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Abstract

Large scale screening is a critical tool in the life sciences, but is often limited by reagents, samples, or cost. An important

recent example is the challenge of achieving widespread COVID-19 testing in the face of substantial resource constraints.

To tackle this challenge, screening methods must e�ciently use testing resources. However, given the global nature of

the pandemic, they must also be simple (to aid implementation) and flexible (to be tailored for each setting). Here we

propose HYPER, a group testing method based on hypergraph factorization. We provide theoretical characterizations

under a general statistical model, and carefully evaluate HYPER with alternatives proposed for COVID-19 under realistic

simulations of epidemic spread and viral kinetics. We find that HYPER matches or outperforms the alternatives across

a broad range of testing-constrained environments, while also being simpler and more flexible. We provide an online tool

to aid lab implementation: http://hyper.covid19-analysis.org.
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Introduction

Biological screens that identify members of a large population with a disease have become invaluable tools for disease

diagnosis and surveillance. When these screens are di�cult to conduct or resources are limited, finding an e�cient

way to conduct the screen becomes critical. As such, widespread, scalable and frequent testing is a defining challenge in

combatting COVID-19 in the face of local, national and global resource constraints. Pooled testing has recently arisen as a

promising e�cient scientific solution to the world-wide challenge of increasing COVID-19 testing capacity1–17, encouraged

in part by the finding that a single positive sample can be reliably detected by RT-qPCR in large pools18.

The idea to test pools of samples dates back to the seminal work of Dorfman19. Dorfman testing is a two-stage approach

where each individual is assigned to exactly one pool. In the first stage, pools are tested and each negative test result

for a pool is applied to all its members. Only the remaining individuals (who are considered putative positives) are then

individually tested in the second stage, which can greatly increase e�ciency, depending on the pool size and prevalence of

positive members of the population. A major strength of this approach is its simplicity (and thus robustness) in laboratory

implementation; pools are easy to form and putative positives are simply the individuals in positive pools. Indeed, several

early proposals4–7 for COVID-19 pooled testing focus on Dorfman testing. However, it is well-known that Dorfman testing

can have sub-optimal e�ciency9–12; alternative designs use tests more e�ciently and can thus screen more individuals,

especially in the face of significant resource constraints.

There has been tremendous study and progress on pooled testing (also called group testing or specimen pooling)

in general. Numerous works provide statistical20–24, combinatorial25–30, and information theoretic31–44 perspectives,

as well as software45;46 to aid implementation, to name just a few. Additionally, there has been a lot of work on

analyzing and optimizing these methods for various constraints and evaluation criteria47–58, often in the low prevalence

regime. Broadly speaking, the approaches fall into three categories: i) one-stage (or nonadaptive) approaches that identify

positive individuals after only one round of pooled tests by using pools with carefully designed overlaps; ii) two-stage57–60

approaches (like Dorfman testing) that perform a first round of pooled tests to declare putative positives who are then

individually tested in the second round; and iii) multi-stage60;61 (or adaptive/hierarchical) approaches that perform

multiple rounds of pooled tests with pools chosen at each round based on the previous rounds.

Many recent works8–10;12–16;62 focus on developing pooled testing methods for COVID-19. We will focus here on one-

stage and two-stage approaches; multi-stage approaches can make robust lab implementation more di�cult and can take

longer to complete, which can make them less suitable for time-sensitive public health settings like COVID-19 testing. A

leading one-stage method for COVID-19 is P-BEST8, which splits each of 384 individuals into 48 partially overlapping

pools and is designed for a prevalence around 1%. The pool assignments are based on a Reed-Solomon error correcting

code that enables identification from the single round of tests and provides robustness against, e.g., independent PCR

failures. Positive individuals are identified by running a specialized decoding algorithm based on sparse regression. A

leading two-stage method is plate-based array pooling9, which arranges individuals into either an 8⇥ 12 or 16⇥ 24 grid

(corresponding to plate sizes common in laboratory environments), then takes each column and each row to be a pool,
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resulting in 20 pools for 96 individuals or 40 pools for 384 individuals, respectively. Each individual is split into two

pools and is a putative positive only if both the pools test positive. This approach retains some of the simplicity of

Dorfman testing, while being potentially more e�cient since individuals in only one positive pool do not need to be tested

in stage 2. Overall, these pooling strategies can provide e↵ective approaches for addressing the urgent, global need for

e�cient screening.

However, given the global nature of the pandemic, there are a wide variety of settings with di↵ering needs and

constraints, in which the proposed combinatorial designs may have limited utility11. P-BEST splits each sample into

six pools, which can be time-consuming and error-prone to execute by hand, making it best-suited for well-resourced

labs that have robotic-pipetting platforms. The specialized decoding algorithm used by P-BEST also adds complexity,

making it more di�cult to understand and implement without prior experience and expertise. Moreover, P-BEST and

plate-based arrays (as well as many other proposed designs) are somewhat rigid and can be nontrivial to adapt to allow

widely varying numbers of individuals screened per batch, available test kits, or prevalence of positive results. For

COVID-19 screening in resource-limited settings, adapting to these various conditions is critical to achieving the greatest

e↵ectiveness11. Therefore, for this (and other) applications of pooled screening, there remains an outstanding need for

a simple and flexible method that can be robustly implemented in diverse environments (without special equipment or

expertise) and that can be easily tailored to optimize e↵ectiveness (for diverse resource constraints).

We propose HYPER, a two-stage pooled testing method based on the combinatorics of hypergraph factorization. While

the underlying mathematics is sophisticated, the resulting pools are simple to implement by hand (individuals are split at

most three ways), and putative positives can easily be identified with only pencil and paper. We also provide an online

tool (http://hyper.covid19-analysis.org) to facilitate implementation. The design accommodates any number of

individuals while maintaining balance and e�ciency. We characterize its behavior under a common statistical model and

investigate its real-world COVID-19 performance through realistic simulations that model both viral kinetics and epidemic

spread. HYPER outperforms both plate-based arrays and P-BEST in our experiments. These methods are particular

instances of general array-based and code-based designs, so we also consider the broad classes of balanced arrays and

Reed-Solomon Kautz-Singleton (RS-KS) code-based designs. In our experiments, HYPER also matches or outperforms

these broad classes even in the scenarios where those classes excel in e�ciency. For COVID-19 and beyond, HYPER

represents a valuable addition to the growing toolbox for performing large-scale, pooled screens.

Results

The need for simple and flexible pooling designs that are balanced: A pooling design is an assignment of each

of n individuals (or more generally, samples) to one or several of m pools. We seek a simple and flexible pooling design

that is balanced in the following natural ways (see the Supplementary Material for a formal definition):

i) All individuals are assigned to the same number q of pools; we focus on q  3 to aid lab implementation.

ii) The m pools are assigned as evenly as possible, i.e., the sizes of the pools are as close as possible to equal.
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iii) The
�m
q

�
possible pool combinations are assigned as evenly as possible.

Similar but nonidentical balance conditions have been widely studied in group testing (see the references above). The

balance conditions we consider here come from various naturally-arising real-life considerations that are especially relevant

for COVID-19 testing. To begin, they all help make the pooling process more consistent, making robust implementation

and quality control easier. For example, pool size determines how much volume to pipette from each individual in the

pool. Balanced assignment of pools produces uniform pool sizes, making the volumes to pipette consistent across the

design. Combined with a uniform assignment of all the individuals to q pools, this also makes the volume needed from

each individual consistent. Furthermore, a simple way to reduce pipetting steps in practice is to first pool individuals

assigned to the same pool combination, then split this combined sample into the assigned pools. Balanced assignment

of pool combinations makes the size of each of these combined samples consistent. Put together, these various forms of

consistency simplify the pooling process and make it easier to add checks along the way, both of which help make it less

error-prone.

