze different synthetic

2PCFs, we find the modeling uncertainties on S8 are less
than 0.5σ even for the simulations with the most extreme
baryonic feedback models. We model the cosmic shear
2PCFs in the flat ΛCDM cosmology with the sum of
neutrino mass fixed to 0.06 eV, and constrain the lensing
amplitude with 3.5% precision, finding S8¼σ8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm=0.3

p ¼
0.769þ0.031

−0.034 (68% C.I.). Additionally, the matter density is
constrained with 5% precision; Ωm ¼ 0.256þ0.056

−0.044 (68%
C.I.). Systematic tests on synthetic data vectors show that
the modeling errors on S8 do not exceed 0.5σ, whereas the
maximum modeling error on Ωm is about 1σ arising from
projection of high-dimensional posterior onto 1D space and
the modeling uncertainties in baryonic feedback. To assess
the robustness of our constraint, we conduct a number of
blinded internal consistency tests by analyzing different
subsets of the data with different systematic and astrophysi-
cal models under the context of the flat ΛCDM cosmology.
After unblinding, we compare our constraints on S8 with
other HSC-Y3 weak-lensing analyses e.g., [39,41,42] and
find extremely good agreement between these analyses.
Furthermore, we compare our analysis with external

dataset and find that our results qualitatively agree well
with weak-lensing analyses from the ongoing surveys;

FIG. 22. Comparison between our fiducial constraint (blue
contours) and the constraint on cosmology from the eBOSS BAO
measurement (yellow contours), which is analyzed with the same
priors in Table II. The red contours are the joint estimation
between the two observations.
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KiDS-1000 [6], DES-Y3 [64]. However, these weak-lensing
constraints on S8 is ∼2σ lower than the constraint from
Planck-2018 [4].
For the final-year HSC dataset covering ∼1; 100 deg2 on

the Northern sky, we expect the precision on S8 measure-
ment will be improved to ≤ 0.025 thanks to the increase in
survey area. We will then be able to see whether the S8
tension remains. For the final-year analysis, controlling the
systematic errors will be more challenging. Below, we
discuss a few places that require improvements for the final
year weak-lensing analyses.

A. Modelng of baryonic feedback

Our fiducial analysis models the baryonic feedback at
small scales using HMCode 2016, and find a significant
positive detection of baryonic feedback; Ab ¼ 2.34þ0.40

−0.25 ,
which is consistent with the HSC-Y3 Fourier space cosmic
shear analysis (2.43þ0.46

−0.25 ) [39]. We note that DES-Y3
adopts HaloFit, a dark matter only empirical model, to
calculate the power spectrum since DES-Y3 goes to larger
angular scales than HSC-Y3, and they adopt a conservative
small-scale cut; therefore, they are less sensitive to baryonic
feedback on small scales. In addition, we conduct an
analysis with HMCode 2020, which models baryonic feed-
back with ΘAGN, and we find the difference in the S8
constraint is less than 0.5σ. Furthermore, we conduct a
number of tests using synthetic 2PCFs to confirm that, for
our fiducial scale cut, our constraint on S8 is robust to
modeling error in baryonic feedback. Given this positive
detection of baryonic feedback, future cosmology analyses,
especially ones aiming to use smaller scale data, will have
to be careful in understanding the modeling errors in
baryonic feedback.

B. B-modes at large scales

We find significant B-modes in ξþ at scales
θ > 60 arcmin, especially in the last two tomographic bins.
To mitigate the B-mode leakage into our cosmology
analysis, we apply conservative scale cuts to remove angular
scales with θ > 56 arcmin in ξþ. Similarly, Dalal et al. [39]
find significant B-modes at scales l < 300. Note that the
DES-Y3 2PCF analysis has a large-scale ct greater than
200 arcmin. Since the DES-Y3 2PCF measurement is
dominated by data at very large scales, the modeling
uncertainty from baryonic feedback, which is significant
at small scales, has a smaller influence on their analysis than
in our own. Therefore, controlling the B-modes in large
angular scales and including large-scale data in our analysis
would not only improve the accuracy but also reduce the
modeling uncertainty from baryonic feedback. In future
analyses, we will further study the B-modes at large scales
and understand the cause of them.

