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Abstract—It is well known that machine learning methods
can be vulnerable to adversarially-chosen perturbations of their
inputs. Despite significant progress in the area, foundational
open problems remain. In this paper, we address several key
questions. We derive exact and approximate Bayes-optimal robust
classifiers for the important setting of two- and three-class
Gaussian classification problems with arbitrary imbalance, for
{2 and /-, adversaries. In contrast to classical Bayes-optimal
classifiers, determining the optimal decisions here cannot be
made pointwise and new theoretical approaches are needed. We
develop and leverage new tools, including recent breakthroughs
from probability theory on robust isoperimetry, which, to our
knowledge, have not yet been used in the area. Our results reveal
fundamental tradeoffs between standard and robust accuracy
that grow when data is imbalanced. We also show further results,
including an analysis of classification calibration for convex losses
in certain models, and finite sample rates for the robust risk.

Index Terms—adversarial robustness, provable tradeoffs, class
imbalance, Gaussian mixtures.

I. INTRODUCTION

ACHINE learning methods, such as deep neural nets,
have shown remarkable performance in numerous ap-
plication domains ranging from computer vision to natural
language processing (see, e.g., [1]). However, despite this
documented success, it is now well-known that many of these
methods are also highly vulnerable to adversarial attacks.
Indeed, it has been repeatedly shown that adversarially-chosen,
imperceptible changes to the input data at test time can have
undesirable effects on the predictions of models that otherwise
perform well. For example, imperceptible pixel-wise changes
to images are known to severely degrade the performance of
state-of-the-art image classifiers [2], [3].
Adversarial training methods (e.g., [4]-[8]) tackle this
problem by seeking models that are robust to adversarial
attacks. A common approach is to replace the standard risk
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used to assess classifier performance with a robust risk that
incorporates the possibility of small perturbations to the input.
To illustrate this approach, consider the classification problem
of assigning labels y € C to input vectors (e.g., images)
x € RP. Traditional, non-adversarial training techniques seek
classifiers § : RP — (C that minimize the standard risk
(misclassification probability)'
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To obtain a classifier robust to e-perturbations with respect to
a given norm || - ||, one can minimize the corresponding robust
risk

Rrob(g757 || . ||) = 55 {35H5H§€ :l)(.’l? + 5) 7& y} (2)

=> Pr(y=c) Pr {S55y< G(x+06) #c}.
cec ely=e

The robust risk penalizes errors on (z,y) pairs from the data
distribution, as well as on data after -sized perturbations § €
RP. Furthermore, the robust risk defined in (2) generalizes the
standard risk (1) since Rgsta(§) = Reob(9,0, || - ||)-

While minimizing the robust risk has been shown to indeed
improve robustness in practice, this approach is not without its
drawbacks. Numerous works have argued that there may be
a fundamental tradeoff between robustness and standard test
risk (e.g., [9], [10]) and that generalization after adversarial
training requires significantly more data (e.g., [11]). Moreover,
whereas the problem of training a deep neural network typ-
ically is overparameterized, finding worst-case perturbations
of data as in (2) is severely underparameterized and therefore
this problem does not benefit from the benign optimization
landscape of standard training [12]-[14]. To this end, a
growing body of work has sought to analyze the theoretical
properties of these tradeoffs to gain a deeper understanding of
the fundamental limits of adversarial robustness (e.g., [8], [9],
[15]-[18]).

Despite the progress made toward uncovering the tradeoffs
inherent to adversarial training, many fundamental questions
remain unresolved. What do adversarially robust classifiers
that minimize the robust risk (2) look like in simple settings?
How do they depend on properties of the data distribution such

ITo simplify the discussion, we focus here on the 0-1 loss for which the risk
corresponds to misclassification. We consider surrogate losses in Sections VII
and VIIL
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Fig. 1. Illustration of differences between the standard and robust risk. The Bayes classifier g}f;ay minimizes the standard risk by maximizing Pr(y =
c)- pz‘yzc(:c) for each z pointwise, so it assigns a nontrivial interval around x = O to the zero class. However, it has worse robust risk than an alternative
¢ that drops the zero class. Minimizing the robust risk does not reduce to making optimal pointwise decisions.

as class separation and class imbalance, as well as the choice
of perturbation radius € and norm || - ||? How are they affected
when surrogate losses are used or when the classifier is trained
from small numbers of samples?

Resolving these issues is complicated by the fact that the
robust risk (2) is significantly more challenging to minimize
than the standard risk (1). Indeed, in the standard, non-robust
setting, much of our understanding stems from knowing the
optimal classifier, which minimizes the standard risk. As is
well known, e.g., [19, pg. 216], minimizing the standard risk
reduces to making an optimal pointwise choice for each x €
RP. In general the minimizer is given by the Bayes optimal
classifier

Uay (¥) € argmax Pr(y = c) 3
ceC ylz
= argmax Pr(y = c) - pyy—c().
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Unfortunately, an analogous technique has not yet been found
for minimizing the robust risk and for deriving expressions
for optimal robust classifiers. This is largely because—unlike
minimizing the standard risk—minimizing the robust risk does
not reduce to making pointwise decisions depending on the
data distribution at each given point individually.

To elucidate the differences between minimizing the stan-
dard and robust risks, consider the simple yet fundamental
setting of the classification of points drawn from Gaussian
distributions. In particular, suppose that each of three classes
is distributed according to a Gaussian distribution, N'(—u, 1),
N(0,1) and NV (p, 1) respectively, with respective proportions
Pr(¢c = —1) = Pr(c = +1) = 0.35 and Pr(c = 0) = 0.30, as
shown in Figure 1. Deciding how to optimally classify a point
like x = 0 is trivial when minimizing the standard risk. One
simply compares Pr(y = ¢) - pyy—c(0) across ¢ € {—1,0,1}
and selects the class corresponding to the largest term to obtain

the Bayes classification of g, (0) = 0. To minimize the
robust risk, however, one must also consider the behavior of
the classifier on the entire e-neighborhood of z. In this case,
it turns out that dropping the zero class altogether engenders
a more robust classifier, meaning that a classifier that assigns
§(0) = 41 has smaller robust risk than the Bayes optimal
classifier defined in (3). In this way, minimizing the robust
risk does not reduce to a problem depending on the pointwise
densities like for the standard risk.

This fundamental difference between the standard and ro-
bust risks means that new techniques are needed for deriving
optimal robust classifiers. Even for the two-class Gaussian
classification setting, while it is well-known that linear clas-
sifiers minimize the standard risk, it is not immediately clear
that an analogous result holds when minimizing the robust
risk.

To address challenges of this type, in this paper we provide
new insights and understanding by deriving optimal robust
classifiers in the fundamental setting of imbalanced Gaus-
sian distributions. This precise characterization allows us to
rigorously investigate the questions enumerated above, and
moreover reveals fundamental tradeoffs that arise between
standard and robust classification. Namely, we show that in
this foundational setting, a tradeoff between standard and
robust classification arises not merely because we have not yet
managed to find a classifier (from some appropriately chosen
family) that minimizes both risks. Rather, no such classifier
exists in general. The tradeoff holds no matter what training
methods are used, how much computation is available, how
many training data points are available, or what hypothesis
class is chosen. An additional feature of our analysis is that
the simplicity of a Gaussian mixture makes it easier to interpret
and reason about the results, helping build intuition about
adversarially robust learning.



Contributions. Our contributions are as follows:

1) We find the optimal robust classifiers for the foundational
setting of two- and three-class imbalanced Gaussian
classification with respect to 5 and /., norm-bounded
adversaries in the imbalanced data setting. These were
previously unknown and involve new fundamental chal-
lenges. To tackle this problem, we develop a new proof
method, carefully combining the characterization of ex-
act Gaussian isoperimetry—i.e., the equality case of
Gaussian concentration of measure—with the Neyman-
Pearson lemma and Fisher’s linear discriminant.> This
introduces a new and nontrivial theoretical approach.

2) We use these results to identify the role of class im-
balance for tradeoffs between accuracy and robustness
for two and three-class /5 norm-bounded adversaries. In
particular, we uncover fundamental distinctions between
balanced and imbalanced classes. Balanced classes ex-
perience no tradeoff with respect to the Bayes risk: the
optimal non-robust classifier also turns out to minimize
the robust risk. However, an unavoidable tradeoff ap-
pears in the imbalanced case: the boundary measure of
the larger class expands and gets larger weight, so the
optimal boundary necessarily moves. Thus, no classifier
simultaneously minimizes both standard and robust risk;
the optimal non-robust classifier is not the optimal robust
classifier.

3) We show how the optimal robust classifiers relate to pre-
viously proposed randomized classifiers. Additionally, we
characterize optimal robust classifiers for data with more
general covariances and with low-dimensional structure.

4) We further show that in certain cases all robust clas-
sifiers are approximately linear, characterizing all ap-
proximately optimal robust classifiers. This requires a
novel approach, which leverages recent breakthroughs
from robust isoperimetry [23], [24] and represents one
of our main technical innovations.

5) We uncover surprising phase-transitions arising in three-
class robust classification. Deriving optimal classifiers for
this setting requires delicate analysis, but reveals how
the optimal classifier can jump discontinuously for small
changes in the problem parameters. This does not occur
in the two-class setting or for non-robust classification; it
arises when combining robustness with a third class.

6) We provide a more comprehensive understanding by an-
alyzing the non-convex problem of optimizing the robust
risk for linear classifiers. Specifically, we characterize
broad settings where classification calibration holds for
convex surrogate losses, so the optimizers of surrogate
losses coincide with the optimizers of the original objec-
tive.

7) We connect our findings to empirical robust risk mini-
mization by providing a finite-sample analysis with re-
spect to 0-1 and surrogate loss functionals, which also

2While Gaussian distributions are in some sense specific, they are also fun-
damental and broadly applicable. Indeed, many datasets are well-approximated
by Gaussian distributions, see textbooks such as [20], [21], including even data
distributions generated by GANs [22].

highlights the key role of geometry in convergence rates.
This analysis does not rely on Gaussianity.

The remainder of this paper is organized as follows. In
Section II, we review related work concerning algorithms
and analysis techniques for adversarial robustness. Next, after
some preliminaries in Section III, Section IV derives /5 robust
optimal classifiers for two-class Gaussian classification. In
Section V, we tackle three-class Gaussian classification. Fol-
lowing this, in Section VI, we derive /., robust optimal linear
classifiers for two-class Gaussian classification models. In
Section VII, we study the optimization landscape of the robust
risk. Finally, in Section VIII, we connect the results derived
in the previous sections to empirical risk minimization by
providing a finite sample analysis under broader distributional
assumptions.

II. RELATED WORK

Adversarial robustness is a very active and rapidly expand-
ing area of research. For this reason, we can only review a
collection of some of the most closely related works.

A. Robustness of linear models

Recently, several papers have studied the robustness of
linear models. [25] shows that certain robust support vector
machines (SVM) are equivalent to regularized SVM. They
also give bounds on the standard generalization error based on
the regularized empirical hinge risk. [26] shows equivalences
between adversarially robust regression and lasso. [27] stud-
ies the adversarial robustness of linear models, arguing that
random hyperplanes are very close to any data point and that
robustness requires strong regularization. Furthermore, the two
related works of [17] and [18] study Gaussian and Bernoulli
models for data and analytically establish a variety of phe-
nomena regarding robust accuracy and the generalization gap
for linear models. They conclude that more data may actually
increase the generalization gap. In this paper, we consider
the distinct yet related problem of characterizing optimal
classifiers in the population setting rather than determining
the finite-sample generalization gap. Finally, the recent results
in [28] analyze the sample complexity of training adversarially
robust linear classifiers on separated data. We study a similar
problem, but in our case the data is not separated.

B. Randomized smoothing

The connection between Gaussianity and robustness is one
of the key ideas behind randomized smoothing [29]-[32].
While these works provide an interesting and useful alternative
to adversarial training, they have little theoretical overlap with
this paper. In this paper, we study the different problem of
deriving classifiers that are optimal with respect to the robust
risk.

C. Generalized likelihood ratio testing

[33] proposes another interesting and useful alternative to
adversarial training. The approach is based on the generalized
likelihood ratio test (GLRT) and can be applied to general



multi-class Gaussian settings. It remains distinct from this
paper since it does not seek to optimize the robust risk, instead
utilizing a GLRT.

D. Concentration based analyses

Several works use various forms of concentration of mea-
sure to explain the existence of adversarial examples in high
dimensions [34], [35]. Relatedly, [36] proposes methods for
empirically measuring concentration and establishing funda-
mental limits on intrinsic robustness. These analyses and
empirical results generally rely on concentration on the sphere
SP=1 whereas we rely on Gaussian concentration in this
paper. More related is the work of [37], which studies the
adversarial robustness of Bayes-optimal classifiers in two-class
Gaussian classification problems with unequal covariance ma-
trices 1 and Y. For instance, when the covariance matrices
are strongly asymmetric, so that the smallest eigenvalue of one
class tends to zero, they show that almost all points from that
class are close to the optimal decision boundary. In contrast,
in the symmetric isotropic case, X1 = Xy = UQIp and o — 0,
they show that with high probability all points in both classes
are at distance p/2 from the boundary. While this is consistent
with a portion of our findings, we focus on different problems,
namely finding the optimal robust classifiers.

E. Tradeoffs in adversarial robustness

Many works have argued that there are inherent tradeoffs
between standard and robust accuracy [15], [38], [39]. Among
these works, several consider Gaussian models of data. No-
tably, [11] studies the two-class Gaussian classification prob-
lem z ~ N (yu, 021,), focusing on the balanced case 7 = 1/2,
and on signal vectors p of norm approximately ,/p. In this
setting, unlike in ours, it is possible to construct accurate
classifiers even from one training data point (x1,y1). They
show that such classifiers can have high standard accuracy,
but low robust accuracy. In contrast, we attack the more
challenging problem of deriving closed-form expressions for
optimal classifiers without strong assumptions on the signal
strength.

In [40], the authors study a two-class Gaussian classification
problem with balanced classes. They develop sharp minimax
bounds on the classification excess risk with a corresponding
estimator. In contrast, we derive optimal classifiers and study
tradeoffs for the more general, imbalanced-class setting. Sim-
ilarly, [41] studies robustness defined as the average of the
norm of the smallest perturbation that switches the sign of
a classifier f. They consider labels that are a deterministic
function of the datapoints, which differs from our setting.

Another related work is that of [9], in which the au-
thors consider two-class Gaussian classification where z =
y - (b,nlp—1) + N(0,,diag(0,1,_1)), and b is a random
sign variable with P(b = 1) = ¢ > 1/2, while n is a
constant. Thus, the first variable contains the correct class y
with probability ¢, while the remaining “non-robust” features
contain a weak correlation with y. Our models are related, but
distinct from this model. Their work is closest to our results
on the optimal robust classifiers for ¢, perturbations, which

are given by soft-thresholding the mean. This will not use the
non-robust features, which is consistent with [9]. However,
their results are different, as they emphasize the robustness-
accuracy tradeoff [9, Theorem 2.1], while we characterize the
optimal robust classifiers.

Aside from the tradeoff between accuracy and adversarial
robustness, a growing body of work has focused on other
naturally-arising tradeoffs in various problem settings. Among
such works, [42] studies adversarial robustness in the presence
of label noise and explores its relationship to benign overfit-
ting [43]. [44] studies tradeoffs in the distributionally robust
setting, where robustness is defined with respect to a family of
related data distributions. Finally, in [45], the authors analyze
the tradeoff between invariance and sensitivity to adversarial
examples. While each of these studies considers tradeoffs in
adversarially robust machine learning, the settings and results
are different from our setting.