Beyond making the pooling process more consistent, balance may also help make the performance of designs more

consistent. For example, larger pools dilute positive samples more, which can increase the risk of false negatives. Balancing

the assignment of pools can help make this reduction in sensitivity uniform across individuals. This is important in real-

world testing; all individuals in the design should receive the same treatment. Similarly, balancing the assignment of pool

combinations can help make e�ciency more consistent by reducing the dependence of the stage 2 workload on which pool

combinations test positive. This consistency in turn may help labs to plan so they can e�ciently allocate tests. We study

how balance impacts the consistency of both sensitivity and e�ciency in more detail under the COVID-19 model below.

To summarize, real-world testing has a need for simple and flexible pooling designs that are also maximally balanced.

Such designs aid robust lab implementation and encourage consistent performance across individuals. However, such

designs turn out to be nontrivial to develop, and existing designs do not su�ciently address this aspect of real-world

testing (see the Supplementary Material for more discussion). This paper fills the gap with HYPER, a simple and flexible

method with maximally balanced pooling designs.

HYPER pooling method: We propose HYPER, a two-stage pooling strategy that uses maximally balanced pools.

The first stage consists of pooled testing to identify putative positives, and the second stage consists of individually

testing the putative positives. Individuals are assigned to pools in the first stage by cycling through a sequence of pool

assignments obtained by solving a mathematical problem called hypergraph factorization. We explain the details here via

a small example with n = 12 individuals each split into q = 2 out of m = 6 pools (Fig. 1).

The first step (Setup) is to obtain a sequence of pool assignments (AB, CD, etc.) via hypergraph factorization. As

illustrated in Fig. 1, we think of the m pools (A-F) as vertices (i.e., the black labeled points) and the
�m
q

�
possible pool

assignments (AB, AC, etc.) as hyperedges (i.e., the blue lines connecting q vertices each). A set of hyperedges (taken

with the set of vertices) is called a hypergraph, and factorizing the hypergraph means partitioning the hyperedges (i.e.,
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pool assignments) into subsets that each use all the vertices (i.e., pools) exactly once (see the Supplementary Material for

more detail). In our example, this yields the five subsets shown as little hypergraphs within the circle of pool assignments:

{AB, CD, EF}, {BC, DF, AE}, and so on. The setup step concludes by simply reading o↵ the list to obtain the sequence

of pool assignments: AB, CD, EF, BC, and so on until AC.

The next step (Stage 1) is pooled testing to identify putative positives. First, place individuals in pools by cycling

through the sequence of pool assignments, i.e., individual 1 is placed in pools A and B, individual 2 is placed in pools C

and D, and so on. This yields a pooling design that assigns the n = 12 individuals to q = 2 of the m = 6 pools (which we

denote as H12,6,2). We do not use all
�6
2

�
= 15 pool assignments in the sequence here since there are only 12 individuals.

For more than 15 individuals, we would simply cycle through the sequence again until all the individuals were assigned.

Next, we test the pools (pools B-D test positive in our example), and from these results, we identify putative positives in

a process called decoding. For this step, HYPER uses conservative decoding, in which an individual is declared putative

positive if it was in no negative pools. Namely, we eliminate all individuals in negative pools; the remaining individuals

(who are in only positive pools) are the putative positives. Performing this elimination process in our example yields

putative positive individuals 2, 4, and 7.

The final step (Stage 2) is individual testing of the putative positives. In our example, this means performing individual

tests for individuals 2, 4, and 7. Individuals 4 and 7 test positive, so HYPER concludes by declaring them positive and

declaring everyone else negative.

Note that the pooling design above is maximally balanced: each individual is in two pools, each pool contains four

individuals, and each pool pair is assigned either once or never. Indeed, HYPER guarantees this balance in general by

exploiting the properties of hypergraph factorization (see the Supplementary Material). Note that the HYPER pooling

design is also flexible: it handles any number of individuals n by simply cycling through the sequence obtained in the setup

stage. Moreover, the hypergraph factorization needed to obtain that sequence can be e�ciently constructed for q = 1 (for

any m), for q = 2 (as long as m is even), and for q = 3 (as long as m is a multiple of six and m� 1 is a prime number);

see the Supplementary Material for details. This covers a very wide range of useful design parameters (n,m, q), and we

provide an online tool (available at http://hyper.covid19-analysis.org) that generates pool assignments using these

constructions, simplifying lab implementation for HYPER. The pools are also simple to implement in the lab and simple

to decode, and the decoder can also be extended to correct for some false negatives (see the Supplementary Material).

Table 1 summarizes these features of HYPER and compares with plate-based arrays9 and P-BEST8, as well as two existing

random designs: random assignment11 (i.e., assign each individual to q pools independently and uniformly at random)

and double-pooling63 (i.e., partition the individuals into m/2 pools twice).

Performance under a common statistical model: We study the performance of HYPER under a common statistical

model for group testing19–24. In this model, each individual (or in general contexts, each sample) is positive independently

at random with probability p (where p is the disease prevalence) and the tests have independent errors. Namely, each
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test has a sensitivity of � and a specificity of 1 � ↵, i.e., it returns positive with probability � if it contains a positive

individual and returns negative with probability 1 � ↵ if it contains no positive individuals. This model di↵ers from the

COVID-19 model we consider in the rest of the paper, but is also important to study since the potential applications of

HYPER extend beyond COVID-19. Throughout this analysis, we further suppose that n is a multiple of m/q so that the

pools are perfectly balanced with k = nq/m individuals per pool. Note that this is not a significant restriction; for the

testing-constrained settings we are most interested in, the most e↵ective designs often have large n relative to m/q. Here,

we present our key results (see the Supplementary Material for further details and derivations).

Our first result characterizes the expected number of tests E(T ) used by HYPER (including the tests from stage 2).

In particular, we have shown the following upper bound (which holds with equality when n <
�m
q

�
and q  2):

E(T )  m+ n ·

1� qp1 +

✓
q

2

◆
p2

�
, (1)

where p1 = 1 � � + (� � ↵)rk, p2 = p21 + (� � ↵)2r2k�u(1 � ru), r = 1 � p, and u =
�m�2
q�2

�
· dn/

�m
q

�
e. In fact, we have

derived a sharper (but more complicated) version of this bound valid for all q using the Dawson-Sanko↵ inequality64;65

(see the Supplementary Material). We have also studied the overall accuracy of HYPER. In particular, for q  2 and

n 
�m
q

�
, we have shown that the overall sensitivity and specificity are as follows:

Sensitivity: Pr( bXi = 1|Xi = 1) = �q+1, Specificity: Pr( bXi = 0|Xi = 0) = 1� ↵�, (2)

where Xi denotes the true status of individual i, bXi is the status declared by HYPER, � = [� + (↵ � �) · rk�1]q, and

the probabilities are with respect to the random test errors and the random positivity of the other individuals. The

corresponding false negative and true positive probabilities (which can help guide how one interprets statuses declared by

HYPER) are as follows:

False negative probability: Pr(Xi = 1| bXi = 0) =

✓
1 + o

1� ↵�

1� �q+1

◆�1

, (3)

True positive probability: Pr(Xi = 1| bXi = 1) =

✓
1 + o

↵�

�q+1

◆�1

,

where o = (1 � p)/p is the odds ratio of prevalence. We illustrate some of these results with numerical simulations in

Supplementary Figs. 1a to 1f. Notably, the sensitivity of HYPER under this model is independent of the pool sizes (in

contrast to the COVID-19 model below). While it is beyond our present scope to do a thorough comparison, we note that

corresponding calculations of sensitivity and specificity under this model have also been reported for array methods21.