C. Redshift estimation errors

Our fiducial analysis uses a conservative, wide, flat prior
on the shifts in the third and fourth redshift bins, and our
results indicates significant redshift error on these bins—
Δz3 ¼−0.1150.052−0.058 and Δz4¼−0.1920.088−0.088—which do not
agree with the Gaussian priors onΔz3;4 derived in Rau et al.
[24]. In addition, when applying the Gaussian priors of Rau
et al. [24] on the last two tomographic bins, we find that S8
shifts to higher values by ∼1.7σ compared to the fiducial
analysis adopting flat priors. All of the HSC-Y3 cosmology
analyses [39,41,42] find evidence for biased redshifts in
these bins. Furthermore, it should be noted that the study
conducted by Leauthaud et al. [145] found a correlation
between the measured excess surface density and the mean
source redshift of the lensing survey, potentially resulting
from redshift estimation systematics. This was observed
through a comparative analysis of the excess surface density
measurements of SDSS BOSS lens galaxies [140] using
background galaxies from several surveys including
CFHTLenS [146], CFHT Survey of Stripe 82 [147],
DES [148], KiDS [149], and HSC [150]. Notably, our
findings on the redshift measurement errors are consistent
with the trend reported in Leauthaud et al. [145].
We have taken the most conservative possible approach

to these photo-z errors. Due to the flat prior, the con-
straining power on S8 of our HSC-Y3 analysis is similar to
that of the HSC-Y1 analyses, although the sky coverage is
three times larger than the HSC-Y1 dataset. We will work
on improving the calibration of the source redshift dis-
tribution in the highest two tomographic bins and try to
improve the constraining power on S8.

D. Future improvements

Our final-year HSC data release will cover ∼1, 100 deg2

of the Northern sky with the same depth and image
resolution. The data reduction will also be performed by
an updated version of LSST Science Pipelines [47], with
notable improvements being a multiband deblender [151],
consistent selection of PSF stars and with a state-of-the-art
PSF modeling [152]. Due to the increase in the data volume
alone, the uncertainty on S8 is expected to be reduced to
about 2.5%, and we will be able to see whether the
significance of the tension between HSC 2PCFs cosmic
shear analysis and Planck increases. We will attempt to
improve the control of systematic errors for the final-year
analyses with the following approach:

(i) Include multiband images in our galaxy image
simulations with realistic galaxy color information
[153] (for example, see [153]) to enable us to test
photometric redshift estimation and calibrate the
nðzÞ estimation bias from redshift-dependent shear
[154,155].

(ii) Update the shear estimation code to a state-of-art
algorithm [156–158] which uses correct for multi-
plicative bias from detection and selection below
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0.5% without relying on empirical calibration from
external image simulation.

(iii) Cross-check the high redshift nðzÞ estimates with
other galaxy samples with spectroscopic redshift
estimations (e.g., DESI [159]) or with other measur-
ments (e.g., shear ratio test [160] and CMB lens-
ing [161]).

The HSC survey is a pioneer survey for future Stage-IV
imaging surveys which have much larger sky coverage,
higher resolution and/or deeper imaging. These Stage-IV
surveys include a ground-based survey: the Vera C. Rubin
Observatory Legacy Survey of Space and Time (LSST;
[162]), and space-based surveys: Euclid [163] and the
Nancy Grace Roman Space Telescope (Roman [164]).
These datasets will allow us to better constrain S8 and
understand the apparent tension between the Planck-2018
CMB observation.
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APPENDIX A: BIASES IN ChainConsumer

In this appendix, we show the biases caused by the
boundary effect and the smoothing of MC samples
when analyzing the 1D marginalized posteriors using
ChainConsumer. Boundary bias arises near the boundaries
of the projected 1D sample. A traditional KDE assumes that
the sample extends infinitely, which is not true for real-
world data. As a result, density estimates close to the edges
may be biased downwards since the kernel function extends
beyond the data range, effectively under-representing the
true density. Reference [121] uses first-order boundary
correction and a multiplicative bias correction for higher-
order bias caused by the KDE smoothing.
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Figure 23 presents the marginalized 1D posteriors from
the fiducial analysis, both before and after bias corrections.
It reveals that for parameters inadequately constrained by
cosmic shear data, the boundary posteriors are under-
estimated due to the boundary effect. Furthermore, for
parameters less affected by the top-hat priors, the errors are
overestimated owing to the multiplicative bias introduced
by KDE smoothing.