FE. Distribution-agnostic results

One notable recent direction is to study the properties of
adversarial learning problems in a distribution-agnostic setting.
Among such works, [46] introduces the ‘“adversarial VC-
dimension” to study the statistical properties of PAC learning
in the presence of an adversary. The authors extend the fun-
damental theorem of statistical learning theory to this setting,
and provide sample complexity bounds for this distribution-
agnostic setting. These results gave rise to a line of work
focusing specifically on the distribution-agnostic setting (see,
e.g., [47]-[49]). Building on this, [50] proposes methods
for efficiently PAC learning adversarially robust halfspaces
with noise. By and large, due to the distribution-agnostic
assumption, the PAC-style results from these papers are more
conservative and distinct from the results we obtain for the
Gaussian setting. However, in very special cases, such as
learning in the presence of random (e.g., non-adversarial)
classification noise, the representation of the risk in terms of
the dual norm in [50] agrees with our characterization.

G. Calibration of the adversarial loss

Also of note is a recent line of work which considers
the calibration of the robust 0-1 loss. Concretely, a loss
is calibrated with respect to a given function class F if
minimizing the excess risk with respect to a surrogate loss
over F implies minimization of the target risk. Following [51],
both [52] and [53] consider the calibration of the robust 0-1
loss, showing both positive and negative calibration results for
a variety of surrogate losses and function classes. In contrast to
these works, the majority of our main results (see Sections IV
to VI) focus directly on minimizing the robust 0-1 loss, rather
than minimizing a surrogate loss. Furthermore, we note that
the calibration results presented in Section VII of this paper
are complementary to the results in [52], [53] which show
that convex surrogates are in general not calibrated for the
robust 0-1 loss. Specifically, we show that surrogate losses
can be calibrated in this setting under stronger conditions
than convexity. Also related is the work of [54], in which
the authors derive lower bounds on the cross-entropy loss



under adversarially-chosen perturbations. This differs from our
setting, as we do not consider the cross-entropy loss in this
work.

H. Robustness in non-parametric settings

While we study a parametric setting in this paper, there
are several notable works that study similar problems in the
non-parametric setting. [55] analyzes the robustness of nearest
neighbor methods to adversarial examples. In this work, the
authors introduce and study quantities called “astuteness” and
“r-optimality”, which are intimately related to the robust
risk. These ideas led to further related studies of attacks and
defenses in the non-parametric setting (see, e.g., [56], [57]). In
[57], the robust optimal classifier for a non-parametric setting
is determined to be the solution of a particular optimization
problem. These results are incomparable with ours, since a
mixture of Gaussians is not r-separated, and truncating the
Gaussians to satisfy r-separation would lead to a large test er-
ror. Furthermore, we explicitly derive closed-form expressions
for optimal robust classifiers in our setting. More related to our
paper is the work of [58], in which the authors study robustness
through local-Lipschitzness. However, whereas we seek to
find statistically optimal robust classifiers in the classical two-
and three-class Gaussian setting, [58] considers a completely
different model of data.

1. Optimal transport based analyses

Most related to this paper is the recent work of [59], in
which the authors develop a framework connecting adversarial
risk to optimal transport. As a special case, for balanced two-
class Gaussian classification problems with 7 = 1/2 and
x;|yi ~ N (uy;, ), and for general perturbations in a closed,
convex, absorbing and origin-symmetric set 3, they show that
linear classifiers are optimal, and characterize these optimal
classifiers. Similarly, [60] also characterizes optimal classifiers
in various settings; in particular, they focus on the balanced
case T = 1/2, e.g., for two classes with spherical covariances
N (i, 0?1,) or in 1-D with different means and covariances
N (u;,02). Complementary to these two works, we focus on
identifying tradeoffs for imbalanced classes. Furthermore, our
analyses rely on entirely different proof techniques, and it
is unclear whether our results can be obtained from optimal
transport theory, or whether results in the imbalanced setting
can be derived using proof techniques which use optimal
transport. Relatedly, [61] provide lower bounds on the adver-
sarial risk for certain multi-class classification problems whose
data distributions satisfy the W, Talagrand transportation-cost
inequality. In contrast, we find the optimal classifiers for the
two- and three-class Gaussian classification problems.

III. NOTATIONS AND PRELIMINARIES

Before we begin, it will be helpful to define some notation.
We denote the ball of radius & (with respect to the norm ||-||)
centered at the origin by B., and the indicator function of a
set A by I(A). Further, if A and B are sets, then we use the
notation A+ B={a+b:a € A,b € B} for the Minkowski

sum; when A = {a} contains a single element, we abbreviate
it to a + B. In these terms, the robust risk with 0-1 loss (2)
has another convenient form that we use heavily in the proofs:

Riop (9,6, - |I) = Ey 52 {Bssi<e 9@ +6)#y} @
:Eyf‘f/{sgi@) + B.},

where Sy (7)) = {z : §(x) # y} is the misclassification set of
classifier y for class y, and

Se(@) 4+ Be ={x 40 :y(x) #yand [|d]] <&}
={z: < Y(z +9) #y},

is the corresponding robust misclassification set, illustrated for
a single class by the following diagram.

N(u,1)

Sy
St + B. z

Note that Sy(y) = {z : gy(z) = y} for y € C are,
correspondingly, the classification sets or decision regions of
the classifier .

IV. OPTIMAL ¢5 ROBUST CLASSIFIERS FOR TWO CLASSES

This section considers the fundamental binary classification
setting where data is distributed as a Gaussian for each of the
classes y € C = {+1,—1}:

zly ~ N(yp, 0’ I,), (5)
B {—1—1 with probability 7,

—1 with probability 1 — m,

where p € RP specifies the class means (+u and —p, ¢ # 0),
0% € Ry is the within-class variance, and 7 € [0, 1] is the
proportion of the y = 1 class. The means are centered at the
origin without loss of generality. By scaling, we will also take
0% =1 to simplify exposition.

In this setting, the Bayes optimal (non-robust) classifier is
linear; in particular, the expression for this classifier is given
by the following pointwise calculation:

Uisay () = argmax e Pryp, (y = ¢) = sign(z " 1 — q/2),

where ¢ = In{(1 — w)/7} is the log-odds-ratio and we
define In(0) := —oo and sign(0) = 1. The classifier is
unaffected by any positive rescaling of the argument of
sign. Denoting the normal cumulative distribution function
®(z) = (2m)"V2 [T _exp(—t?/2)dt and & = 1 — @, the
corresponding Bayes risk

RBa}’(/u’vTr) = RStd(@an) (6)
q = q
Y (. +1—7T-¢>(+ )
(2”/1*”2 HMQ) ( ) 2”#”2 ||/’L||2

is the smallest attainable standard risk and characterizes the
problem difficulty.



A. Optimal classifiers with respect to the robust risk

With this background in mind, we now turn to our problem
of finding Bayes-optimal robust classifiers. Unlike the non-
robust setting, one can no longer simply make optimal point-
wise decisions for each x € R? depending only on the data
distribution at x, because the robust risk is also affected by
neighboring datapoints and decisions. Thus, it is not initially
obvious how to find provably optimal robust classifiers. More-
over, it is not initially clear how such classifiers might differ
from the Bayes-optimal (non-robust) classifier gp,, . especially
in the presence of class imbalance.

The following theorem provides a precise characterization
of optimal robust classifiers. Its proof involves a novel ap-
proach that combines the result that halfspaces are extremal
sets with respect to Gaussian isoperimetry [62]-[64], the
Neyman-Pearson lemma, and Fisher’s linear discriminant.

Theorem IV.1 (Optimal ¢5-robust two-class classifiers). Sup-
pose the data (x,y) follow the two-class Gaussian model (5)
and € < ||p||2. An optimal Lo robust classifier is

g (z) = sign{z " (1 — &/ |lpll2)+ — a/2}, %)

where ¢ = In{(1 — 7)/7} and (z)4+ = max(x,0). Moreover,
the corresponding optimal robust risk is

Rion (1, m5€) = Rpay{pu(1 —/lpll2)+, 7}, (8)
where Rp,y is the Bayes risk defined in (6).

Theorem IV.1 reveals several important insights into the
properties of optimal robust classification.

1) Optimality of linear classifiers: Theorem IV.l1 shows
the nontrivial result that the Bayes optimal robust classifier
is also linear. Indeed, it shows that the optimal robust clas-
sifier corresponds to the classical (non-robust) Bayes optimal
classifier with a reduced effective mean i 1 (1 —¢/||pll2),
or, equivalently, an amplified effective class imbalance: q —
q/(1 — ¢/||pll2)+- Note that if & > | |2, then nontrivial
classification is impossible. The effective signal strength re-
duction is consistent with prior arguments that “adversarially
robust generalization requires more data” [11]. However, to
the best of our knowledge, such an exact characterization for
imbalanced data was previously unknown (see the related work
section).

2) Optimal Tradeoffs and Pareto-Frontiers: When the two
classes are balanced, i.e., 7 = 1/2 (and thus ¢ = 0), Theo-
rem IV.1 shows that the Bayes optimal classifier §, and the
optimal robust classifier §* coincide. In general, however, there
is a tradeoff: neither classifier optimizes both standard and
robust risks. These insights are important since real datasets
are often imbalanced. Indeed, our analysis (see Lemma IV.2)
implies that given any classifier, there exists a linear classifier
of the form sign(z "y — ¢) with no worse standard risk and no
worse robust risk. Using this, we can precisely characterize
the Pareto-frontier (optimal tradeoff) between the standard
risk and the robust risk. Consider a two-dimensional plane
in which the z-axis represents the robust risk and the y-axis
represents the standard risk (see Figure 2b). Any classifier can
be represented as a pair in this plane with its robust risk as
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Fig. 2. Tradeoffs between optimal classification with respect to standard and
robust risks.

the first entry, and its standard risk as the second entry. We
further consider the region of all the possible achievable pairs
over all classifiers. The Pareto-frontier (optimal boundary) of
this region shows the fundamental tradeoff between standard
and robust risks. For the setting of Theorem IV.1 we can pre-
cisely characterize the fundamental tradeoff (Pareto-frontier)
between robust and standard risks. Importantly, these tradeoffs
hold for any predictor (be it a deep network or a simple linear
classifier) including those learned in any way from any size
of training data, see Figure 2b.

This provides new insights. To the best of our knowledge,
this is the first work to illustrate tradeoffs due to class
imbalance, which is prevalent in practice. Moreover, this result
proves that a linear classifier is optimal with respect to robust
risk; that is, even if one had access to rich model classes
such as deep neural networks, massive computational power,
or arbitrarily large datasets, this fundamental tradeoff would
remain in place. Such a strong tradeoff (for the Bayes risk) has
only been observed for balanced-class settings in a completely
separate line of work [59], as discussed in Section II. Relative
to this work, our proof techniques are completely different,
and we are also able to map the entire Pareto-frontier for
imbalanced classes.

Figure 2 illustrates this tradeoff for an example with a mean
having norm ||u||2 = 1, a positive class proportion m = 0.2,
and a perturbation radius € = 0.5. The first figure plots the
two risks for the linear classifier j(x) = sign(z'u — c) as
a function of the threshold c. This highlights the difference
between the two risks and their corresponding optimal thresh-
olds. The next figure plots the two risks against each other for
a sweep of the threshold c.

B. Proof of Theorem IV.1

We now prove Theorem IV.1. Since we cannot simply
optimally classify data points based on the data distributions at



each individual point, new techniques are needed for deriving
optimal classifiers with respect to the robust risk. Here we
introduce a novel approach. First, we prove that there exist
optimal linear classifiers by combining the fact that halfspaces
are extremal with respect to Gaussian isoperimetry, i.e., the
equality case in the Gaussian concentration of measure [62]-
[64], with the Neyman-Pearson lemma. Then, we derive the
optimal linear classifiers via Fisher’s linear discriminant.

Before we begin, note that the robust risk for the two-class
setting can be written as

R(yAaE) = RfOb(?)7€7 || : ||)

Pr (S_1+B:)+(1-m)-

| ' PI' (S+1 + B‘;,_-)7
z|y=

zly=—1

= 7 -

where we drop ¢ from S_; and S,;; for convenience. This
holds for any binary classification problem, and in particular
for the two-class Gaussian problem that we consider in this
section.

1) Optimality of linear classifiers: The first step is to prove
the following claim: for any classifier ¢, there exists a linear
classifier with robust risk no worse than that of §. Precisely
put, we prove the following lemma.

Lemma IV.2 (Existence of optimal linear classifiers). Under
the assumptions of Theorem IV.1, for any classifier 1, there
exists a linear classifier §*(z) = sign(z"w — ¢), for some
w and ¢, whose standard risk and robust risk with respect to
e-bounded Uy adversaries is less than or equal to that of the
original classifier:

R(§",¢) < R(3,¢), R(§",0) < R(9,0).

Moreover, we can take w = L.

To prove Lemma IV.2, we carefully combine the fact that
halfspaces are extremal with respect to Gaussian isoperimetry
with the Neyman-Pearson lemma to construct, given any
classifier g, a linear classifier that has robust risk no worse
than .

Proof of Lemma IV.2: Recall that z|y ~ N (yu, 1), and
abbreviate Pr,,—4+1; = Pry. Let § be an arbitrary classifier
and denote its decision regions as Si;. We will show there
exists a linear classifier with decision regions S‘ﬂ, such that:

Pr(§_1 + Be) < Pr(S-1 + Be), )
Pr(S; + Be)
( -1) =
Pr(Sy)

< Pr($ + B.),
Pr(S_1),

= Pr(51).
Now, the well-known Gaussian concentration of measure

(GCM) [62]-[64] states that the sets with minimal “concentra-

tion function” are the half-spaces. Specifically, the measurable
sets solving the problem

minPr(S+ B:) st Pr(S) =a, (10)
S n Iz

are half-spaces (up to measure zero sets).
For simplicity, let us discuss the one-dimensional problem

p = 1. Note that the general p case can be reduced to the

one-dimensional case. We can take w = p and solve the
optimal robust classification problem projected into the 1-
dimensional line {cu, c € R}. Then, projecting back, we can
compute probabilities and distances for the multi-dimensional
problem. It is not hard to see that the back-projection of the
one-dimensional problem also solves the multi-dimensional
problem.

In the one-dimensional case, suppose without loss of gen-
erality that © > 0. The GCM states that there is a half-line
S_, = (—o0, c]—which will serve as a new set {z : j*(z) =
—1}—such that

(5—1+B) 11(5—1 + B:), (11)
Pr(S-1) = Pr(S-1). (12)
Moreover, we have ¢ = i+ ®~1(Pry (S_1)).

Similarly, using the GCM symmetrically, we find that there
is a half-line S; = (d, —oo)—which will serve as a new set
{z : g*(x) = 1}—such that

Pr(S + B.) < Pr(S1 + Be),

Pr(gl) = PI‘(Sl)
Now, the question is if the two sets S can form the classifi-
cation regions of a classifier. This would be true if they cover
the real line. Here, we claim that they overlap. Thus, they can
be shrunken to partition the real line, and the values of the
objective in (9) decrease.

To show that they overlap, it is enough to prove that their
total probability under one of the two measures, say Pr_, is
at least unity. Thus we need:

fir(gl) + P:r(g_l) > 1

<~ fiI‘ Sl) —|—P1r(5’_1) >1

(
< Pr(g_l) >1-— PI‘(Sl)
— Pr(5_;) > Pr(S_,).

Now note that Pry (S_;) = Pr; (S_1), so the probability of
the two sets coincides under Pr . Moreover, Pry = N (u, 1),
Pr_- = N(—p,1), g > 0, and S_,; = (—o0,c]. Then,
the Neyman-Pearson lemma states that S_; maximizes the
function S — Pr_(.S) over measurable sets S (i.e., the power
of a hypothesis test of Pr, against Pr_), subject to a fixed
value of Pr (S). Therefore, the inequality above is true. This
shows that the two sets overlap, and thus finishes the proof.
|
2) Optimal linear classifiers: The proof of Theorem IV.1
now concludes by optimizing among linear classifiers. As in
the proof of Lemma IV.2, it is enough to solve the one-
dimensional problem. Thus, we want to find the value of the
threshold ¢ that minimizes

R(?JCag)
=Pr(y=1) |Pr1(x <c+e)
z|ly=
+Pr(y=-1) Pr (z>c—¢)

zly=—1



=Pr(y=1)Pr(z <c+e)+Priy=-1)Pr(z > c—¢)
" —p

=Pr(y=1)Pr(z<¢)+Pr(y=-1) Pr (z >¢).
pn—e —pte

This is exactly the problem of non-robust classification be-
tween two Gaussians with means ' = pu — ¢ and —p’. By
assumption, ' > 0.