Note also that the sensitivity of HYPER under this model may be improved via error-correction of false negatives in

stage 1 (see the Supplementary Material). However, doing so can come at the cost of e�ciency, and analyzing this tradeo↵

is also beyond our present scope.

Focusing on the noiseless setting, i.e., test sensitivity and specificity close to 1 (↵ = 0, � = 1), enables some further

investigation. We first consider choosing optimal HYPER design parameters for large batches (n ! 1) with diminishing

prevalence (p ! 0). In this regime, we show that the optimal number of pools per individual m/n and the corresponding
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expected tests per individual E(T )/n for HYPER with q = 2 are approximately (Supplementary Figs. 1g and 1h)

m/n ⇡ 2p2/3 � p, E(T )/n ⇡ 3p2/3.

This improves upon Dorfman testing, for which the optimal expected tests per individual is approximately E(T )/n ⇡ 2p1/2

in this regime20, and it matches that of three-stage Dorfman testing20;63. Designs with better e�ciency in this regime

are available in the literature, but they typically rely on using multiple stages10;20 or taking q much larger47–55, each of

which is outside our constraints (see the Supplementary Material for more discussion).

In the context of widely-spread infectious disease, it is also important to consider fixed (non-diminishing) prevalence

p > 0, i.e., the linear regime34–36. Recent works in this regime have considered two problem formulations where group

testing increases e�ciency. The first problem is to maximize e�ciency using any group testing method (i.e., any number

of stages, any decoder, etc.). The second problem adds some real-life constraints by instead allowing only two-stage group

testing methods with conservative decoding36, such as array methods and HYPER. We compared known lower bounds

for these two problems with the upper bound for HYPER given above, with m and q numerically optimized for n = 6144

(Supplementary Fig. 2). As one would naturally expect, better e�ciency is achievable for problem 1, e.g., by using

fully-adaptive methods35, since it is much less constrained than problem 2. For problem 2, which incorporates real-life

constraints, HYPER appears to be somewhat close to optimal.

To summarize, these results characterize the expected e�ciency and accuracy of HYPER under a standard statistical

model. The model captures important features of many applications beyond COVID-19 testing and provides a useful

setting to evaluate HYPER. We found that for noiseless tests, the e�ciency of HYPER for diminishing prevalence is

competitive with other existing methods of comparable simplicity. For two-stage conservative testing with non-diminishing

prevalence, HYPER appears to be somewhat close to optimal.

Performance under a COVID-19 model: We study the performance of HYPER under the viral load based COVID-

19 model of Cleary and Hay et al.11. It simulates: a) SARS-CoV-2 viral load kinetics in infected individuals; b) the

dilution of viral loads during pooling that may lead to false negatives; and c) the evolution of infection prevalence in a

large population over time during epidemic growth and decline. We focus here on a window during which the infection

prevalence (i.e., the percentage of individuals with nonzero viral load) increases exponentially from 0.03% to 2.46% (days

40–90 in our simulation) and individual testing has a sensitivity of roughly 85% (Fig. 2).

We compare q = 2 HYPER designs with Dorfman pooling (i.e., q = 1 HYPER designs) and two leading proposals:

plate-based arrays9 and P-BEST8. These methods use batches of n = 96 individuals (8 ⇥ 12 array; Fig. 2a) or n = 384

individuals (16⇥24 array and P-BEST; Fig. 2b). For each method, we consider the e�ciency relative to individual testing

(i.e., the number of individuals screened divided by the average number of tests used, including any stage 2 tests) and the

average sensitivity (i.e., the percentage of positive individuals correctly identified) for each day in the simulation.

For n = 96 (Fig. 2a), we compare the 8 ⇥ 12 array with a q = 2 HYPER design (H96,16,2) and a Dorfman design

(H96,8,1), both chosen to dilute samples a similar amount as the array and thus have potentially similar sensitivity. Our
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simulation shows that all three methods indeed have similar sensitivity, all roughly 10 percentage points lower than that of

individual testing (Fig. 2a, bottom panel) due to the dilution of viral loads below the limit of detection in pooled testing.

For much of the 50-day window, the array is roughly 4.8 times more e�cient than individual testing, while H96,16,2 is

roughly 6 times more e�cient than individual testing (Fig. 2a, top panel). In other words, H96,16,2 is 25% more e�cient

than the array with essentially the same sensitivity. The Dorfman design is initially even more e�cient but its e�ciency

significantly degrades with increasing prevalence; the q = 2 HYPER design is more e�cient once the prevalence exceeds

roughly 1%.

For n = 384 (Fig. 2b), we compare the 16⇥24 array and P-BEST with a q = 2 HYPER design (H384,32,2) and a Dorfman

design (H384,16,1), both again chosen to dilute samples a similar amount as the array. The q = 2 HYPER design is again

roughly 25% more e�cient than the array design (Fig. 2b, top panel) while having essentially equal sensitivity (Fig. 2b,

bottom panel). Likewise, it is again more e�cient than the Dorfman design once the prevalence exceeds roughly 0.2%.

In contrast to these two-stage methods, the one-stage approach of P-BEST has a constant e�ciency of 8 times individual

testing (Fig. 2b, top panel), but it significantly loses sensitivity around day 80 as prevalence grows (Fig. 2b, bottom

panel). This is because the design and decoding algorithm are optimized for a prevalence around 1% and performance

degrades beyond this operating point. For the two-stage methods, sensitivity instead increases. Notably, error-correcting

does not appear to e↵ectively handle the false negatives that arise here due to diluted viral loads falling below the limit

of detection. P-BEST is generally the least sensitive among the pooling strategies.

Since the flexibility of HYPER allows for many designs, we next compared di↵erent HYPER designs and their various

tradeo↵s. Specifically, we considered various choices for the number of pools (Fig. 2c, m = 32, 16, 12) and the number

of splits (Fig. 2d, q = 1, 2, 3). Similar to earlier studies of random assignment designs11, the HYPER designs with a

smaller number of pools m are generally more e�cient (especially when the prevalence is small) but slightly less sensitive.

Likewise, designs with a larger number of splits q are more robust to increasing prevalence (they do not lose as much

e�ciency) but they also tend to be less sensitive. Overall, more e�cient designs tend to be less sensitive, creating a

trade-o↵ that depends significantly on prevalence.

We also expanded the above comparisons in a few ways. First, we considered HYPER designs that match the number

of pools in the plate-based arrays (Supplementary Fig. 3); these designs had essentially the same e�ciency as their

plate-based array counterparts but slightly higher sensitivity. Similarly, we considered HYPER designs that match the

number of pools and the pool sizes of P-BEST (Supplementary Fig. 4). Matching the number of pools yielded similar

e�ciency to P-BEST at low prevalence but better sensitivity, while matching the pool sizes yielded similar sensitivity at

low prevalence but better e�ciency. We also compared HYPER with additional methods, beginning with balanced variants

of the plate-based arrays (square arrays with holes), random assignment11, and double-pooling63 (Supplementary Fig. 5).