APPENDIX B: 2D POSTERIORS
FOR INTERNAL TESTS

In this appendix, we show the 1D and 2D marginalized
posteriors of our fiducial constant and the constraints of our
internal consistent tests. First, in Fig. 24, we show the
corner plot for marginalized 2D posteriors of cosmological
parameters and astronomical parameters in our fiducial
analysis. As shown, only the matter density, the matter
amplitude and the amplitudes of intrinsic alignment param-
eters are well constrained by our cosmic shear 2PCFs
analysis. Then the posteriors for our internal consistent tests
are shown in the following subsections.

1. Priors

We show the marginalized 2D posteriors in the ðΩm; S8Þ
plane for analyses with different flat priors on As lnðAsÞ
and S8 in Figs. 25 and 26, which are sampled with the
MultiNest and PolyChord samplers, respectively. We
refer the readers to Sec. V B for a detailed discussion.

2. Physical models

We show the marginalized 2D posteriors in the ðΩm; S8Þ
plane for analyses with different physical models in Fig. 27.

The posteriors are sampled with MultiNest. We refer the
readers to Sec. V C for a detailed discussion.

3. Systematic models

We show the marginalized 2D posteriors in the ðΩm; S8Þ
plane for analyses with different systematic models in
Fig. 28. The posteriors are sampled with MultiNest. We
refer the readers to Sec. V D for a detailed discussion.

4. Subfields

We show the marginalized 2D posteriors in the ðΩm; S8Þ
plane for analyses on different HSC-Y3 subfields in
Fig. 29. The posteriors are sampled with MultiNest.
We refer the readers to Sec. V F for a detailed discussion.

5. Scales

We show the marginalized 2D posteriors in the ðΩm; S8Þ
plane for analyses with different angular scale cuts in
Fig. 30. The posteriors are sampled with MultiNest. We
refer the readers to Sec. V F for a detailed discussion.

6. Tomographic bins

We show the marginalized 2D posteriors in the ðΩm; S8Þ
plane for analyses with removals of one of the four
tomographic bins in Fig. 31. The posteriors are sampled
with MultiNest. We refer the readers to Sec. V F for a
detailed discussion.

7. Samplers

We show the marginalized 2D posteriors in the ðΩm; S8Þ
plane for the analyses with fiducial setup but sampled with
different samplers in Fig. 32. We refer the readers to
Sec. V E for a detailed discussion.

FIG. 23. This figure shows the normalized 1D marginalized posterior of our fiducial constraints on four parameters. The red lines are
before the corrections for the boundary effect and multiplicative bias due to the smoothing in ChainConsumer, and the blue lines are after
the bias corrections. This illustrates how the posteriors for prior-dominated nuisance parameters are noticeably modified at the
boundaries, whereas those for the cosmological parameters simply change by ∼10% in width while remaining centered at the same
parameter values.
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FIG. 24. Marginalized posteriors of the fiducial analysis for the various parameters in our analysis, including the cosmological
(Ωm, S8, As, σ8, ns, h0, ωb), the parameter from HMCode 2016 encoding baryonic feedback (Ab), and the TATT intrinsic alignment
(A1, A2, η1, η2, bta) parameters.
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FIG. 26. The marginalized 2D posteriors analyzed with
different flat priors on As (fiducial), S8 and lnðAsÞ sampled
with PolyChord.

FIG. 25. The marginalized 2D posteriors analyzed with differ-
ent flat priors on As (fiducial), S8 and lnðAsÞ sampled with
MultiNest.

FIG. 28. The marginalized 2D posteriors analyzed with different
systematic models.

FIG. 27. The marginalized 2D posteriors analyzed with different
models for cold matter power spectrum.
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FIG. 31. The marginalized 2D posteriors in the (Ωm, σ8) plane
when removing one of the redshift bins.

FIG. 32. The marginalized 2D posteriors in the (Ωm, σ8) plane
for different samplers; MultiNest, PolyChord, and EMCEE.FIG. 30. The marginalized 2D posteriors in the (Ωm, σ8) plane

with six different cuts on angular scales.

FIG. 29. The marginalized 2D posteriors in the (Ωm, σ8) plane
for six different subfields.
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