As is well known, the optimal classifier is Fisher’s linear
discriminant (see, e.g., [19, pg. 216]):

9z () =signfz - (u—¢) —q/2],

where ¢ = In[(1 — 7)/x]. This concludes the proof of
Theorem IV.1. B

C. Extensions of Theorem 1V.I

This section briefly describes a few extensions of Theo-
rem IV.1, with details given in Sections A-A to A-D.

1) Connections to randomized classifiers: The reduced
effect size can also be interpreted as adding noise to the data,
which relates to previously proposed algorithms [65], [66].

2) Extension to weighted combinations: Given the tradeoff
between standard risk and robust risk, one might naturally con-
sider minimizing a weighted combination of the two instead.
The techniques used to prove Theorem IV.1 can be extended
to this setting, leading to new optimally robust classifiers.

3) Data with a general covariance: We can extend The-
orem IV.l1 to some settings where the within-class data co-
variance I, is replaced with a more general covariance matrix
3 e RP*P,

4) Data on a low-dimensional subspace: For data that lie
in a low-dimensional subspace given by some coordinates
being equal to zero, we show the nontrivial result that low-
dimensional classifiers are optimal. This is a geometric fact
that holds for any norm and does not require Gaussianity. In
the Gaussian /s-robust case, it implies that low-dimensional
linear classifiers are optimal.

D. Characterizing approximately optimal robust classifiers via
robust isoperimetry

So far, we have explored the problem of characterizing
optimal robust classifiers. We conclude this section by briefly
characterizing all approximately optimal robust classifiers. In
particular, we consider robust classifiers that are approximately
optimal, i.e., their robust risk is small but potentially sub-
optimal, and show that they are necessarily close to half-
spaces. This is a highly nontrivial question. However, it turns
out that we can make some progress by leveraging recent
breakthroughs from robust isoperimetry (e.g., [23], [24]). In
general, these results show that if a set is approximately
isoperimetric (in the sense that its boundary measure is close to
minimal for its volume), then it has to be close to a half-space.
In what follows, we leverage these powerful tools, which, to
the best of our knowledge, have not yet been used in machine
learning.

Given the difficulty of the problem, we restrict the setting
to one-dimensional data. Let (.S) be the Gaussian measure
of a measurable set S C R. Let also v*(.S) be the Gaussian

deficit of S, the measure of the error of approximation with a
half-line: v*(S) := infy v(SAH), where SAH = (S\ H)U
(H \ S) is the symmetric set difference and the infimum is
taken over half-lines. Clearly v*(S) > 0, with equality when
S is a half-line almost surely. The following result concerns a
broad family of classifiers whose decision regions are unions
of intervals. We show that if ¢ has small robust risk, then its
decision regions must be close to a half-line; that is, all robust
classifiers are close to linear.

Theorem IV.3 (Approximately optimal robust classifiers). For
the two-class Gaussian {s-robust problem, consider classifiers
whose classification regions S, and S_ are unions of intervals
with endpoints in [—M, M| where ¢ is less than the half-width
of all intervals.

Define T = 7(e,M,p) = cexp|[—((M + p)e +&2/2)].
Then, for some universal constant ¢ > 0,

Rrob(gva)
> Rpay +7¢- [m-7" (S —p)? + (1 —7) - 7" (Sy +p)?] -

If the robust risk Ryop (9, €) is close to the Bayes risk Rgay,
then the Gaussian deficits y* (S £ u) are small, so the decision
regions S are near half-lines.

A priori, one might suppose that sophisticated classifiers,
e.g., deep neural nets, with complicated classification regions,
can benefit robustness. Theorem IV.3 shows that these classi-
fiers must also essentially be linear to be even approximately
optimally robust. Thus, in this particular case, the complex
expressivity of deep neural nets does not bring any clear
benefits.

Proof of Theorem IV.3: Denote by ¢ the standard nor-
mal density in one dimension, and recall that & is the
standard normal cumulative distribution function. Let v+ be
the boundary measure of measurable sets, defined precisely
in [23], [24]. While this definition in general poses some
technical challenges, we will only use it for unions of intervals
J = Ukeklag,br], where K is a countable index set and
ap, < by < ap41 are the endpoints sorted in increasing order.
For such sets vt (J) = >, [¢(ax) + ¢(by)] is simply the sum
of the values of the Gaussian density at the endpoints, which
can be finite or infinite.

The Gaussian isoperimetric profile is commonly defined as
I =¢o® !, and in this language the Gaussian isoperimetric
inequality states that I(y(A)) < y*(A), with equality if A is
a half-line.

Suppose J is a union of intervals in R with all interval
endpoints contained in [—M, M]. Then for ¢ small enough
that the e-expansion of J does not merge any intervals, i.e.,
2e < (ag+1 — by) for all k, we have

I+ B2) 2 9() + eexp—(Me +€2/2)] - 97 (). (13)
This follows by first considering one interval J = [a,}b],
and then summing over all intervals, noting that the non-
intersection condition on ¢ guarantees that all terms are



additive. To check the condition for an interval J = [a, ],
we write:
(la, ] + B:)
> 7([a, b]) +  exp [~(Me +€/2)] - v ([a, b))
g
v(la —€,b+¢])
> ([a,b]) + e exp [~(Me +€/2)] - v ([a, b))
<~

V(la—¢,a]) +~([b,b+¢])
> cexp [—(Me +£2/2)][¢(a) + ¢(D)].
Thus, it is enough to verify that
Y([a—e,a]) > eexp[~(Me +£°/2)|¢(a).

This follows from

v([a —e,a]) = /i ¢(x)dx
= 6t0) [ ola)/otayis
= ¢(a) /i exp [(a® — 2?)/2]dx

2 ¢(a)-e- min  exp(a® —2%)/2
=¢la)-e- min exp [(a® = (a —u)*)/2].

Now a? — (a — u)? = 2au — u?. Given that this is a concave
function of u, the minimum occurs at one of the two endpoints
of the interval [—&, 0]. Hence, we have

v(Ja —€,a]) > ¢(a) - € - min{exp (ac — £%/2),1}
> #(a) - € - exp [~ (Me + €2 /2)].

This proves the required bound (13) when J is an interval.
Thus, by additivity, it also holds for unions of intervals when
€ is small enough that the c-expansion of any two intervals
does not merge them. This proves (13) for general sets J.

Suppose now that we have a classifier whose classification
regions are unions of intervals. Suppose that the conditions for
(13) hold for both S; and S_;. Specifically, suppose that all
interval endpoints are contained in [—M, M] and € < (ax4+1—
by) for all k. Recall that the robust risk can be written as

R(g,e) =m-y(S-1—p)+ (1 —m) 7(S1 +p).
Applying (13) to both classes, and denoting M’ = M + |ul,
we find

V(81 + p+ Be)
> (814 p) +eexp[—(M'e +£%/2)] - 77 (S1 + p)
Y(S-1 — p+ Be)
> y(S-1 — ) +eexp[~(M'e +e%/2)] - 4H(S-1 — p).
Let 7 = 7(g,M,u) = cexp[—(M’e +¢2/2)]. Then, by

taking a weighted average of the previous two inequalities,
we find the bound on the robust risk

R(g,¢) > R(3,0)
+ 7oy (Sor = p) A+ (L) (S 4+ )

We denote the difference between the boundary measure and
isoperimetric profile of a set S as 6(S5) = v+ (S) — I(7(S)).
The Gaussian isoperimetric inequality states §(S) > 0. Defin-
ing 041 = 6(S41 £ u) for the two classification regions, we
conclude

R(j,¢) > R(3,0) (14)
+ 7l (V (S = ) + (1= m)I((S1 + p))]
+ 7 [y 4+ (1 —7)dq].
From [23], it follows for the Gaussian deficit v*(.S) that
77(5) < CV6(9),

for a universal constant C'. Using this inequality for Si; £ p,
we find that for a universal constant c

7T5_1 + (1 - 7T)51
> ¢ [my"(S—1 — p)® + (1= m)y* (S1 + p)?].

Plugging in to (14), and discarding the second term on the
right hand side, we find that

R(y,¢) > R(3,0)
+7ec [y (So1 — p)® + (1= m)y* (St + ).
Since R(§,0) > Rgay, this gives the desired conclusion. W

V. OPTIMAL {5 ROBUST CLASSIFIERS FOR THREE CLASSES

Having studied two-class robust classification, we now turn
to the more general setting of three Gaussian classes C =

{_1a05 1}
x|y ~ N()‘y,UvUQIp),

+1 with probability 74,

y=40

5)

with probability g,
—1 with probability 7_,

where € RP \ {0} specifies the line along which the
Gaussians lie, A\, specifies the distance along v of class y,
0% € Ry is the within-class variance, and 7, , 7w, 7_ € [0,1]
sum to unity and specify the class proportions. Setting m9 = 0
produces the two-class model (5). As before, we will take
0% = 1 without loss of generality to simplify the exposition.
Further, without loss of generality, we also normalize p so
that ||p||2 = 1, center A\, so that Ay = 0, and order A, so that
A=Al <0< A = AL

The Bayes optimal classifier can again be found via a
calculation based on the pointwise densities (see Section B).
Here it takes the form of a linear interval classifier (illustrated
in Figure 3a):

+1 ifzTw > cy,

Jint (T3 W, e, c-) =< 0 ifeo <zxTw<cy, (16)
—1 ifzTw<ec,
with Bayes optimal thresholds
¢y =max {\y/2+ In(mo/my) /| A 4], (17)

A+ +22)/2 = In(my /7o) /Ny = A},
c— :=min {A_/2 — In(mo/7_)/|A]|,

(A +A0)/2 = In(my ) /A — A1},



(a) Linear interval classifier regions.

Reon{Gint (23 1/ || ptll2, €4, ), €} Reob{Gint (z; 1/ || pall 25 €4 c-), €}
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(b) mp = 42.00% (c) mo = 42.01%

Fig. 3. Optimal linear interval ¢2-robust classifiers for three classes; (b) and
(c) show the thresholds (19) and (20), circling the optimal, where p = 1,
A==, y=12e=04and 7+ = (1 —mo) (v /(v +7 1}

and weights w = p. As in the two class setting, the positive
and negative classes are half-spaces, but now the zero class
in between is a slab. As we will see, this feature produces
new phenomena and new challenges in robust classification.
Unlike the standard risk, for which pointwise calculation of
the Bayes classifier trivially generalizes to multi-class settings,
going from two-class robust classification to even three classes
requires some new methods.

A. Optimal linear interval classifiers with respect to the robust
risk

We now present the main result of this section: optimal
linear interval classifiers with respect to the robust risk. As
in the two-class setting, this minimization does not simply
reduce to pointwise comparisons of posterior probabilities.
We focus here on the regime ¢ < min{|A;|,|A_|}/2 where
nontrivial classification to all three classes occurs; when
e > min{|A;|,|A\_|}/2 the problem essentially reduces to
two-class problems (see Section C).

Theorem V.1 (Optimal linear interval f5-robust three-class
classifiers). Suppose the data (x,y) follow the three-class
Gaussian model (15) and ¢ < min{|\y|, |A-|}/2. Among
linear interval classifiers, an optimal {5 robust classifier is:

Ui (2) = Gine (@3 1, €, €2, (18)

where the thresholds ¢’ > c* are:

Case 1 (rare zero class). If mo < o \/T_71 for a* specified
below in (21), then the optimal classifier ignores the zero
class. The thresholds are equal, i.e., ¢, = c*, with value

In(r_/m)
Ny — A -2

L Ap A
- 2

19)

and the corresponding robust risk is

Rrob (gi*nt ) 5)

c (PAe=A ]
:71—0—{—(7T++7T,) rob( +2 771'+—|—+7T Y€

where R, is the two-class optimal robust risk in (8).

Case 2 (frequent zero class). Otherwise, the thresholds are at
least 2¢ apart, i.e., ¢ —c* > 2¢, with
(20)

and the corresponding robust risk is

ox * )\ s
Rrob(yinmg) - (7T+ + 7'('()) rob(|+ +.€)

2 'my 4w
T+ —_— —e .
0/)4trob 2 "7 +mp

The cutoff o* is the unique solution with o > & to the
equation:

_1\ Ar— A
v+ rob( +2 |77+77_1;€) (21)
_(’y—’_a) rob( 9 ”Y+O(,€

—1 * |)\*| ’y_l . _
+('Y +a) rob( 9 7,_)/14»0[75) «,

where v == /74 /7_, and
(Al =2)(A] =29 Aetr 1
2 IAf —A_| —4e

Theorem V.1 reveals several properties of optimally robust
linear interval classification in the three-class setting.

1) New three-class phenomenon (discontinuity of the opti-
mal thresholds): The optimal thresholds in Theorem V.1 fall
into two cases. In the first case, the thresholds (19) coincide
with the one from two-class robust classification between the
positive and negative classes, ignoring the zero class. In the
second case, the thresholds (20) coincide with two-class robust
classification: i) between the zero and positive classes, and ii)
between the zero and negative classes.

However, the robust setting with £ > 0 introduces a new
and perhaps surprising property: optimal thresholds can now
be discontinuous in the problem parameters, as they jump
between the cases. For example, Figures 3b and 3c show
nearly identical setups, with only a slight change in class
imbalance, but the optimal thresholds jump discontinuously
from (19) to (20). To understand why this occurs, the optimal
thresholds are never in 0 < c; — c— < 2¢ since any such
choice can be improved by moving cy and c_ closer together.
This discontinuity does not arise for the standard risk (¢ = 0),
since (19) and (20) coincide at the cutoff in that case. It also
does not arise in the two-class setup discussed previously.

The three-class Gaussian setting (15) considered here is
an exemplar for general multi-class settings, and we expect
similar discontinuous transitions to appear more generally.
Essentially, they arise from a general property of the e-robust
risk that our analysis draws into focus. Namely, classification

Q= exp [



regions must either be: i) empty or ii) have radius at least ¢
(otherwise it is better to remove them). Jumping between these
cases produces the observed discontinuity.

2) Tradeoffs and the impact of class imbalance: As in the
two-class setting, we see a tradeoff in general between the
standard risk and the robust risk. No classifier optimizes both
even when restricted to linear interval classifiers, which are
optimal for the standard risk. A new three-class manifestation
of this phenomenon arises in the jump from (19) to (20), i.e.,
from ignoring to including the zero class. The class ratios in
(19) and (20) are also effectively inflated by 1/(1 —2¢/|A\; —
A_]) and 1/(1—2¢/|A4|), respectively, amplifying the effects
of class imbalance.

B. Proof of Theorem V.1

We now prove Theorem V.1. The three-class setting intro-
duces a new challenge in the proof: the optimization landscape
will turn out to have two qualitatively different regions. Essen-
tially, the robust risk produces a dichotomy between classifiers
where the central zero-class slab in Figure 3a is either “thin”
or “thick”. Optimizing over each region separately yields two
candidate optimizers. We will need to carefully analyze their
properties to characterize when each is globally optimal.

Precisely put, our goal here is to find w € RP \ {0} and
¢4 > c_ that minimize the robust risk

Reop{fine (5w, cqc2),6, || - [l2} = mp My (w, ey, e €)
+ moMo(w, et c—,€)
+r_M_(w,cq,c,€),
where
My(w,cq,c_,€)
= Pr_s_1 {35¢II5H2§€ it (T + S5 w, cq,c) # —|—1},

z|y=
M—(wac+7c—7€)
= x\yP;r—l {Elé:H(Wst Qint(x + 5, w,c+,c,) 7& _1}7

Mo(w,C+,C_,€)
= w‘lzio {3s:15lla<e Dint(@ + 05w, cq,c) # 0},

are the associated robust misclassification probabilities as
functions of w, cy, c_ and ¢.