The balanced arrays have similar e�ciency but slightly higher sensitivity than their plate-based array counterparts, so

HYPER is again roughly 25% more e�cient but is now slightly less sensitive. Random assignment and double-pooling

have similar average performance to their corresponding HYPER designs. However, as discussed below, their performance
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can be more inconsistent. Since plate-based arrays and P-BEST are particular instances of general array-based and code-

based designs, we also considered more general balanced arrays (that place multiple individuals in some array cells) and

Reed-Solomon Kautz-Singleton (RS-KS) code-based designs (Supplementary Fig. 6). Compared to both these methods,

HYPER had similar or better performance, with greater improvements in e�ciency for more aggressive designs that use

fewer pools and yielded greater e�ciency at low prevalence.

Finally, we investigated how the balance of HYPER designs impacts the consistency of performance across individuals.

In particular, we studied how the sensitivity and e�ciency achieved for a single positive individual varies as a function of

where that individual is placed in the design (Supplementary Fig. 7). We compared HYPER with random assignment,

double-pooling, consecutive pooling, lexicographic pooling, balanced arrays, and RS-KS codes. Overall, the designs with

balanced pools (double-pooling, consecutive pooling, balanced arrays, RS-KS codes, and HYPER) had uniform sensitivity.

Designs with imbalanced pools use varying volumes from each individual and dilute their viral loads to varying degrees,

which can result in uneven sensitivity. Similarly, the designs with balanced pool combinations (lexicographic pooling and

HYPER) had uniform e�ciency. Consecutive pooling had uniform but lower e�ciency; it uses only a subset of the possible

pool combinations but does so in a balanced way. HYPER, which has perfectly balanced pools and pool combinations, had

uniform sensitivity and e�ciency. Moreover, its median e�ciency (5.68 individuals/test) and median sensitivity (74.4%)

were generally among the best.

Choosing a pooling method given resource constraints: In practice, decision makers must often choose a pooling

method given limited resources for daily testing and sample collection. One approach is to maximize the number of

individuals screened per day, i.e., the number of individuals n per batch times the number of batches b that can be run per

day. However, while this metric accounts for the impact of resource constraints, it does not represent the actual number

of infected individuals that the population screen can identify. A very e�cient method could screen numerous individuals

but still miss all the infected ones if it is not also sensitive.

Thus, we instead consider maximizing the number of individuals screened times the average sensitivity, i.e., an e↵ective

number of individuals screened per day, which we call the “e↵ective screening capacity”. Specifically, we study the problem

of maximizing the e↵ective screening capacity across days 40-90 of the above COVID-19 simulation (Fig. 2), given a range

of resource constraints (limited amount of sample collection and testing). A nice property of the e↵ective screening

capacity is that scaling it by prevalence measures the average number of infected individuals per day that are identified by

the screen. This makes it especially meaningful to maximize in public health contexts, where the goal may be to find and

isolate as many infected individuals as possible. Here, we compare HYPER (optimized over a sweep of design parameters;

Table 2) with individual testing, plate-based arrays9 (optimized across the two configurations), and P-BEST8. We will

first consider a few specific scenarios to understand the tradeo↵s with each method, then consider a larger grid to get a

picture of the overall trends.

We first consider a testing-scarce setting (Fig. 3a) with an average testing budget of 12 tests per day that is far
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outstripped by an average sample collection budget of 3072 samples per day. In this case, individual testing only screens

12 individuals and achieves an e↵ective screening capacity of 10.2 individuals per day (the average sensitivity of individual

testing is 84.8% since some positive individuals have viral load below the limit of detection). In contrast, the best

HYPER design here (H192,6,2) achieves an e↵ective screening capacity of 122.2 individuals per day, roughly 12 times that

of individual testing. It does so by pooling n = 192 individuals per batch into q = 2 of m = 6 pools with an average of

b ⇡ 0.9 batches run per day (recall that some of the testing budget is used by stage 2 tests). Both plate-based arrays and

P-BEST use more than 12 tests in a single run so do not satisfy the testing constraints here.

As the testing budget grows to 24 then 48 tests (Figs. 3b and 3c) with the sample budget unchanged, larger e↵ective

screening capacities become possible by using larger designs, including the 8⇥ 12 array followed by the 16⇥ 24 array and

P-BEST. HYPER adapts to these settings as well, and the larger designs here are accompanied with a larger number of

splits q. HYPER remains the most e↵ective overall, achieving e↵ective screening capacities ⇠15 times that of individual

testing and ⇠3 times those of the plate-based arrays and P-BEST.

When the testing budget grows to 768 tests per day (Fig. 3d), i.e., one-fourth the sample collection budget, the pooled

testing methods remain more e↵ective than individual testing, but now by less than 4 times. In this increasingly testing-

rich regime, P-BEST and the plate-based arrays are sample-constrained and under-utilize testing resources. P-BEST uses

only mb = 384 of the 768 available tests, since all 3072 available samples are tested after b = 8 batches of n = 384 samples.

The same is true for the 16⇥ 24 array design, although additional tests are used in stage 2. The most e↵ective HYPER

design H6,1,1 corresponds to simple Dorfman testing, uses roughly 508 tests in the first stage, and achieves an e↵ective

screening capacity of 2375.1 individuals per day.

Finally, we consider two settings well-suited for plate-based arrays and P-BEST: 96 samples with 24 tests (Fig. 3e) for

which the 8⇥12 array is well-suited (recall that some of the testing budget is used by stage 2 tests), and 384 samples with

48 tests (Fig. 3f) for which the 16⇥ 24 array and P-BEST are well-suited. Namely, these are settings where the sampling

and testing budgets are close to the number of individuals and tests used by these designs. This can help them maximally

utilize both the testing and sample collection budgets, i.e., neither resource is under-utilized. The plate-based arrays and

P-BEST performed similarly to HYPER in these favorable cases, but notably HYPER remained slightly more e↵ective:

e↵ective screening capacities of 74.1 vs. 71.1 for the first scenario and 265.5 vs. 262.2 for the second scenario.

Expanding this analysis to a grid of sampling and testing budgets gives a broad view of overall trends. We consider a

sweep with each resource budget ranging from 12 to 6144 (Fig. 3g). Note first that for any given sample collection budget,

the e↵ective screening capacity grows as the testing budget scales up until it matches or outpaces sample collection.

Individually testing all samples collected is most e↵ective from that point on. Likewise, for any given testing budget, the

e↵ective screening capacity rises as the sample collection budget grows, eventually reaching an upper limit at which point

testing becomes the limiting factor. Overall, pooled testing increases this upper limit, enabling an e↵ective screening

capacity far beyond the actual number of available tests. For example, for a testing budget of 96 tests per day, pooled

testing achieves an e↵ective screening capacity of up to 1500.9 individuals per day, which is over 18 times the e↵ective
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screening capacity of 81.4 individuals per day achievable by individual testing.

Across the testing-constrained regime, i.e., where the testing budget is less than the sample collection budget, HYPER

outperforms both plate-based arrays and P-BEST (Fig. 3 and Supplementary Fig. 10). Notably, Dorfman testing (i.e.,

HYPER with q = 1) is most e↵ective when the testing budget is within a quarter of the sample budget. However, as

the sample budget begins to further outstrip testing, combinatorial designs that involve more individuals n per batch and

that use more splits q become most e↵ective, consistent with earlier studies of analogous random designs11.