1) Optimizing over w: First we optimize over w € RP\{0}.
Since any positive scaling of w can be absorbed into c; and
c_, it suffices to consider ||wl||2 = 1. Then we have

Pr (z'w<c_+ecorz'w>cy —e)
z|y=0
= Pr

Z~N(0,1)

which is a constant with respect to w. Meanwhile,

MO(waC+aC—7€) =

(Z<c_+eori>cy—e),

M_A,_(UJ,CJ,_,C_,E)

= Pr (z'w<cy+e)= Pr (T < ey +e),

ely=+1 EAN (T w,1)
M_(w,cq,c_,€)
= Pr (z'w>c_—¢)= Pr (Z>c_—e),
zly=—1 Z~N(A—pTw,1)

which are both minimized by taking w = p. Hence w*
optimizes the robust risk.

=pu

2) Finding candidate optimizers with respect to c4 and c_:
We now proceed to derive optimal thresholds c; > c_ given
optimal weights w* = . Substituting w* into the robust risk
yields the following function of c_ and cy:

Rion(c—,cq) = Reob{Timt (50", e c-) 6, || - 2}
=1 My (w* cq, 0, €)
+ moMo(w*, cq,c—,€)
+r_M_(w*,cq,c,€)

=7 Pr T<cy+e
iy & <G TE)
+m0 Pr (Z<c_4eorz>cy—¢)

~N(0,1)

+7_ (Z>c_—¢)

Pr
TN (ApTw*,1)
=7_Pr(z>c_—¢) —|—7r+11r(5: <ct+e)

+7rof(’)r(5£§c_+s or T >cy —e¢),

where we drop the arguments ¢ and || - || from R,., for
simplicity, and use the following shorthands for the class-
conditional probabilities

Pr = Pr = Pr
- F~eN A pTw* 1) N (A1)
Pr = Pr = Pr
+ E~NAppTws1)  2~N(Ag,1)
Pr= Pr .

0 E~N(0,1)

Next we will explain the unique feature of the robust risk:
the constraint set Q := {(c_,cy : c— < c4)} contains two
qualitatively different regions. Minimizing over each region
results in two candidate optimizers.

First, consider Qp = {(c_,cq) :c- <cp <c_ +2¢}. In
this region, Pro(Z < c_ 4 or £ > c; —¢) = 1 so the robust
risk simplifies to

Riob(c—,cq) =m_Pr(Z > c_—g)+my P:rr(:f < cq+e)+m.

Since this function is decreasing in ¢_ and increasing in c4,
it is minimized by c_ = c;. This yields a two-class problem
between the negative and positive classes with minimizer

Ay + A In(m_/74)
2 Ay —A_|—2¢
This is the minimizer over (.

Second, consider €y = {(c_,c4) : ¢4 > c_ + 2¢}. In this
region, Pro(Z <c_ +ecand > c; —e) =0 s0

c_=cy=cC:= (22)

P(’)r(i:gc_—i—sorizmr—e)

= Pz)r(éf: <c_+e) +1?)r(33 >cp —e),

and the robust risk simplifies to Ryon(c—,cq) = R, (c—) +
R, (cy), where

R p(c-) =m_Pr(@ >c_—¢)+mo P(’)r(f <c_+e¢),

RE(eq) =m0 F(’)r(i >cy—€) 7y Pj_r(j'; <ct+e).

Now, R, (c_) is proportional to the e-robust risk for a two-
class problem between the negative and zero classes. Hence,



it is a decreasing function for c. < ¢_ and an increasing
function for c_ > ¢_, where the critical point ¢_ is
A In(mo/7m-)

2 IA_| —2¢ " 23)

Likewise R;;b(ch) is a decreasing function for ¢y < ¢4 and
an increasing function for c¢y > ¢, where the critical point
is
&, = A In(mo/m4)
T T =28

If (é_,¢4) € €y, then it follows that (¢_,¢é;4) is globally
optimal within €. On the other hand, if (¢_,¢) ¢ ; then
the optimal value in €2; must occur on the boundary c; =
c_ + 2¢. By the monotonicity analysis above, any point off
that boundary can necessarily be improved either by increasing
c_ or by decreasing c; since either c_ < ¢_ or ¢4 > ¢4 for
any (c_,cy) € 1 when (é_,¢4) ¢ .

3) Characterizing when each candidate optimizer is glob-
ally optimal: Now we compare the minimizers from the
regions )y and €2, to find globally optimal thresholds. For this
purpose, it turns out that a = mo/\/T_71 and v = /7y /7
provide a more convenient parameterization than 7_, my and
4. Recall that mp+7_ + 74 = 1 necessarily constrains those
parameters. Rewriting (22) to (24) in terms of « and ~ yields

(24)

s Ap+A- In~
2 IAp —A_|/2—¢’
: —)\—i:t Ina _ In~
T T G — 28 |- 26
Furthermore,
6+>&_+2€
— 0<cy —c_ —2
‘)\+*)\_|*4€ |>\+*)\_|*45
= Ina
2 (1A = 2e)(JA-] = 2¢)
Ap+ A
+ In~y
(1A = 2e)(JA-] = 2¢)
— a>aq,

yielding an equivalent condition for (¢_, ¢4 ) € int 2, where
int A denotes the interior of the set A with respect to the
standard topology induced by the Euclidean metric. Thus,
when a < @, the optimal value in €2 occurs on the boundary
¢y = c— + 2¢, but this boundary is also contained in 2 so it
is no worse than (22). Namely, (22) is optimal when o < &.

Now suppose o > a&. In this case, (¢_,¢4) € int Q) is
optimal in 1, so we compare R0 (¢, ¢) with Ryop(¢—,¢4) =
R, (¢_)+R!, (¢}). For this comparison, we study the sign
of

Ala) = R, (-, ) + RE (G4, @) = Rugn(,0), (29
where we define
R, (-,0) =77 Pr(@ > & —¢) + aPr(# <& +e),
Ei)b(é-‘r?a) = OzP(’)r(f >ép —¢) Jr’ylir(fc <&y +e),

Riob(&,0) ==~ 'Pr(z > ¢ —¢) +’yfj_r(i: <é+e)+oa

Note first that A(@) > 0 since, as established
Ryob(¢,6) < R (¢2) + R, (¢4) in this case.
Next, when o« > &

above,

dA(a) QR (¢_,a) e R (¢_,q)
da 9. da dax
ORY (¢r,a) 8¢, ORE, (r,0)
oc,  Oa dax
ORyon (G, )
B Oa

=Pr@<é +e)+PrE@>éy —e) - 1<0.

Both ¢__and ¢, are differentiable functions of « for o >
0, and R_,, Rjob and R,,, are continuously differentiable
functions of ¢_, ¢4 and a. Hence, A is also a differentiable
function of . The equality in the second line holds because
¢_ and ¢y are critical points of Z_, and R:gb, respectively,
and the inequality holds because ¢_ +¢ < ¢y — ¢ for a > a.
Namely, A(«) is a decreasing function for oo > a.

Next, ¢_ is a decreasing function of «, and ¢y is an
increasing function of «. Hence, Pro(Z < ¢_ + ¢) and
Pro(Z > ¢é4 — €) are both decreasing functions of «, and
so OA(a)/Oa is also a decreasing function of a. As a result,
A < 0 eventually and A has exactly one root with respect to
« in the domain @ > &. Specifically, there is a unique a* > &
for which A(a*) = 0. If a < a* then A > 0, and if & > o*
then A < 0.

In particular, we must solve the equation A(«a) = 0 to obtain
a*. We conclude by deriving the alternative form (21) for this
equation. First, recall that ¢ is the optimal two-class threshold
between the negative and positive classes so

Rrob(éa 5)
:ﬂ0+ﬂ_lir(iz>é—£)+ﬂ+fjrr(i:<&+5)

:7ro+(7r++7r_){ Pr(z >¢—¢)
Ty +7m_ —
b —"F  Pr@ <i+e)
T+ +
_ o (A=A ™ .
=7+ (my +7_) rob( 5 ’7r++7r,’6 :

Next, when o > &, we have ¢, > ¢_ + 2¢ so

Reon(¢-,¢4) = Ry (62) + RE, (E4)
= 7r+fir(i < it +6)+7rof(’)r(:i: >ép —e)

+7T01:61‘(3~9§5_+6)+7T_1ir(f>5_*6)

= (s +770){7T0Pr(i >, —e)
T+ 7o O

= (7T+ + 770) rob

* (/\+| T



Al _
+(’/T_+7T0) :0b(|| ﬂ—.e)a

2 'm_+mp’

since ¢4 and ¢_ are, respectively, optimal two-class thresh-
olds: i) between the zero and the positive class and ii) between
the zero and the negative class. Substituting these into (25) and
simplifying yields

A= \/%{Rmb(é) + R (64) = Reob(6,0)}
a> —a

. A
:(’)/+Oé) rob(| +‘ 1 6)
A=Al )

9 ’fy+a;
_ —1 * .
(7"”7 ) rob( 9 ”Y""Yfl’

R
2 7,‘/71 + a’

and re-arranging gives (21). This concludes the proof of

Theorem V.1. &

(' 4a) :ob<

C. On the optimality of linear interval classifiers

Theorem V.1 gave an optimal linear interval robust classifier
for the three-class setting (15), i.e., we derived a classifier that
minimizes the robust risk subject to the constraint that it is a
linear interval classifier (16). Naturally, one may wonder if
this classifier is only optimal among linear interval classifiers
or if it is in fact optimal across all classifiers. In other
words, are linear interval classifiers optimal? It is important
to note here that answering this question was not needed to
demonstrate a tradeoff between the standard risk and the robust
risk, as discussed above. Nevertheless, this is an important
and interesting question in its own right. Indeed, given the
symmetry of the three-class setting we consider, we expect
that linear interval classifiers are optimal.> Namely, we have
the following conjecture:

Conjecture V.2 (Linear interval classifiers are optimal across
all classifiers). Under the assumptions of Theorem V.1, the
optimal linear interval classifier from Theorem V.1 is also
optimal across all classifiers.

While this conjecture is very natural, a proof for it is still
unknown and appears to be surprisingly nontrivial. The three-
class setting introduces new challenges beyond the two-class
setting. Indeed we are unaware of any existing optimality
results like this for robust classification beyond two-class
settings. The following subsections make progress towards
rigorously establishing the conjecture, providing a pair of first
results on the optimality of linear interval classifiers in multi-
class settings. The two results are obtained using two different
theoretical approaches and are somewhat complementary as
a result: the first applies for any model parameters but does
not consider all classifiers, while the second considers all
classifiers but only applies for certain model parameters. For
each result, we explain not only the approach used to prove it
but also why that approach falls short of fully establishing the

3For Gaussians in arbitrary positions, i.e., with means that do not lie on a
line, we do not expect linear interval classifiers to be optimal. See Section D
for a more detailed discussion with some conjectures.

conjecture. Taken together, we hope these results and insights
will provide a foundation for future work on proving the
conjecture.

1) Optimality across “ignore/separate” classifiers: Recall
that the optimal linear interval classifier derived in Theo-
rem V.1 takes one of two forms. It either: 1) ignores the
zero class (in the “rare zero class” case), or 2) separates the
positive and negative classes by at least 2¢ (in the “frequent
zero class” case). In other words, the optimal linear interval
classifier belongs to the following general family of classifiers
that we will refer to as “ignore/separate” classifiers.

Definition V.3 (Ignore/separate classifiers). A classifier 3 :
RP — {—1,0,1} is an ignore/separate classifier if either

Vo G(z) # 0

inf {[|zy —z_|l2: §(zy) =1 and §(z_) = -1} > 2¢,

i.e., Y either ignores the zero class or separates its positive
and negative decision regions by at least 2.

This is a very large family of classifiers and importantly in-
cludes numerous nonlinear classifiers. Moreover, the classifiers
it omits are all unlikely to be optimal. The omitted classifiers
all include the zero class but still have positive and negative
decision regions within 2¢. Recall that for linear interval
classifiers, doing so is always suboptimal; the robust risk can
be improved by absorbing the zero decision region into one of
the others, i.e., by ignoring the zero class. While this does not
necessarily imply that the same holds for nonlinear classifiers,
it does make the family of ignore/separate classifiers a very
natural one to consider.

The main result of this subsection is that the classifier
from Theorem V.1 is not only optimal among linear interval
classifiers but also across the family of ignore/separate classi-
fiers. The result places no additional conditions on the model
parameters; it holds for any class proportions (7_, my, ),
any spacing of the means (A4, A_), and so on.

Theorem V.4 (Linear interval classifiers are optimal across
ignore/separate classifiers). Under the assumptions of Theo-
rem V.1, the optimal linear interval classifier from Theorem V.1
is also optimal across all ignore/separate classifiers.

We prove Theorem V.4 using the same overall strategy as
the proof of Theorem IV.1. Namely, Theorem V.4 follows
directly from the optimal linear interval classifier (Theo-
rem V.1) combined with the following three-class variant of
Lemma I'V.2 that shows that linear interval classifiers dominate
all ignore/separate classifiers.

Lemma V.5 (Linear interval classifiers dominate all ig-
nore/separate classifiers). Under the assumptions of Theo-
rem V.1, for any ignore/separate classifier y : RP —
{=1,0,1}, there exists a linear interval classifier § that
dominates its robust misclassification on all three classes
simultaneously, i.e.,

Vye{-1,0,1} Eg{ﬂazumhgs g(x +9) #y}



< 55{36:”5“235 gz +6) # y}-

Thus, Riob(7,€) < Riob(9,€), i.e., the linear interval clas-
sifier § also dominates the ignore/separate classifier § with
respect to the robust risk.

The proof of this lemma follows a similar strategy as the
proof of Lemma IV.2.
Proof of Lemma V.5: Let §j : RP — {—1,0,1} be an
ignore/separate classifier and define

=o' (1= Pr{g(a) # —1}) + A,
e = @7 (Pr{g(a) £ 1}) + As,

where ® is the cumulative distribution functions of the
standard normal distribution (with ®~!'(0) = —oo and
®~1(1) = 00), and where we denote the conditional probabil-
ities Pryjy—_1, Pryy—o and Pry,—; by Pr_, Prg and Pr.,
respectively. As one can readily verify, c_ and c; match the
misclassification probabilities of ¢ on the negative and positive
classes:

PriaTp> e} =Pr{e) -1}, (20

Priz"p < ey} =Pr{j() # 1}.

We first show that c_ < ¢y so that they define a valid linear
interval classifier. Let

S ={z:a p>c ), 8 ={x:gx) £ -1},

where we view S¢ as the rejection region of a hypothesis
test of the negative class against the alternative of the zero
class; likewise for S¢. Under this interpretation, it follows
from (26) that the two tests have matching significance levels
Pr_(5¢) = Pr_(5¢). However, S¢ is the rejection region
of the likelihood ratio test here. Thus, it follows from tAhe
Neyman-Pearson lemma that the test corresponding to S¢
must have power less than or equal to that of the test
corresponding to S¢. Namely,
Pric’u>c_} =Pr(5%) > Pr(5°) = Pr{j(x) #
Repeating the analogous argument for cy yields

Prie’ i < ey} > Prij(e) # 1},

“11.

As a result,
l?)r{a:Tu >c_t+ I?)r{mT,u <ct})
> Pr{j(r) # 1} + Pr{i() #1} > 1,

from which we conclude that c_ < c;.
Since c_ < cy, the following linear interval classifier is
well defined:
-1 ifz'p<ec_,
ylz) =40 <z'p<cy,
+1 ifzTu>cy,

if c_

and it remains to show that

Vye{=1,0,1} EZ{SZ( y)+ B} < PF{SC( ) + Be}.

Applying the equality case of the Gaussian concentration
of measure, similar to equations (11) and (12) in the proof of
Lemma IV.2 in the two-class case, to the construction of c_
and c; immediately yields

Pr{S(g) + B} < Pr{S<(9) + B:},
Pr{S%.(9) + B} < Pr{S5.(9) + B:},

so the result is shown for the negative and positive classes.

For the zero class, suppose first that § : R? — {—1,0,1}
ignores the zero class, i.e., ¥V, ¢(x) # 0. Then, the decision
region Sp(y) is empty so we immediately have

Pr{(S(7) + Bo} < 1= Pr{S5(g) + Be}.

So it only remains to consider the case where y separates its
positive and negative decision regions by at least 2¢. For this
case, using Pr{CUD} < Pr{C}+Pr{D} for any measurable
sets C, D, yields

Pr{S5(y) + B:} = Pri{S-(9) + B:} U{5+(9) + B:}]
<Pr{S () + B: }+Pr{S+( )+ B},

and another application of the equality case in the Gaussian
concentration of measure yields

Pr{S (9) + B:} < Pr{S (9) + B:},
Pr{S(j) + B} < Pr{S:(y) + B}.

Putting these together yields

Pr{S§(§) + B} < Pr{S_(§) + B.} + Pr{S, () + B.}
< Pr{S-(9) + Be} + Pr{S+(9) + B}
=Pr{S-(9) + Be} + Br{S:(§) + Be}

— Pr{(S—(9) + B:) N (S:+(9) + B)}
=Pr{(S-(9) + B-) U (5+(9) + B:)}

= Pr{S5(9) + B},

where the first equality holds because the 2e-separation of
the positive and negative decision regions of ¢ implies that
(S_(9) + B:) N (S4(9) + Be) = 0, the second equality is the
inclusion-exclusion principle, and

(5-(9) + B) U (S4(9) + B:) =

7(@) US4(9) + B:
§(9) + Be.

yields the third equality. [ ]

Rigorously extending Theorem V.4 beyond ignore/separate
classifiers turns out to be quite nontrivial. The proof technique
used here encounters a major obstacle, as we will explain
in the remainder of this subsection. The main issue is that
the proof of the core lemma (Lemma V.5) crucially uses
the fact that linear interval classifiers can match the robust
misclassification of any ignore/separate classifier with respect
to all three classes simultaneously. Tt is tempting to expect
this fact to extend beyond ignore/separate classifiers to all
classifiers. However, this is surprisingly not the case. Namely,
there can exist a (nonlinear) classifier for which all linear



interval classifiers have worse robust misclassification on at
least one class, as shown by the following counter-example.

Example V.6 (A classifier for which no linear interval classi-
fier has matching robust classification performance on all three
classes simultaneously). Letp =1, u =1, A = +£1, ¢ =0.3,
m+ = 1/4 and mg = 1/2, and consider the classifier

-1, ifx<l,
~ 1, ifl1 <z <215,
g(z) = .
0, if 215 <z <4,
1, if x > 4.

For this classifier, the robust misclassification probabilities
are:

M= I|E,1{35:H6uzga gz +6) # -1}
z|ly=—1
~ 0.0446,
Mo

= Igio{aé:\lé\lzge g(z +6) # 0}

= Pr (£<215+4+03)+ Pr (x >4-0.3)
z|y=0 z|ly=0

~ 0.9930,
M= zﬁil{a&‘w“zﬁs glx +0) #1}
= Pr (2 <1+03)
z|ly=1

z|ly=1

~ 0.8151,

where we use = to indicate that the calculated values have
been rounded to the digits shown.
Now for a linear interval classifier

_1, lfl’ S C—,
g(l’) = 07 lfC, <z <cy,
1, if x > cy,
to match the robust misclassification probabilities M_ and
My, ie., to have robust misclassification no worse on the
negative and positive classes, the thresholds must satisfy
co>é =3 (M) + A + e~ 1.000,
cy <& =0T H (ML) + Ay — e~ 1597,
where ® is the cumulative distribution function of the standard

normal distribution, ® =1 — ®, and ®~1 and ®~1 are their
inverses. Otherwise, if c_ < ¢_ then

?}';r,l{aézuéuzga gz +08) # -1}

= Pr (z>c_—¢)> Pr (z>¢_ —¢e)=M_,
zly=-1 zly=-1

x|

and likewise if ¢, > ¢, then
Pr Bootaze 9z +6) £1)

= Pr (r<cy+e)> Pr (z<ép+e)=M,.
aly=1 zly=—1

However, if c_ > ¢_ and cy < ¢4 then
wgio{%:uauzga §(x +0) # 0}

= Pr (x<c_tecorx>cy—e¢)
z|y=0

> Pr(e<é_+ecorx>cy—e)=1> Moy,

z|y=0

since ¢_ + € > ¢4 — € here. Hence, there is no choice of
c_ and cy, ie., there is no linear interval classifier y, that
matches the robust misclassification probabilities of 1 for all
classes simultaneously.

As a result, the strategy used to prove Lemma V.5 (and
consequently Theorem V.4) cannot be directly used to go
beyond ignore/separate classifiers. Note, however, that this
does not mean that linear interval classifiers are not in fact
optimal; it simply shows that the approach used before cannot
be used here. Indeed, the nonlinear classifier ¢y considered in
Example V.6 has robust risk

Riob(§,6) =m_M_ + moMo + 1 My = 0.7114,

while the corresponding optimal linear interval classifier ;.
from Theorem V.1 has worse robust misclassification proba-
bilities on the positive and negative classes but still a better
robust risk of Ryon (95, ) ~ 0.4953.

2) Optimality in the “sufficiently rare zero class” case:
This subsection derives an optimality result that does not re-
strict the family of classifiers, but instead considers a restricted
subset of model parameters. In particular, we show that the
classifier from Theorem V.1 is optimal across all classifiers if
the zero class is sufficiently rare.

Theorem V.7 (Linear interval classifiers are optimal if the
zero class is sufficiently rare). Under the assumptions of
Theorem V.1, suppose further that mo < &./T_7+, where

. (A =)A= —2) A+ A
= - — | .
« eXp{ 2 Dy = |—2 7

Then the optimal linear interval classifier from Theorem V.1
(using the “rare zero class” case) is also optimal across all
classifiers.

This result does not have a restriction on the classifier family
like Theorem V.4; we find the optimal classifier across all clas-
sifiers. However, the additional condition that my < éy\/m
essentially limits this result to a subset of the “rare zero class”
case in Theorem V.1; it does not apply to cases where we
expect the optimal robust classifier to assign points to all three
classes. As we explain at the end of this subsection (after
proving Theorem V.7), extending this result to remove the
condition turns out to be quite nontrivial.

We obtain Theorem V.7 through a different approach than
Theorems IV.1 and V.4. In particular, we prove Theorem V.7
by using the same overall strategy as was used in [40] for
two-class settings. In [40], an optimal robust classifier was
derived by identifying a careful e-perturbation of the means
for which the corresponding Bayes optimal classifier has
standard risk matching the robust risk with respect to the
unperturbed means. Optimality then followed by exploiting



the insight that the e-robust risk of any classifier is lower
bounded by its standard risk with respect to any e-perturbed
means, which is in turn lower bounded by the standard risk
of the corresponding Bayes optimal classifier. The proof of
Theorem V.7 follows the same approach.

Proof of Theorem V.7: Consider the following e-perturbed
spacings for the means:

No=X +e=
)\6 I:)\():O,
No=Xp—e=[Xi]—e>0.

—(IA-l=¢) <0,

We first show that the Bayes optimal classifier g, /()
for these perturbed means has standard risk Rsyq x/ (QE.(W \)
with respect to the perturbed means matching its robust
risk Ryob (35, 2+ €) With respect to the unperturbed means.
Note first that g, y (%) ignores the zero class when 7y <

o /m_ny. Indeed, if 79 < &/T_71, then

o -
In <lna
T

(Al =)(A-| = ¢)

A+ A

— - 1
2 Dy A2
AN Mo+ N
- +27 — )\f—’_/\f In~.
+7 -

Now, adding In~ then simplifying, and likewise subtracting
In~ then simplifying, yields the following two inequalities

7o To
ln<>:ln< )—ln’y
T+ VT

AN Ao+ N
< DA AL T A _
=5 N, N Iny —1In~vy
_ &_ID(TDF/’]T ) |)\ |
2 [N = AL
) o
In{— ) =1 1
(7)) o
N N+ AL
< +
<=5 )\, N Invy 4+ In~vy
- _ &_ln(ﬂ-‘i‘/ﬂ- ) |A/|
2 N — A

Next, dividing the first inequality by +|\’, | then adding A’ /2,
and dividing the second inequality by —|\’| then addlng
N /2, yields

Ay N In(mo/my) _ Ay + AL In(my/7m-)
2 RV 2 N, —A_]7
AL In(m/m-) S Ay + AL In(my /7o)
2 A 2 N, =]

so the Bayes optimal classifier for the perturbed means is
the following linear interval classifier with Bayes optimal
thresholds from (17):

ggay,)\’ (1’) = gint (x’ My C:,—a CI—);

where
o Ay + AL In(my /7o)
o 2 [N, — AL
A A In(m_/74)
2 A —A_|—2¢’

This classifier is exactly the optimal linear interval robust
classifier from Theorem V.1 in the “rare zero class” case, and
it ignores the zero class. Since g, /() ignores the zero
class, we finally have

Riob (JBay,x+ €) = To + 74 lPr+1(xTu <d +e) @D
z|y=

+7 Pr (z'pu>c —¢)

zly=—1
=7y + P T<c, +e
R AN
+7-  Pr (Z>c —¢)
TN (A1)
=T + Pr
—ToT ZoN (N 1)

+m_  Pr (>c)
TN (A1)

(z <))

= Rata,x (YBay,x)-

Namely, the standard risk Rstd,x (§5ay 1) Of Jiay, 1 () With
respect to the perturbed means matches the corresponding
robust risk Rrob(gjga% wv»€) with respect to the unperturbed
means.

The proof now concludes by observing that for any classifier
g:RP = {-1,0,1}

Riob(3,2) o)
=t bl Fstoze 9z +0) # +1}
o z~NoI){36 lsla<e B+ ) #0}
i w~N(1;r {35 Islla<e 9z +6) # —1}
=T x~/\/(x+ I, ){y x—ep) # +1}
T N( {y ) # 0}
i m~N<A, {y x+ep) # -1}
=T NGy ){y ) # +1}
o " N(OI){yj 7&0}
B i@ -1
= Raa,x (),

so for any classifier § : R — {—1,0,1} we finally have that

Rrob(gv 5) 2 Rstd,k/(y)
> Rstd,k’(ggay,/\') = Ryop (ggay,/\'v 5)7

where the first inequality is (28), the second inequality is from
the definition of the Bayes optimal classifier, and the final
equality is from (27). [ ]

As mentioned above, rigorously extending Theorem V.7
beyond the “sufficiently rare zero class” case turns out to be



quite nontrivial. The proof technique used here encounters
a major obstacle, as we will explain in the remainder of
this subsection. The main issue is that a crucial step in the
above proof was to find e-perturbations of the means for
which the corresponding Bayes optimal classifier has standard
risk matching the robust risk with respect to the unperturbed
means. Such perturbations always exist in the two-class setting
studied by [40], and it is tempting to hope that the same may
hold for the three-class setting we consider. However, this is
not the case, as the following counter-example illustrates.

Example V.8 (A case where no set of e-perturbed means
produce matching robust and standard risk.). Letp = 1, up = 1,
Ar =11, =03 and 7y = w9 = 1/3. Setting p = 1 is
without loss of generality. Then for any e-perturbed means

N € [-1.3,-0.7], Xy €[-0.3,03], X, €][0.7,1.3],
the robust risk Ryop (@an, v+ €) is lower bounded by the robust
risk of the optimal linear interval classifier ¢, derived in
Theorem V.1, i.e.,

VA e[-1.3,-0.7] YA)€[-0.3,0.3] YN, €[0.7,1.3]
Rrob(ggayy)\’vg) > Rrob(gi*ntag) ~ 056a

since U, \ s always a linear interval classifier here and
hence sub-optimal with respect to 4.

However, the standard risk Rggq x @an, \) With respect to
the e-perturbed means X' is upper bounded as

RStd,)\' (gan,)\’) < RStd7)\/ (gan,)\)

1
_ > —=
o~ N (A1) {”T 2}

= Pr

{regorasay)
+ 7o Pr r< —=o0orx>-+=

z~N(N},1) 2 2
1
+7my Pr {x < +}
N (N, 1) 2

< 1 P > L
l r > =
T 3 2~N(-0.7,1) 2

+ ! P < 1 > +1
- r r<——=orx -
3 z~N(0.3,1) 2 2
1 1
— P < _
* 3 x~/\/(-§0.7,1) {x +2}
~ 0.49.

Thus, there is no choice of e-perturbed means \'_, X, and X',
fOF WhiCh Rrob (ggay,)\/’ 5) = RStd,)\' (:gigay,)\’)'

Essentially, the issue is that the robust misclassification
probabilities for the positive and negative classes can be
matched by perturbing the positive and negative means, re-
spectively, but the same cannot be done for the zero class in
general. Finding these perturbations is central to the approach
used to prove Theorem V.7. As a result, this approach cannot
be directly used to generalize beyond the sufficiently rare zero
class case.

VI. OPTIMAL ¢+, ROBUST CLASSIFIERS

We now shift our attention from ¢o to {., adversaries,
i.e., perturbations up to an /¢, radius, and seek to minimize
the robust risk Ryob(7, ¢, - ||co). Doing so introduces new
challenges: the rotational invariant geometry of /5 allowed
a reduction to the simpler one-dimensional case, but this
does not apply here. However, the next result captures one
setting where the geometry is favorable and the /5 findings of
Section IV extend to ¢, robustness. We provide its proof in
Section E-A.

Corollary VI.1 (Optimal /., robust classifiers for one-sparse
means). Let the data (x,y) follow the two-class Gaussian
model (5), and let p have exactly one non-zero coordinate
w; > 0 and € < pj. An optimal £, robust classifier is

§* (v) = sign{z;(u; — ) — q/2}, (29)

where ¢ = In{(1 — 7)/7}.

In essence, the /5 and /., norms agree when restricted to
the nonzero coordinate, enabling us to extend Theorem IV.1.
The same applies to the three-class setting of Section V with

a similar extension of Theorem V.1 as follows. We provide its
proof in Section E-B.

Corollary VL2 (Optimal linear interval /., robust classifiers
for one-sparse means — three classes). Suppose data (x,vy)
are from the three-class Gaussian model of Section V, p has
exactly one non-zero coordinate p; > 0 and € < pj/2. An
optimal linear interval L., robust classifier is:

Uit () = Tine (551, ¢, ),

where the thresholds ¢’ > c* are as follows:
Case 1. If mo < o*\/T_7, then

i =c =In(r_/my)/(2u; — 2¢).

Case 2. Otherwise, ¢ — c* > 2g, with

i = 4u;/2+ In(mo/m4) /(1 — 2€),
& = —p;/2 = In(mo/m_)/(pj — 2¢).

The cutoff a* is the unique solution to the equation:

v+ DR {17/ (v + 7)€}
=(v+a)Rip{ni/2,7/(v + a);e}
+ (v )R {1 /2,77 (T @)} — o

in the domain o > exp{—(u; —2¢)?/2} with v == /7y /m_;
a* = exp(—p§/2) when ¢ = 0.

Removing the restriction that ;4 be one-sparse is highly non-
trivial in general, but it turns out to be possible if we instead
consider only linear classifiers: i, (z;w, c) = sign(z " w—c).
This statement for the balanced case has been derived in [67,
Lemma 1]. However our result generalizes it to the imbalanced
case.

Theorem VI3 (Optimal linear ¢, robust classifiers). Suppose
data (x,y) are from the two-class Gaussian model (5). An op-
timal linear (., robust classifier is: §*(z) = sign{x "n.(n) —



q/2}, where ¢ = In{(1 — 7)/7} and the soft-thresholding
operator

r—e, ifr>e,
Ne(z) =40, if v € (—¢¢), (30)
rte, ifr<—e

is applied element-wise to the vector u € RP.