The above results consider the e↵ective screening capacity of each method across a 50-day window of epidemic spread.

We next investigated the e↵ective screening capacity on individual days, each corresponding to a di↵erent fixed prevalence.

At low to moderate prevalence of 0.1% (Supplementary Fig. 11), 1.06% (Supplementary Fig. 12), or 1.36% (Supplementary

Fig. 13), HYPER is consistently the most e↵ective strategy across all settings. In an intermediate range with prevalence

of 1.48% (Supplementary Fig. 14) and 2.46% (Supplementary Fig. 15) there is a subset of scenarios in which P-BEST out-

performs HYPER, although the performance of each method is nearly equivalent in these settings. Outside these settings

P-BEST is either not viable or substantially under-performs HYPER. At a higher prevalence of 3.15% (Supplementary

Fig. 16) HYPER again performs best across all scenarios. We did not observe any scenarios in which plate-based arrays

were most e↵ective.

As before, since plate-based arrays9 and P-BEST8 are particular instances of general array-based and code-based

designs, we also considered balanced arrays and RS-KS code-based designs (Supplementary Figs. 17 to 20). The balanced

arrays were optimized over the same set of design parameters as HYPER (Table 2). On the other hand, RS-KS designs

are available for only a limited subset (indicated in Table 2 by asterisks), so we also considered a Restricted HYPER that

was optimized over the same subset. In our simulations, HYPER (and Restricted HYPER) were either more e↵ective or

about as e↵ective as balanced arrays and RS-KS designs across the grid of resource constraints and were significantly more

e↵ective in important testing-constrained settings. Note also that the balanced arrays and RS-KS designs we considered are

actually extended variants that allow arbitrarily many individuals (see the Supplementary Material). HYPER outperforms

the unextended variants even more since the most e↵ective design parameters in testing-constrained settings often use

many individuals. One might also consider forming variants of each design by concatenating k disjoint copies to obtain a

design with kn individuals and km pools. Indeed, such designs were already implicitly considered in the above analysis

since they are equivalent to simply running b = k batches.

Discussion

In this paper, we present HYPER, a method for pooled testing with pooling designs based on hypergraph factorization. Our

results demonstrate the e↵ectiveness of this new family of pooling designs that are adaptable to any number of samples, with

only mild conditions on the number of pools, while remaining maximally balanced in three senses (number of assignments

per individual, pool, and combination of pools). This flexibility is critical to selecting appropriate designs under the widely

varying global demands and capabilities for COVID-19 testing. In addition, the balanced nature of the designs ensures
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uniform treatment of samples and facilitates robust and simple implementation. Despite the simplicity of implementing

HYPER, the existence and construction of the designs relies on deep mathematical results from combinatorics.

Our evaluation of HYPER in both the general statistical framework and the COVID-19 simulation can be used to guide

the choice of design, depending on the setting and purpose of testing. For the general statistical setup, where each test

has specificity 1� ↵ and sensitivity � independent of all other tests, we characterized the overall e�ciency and accuracy

of HYPER. Notably, we showed that HYPER has sensitivity �q independent of the pool sizes. Moreover, in the noiseless

case, we showed that using roughly m/n ⇡ 2p2/3 � p pools per individual maximizes the e�ciency of HYPER designs.

From our simulations, which model various realistic aspects of COVID-19 testing, we found a general trade-o↵ between

e�ciency and sensitivity. Under this model, using larger pools often yields greater e�ciency at low prevalence but also

dilutes samples and results in lower sensitivity. One must consider how to balance these two aspects, and we discuss how

optimizing the e↵ective screening capacity captures both in a meaningful way.

Given the potential application of HYPER to future epidemics, it is important to also consider changes in test charac-

teristics or epidemic dynamics. In our simulations (Supplementary Fig. 8), increasing the testing sensitivity (by reducing

the limit of detection) led to an increase in sensitivity for all the methods, without much change in their relative per-

formance. We also considered a change in epidemic dynamics that models a sustained two-wave epidemic11. In our

simulations (Supplementary Fig. 9), the performance of all the methods varied from one phase of the epidemic to the

next, but again without much change in their relative performance. Notably, sensitivity for all the methods (including

individual testing) was lower during the decline phase than the two growth phases, even with matching prevalence. The

viral loads of infected individuals were generally smaller (and hence harder to detect) during epidemic decline than they

were during epidemic growth, due to a shift away from recent infections. Alternatively, if the viral kinetics change so that

viral loads peak later, the smaller viral loads of recently infected individuals may lead to reduced sensitivity and may

alter the di↵erence between epidemic growth and decline. We expect that these changes would again a↵ect all methods

concordantly. Another important aspect is the rate of epidemic spread; prevalence for a slowly spreading epidemic remains

low for a longer time, making it possible to use HYPER designs that sacrifice e�ciency at high prevalence to dramatically

increase e�ciency at low prevalence. Overall, while a future epidemic would likely require some reevaluation to carefully

account for its specific features, we expect the relative performance of all the methods to remain similar, making HYPER

a promising candidate for future epidemics as well.

While pooled testing can substantially increase e↵ectiveness depending on laboratory capacity and prevalence, it is

important to also consider the added logistical challenges. Notably, the gains in testing e↵ectiveness that we demonstrate

above do not account for the additional pipetting steps during pooling, or the logistical cost of temporarily storing and

retrieving samples for stage 2 testing. However, simple (Dorfman) pooling designs are receiving increasing interest4–7;17;66

for real-world testing, demonstrating that these logistical challenges can be overcome in practice in a variety of settings.

In comparison to Dorfman designs, more complex designs (with q > 1) will require up to q times as many pipetting

steps during stage 1 pooling. Depending on the relative timing and cost of each step in the protocol, this may shift the
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relative favorability of the strategies considered above. In particular, P-BEST, with q = 6 or more, may become relatively

unfavorable if pooling steps are expensive, while plate-based arrays, which utilize multichannel pipettes, may become more

favorable.

An important strength of the conservative decoder we used here is its conceptual simplicity, which can help reduce

the risk of mistakes in practice. Moreover, it makes it possible to quickly illustrate (Fig. 1) and explain the method to

those who may not yet be familiar with group testing. Notably, positives are only declared on the basis of a positive

individual test, which can help make positive results easier to interpret. One can also consider using alternative decoders,

e.g., that may o↵er more computationally e�cient decoding or that may potentially reduce the number of stage 2 tests.

For example, definite defective (DD) decoding33;67 identifies putative positives like conservative decoding but then selects

only those who are the only putative positive in a positive test. This decoder has the potential for higher e�ciency since

only the DD putative positives will then be tested in stage 2. However, in our analysis (Supplementary Fig. 21), doing

so resulted in a significant loss of sensitivity, making the method less e↵ective overall. Our analysis also considered using

the DD decoder to instead only identify putative positives that can skip stage 2 and be declared positive. This approach

preserved sensitivity but had a similar e�ciency to conservative decoding so did not yield a significant improvement either.

Exploring even more sophisticated decoders is an interesting direction for future work, though labs will need to assess

whether the benefits outweigh the potentially greater complexity.