The proof is based on a connection to the well-known water-
filling optimization problem, and is provided in Section E-C.
The analogous extension again holds for three classes.

Theorem VI.4 (Optimal linear interval ¢, robust classifiers
— three classes). Suppose data (x,y) are from the three-class
Gaussian model of Section V and € < ||uloo/2. An optimal
linear interval L., robust classifier is either:

1) Gins{x;ne(u), c*, c*}, where ¢* =In(w_/my)/2, or

2) Gine{w;m= (1), €, 2}, where ¢ = dmpc(p) ' p/2

hl(’/T()/’/T:t ),

where the second case applies only when ¢, > c*.

We provide its proof in Section E-D.

VII. LANDSCAPE OF THE ROBUST RISK

Sections IV to VI theoretically optimized the robust risk, but
left open important questions about its optimization landscape,
which can be non-convex and challenging to optimize. For
example, what happens if we use surrogate losses as is
commonly done in practice? This section makes progress on
this question.

Consider data (z,y) from the two-class Gaussian model
(5) with linear classifiers and corresponding ¢-robust risk as a
function of weights w € R? and bias ¢ € R:

Ry e(w, ) i=Eay H?ng Hw™(x+6) —c} -yl

€2y

The 0-1 loss {(z) = I(z < 0) yields R, z(w,c) =
Rrob{Sign(wT'x - C)v &, ” ! ”}

It is common to use surrogate losses ¢ in (31) such as the
logistic loss ¢(z) = log(1 + exp(—z)), the exponential loss
¢(z) = exp(—z), or the hinge loss ¢(z) = (1 — z)4. The
impact of doing so is well-studied in standard settings [68],
but has remained an important open problem in the adversarial
setting. Minimizing a surrogate loss here does not in general
produce optimal weights for the 0-1 loss, but it does so in a
few settings which the next result describes.

Theorem VIIL.1 (Classification calibration). Let w* € RP
be the optimal weights for a linear classifier with no bias
term, i.e., w* minimizes R, . 7(w,0) with the 0-1 loss (. Any
strictly decreasing surrogate loss { is classification calibrated;
minimizing the (-robust risk R. .| ¢(w,0) recovers w*.

Furthermore, cal};bration extends to the case with bias, i.e.,
jointly minimizing R, ||.|.«(w,c) produces (w*,0) if either: i)
{ is convex, or ii) the classes are balanced, i.e., m = 1/2.

Theorem VII.1 partially extends to surrogate losses ¢ that

are decreasing but not strictly so. In this case, w* still
minimizes the ¢-robust risks but might not do so uniquely.

Proof of Theorem VIL1: Let | - ||« be the dual norm of
|- ||. This is defined as ||wl||. = supw ' z, subject to ||z|| < 1.
Since / is decreasing, as is well known (see, e.g., [69]), we
have

R(l,w,b,e,| - ||) =Ey,y sup E([wT(x +9)+0]-y)
[I6]1<e

=E,  /(y- [wTac + b — e |Jw|l)-

This shows that for any candidate w, the worst-case pertur-
bations are equal to the conjugate of w, with respect to the
I - || norm, namely 6*(z) = —§(x) - € - w*, where w* solves
|wl|l. =supw !z, subject to ||z|| < 1.

Now, in our case, due to the distributional assumption on
the data, we have y - © ~ N(,qu). Moreover, y - wlx ~
N(wTp, ||w||3L,). Tt is readily verified that y - w ' is prob-
abilistically independent of y. Therefore, we can write, for
some z ~ N(0, 1) independent of y

R(&wvb’& || . ||)
=E. l(w' p—efwll+by+o-[lws-2)

Now we discuss the cases considered in the theorem.
1) If minimizing restricted to b = 0, the inner term reduces
o l(w'p—e-|wl+o-|wls-2).
2) When the loss is strictly convex, then by Jensen’s inequal-
ity we obtain

Eyb(w'p— e [lwlls + by + o - [lw]l2 - 2)
> lw p—e- |Jwll + 0 [lwllz - 2).
In both cases it is enough to minimize the objective
Rt w,e || ) = Ezpl(w' p— e wlls + 0wl - 2).

Now fix ||w|2 = 1. It is readily verified that, when the
loss is strictly decreasing and as the normal random variable
is symmetric, this is equivalent to maximizing the inner
argument. When the loss is decreasing but not necessarily
strictly monotonic, maximizing the inner argument is still
a sufficient condition that guarantees the risk is minimized;
however in this latter case there may be other minimizers of the
risk. Therefore, it is enough to maximize the inner argument.

That is, we study maximizing, subject to ||w|l2 = ¢ > 0,

-
w = e flwll.
Given the homogeneity of the norms, we thus conclude that

the optimal w minimizing the robust /-risk

R(l,w,b,e,| -||) =Eq,y sup Uw" (z+6)+0b]-y). (32)

ll8ll<e
maximize

w'p—e-|wl.

[[wll2
Next, we study how to minimize the true robust risk. This is
similar to the derivation for the optimal robust classifier. We
will assume without loss of generality that 0 = 1. As above,
recall our general formula:

R(yv 5) =T Px\y:l(sfl + BE)
+ (L =)« Pyjy=—1(51 + Be).

(33)



For a linear classifier §*(x) = sign(z " w + b), we can restrict
without loss of generality to w such that ||w| = 1. The
classifiers are scale invariant, and so we get the same pre-
dictions for all scaled versions of the weights w, by changing
b appropriately. Then S; + B. is the set of datapoints such
that 2 "w + b > —¢||w||«. Thus,

R(w,bye) = 7 - Prny(z " w +b < ef|w]l.)
+(1=m) - Py (e w+b> —¢llw].)
=7 @ (cfwll —b—pw)
£ (1—m)-® (el +b— ).

Now we examine the cases of unrestricted bias (general b),
and zero bias (b constrained to zero) in turn. For the zero bias
case we find

R(w;e) =@ (ef|w]|s — pw).

Another way to put this is that for a weight w with unit
norm |lw|| = 1, a linear classifier reduces the effect size from
p"w (which we can assume to be positive, without loss of
generality, by flipping the sign if needed), to u'"w — &||w|..
So the optimal w minimizing the true robust risk solves

sup o' w—eljwll, st [lwly = 1.

Recalling again that the original problem is scale-invariant, it
follows that this is equivalent to maximizing (33). Therefore,
the optimal linear classifier for the true and surrogate robust
risks coincide.

For the general bias case, we recall that the minimizer of
b— m®(c—b)+(1—7)-®(c+b) occurs at b = In[(1—7) /7] /c.
Plugging back, we find that the “profile risk”, minimized over
b, equals, with c(w) = ¢||w||« — u"w, and q :== In[(1 —7) /7],

Rprof(w; 5) =7-® (c(w) - q/C(U}))
+ (1 =m) - @ (c(w) +q/c(w)).

Clearly, this may in general minimizers other than the ones
above. This shows that in general, surrogate loss minimization
is not consistent. An exception is when © = 1/2, in which case
q = 0, and the optimal bias in the robust risk is b = 0. This
finishes the proof. [ |

VIII. FINITE SAMPLE ANALYSIS

Having studied optimal population robust classifiers, we
now consider robust linear classifiers learned from finitely
many samples (z1,y1),-.-,(Tn,yn) € RP x {£1}. This
section does not assume Gaussianity; much of our subsequent
analysis turns out to not rely on it. Here, we learn classifiers
by minimizing the empirical {-robust risk with a decreasing
loss functional ¢:

H(n

BE ) ow,0)

Z sup ({w ' (i +0) —c} -y (34)

i—1 lIoll<e
- IS T -0 —elul. ),
i=1

where |||| is the dual norm and the equality holds because  is
decreasing; see, e.g., [69]. Using the 0-1 loss £(z) = I(z < 0)
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Fig. 4. Mean gap between robust and standard risks of optimal finite-sample
f~o robust classifiers obtained via empirical robust risk minimization. Here
we set the dimension p = 5, mean vector 4 = 1/2 - 1, and class proportion
T=1/2.

Standard risk

0.1 0.2 0.3
Robust risk

Fig. 5. Tradeoff between (population) standard and robust risk for € € [0, 1]
for classifiers obtained via Proposition VIIL.1. Here we setp = 5, u = 1/2-1,
T=1/2.

yields a non-convex and discontinuous empirical robust risk

R(nH) I, 4( ¢), making optimization challenging. So one often

uses convex surrogates instead, making Ei””)l‘ ,(w, c) convex
(decreasing convex functions of concave functions are convex).

Hence, the empirical /-robust risk (34) can be efficiently
minimized for ¢, adversaries with convex decreasing sur-
rogates such as the linear and hinge losses. Given n sam-
ples, this gives optimal weights w, € RP and a classifier
Un(x) = sign(x "1db,), where throughout we will fix the bias
¢ = 0. We will study these classifiers for the linear and hinge
losses.

To study the tradeoff between standard and robust classifiers
in finite samples, inspired by [17], in Figure 4 we plot the
mean gaps between the population robust and standard risks,
i.e., Riob(Un, &, || lloo) — Rstd (Jn ), as a function of the number
of samples n, in the two-class Gaussian model (5). If the gap
is large, then the robust risk is much greater than the standard
risk for the optimal robust classifiers, yielding an unfavorable
tradeoff. For the linear loss (constrained to ||w||2 < 1 to ensure
boundedness), the gap between the standard and robust risks
is large as n grows, consistent with [17]. However under the
hinge loss, regardless of the value of ¢, the gap decreases,
which had not been investigated in [17]. This shows that the
loss functional matters in robust risk minimization, consistent
with our landscape results and expanding on the observations
in [17].

A. Optimal empirical robust classifiers

The empirical risk-minimization perspective we have de-
scribed gives an effective procedure for obtaining robust
classifiers. Moreover, in some special cases we can also



derive explicit optimal empirical /-robust classifiers. The next
proposition does so for ¢, adversaries with linear loss where
we again drop the bias term, i.e., ¢ = 0.

Proposition VIIL.1. For the linear loss ¢(z) = —z, the empir-
ical Lo robust risk Rgn) _.o(w,0) constrained to ||lw|[z < 1
is minimized by w* = n.(@1)/||n-(Qt)||,. Here n is the soft-
thresholding operator (30), which is applied element-wise to

the empirical mean vector ji = (1/n) Y i y;x; € RP.

Interestingly, these finite-sample weights can be viewed as
plug-in estimates of the population optimal weights 7). (u)
from Theorem VI.3 for the two-class Gaussian model (5),
where the empirical mean [ is substituted for the population
mean u. In Figure 4, we illustrate the tradeoff between
population standard and robust risk for classifiers obtained via
Proposition VIIL.1.

B. Convergence of robust risk minimization

In this section, we quantify the concentration of the empir-

ical robust risk ]/%E:"”)H E(w, ¢) around its population analogue

§57‘|,”7g(w, ¢), where / is again the 0-1 loss. Notably, in this
result x;|y; need not be Gaussian.

Theorem VIIL.2 (Convergence of empirical robust risk for
linear classifiers). For any § > 0,

Pr {V(w7c)e]]§p <R ﬁgl\)-l\7l7(w7 c) _
> 1 —exp(C(p — §%n)),

}~3€7”.|‘j(w, C)‘ < 5}

where C' is a constant independent of n, d, and the probability
is with respect to the n independent identically distributed
samples (Ilay1)7 LR (ITL?yn) € RP x {:l:l}

Put another way, the empirical robust risk concentrates
uniformly across all linear classifiers at a rate O(1/p/n). The
proof uses that the e-expansions of half-spaces are still half-
spaces, enabling arguments by VC-dimension. Characterizing
more general classifiers is highly nontrivial since the e&-
expansion of a finite VC dimension hypothesis class can have
infinite VC dimension [70]. However, for one-dimensional
data it turns out that we can generalize to classifiers that assign
finite unions of intervals to each class.

Theorem VIIL.3 (Convergence rate of empirical robust risk in
ID). In the setting of Theorem VIII.2 for any 6 > 0, we have
uniformly over all classifiers y whose classification regions are
unions of at most 2k intervals that |R,(§,€) — R(§,¢)| < ¢
with probability at least 1 — 4 exp(—2nd2 /k?), for the empir-
ical robust risk R,, and the population robust risk R.

Thus uniform concentration for % intervals occurs at rate
O(k/+/n). The proof is based on the Dvoretzky-Kiefer-
Wolfowitz inequality.

Proof of Theorem VIIL.3: As we have previously argued,
the robust risk can be expressed as follows

R(§,¢) = P(y = 1)Poyyes (S1 + B.)
+ Py = *1)Pw\y:—1(51 + Be).
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Now let (z;,y;) for i = 1,...,n be sampled iid from a joint
distribution P, , for ¢ = 1,...,n. Let the fraction of 1-s be
7 € [0, 1]. Let P4 be the empirical distributions of z; given
y; = 1 and —1, respectively. We can write the finite sample
robust risk as

R, (§,e) =mp - Py (S—14+ B:)+ (1 —7y,) - P (S1 + Be).

Now P, + are empirical distributions that will converge to the
limiting distributions under certain conditions.

Consider classifiers  whose decision boundaries are at most
k points. For instance, if £ = 1, then these are linear classifiers.
Then Sy, each consist of a union of at most j = [k/2] disjoint
intervals (finite or semi-infinite). Let I; denote the collection
of all such subsets of the real line, unions of at most j disjoint
finite or semi-infinite intervals. Thus Si, € I;. Critically,
the e-expansions also have this property: by expanding the
intervals, we still get intervals, merging them as needed. Thus,
Sit1+ B € 1.

Now, the classical Dvoretzky-Kiefer-Wolfowitz inequality
[71]-[73] states the following. Let F;, be the CDF of n iid
samples with CDF F'. For every 6§ > 0,

Pr(sgp |F(z) — F(z)| > 0) < 2exp(—2nd?).

Let 6, (2) = Py (—00,2] — Py (—00, z]. Consider the event
sup,, |9, (c)| < &, which happens with probability at least 1 —
2 exp(—2nd?). On this event, we have

|Pn+(571 + BE) — PJ’»(Sfl + BE)|
< sup [Pus (A) - Py (A)
AEIj
+ (=1)7 710 (c))

= sup [0n(c1) — nlca) + -
c1<ce<...<¢cj

< J-sup[dn(c)| < jo.

A similar argument applies to S;. Then, on the intersec-
tion of the two events, which happens with probability 1 —
4exp(—2nd?), we find that

| B (9,€) — R(3,€)|
< max |Poy (Si + Be) — Py (Si + Be)| < jé.

as was to be shown. |

IX. CONCLUSION

In this paper, we studied the tradeoffs inherent to robust
classification in the fundamental setting of two- and three-class
Gaussian classification models. In particular, we leveraged
that half-spaces are extremal sets with respect to Gaussian
isoperimetry to derive ¢ and /., optimal robust classifiers
in the imbalanced data setting. This analysis revealed a fun-
damental tradeoff between accuracy and robustness, which
depends on the level of class imbalance in the data. Indeed,
we showed that in this setting, no classifier minimizes both
the standard and robust risks simultaneously. Furthermore,
we analyzed the optimization landscape of the robust risk,
demonstrating that the optimizers of various convex surrogate
losses coincide with the nonconvex robust 0-1 loss. Finally, we
connected our results to empirical robust risk minimization by
providing a finite-sample analysis with respect to the 0-1 and
surrogate loss functionals.



APPENDIX A
EXTENSIONS OF THEOREM IV.1

A. Connections to randomized classifiers

Adding random noise has been used as a heuristic to obtain
robust classifiers (see, e.g., [65], [66]). While it has been
shown to be attackable via gradient based methods [74],
we can still study it as a heuristic. It turns out that it has
connections to optimal robust classifiers in our models.

In this section, we suppose that the noise level in the
data is 02, so z;|y; ~ N (yu,02I,). Suppose we add noise
Z ~ N(0,7%1,), for some 72 > 0, and then train a standard
classifier. Note that the Bayes-optimal classifier depends only
on the SNR s(u,02) = ||uu|l2/0. Thus we get that the Bayes-
optimal classifier with noise is the optimal e-robust classifier
if (assuming & < ||p]|2)

s(lullzs0® +7%) = s(llull2 —&.0%),

or equivalently if

el
(il =22

Put it another way, our results show that robust classifiers
reduce the signal strength. Equivalently, randomized classifiers
increase the noise level. However, note that for this the added
noise level has to be tuned very carefully.

T=0

B. Extension to weighted combinations

Given a distribution ) over £, we can try to minimize
R(9,Q) = E..qR(y,e). This leads to classifiers that can
achieve various tradeoffs between robustness to different sizes
of perturbations. For instance, we can minimize R(g,0) + A -
R(g,¢€) for some A > 0.

It is readily verified that Lemma IV.2 still holds for R(7, @),
as long as @ is supported on [0, ||x1||). This is because the linear
classifier y found in the proof of that result does not depend
on g, and reduces the ¢ robust risk for all € < | u||. Hence,
linear classifiers are admissible for R(g, Q).

However, in general there is no analytical expression for the
optimal linear classifier. Following Theorem IV.1, it is readily
verified that the threshold c in the optimal linear classifier is
the unique solution of the equation

E, exp(—4'/2) r explep) + (1 — ) exp(—ep')] = 0,

where /) = p—¢e and e ~ Q.
As before, it is enough to solve the 1-D problem. Thus, we
want to find the value of the threshold ¢ that minimizes

R(9e, Q) = P(y = 1)Ecn@Pu—c(z < 0)
+ Py = _I)EENQP—M-‘FE(x > c)
=7-EeigPu—c(z <c)
(1= 1) BengPpieo > )
=n-EyPy(z<c)+(1—m)-EyP_(z>c).
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Differentiating with respect to ¢, we find that

R'(c) = dR(J.,Q)/dc
= Bule— i) — (1= ) Bdle+ )
= (2m) 2 [ By expl—(c — ')?/2)

— (1= 7) - Ew exp[~(c+u')?/2]|.

Up to the factor (27r)~'/2, and also factoring out the term
exp|—c? /2], which cannot be zero, we find that R'(c) = 0 iff

a(c) =, exp[—p'?/2][r - exp(cp’) — (1 — 7) - exp(—cp')]
= 0.

This is exactly the claimed equation for c. Now, it is not hard
to see that a(c) is strictly increasing with limits +00 at +oo.
Hence, the solution c exists and is unique.

C. Data with a general covariance

A natural question is whether optimality extends to data
with general covariance. To this end, suppose that the data is
distributed according to the two-class Gaussian model with an
invertible covariance matrix X so that z; ~ N (y;u, 2). In this
setting, we can study the setting when the difference between
the population means aligns with the smallest eigenvectors of
3.

Theorem A.1 (Optimal robust classifiers, general covariance).
Consider finding {5 robust classifiers in the two-class Gaussian
classification problem with data (z;,y;), i = 1,...,n, where
y; = £1, z; ~ N(yip, X), where 3 is an invertible covariance
matrix. Let V' be the span of eigenvectors of % corresponding
to its smallest eigenvalue, and note that this is a nonempty
linear space. Suppose that yn € V. The optimal {s robust
classifiers are linear classifiers

- . € q
7" (x) = sign (:I:T,u {1 - HMH] - )\1/22> ,
where \ is the smallest eigenvalue of 3, and the other symbols

are as in Theorem 1V.1.

This theorem generalizes the result of Theorem IV.1. When
the covariance matrix ¥ = o2], is diagonal, the optimal
robust /5 classifier from Theorem A.1 is identical to that from
Theorem IV.1.

Proof of Theorem A.1: The proof proceeds along the lines
of Theorem IV.1, checking that it extends to this setting. We
will only sketch the key steps.

We define the e-expansion of a set A in a norm || - || to be
the Minkowski sum A+ B, = {a+b: a € A, b € B.},
where B, = {x : ||z|| < €} is the e-ball in the given norm.

The key insight is that e-expansions in ¢ norm will turn
into e-expansions in the Mahalanobis metric ds(a,b) =
[(a — b)"(a — b)]'/2. To put it another way, by changing
coordinates from z — X~1/2z, the ¢5 ball transforms to a
Mahalanobis ball, i.e., an ellipsoid. We explain this below.

The first critical step was the existence of optimal linear
classifiers (Lemma IV.2). For any fixed set S, the key is to
be able to solve the problem (10). This requires us to find the



optimal isoperimetric set, i.e., the one with minimal probability
under e-expansion, with respect to the probability measure
N(p, 2).

Now, letting z — = £~ /2(x — 1), we can write

Pon(u) (@ € 8) = Ponuny (2 € p+S7V2(S — ),
and
Prnuys)(r €S+ B.)
= Pooniuny(z € p+272(S 4+ B — ).
Let ' =+ X~ Y2(S — 11). We can write
p+YVHS+ B —p) =5 +27 2B,

Now, ©~'/2B, is precisely the e-ball in the Mahalanobis
metric, V2B, = {72z ||z|l2 < e} = {2 ||z]|z < €}
Let us call this set By ..

So problem (10) can equivalently be written as

min P on(un) (8" + Bye) st Peonun () = o

Consider any set S’ of the form v’z < ¢, with |[v]ls = 1
(i.e., a hyperplane). Then (as can be readily seen by drawing
a picture)

S'"+Bs.={z+2": vz <e, ||Z_1/2z'H2 <el,
equals the set
S = {v 2 <cte- 2702},

For fixed c,¢, 3, the size of this set (with respect to any
probability measure absolutely continuous with respect to
Lebesgue measure) can be minimized in v by taking v to lie
in the span of the eigenvectors of ¥ with smallest eigenvalue.

Thus the sets S’ minimizing the expansion are hyperplanes
orthogonal to the eigenvectors with smallest eigenvalues of 3.
Then S = XV2.{z:v"2 <c} = {z: v 2722 < ¢'}. Now,
since v is an eigenvector of 3, i.e., ¥v = Av, we have that
v = N2y = \=Y/2y is still a scaled version of v. Hence,
even in the original coordinate system, the sets S’ have the
same interpretation.

Next, the second critical step in the proof was to reduce the
problem to a one-dimensional classification along the direction
of u. This is the case if the eigenvectors align with w. In that
case, after the one-dimensional projection, we have the same
problem that we already solved in Theorem IV.l1. One can
easily verify that the remaining steps go through. This finishes
the proof. ]

D. Data on a low-dimensional subspace

We can extend the above analysis to low-dimensional data.
Suppose that the data x;,y; live in a lower dimensional
linear space. For simplicity, suppose that x; = (z},04), so
only the first p’ coordinates are nonzero, and the remaining
d = p — p’ dimensions are zero. This is a model of a
low-dimensional manifold. For rotationally invariant problems
like /5 norm robustness, we can consider instead any low-
dimensional affine space, and the same conclusions apply.
However, for non-rotationally invariant problems like ¢, norm
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robustness (studied in detail later), the conclusions only apply
to this specific space.

Intuitively, decision boundaries that are not perpendicular
to the manifold M = (x,04) can have a larger “expansion”
projected down into the manifold. Hence, their adversarial
risk can be larger. This will imply that we can restrict to
decision boundaries perpendicular to the manifold, and thus
reduce the problem to the previous case. To this end, we
provide the following lemma. We emphasize that this is a
purely geometric fact, and holds for any classification problem
(not just Gaussian), and any norm (not just ¢5.)

Lemma A.2 (Low-dimensional classifiers are admissible).
Consider any classification problem and robust classifiers for
the low-dimensional data model above. For any classifier g,
the low-dimensional classifier §*(z},2?) = §(x},04) has
robust risk is less than or equal to that of the original classifier
with respect to any norm || - ||:

R(9,e) = R(§", €).

The above claim shows that for low-dimensional data as
above, even if we have the data represented as full-length
vectors, we can restrict to classifiers that depend only on
the first coordinates. This reduces the problem to the one
considered before, and all the results derived above are appli-
cable. In particular, for a low-dimensional two-class Gaussian
mixture, low-dimensional linear classifiers are optimal, under
the previous conditions.

Proof of Lemma A.2: Suppose S is the decision region
z : g(x) = 1 where the original classifier outputs the first
class. The modified classifier §* makes the same decision as
7 restricted to the first p’ coordinates.

Then the decision region ST where the modified classifier
outputs the first class is the set of vectors x = (x!,22) such
that (z',0) € S; N M. We can write S§ as the direct product
Sy = 57F x RY.

Then, the e-expansion of S7 within M is Sik v —&-Bg/, where
Bfl is a p’-dimensional ball, and we can compute the sum
in p’-dimensional space. Then, it is readily verified that, by
denoting R, the restriction to the first p’ coordinates of a
subset of M (i.e., ignoring the last d zero coordinates),

SP 4+ BY' ¢ Ry[(S1 + BP) N M),

or equivalently, viewing this as embedded in the p-dimensional
space,

[S1 N M]+ (BY',04) C (81 + B?) N M.

Indeed, if z € [S; N M] + (BE',0), then z = x + §, where
x € SiNM and § € (BY,0). Then it is clear that z €
(S1 4 B?) N M. Here we only use that B?" is the restriction
of the p-dimensional e-ball B onto the first p’ coordinates.
This shows that the e-expansion of S; is contained within the

e-expansion of S}. The same reasoning applies to S_;.
This shows that the classifier §* has robust risk at most as
large as that of the original classifier . This finishes the proof.
|



APPENDIX B
POINTWISE CALCULATION OF A BAYES OPTIMAL
CLASSIFIER

Here we derive a Bayes optimal classifier, i.e., a classifier
that minimizes the standard non-robust risk Rgiq for the three-
class setting (15) of Section V. Recall that Bayes optimal clas-
sification is achieved by maximizing the posterior probability
pointwise:

Qan(x) € argmax Pr(y = ¢)
cec Yl
pw\y:c(l‘) Pr(y = C)
= argmax
ceC p(l’)
= argmax Pr(y =c px\y:c(ﬁf)~

ceC
Hence it remains to identify the associated classification
regions

Pr(y = +1)pw\y:+1 (I)

Sp=qreRl: Pr(y = 0)pejy=o(2), ;
> max
Pr(y = 71)pz\y=—1(x)
Pr(y = —1)pyjy——1()
S_=<xecRP:

> max Pr(y = 0)px|y=0 (x)a )
- Pr(y = +1)psjy=+1(z)

where the complementary region (S US_)¢ will be classified
as the remaining zero class.
Starting with S, note that

Pr(y = Jrl)pz\y:-&-l(x) > Pr(y = 0)px\y=0(m)

-2 2 2
o [LZRE]  y [EIE

e = A ull3 = ll2l3 < 21n(my /7o)
=221z p+ A2 < 2In(my /m)

o'y > Ay /2 = In(my mo) /A,

and similarly

PI‘(y = +1)pm\y:+1(x) > PI‘(y = _1)pz|y:71(x)

|l - ;wll%] > 7 exp {_ [l — ;ull%]

lz = Aspll3 = llz = A= pll3 < 2In(my /7-)
—2(A; —A0)z p+ AL = A2 <2In(my /7o)
2T > (s A)/2— In(my fm )/ Ihs — AL
Therefore, S, = {z € RP : 2"y > ¢, } where

N

—
—
—

<= T4 €exp {

—
—
<~

¢y = max {M_ n ln(wo/m_)7 Ay +A- 111(7r+/7r_)}
2 |A+] 2 A = A
In the same way, we obtain S_ = {z € R? : 2Ty < c_}
where
A1 _ _ _
e —mind = n(mo/m ),)\++)\ - In(my /7o) .
2 [A_] 2 [Ar — A_]
Putting these together yields
+1 ifxeSy, +1 ifzTu>ecy,
Upay(x) =q -1 ifzreS_, =40 ifc_ <zTpu<ecy,
0 otherwise, —1 ifz'p<ec_,
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which is a linear interval classifier (16), as illustrated in
Figure 3a. At the boundaries between regions, the posterior
probabilities of the two corresponding classes are equal. In-
deed, assigning the boundary to either class yields a Bayes
optimal classifier, since the boundaries have zero probability
under the marginal distribution of x.

APPENDIX C
THREE-CLASS LINEAR INTERVAL CLASSIFICATION FOR
e > min{[A4[, [A-[}/2

Here we show that three-class linear interval classifi-
cation reduces down to several two-class problems when
e > min{|A\4+],|A\_|}/2. Specifically, we show the following
proposition.

Proposition C.1. Suppose ¢ > min{|A,|,|A_|}/2. Then for
any w# 0 and c4 > c_,

Rrob{gint('; w, Cq, C—)v 5}
> min {Rrob(g*—l,—&-la 6), Rrob(g6,+1a 5), Rrob(@é,—la 5)}7
where

if o — p( +22)/2]7
(A4 — A=) /2]
(I —=2e/[Ay = A-|)+
—In(m_/74)/2
>0,

, otherwise,

if [w — pAs /2] T [y /2]
(1 —2¢/[A+ )+

—In(ro/m1)/2
>0,

0, otherwise,

;i fo = pA= /2] T [uA- /2]
(1= 2/ )y

—In(mg/m_)/2

>0,

0, otherwise,

+1,

921,41 (2) = (335)

Q3,+1(1’) = (36)

U1 () = 37

are the optimal robust two-class classifiers obtained by apply-
ing (7) from Theorem IV.1 to each pair of classes.

Proof of Proposition C.1: Let € > min{|A;|,[\_|}/2
be arbitrary. Considering the negative and positive classes
alone (i.e., ignoring the zero class) and applying (7) yields
the optimal robust two-class classifier (35). Similarly, consid-
ering the zero and positive classes alone and applying (7) to
x — uAy /2 (for which the two classes have means +puA, /2)
yields the optimal robust two-class classifier (36). Likewise
with & — pA_/2 for the optimal robust two-class classifier
37).

Now, let w # 0 and c; > c_ be arbitrary. Recall first that
Dint (T3 W, C4, ) = Gint (2; W, E4, €— ), Where

c = c/llwll,

w=w/lwl2, &4 =ci/lwle,



and so
Rrob{gint('; w, C4, C_), 6} = Rrob{@int('; TI), 5+7 5—)7 5}'

Next, recall from Section V-B1 that for any ¢, > ¢_, the
robust risk is optimized subject to ||| = 1 by W = u so we
have

Rrob{gint('; "I)a E+7 E—)a 6}
Z Rrob{gin‘c('; M, éJra 67)7 E}
=7m_Pr(Z>c_—¢) +7T+].11‘(.% <éy+e)
+7rof(’)r(:i§ é_+eord>cy —e),
where the shorthand notations

Pr = Pr |, Pr:= Pr , Pr= Pr |,

- F~N(A_,1) + F~N(Ay,1) 0 #~N(0,1)
are taken from Section V-B2. It now remains to bound the
robust risk Ryob{Jint (*; 14y ¢4, ), €}

To begin, consider the case where ¢_ < ¢y < ¢_ + 2. In
this case, note that Pro(Z < é_ +ecor& > ¢y —¢) =1, so
the robust risk can be rewritten and bounded as

Rrob{gint('; H, E-i-a E—)7 6}
=7_Pr(z>c_ —5)+7T+PJ’rr(gZ’ <ép+e)+m
>m_Pr(Z>éy —e) +7r+11r(:i < ¢y +¢)+mp.
The final expression is the robust risk of a linear two-class
classifier that assigns points to only the positive and negative
classes with threshold ¢, so is no better than that of §*; ;.
As a result, we have that
Rrob{:&int('; 71)7 5+7 5—)3 5}
ZW_PI'(.i > E+ —€)+7T+13_I'(i < é++€)+ﬂ'0

> Rrob(gil,-i-l) 5)7

which completes the proof in this case.
Next, consider the case where ¢y > ¢_ + 2¢, in which case
we can rewrite the robust risk as

Rrob{'gint(';ﬂ,é+,é—>75}
—1- {W,Pr(:zgé, — o)+ 7 Pr(E 2 &1 +¢)

+7T0P(’Jr(é,+€<£<é+—€)}.