So far we have limited HYPER to q  3. This has the advantage of reducing the additional logistical burden (and

potential for error) that comes with splitting samples into more pools. Moreover, the e�cient construction of hypergraph

factorizations is highly nontrivial for q > 3. However, higher q can have several advantages. For example, individuals

in the same hyperedge (i.e., assigned to the same combination of pools) are identified as putative positives together as a

block even if only one of them is actually positive. Using a higher q can significantly increase the number of hyperedges
�m
q

�
, reducing the number of individuals sharing a single hyperedge. Results for HYPER here also indicated that high q

designs can be highly e↵ective when the sample collection resources significantly outstrip the testing resources, consistent

with earlier studies of random assignment11. Likewise, greater e�ciency can be obtained by using a multi-stage approach

with more than two stages, which is also more logistically challenging. In practice, one must weigh these opportunities

for greater e↵ectiveness against the increased complexity. Such designs may be especially promising for labs with access

to robotic pipetting platforms.

To conclude, we present a simple, e�cient and flexible pooled testing strategy that can be easily tailored and im-

plemented without specialized expertise or equipment. To further facilitate implementation, we provide an online tool

available at http://hyper.covid19-analysis.org that makes it easy to generate and carry out designs for a broad range

of settings.
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Methods

Maximal balance, HYPER, and extensions: As described in Results, HYPER provides a simple and flexible

pooled testing method that is maximally balanced. Supplementary Note S1 describes maximal balance in greater detail; it

contains both examples (illustrating each of the three balance conditions) and a formal mathematical definition. Developing

maximally balanced designs turns out to be nontrivial, as noted above in Results. Supplementary Note S2 describes some of

the challenges by considering various existing approaches. It discusses a couple straightforward but illustrative approaches

(consecutive and lexicographic pooling), a couple randomized approaches (random assignment11 and double-pooling63),

exhaustive search, and finally, code-based and array-based approaches. Each approach falls short of adequately addressing

this aspect of pooling design in some way. Supplementary Note S3 discusses how viewing this challenge through the

lens of hypergraphs (as described above in Results) leads naturally to an approach based on hypergraph factorization.

Finally, Supplementary Note S4 describes the e�cient constructions of hypergraph factorizations that we use in HYPER,

Supplementary Note S5 describes how the HYPER design fits into the broader context of design theory, Supplementary

Note S6 describes a more convenient way of presenting HYPER designs for implementation in the lab, and Supplementary

Note S7 describes how the decoder can be extended for error-correction of false negatives.

Balanced arrays and Reed-Solomon Kautz-Singleton (RS-KS) code-based designs: In addition to plate-based

arrays9 and P-BEST8, we also considered general balanced arrays and Reed-Solomon Kautz-Singleton (RS-KS) code-based

designs. The balanced arrays we considered use two-way (q = 2) and three-way (q = 3) arrays and make the pools balanced

by using square/cube arrays and filling them in a carefully chosen order. See Supplementary Note S8 for more details

and examples. The RS-KS code-based designs we considered form pools from Reed-Solomon68 codes using the celebrated

Kautz-Singleton31 construction. See Supplementary Note S9 for more details and an example. As noted above in Results,

the balanced array and RS-KS code-based designs we considered are in fact extended variants that allow arbitrarily many

individuals; see Supplementary Notes S8 and S9 for more discussion.

Performance characterization under a common statistical model: As presented above in Results, we analyzed

the performance of HYPER under the common statistical model where each individual (or in more general contexts, each

sample) is positive independently at random with probability p and each test may be incorrect with some probability, i.e.,

each test has a specificity of 1� ↵ and a sensitivity of �. Supplementary Note S10 provides both the detailed derivations

of these results (including a sharper bound on the expected number of tests used by HYPER) and further discussion of

related works on optimality for group testing.

Simulation under the COVID-19 model: We performed simulations studies using the COVID-19 model of Cleary

and Hay et al.11. The model first simulates viral loads for a large population of npop = 12, 500, 000 individuals across

dpop = 357 days during which the epidemic grows then declines. It captures the evolution of both: a) viral loads within

each individual, i.e., within-host viral kinetics, and b) infection prevalence in the overall population. See Cleary and Hay
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et al.11 for a detailed description. The main output we use is a matrix Z(pop) 2 Rnpop⇥dpop of the population viral loads,

where z(pop)i,d is the viral load of individual i on day d.

Next, the model simulates pooled testing to determine the average e�ciency (relative to individual testing) and

average sensitivity for each day. For the reader’s benefit, we detail the process here. For HYPER designs, i.e., Hn,m,q, the

simulation proceeds for each trial r of day d as follows:

1. Draw n individuals uniformly at random from the population. Let z1, . . . , zn be their viral loads that day. That is,

draw n indices k1, . . . , kn uniformly at random from the set {1, . . . , npop} (with replacement), and let zi = z(pop)ki,d
.

Put another way, z1, . . . , zn
iid⇠ Uniform(z(pop)1,d , . . . , z(pop)npop,d

). Individuals with nonzero viral load are positive/infected.

2. Generate the sampled viral load for each of the m pools I1, . . . , Im ✓ {1, . . . , n} as follows:

vj =
X

i2Ij

Poisson(zi/|Ij |), j = 1, . . . ,m,

where |Ij | is the size of pool j, i.e., the number of individuals assigned to it.

3. Compute stage 1 pooled testing results:

• if vj > LOD then pool j tests positive, where the LOD (limit of detection) we use is 100.

• otherwise, pool j tests negative with probability 0.99 (i.e., the false positive rate of PCR results is 1%).

4. Select putative positives as those individuals that are not in any negative pools.

5. Compute stage 2 individual testing results for the putative positives: putative positive individual j tests positive if

zj > LOD and tests negative otherwise.

6. Declare individuals identified by HYPER as those that tested positive in stage 2.

7. Record the following for the current trial r and day d:

• the number of true positive individuals identified by HYPER: n(r)
iden(d),

• the number of tests expended: T (r)(d) = m+ number of tests used in stage 2.

• the number of true positive individuals seen: n(r)
pos(d) = number of individuals with viral load > 0,

For each day, we repeat this for 500 initial trials, then continue until either at least 2,500 true positive individuals have been

seen or a total of 200,000 trials have elapsed (including the initial 500). This is to reduce experimental noise. Denoting R

to be the total number of trials run, we then compute the following averages across trials

T̄ (d) =
1

R

RX

r=1

T (r)(d), n̄iden(d) =
1

R

RX

r=1

n(r)
iden(d), n̄pos(d) =

1

R

RX

r=1

n(r)
pos(d),

then finally compute the average e�ciency (relative to individual testing) and average sensitivity for day d as follows:

e�ciency(d) = n/T̄ (d), sensitivity(d) = n̄iden(d)/n̄pos(d).
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Note that step 2 in the simulation above captures dilution due to pooling, since each individual’s viral load gets divided by

the pool size. The Poisson distribution models the arrival of viral particles when the small volume is pipetted from each

swab. Note also that step 5 models the individual testing of stage 2 as having no false positives. Doing so simplifies the

simulation without meaningfully a↵ecting our conclusions (e.g., the most e↵ective pooling designs, which do not depend

substantially on stage 2 specificity). We do include false positives in stage 1, since the overall e�ciency depends on the

specificity there. The parameters were chosen to match earlier modeling studies11;69–71.

For the 8 ⇥ 12 and 16 ⇥ 24 plate-based array designs9, the simulation proceeds in the same way except for step

2, where the corresponding array pools are used instead. Recall that the array method is a two-stage method like

HYPER. For P-BEST8, which is a one-stage method, steps 1-3 are the same (except that step 2 now uses the P-BEST

pools). Steps 4-6 are replaced by running the P-BEST decoder to identify individuals. For this, we followed the example

(including its tuning parameters) provided online by the authors at https://github.com/NoamShental/PBEST/blob/

f7ffebe6c7021ee40167239210806c5a1319f81e/mFiles/example_PBEST.m. Finally, since P-BEST has no second stage

of validation tests, the number of tests expended is always T (r)(d) = m = 48.

Fig. 2 plots the average e�ciencies and average sensitivities of the various methods for each day in a 90-day window

of epidemic growth. Here we included individual testing, which has a constant average e�ciency of 1 (unity) since it is

the baseline. Its average sensitivity on day d is equal to

sensitivity(d) =
Number of individuals (on that day) with viral load > LOD

Number of individuals (on that day) with viral load > 0
,

since individual testing identifies those individuals with viral load > LOD, and true positive individuals are those with viral

load > 0 (as before). The average sensitivities of the various methods appeared to generally have significant experimental

noise. So, Fig. 2 plots the raw averages (i.e., sensitivity(d)) as dots along with a degree-8 polynomial curve fitted to

sensitivity(d) v.s. log10 p(d) across the plotting window of days d = 20, . . . , 110, where p(d) is the prevalence on day d.

In Figs. 2a and 2b, we compared HYPER designs H96,16,2 and H384,32,2 with their counterpart array designs and

P-BEST. For the HYPER designs, the numbers n of individuals per batch were chosen to match the array designs and

P-BEST. The numbers m of pools were chosen so that the corresponding pool sizes nq/m match the maximum pool sizes

of the array designs (12 for the 8 ⇥ 12 array and 24 for the 16 ⇥ 24 array). Fig. 2c compares HYPER designs H384,32,2,

H384,16,2, and H384,12,2 that have varying numbers of pools. Fig. 2d compares HYPER designs H384,12,1, H384,12,2, and

H384,12,3 that have varying numbers of splits.

Comparison of pooling methods under resource constraints: We used the simulations above to evaluate the

various methods (individual testing, HYPER, plate-based array designs, P-BEST) under resource constraints and over

time. We considered two forms of resource constraints: i) a limited daily sample collection budget, and ii) a limited daily

testing budget. We let both range from 12 to 6144, forming the grid of resource-constrained scenarios shown in Fig. 3g

and Supplementary Fig. 10, with a few selected scenarios highlighted in Figs. 3a to 3f. These figures evaluate average

performance of the various methods when deployed across days 40-90 of the simulation. Supplementary Figs. 11 to 16
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repeat the analysis (using the same set of scenarios) for individual days, namely days 53, 80, 83, 84, 90, and 93. Hence,

we will focus on describing Fig. 3 and Supplementary Fig. 10; Supplementary Figs. 11 to 16 are similar.

In each scenario, we evaluated each method by its e↵ective screening capacity C̄ across a set of days D. As discussed in

the Results, this performance metric measures how many individuals the method can screen under the resource constraints,

with a correction applied to account for the associated sensitivity. Fig. 3 and Supplementary Fig. 10 consider days 40-90,

so D = {40, . . . , 90} there. Supplementary Figs. 11 to 16 examine individual days, which corresponds, e.g., to D = {53} in

Supplementary Fig. 11. To compute the e↵ective screening capacity, we first determine the number of batches b(d) that

can be run on each day d, and its corresponding average b̄:

b(d) = min

(
sample collection budget

n
,
testing budget

T̄ (d)

)
, b̄ =

1

|D|
X

d2D
b(d).

If b̄ < 0.9 batches per day, i.e., fewer than 0.9 batches can be run per day on average, then the method is considered

infeasible within the resource constraints and we set the method to have an e↵ective screening capacity of C̄ = 0. Setting

the above threshold at 0.9 captures an assumed flexibility to use fewer or more tests across days. Otherwise, if b̄ � 0.9,

we compute the e↵ective screening capacity C(d) for each day d and the e↵ective screening capacity C̄ across the days D

as follows:

C(d) = n⇥ b(d)| {z }
# individuals screened

⇥sensitivity(d), C̄ =
1

|D|
X

d2D
C(d).

Figs. 3a to 3f show the e↵ective screening capacities for the considered methods as bars, with the corresponding average

number of batches noted at the bottom of each bar. Multiple configurations are available for both the array method (the

8 ⇥ 12 and 16 ⇥ 24 array designs) and HYPER (various choices of n, m and q). For these methods, we select the most

e↵ective among all configurations, i.e., the configuration with the highest e↵ective screening capacity C̄. For HYPER, in

particular, we optimized over the configurations listed in Table 2. The chosen configuration is noted at the top of each

bar in Figs. 3a to 3f.

Supplementary Fig. 10 shows the bar graphs for the full range of resource-constrained scenarios considered. Fig. 3g

summarizes these findings by showing only which method was best (where we distinguish di↵erent choices of q in HYPER),

the corresponding e↵ective screening capacity, and the corresponding configuration.

Data availability: No raw data were collected in this study. The data and analyses generated in this study are

available at https://github.com/dahong67/hyper-group-testing and can be regenerated using the accompanying

code. The simulated population for the COVID-19 model was obtained from previously published code available at

https://github.com/cleary-lab/covid19-group-tests.

Code availability: Code is available on GitHub72 (https://github.com/dahong67/hyper-group-testing).
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Table 1 Comparison of various features of HYPER with existing methods. In contrast to the existing methods,
HYPER is simple to implement, flexible to adapt, and maximally balanced.

HYPER
Plate-based arrays

9

P-BEST
8 Random

Double-pooling
63

8⇥ 12 16⇥ 24 assignment
11

# individuals per batch (n) any 96 384 384 any multiple of m/2

# pools (m) variable 20 40 48 any even

# splits (q)  3 2 6 any 2

# stages two two one two two

max. balanced pools X × X × w.h.p.
⇤ X

max. balanced combinations X X X × w.h.p.
⇤ × w.h.p.

⇤

simple to implement by hand X X × X X
flexible / easily adapted X × × X X
simple to decode by hand X X × X X
corrects false positive X X X X X
corrects false negatives optional × X optional ×

⇤with high probability, i.e., probability of failure � 0.
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Table 2 List of HYPER designs Hn,m,q considered. HYPER was optimized across the following set of design
parameters. Asterisks (⇤) denote the restricted set of parameters that are available for Reed-Solomon Kautz-Singleton
(RS-KS) code-based designs (see the Supplementary Material).

q = 1
n m n m
4 1 384 1
8 1 384 2
12 6 384 3
20 10 384 4
40 10 384 6
40 20 384 8
44 11 384 12
44 22 384 16
48 12 384 24
48 16 384 32
48 24 384 48
64 8 384 64
64 16 384 96
64 32 384 128
80 20 384 192
96 1 400 10
96 2 400 20
96 3 400 40
96 4 400 50
96 6 400 80
96 8 400 100
96 12 400 200
96 16
96 24
96 32
96 48
100 20
192 12
192 16
192 32
192 48
192 64
192 96
288 12
288 18
288 36
288 48
288 96
288 144
360 40

q = 2
n m n m n m
12 6 ⇤ 96 64 ⇤ 384 42
12 12 144 30 384 44
20 12 192 6 ⇤ 384 46 ⇤
20 20 192 12 384 48
24 6 ⇤ 192 20 384 64 ⇤
24 12 192 24 384 96
40 12 192 40 384 192
40 20 192 44 384 288
40 40 192 48 400 12
44 12 192 64 ⇤ 400 20
44 20 192 192 400 40
44 40 192 96 400 44
44 44 288 12 400 48
48 6 ⇤ 288 20 400 64 ⇤
48 12 288 30 400 96
48 20 288 40 400 192
48 24 288 44 400 288
48 40 288 48 400 384
48 44 288 64 ⇤ 768 12
48 48 288 96 768 24
64 12 288 192 768 48
64 20 384 4 ⇤ 768 96
64 40 384 6 ⇤ 1536 24
64 44 384 8 ⇤ 1536 48
64 48 384 10 ⇤ 1536 96
64 64 ⇤ 384 12 3072 48
96 4 ⇤ 384 14 ⇤ 3072 96
96 6 ⇤ 384 16 ⇤ 6144 96
96 8 ⇤ 384 18 ⇤
96 10 ⇤ 384 20
96 12 384 22 ⇤
96 14 ⇤ 384 24
96 16 ⇤ 384 26 ⇤
96 18 ⇤ 384 28
96 20 384 30
96 22 ⇤ 384 32 ⇤
96 24 384 34 ⇤
96 40 384 36
96 44 384 38 ⇤
96 48 384 40

q = 3
n m n m n m
12 6 96 48 ⇤ 400 48 ⇤
12 12 ⇤ 96 60 400 60
12 18 96 90 400 90
20 12 ⇤ 144 30 400 192 ⇤
20 18 180 90 400 282
20 30 192 6 400 384 ⇤
24 6 192 12 ⇤ 400 390
24 12 ⇤ 192 18 720 90
40 12 ⇤ 192 24 ⇤ 768 12 ⇤
40 18 192 30 768 24 ⇤
40 30 192 42 768 48 ⇤
40 42 192 48 ⇤ 1440 90
40 48 ⇤ 192 60 1536 24 ⇤
40 60 192 90 1536 48 ⇤
44 12 ⇤ 192 192 ⇤ 2880 90
44 18 288 12 ⇤ 3072 48 ⇤
44 30 288 18 5760 90
44 42 288 30
44 48 ⇤ 288 42
44 60 288 48 ⇤
48 6 288 60
48 12 ⇤ 288 90
48 18 288 192 ⇤
48 24 ⇤ 288 282
48 30 360 90
48 42 384 6
48 48 ⇤ 384 12 ⇤
48 60 384 18
64 12 ⇤ 384 24 ⇤
64 18 384 30
64 30 384 42
64 42 384 48 ⇤
64 48 ⇤ 384 60
64 60 384 90
96 6 384 192 ⇤
96 12 ⇤ 384 282
96 18 400 12 ⇤
96 24 ⇤ 400 18
96 30 400 30
96 42 400 42
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Setup: factorize the hypergraph (for m=6 pools
with q=2 splits)

A

B

C

D

E

F

vertices : pools (A-F)

edges : all possible

individual pool

assignments

(AB,AC,...)

to obtain a sequence of individual pool assignments
(AB, CD, EF, BC, ...):

AB
CD

EF

BC

DF

AE
BDAFCE

BE

CF

AD

BF

DE
AC

1
indiv

2
indiv

...

Stage 1: pooled testing of the n=12 individuals.

Individual pool assignments obtained from setup

AB CD EF BC DF AE BD AF CE BE CF AD

Individual 1 2 3 4 5 6 7 8 9 10 11 12 Test

Pool A

Pool B

Pool C

Pool D

Pool E

Pool F

Decoding P P P

Conclusion: individuals 2, 4 and 7 are putative positives (P).

Stage 2: individual testing of the putative positives (P).

Individual 2 4 7

Test Result

Final conclusion: identify 4 and 7 as positive.

Example: n=12 individuals, m=6 pools, q=2 splits; individuals 4 and 7 are positive ( ). Online tool: http://hyper.covid19-analysis.org

Fig. 1 Illustration of HYPER. Stage 1 tests pools that are formed by cycling through a sequence of pool assignments
generated via hypergraph factorization. Putative positives are individuals that are not in any negative pools (decoding).
Stage 2 tests the putative positives individually. In this example, n = 12 individuals (2 of whom are actual positives) are
each split into q = 2 of m = 6 pools; three are decoded as putative positives and both positives are successfully identified
in stage 2.
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Dorfman with pools of size 24
[i.e., HYPER (m=16, q=1)]

16x24 array
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Individual testing
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HYPER (m=12, q=2)

Individual testing

HYPER (m=12, q=3)HYPER (m=12, q=2)

HYPER (m=12, q=1)

Individual testing

Fig. 2 E�ciency and sensitivity of pooled testing during a simulated epidemic. Average values of e�ciency
(relative to individual testing) and sensitivity of a variety of pooling designs are shown for each day, with results averaged
across 200,000 random trials. For sensitivity, raw averages are shown as dots with degree-8 polynomial fits overlaid
as curves; the curves for e�ciency depict raw averages. During the days 40–90 (highlighted), the prevalence grows
exponentially from 0.03% to 2.46%. a,b Comparison of HYPER with alternative methods that use n = 96 individuals per
batch (a) or n = 384 individuals per batch (b). HYPER designs with q = 2 splits were chosen to have the same maximum
pool sizes (nq/m = 12 for H96,16,2; nq/m = 24 for H384,32,2) as the array designs. Dorfman designs (i.e., HYPER designs
with q = 1) with matching pool sizes are also included. Sensitivity (bottom panels) depends heavily on pool sizes, due to
dilution of viral loads. c,d HYPER evaluated with varying numbers of pools (c, m = 32, 16, 12) and numbers of splits (d,
q = 1, 2, 3). The designs are a↵ected by the increasing prevalence over time to varying degrees. As prevalence increases,
e�ciency decreases (as more stage 2 tests become necessary), while sensitivity increases (as larger viral loads begin to
rescue small viral loads that would have been missed). More e�cient designs tend to be less sensitive, creating a trade-o↵.
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Fig. 3 Comparison of pooling methods under resource constraints. HYPER designs (Table 2) were evaluated
together with individual testing, plate-based arrays9, and P-BEST8, across a range of sample collection and testing
budgets. The basis for comparison was the e↵ective screening capacity across days 40-90 of the simulation (Fig. 2), during
which the prevalence increases exponentially from 0.03% to 2.46%. Bar plots on the left depict the e↵ective screening
capacities (bar height) in a testing-scarce setting (a), followed by increasingly testing-rich settings (b-d) and settings
well-suited for the plate-based arrays and P-BEST (e,f). When multiple designs for a given method were available within
the constraints (i.e., various choices of HYPER designs, or a choice between the 8 ⇥ 12 and 16 ⇥ 24 arrays), we use the
most e↵ective configuration and indicate it in white text within the appropriate bar. The average number of batches
run per day is noted at the bottom of each bar. g Expanded comparison to a grid of sampling and testing budgets.
Each cell is colored by the best method (where we separately identify HYPER designs with q = 1, 2, 3 splits in shades of
orange / red), and shows the corresponding e↵ective screening capacities (in black text). The best design configuration is
written in white text. For HYPER, we write the number of individuals per batch n and the number of pools m for the
best configuration; cell color already indicates the number of splits q. Note that n and m often do not match the daily
sampling and testing budgets, respectively, since multiple batches can be run per day. The cases from (a-f) are outlined
in black. See Supplementary Fig. 10 for additional details.

28