Now note that ¢ > |Ay|/2 or ¢ > |A_|/2 since ¢ >
min{|A4+|, |A=|}/2. Suppose first that € > |A|/2, and note
that if 7 < my then

7r+PJ’rr(j26++5)+7rofg)r(é,+5<:%<é+—a)
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where the final inequality used the fact that ¢y — (Ay —¢) >
¢+ —e when £ > |A4|/2. Consequently,

Rrob{gint(';,uq &-‘1-3&—)75}
>y +7_Pr(z>c_ —E)+7T0F(’)1“(.’i‘§é_+8)

> Rrob(gg,—h 6)7

where the final inequality holds because the middle term is
the robust risk of a linear two-class classifier with threshold
c_ that assigns points to only the negative and zero classes,
so is no better than that of yg _,. Likewise, if 71 > 7o then
7T+Pr+(.i‘ > 64,. +€) + 7TQPI‘0(5_ +e <2< 64,_ — 6) <
7wy Pry(Z > ¢é_ +¢) and

Rrob{gint(';ﬂa éJraé*)vs}
> mo + 7 Pr(z >

Cc_
Z Rrob(gil,-{-la 5)'

As a result, whether 7 < 7y or m > 7y,

75)+7T+Pjrr(i’§é_+e)

Rrob{gint('; "I)a é-i—a é—)? E}
> min {Rrob(?}(})k,fp 5)7 Rrob(gilﬁrl’ 5)}7

completing the proof when & > |A,|/2.
Repeating the analogous argument for € > |A_|/2 yields
that in that case

Rrob{gint('; U~}7 E-i-a E—)v 5}
> min {Rrob@aJrla £), Rrob(gil,Jrlv 5)}a

completing the proof. [ ]

APPENDIX D
BEYOND GAUSSIANS THAT LIE ON A LINE

For the one-dimensional setting p = 1, the three Gaussian
are always as in (15), i.e., their means lie along a line.
However, when p > 1, the means can be in more general
locations and one naturally wonders what the optimal robust
classifier would be in such settings.

When the means do not lie on a line, the Bayes optimal
classifier is no longer linear in general and so the optimal
robust classifier is likely no longer linear as well. Moreover,
as shown above, the optimal robust classifier does not coincide
with the Bayes optimal classifier in general, making it non-
trivial to even conjecture what the optimal robust classifier is
in such cases. However, we do expect them to coincide when
the location of the means is symmetric, as described by the
following conjecture.

Conjecture D.1 (Optimal robust classifier for means arranged
in a triangle). Consider three balanced Gaussian classes C =
{0, 1,2} with means at the corners of an equilateral triangle:

x|y ~ N(u - [cos(y - 2m/3)er + sin(y - 2m/3)es], Ip>,
0 with probability 1/3,
1 with probability 1/3,
2 with probability 1/3,

y:



where 1 € Ry defines the size of the triangle, and ey, es €
{0,1}? are the canonical basis vectors.

We conjecture that the optimal robust classifier is the same
as the Bayes optimal classifier, i.e.,

A~k

7" (z) = argmax ||z — p-[cos(y-2m/3)e1 +sin(y- 27w /3)es]||2,
y

as shown in the following diagram:

€2

y=1

o | Tl

« \
// N
, R wy=0
T ? €1
\ !

\ /

N 7

. | ¢

y=2

As before, we have taken the within-class variance to be
unity without loss of generality. Furthermore, we have centered
the triangle at the origin without loss of generality.

This conjecture is natural, but turns out to be nontrivial
to rigorously establish. In particular, the Gaussian concen-
tration of measure approach used to prove optimality in
Theorems IV.1 and V.4 does not directly apply here since
the conjectured optimal classifier is not composed of half-
spaces. It would appear that the method used in [40] may
be used here since the Bayes classifier for perturbed means
w = p —e/sin(w/3) has standard risk with respect to the
perturbed means matching the robust risk with respect to
the unperturbed means. However, the ¢/ sin(w/3) size of the
perturbation is too large and cannot be used.

Going beyond three-classes to settings with even more
classes, we conjecture that the same holds in corresponding
symmetric settings, as described by the following conjecture.

Conjecture D.2 (Optimal robust classifier for n means ar-
ranged in a regular polygon). Consider n balanced Gaussian
classes C = {0,1,...,n — 1} with means at the corners of a
regular n-sided polygon:

x|y ~ N(u - [cos(y - 27 /n)er + sin(y - 27/n)es], Ip>,
0 with probability 1/n,
y=9: :
n—1 with probability 1/n,

where 1 € Ry defines the size of the polygon, and ey, es €
{0,1}? are the canonical basis vectors.

We conjecture that the optimal robust classifier is the same
as the Bayes optimal classifier, i.e.,

7% (z) = argmax ||z — p-[cos(y- 27 /n)ey +sin(y- 27 /n)es]||2-
y

As with Conjecture D.1, this conjecture is natural but highly
nontrivial to rigorously establish. Once again, the Gaussian
concentration of measure approach used to prove optimality
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in Theorems IV.1 and V.4 does not directly apply since the
conjectured optimal classifier is not composed of half-spaces.
Likewise, the method used in [40] does not seem to apply since
the Bayes classifier for perturbed means p’ = p—e/sin(mw/n)
has standard risk with respect to the perturbed means matching
the robust risk with respect to the unperturbed means. How-
ever, the ¢/ sin(w/n) size of the perturbation is again too large
and cannot be used.

Developing new theoretical approaches that can prove Con-
jectures D.1 and D.2 is an exciting direction for future work.

APPENDIX E
PROOFS FOR OPTIMAL /., ROBUST CLASSIFIERS

A. Proof of Corollary VI.1

This follows because ¢, norm is upper bounded by the
¢5 norm. Thus for any fixed ¢, the ¢, robust risk is upper
bounded by the /5 robust risk:

R(g,e | - [loo)

> R(Qaga H ! ||2)7
R o) = R

& |- [l2)-

—~

From Theorem IV.1, we know the optimal /> robust classifiers,
i.e., the ones minimizing the upper bound, are based on z; -
[1t; — €]. Now, it follows that for the decision sets .S; of these
classifiers (axis aligned half-planes), S; + B2 = S; + Boc,e»
where B, . denotes the e-ball in the ¢, norm. Thus, the (o,
robust risk is equal to the ¢o risk for this specific classifier.
This implies that it also minimizes the ¢, risk, and that the
two risks are the same:

RE(e, || - [loo) = B¥ (&, [| - [l2)-

This finishes the proof. B

B. Proof of Corollary VI.2

As before, Ruon (4,2, | - lso) > Ruon(d,, | - [|l2) for any
classifier ¢ and radius €. Now, by Theorem V.1 the weights

*

w* = pf||pll2 optimize Riob{fint(z;w”, ¢, cl) e | - |2}
where the formulae for the two cases of ¢’ and c*, as well
as the cutoff a*, are simplified by noting that ||ull2 = y;.
Moreover,

gi*nt(x) = gint('x; ’LU*, Cj—a Ci)
= Qint(xTU)*; 1; C*+a C*—) = gint(xj; ]-7 Cia Ci),

*

T=1 (w* is 1-sparse).

since w™* has one non-zero coordinate w
Finally,

Reob (Tines €5 ||+ lloo) = Rrob (Fines €5 || - [12):
since S5 (95) + B2.e = Sg(Ui) + Boo,e for y € {=1,0,1};
the misclassification sets are coordinate-aligned. Thus, it fol-

lows that g}, also optimizes Rron (95, €, || - |loc)- W



C. Proof of Theorem VI.3

Recall our general formula:

R(ga 5) =TT Px\y:l(s—l + Bs)
+ (1 —=7) - Pyjy——1(S1 + Be).
Take a linear classifier §*(x) = sign(z "w — ¢) for some some
w, ¢, and Py, = N (yu, I,). Then Sy is the set of datapoints
such that zTw — ¢ > 0. So, S; + B, is the set of datapoints
such that x"w — ¢ > —¢l|w||;. Thus, restricting without loss
of generality to w such that ||wl||2 = 1,

R(w, ;) =7 Py (z'w —c < ellwlr)
+(L=7) - Py(pn(e’w—c> —luwl)
=7 ® (c+e|wli —p'w)
+(1—=7) @ (—c+elwl - pTw) .
The minimizer is

* q
c = ,
2 (T w —ellw|1)

where recall that ¢ = log[(1—7)/7]. This applies when z " w—
ellwl|[y > 0. If that does not happen, then the weight w is not
aligned properly with the problem, in the sense that it reduces
the “effective” effect size to a negative value. Thus, we do not
need to consider those cases.

Another way to put this is that for a weight w with unit
norm ||w|l = 1, a linear classifier reduces the effect size
from ;" w (which we can assume to be positive, without loss
of generality, by flipping the sign if needed), to pu"w—e||w||;.
So we can solve the problem:

sup ' w —ellw|; st |wls = 1.
w

First, we can WLOG restrict to weights w which have
the same sign as p, because for any w, flipping a sign of
a coordinate such that it has the same sign as p; increases
(or does not decrease, in the extreme case where u; or w;
are zero), the objective. Moreover, we can also solve first the
problem where all coordinates of p are non-negative. (Then
we can flip the signs of w according to the sign of u to recover
the solution).

These simplifications lead to the problem with p; > 0

sup E [wi —e]-w; st |wla =1, w; > 0.
w .
3

If, for some ¢, u; —e < 0, then we need to set w; = 0. For the
remaining coordinates, we can upper bound the objective value
by the Cauchy-Schwarz inequality: v'w < |[v[l2 - [[w]2 =
lv]]2; with v = — e - 1 restricted to the positive coordinates.
Moreover, to satisfy the unit norm constraint, we need to set
w* = v/|Joll>.

More generally, with negative coordinates, the solution will
depend on the soft thresholding operator v = n(u, A) well
known in signal processing and statistics.

Specifically, we will have v = n(u,¢), and w = v/||v||2.
Then we also get

o q . q
2- (plw—ellwl) 2 fIn(u )l
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This shows that the optimal classifier is sign{n(u, ¢) "z—q/2},
as desired. W

D. Proof of Theorem VI.4

If ||w||2 = 1, then the linear interval classifier is
Qint(m; w, C4, C—) = gint(x—rw; ]-7 Cq, C—),

and the problem effectively reduces to a one-dimensional
problem with new variable z,, = z'w € R, which is the
mixture of Gaussians |y ~ N (yw"p, 1), where ¢|lw||; is
the corresponding one-dimensional perturbation.

Hence, the robust risk to minimize with respect to weights
|lw]l2 = 1 and thresholds ¢y > c_ is

R(w,c+,c_)
= Rrob{gint(iw;1vc+767)75”w”1}
=T_ Pr (jw >C_ — 6”11)“1)
Ty |y=—1
+714 Pr (T, <cy+elwlh)
Twly=1
+ 7o I‘Dr O(:%w <c_ Fellwly or Ty > cq —ellw]1)
T |Y=
=7n_ Pr (&, >c_ —¢|w|)
T |y=-1
+7my Pr (T, <cy+elw|h)
Zwly=1

—|—7T0min{1, Pr (&, <c_ +ellw|h)
Ty |y=0

+ Pr (i 2 ey —efulh) |
Zo|y=0

— 1 B(em —ellwlly +wT ) + 7 Dles +elwly - wTp)
+momin {1, ®(c— + ellwl}1) + ®(ey — ellwl1)}
= min{ Ry (w, ¢y, c_), Ro(w, cy,c_)},
where & is the normal CDF, its complement is o:=1-—9,
and
Ri(w,cq,c ) =m_3(c_ —ellw|1 +w' p)
+ 1 ®(cy +ellwlli — w ) + mo,
Ro(w,cy,c) =m_8(c_ —ellw|l1 +w' p)
+me ey +ull —w' p)
+ mo{ ®(c— + ellwll1) + B(ey —ellwll1)}-

Now, El amounts to the two-class setting in Theorem VI.3
and is likewise minimized by

_In(r_/m)
22

since Ry is a decreasing function (for ¢y > c_ fixed) in
w'p — ellw|)1, which is itself maximized by n.(u). As-
suming £ < ||p|loo/2 prevents the degenerate case where
ne(w) = 0, and with w = @7 fixed, minimization with respect
to ¢ > c_ is as in the proof of Theorem V.I; note that
ne() 12— ellme ()l = e )3 Thus,

inf Ry (w,cq,c) = Ry (@}, ).

[wll2=1
cp>ce

~k T)E(:u) C+_C _6*
1 — ) - ==
17 () ll2



Next, note that
EQ(/LU7 Ct,y C,) > El(ﬂh Ct, 07)7

when c_ +¢llw[l; > ¢y — ¢|lw]||; so we need only minimize
Ro(w,cq,c_) over c— + e||lw||1 < et — g||lw|ly, which is
equivalently expressed via change of variables as

inf Ry(w,cy,c)

llwll2=1
cq>e_+2¢|wl

= inf Ry(w, 7y +e|wl1, 7 — eljw]1).
lwll2=1
Ty>T_

For any 74 > 7_,
Ro(w, 71 + el 7 = efwlh)
=1 B(r- — 2el|wlls +w ' p)
+ 1 @(ry + 2e||wlly —w ) + mo{ (1) + B(ry )},
is a decreasing function of w " y—2¢||w)||;, which is maximized

by w5 = 7c(p)/lIm2e (1) 2; again the case 70 (p) = 0 is
prevented by € < ||14]|0 /2. Fixing w = @3, minimization with
respect to ¢y > c¢_+2¢||w]|; is as in the proof of Theorem V.1.
Namely,

~x\ T 1
Ei — +(w2) H H(WO/W+)’
2 l[m2e (1) 2
o _(@)Tp  In(m/)
- 2 [m2e (1) ll2

are optimal if ¢; > ¢* + 2¢||w5 |1, and setting ¢, = c_ +
2¢e||w3 |1 is optimal otherwise. Thus
inf
llwll2=1
ey >et2efwlly

}’%Q(wv C+,) C—)

_ [ Re@e ), if @ =+ 2efas)h,
infeer Ro(@3, ¢ + 2| @3], ),

Putting it all together, we conclude that

otherwise.

inf R(w,cy,c_)

lw]2=1
cy>c_
inf Ry(w,cq,co),
lwl2=1
. cy>c—
= min ] ~
inf Ro(w, cq,c_)
wll2=1

cq>c_+2¢||wl1
AR5 o
Y B if & > & + 2¢||w;
{RQ(’lD;,éi,Ei) ’ + = || 2“17
) [Rree), .
min inﬂgRQ(ﬁ);’c+25H@;Hhc) , otherwise,
c€

~%

RQ(’LDS,Cj_,C_)

Ry (0%, &, ),

min{@l(wpf ,¢), } , if & > ¢+ 2¢||ws |1,
otherwise,

where the final equality follows from the observation that
Ry(3, ¢ + 2|3 |1, ¢) = Ra(3, ¢ + 2¢]| @3 |1, ¢)

> Ry (wF, &, ).
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Hence, we have optimal linear interval classifiers given by two
cases: 1) w) and c*, or ii) w5 and ¢ . Note that (ii) remains
a valid/feasible choice so long as ¢} > ¢* even if ¢} <
¢* +2¢||w3||1; it may just be sub-optimal in that case. Finally,
noting that weights and thresholds can be scaled, i.e.,

gint('r; ’LDT,é*, E*)
= Gint (23 07 (|9 (1) |2, €1 (1) |2, €7 (|7 (1) | 2),
Qint(x; ’lb;, Ej»a 5i)

= Gint (25 03 [[02e (1) |25 €4 M2 (1) |2, € (172 (1) [|2),

and simplifying completes the proof.

APPENDIX F
PROOFS FOR FINITE SAMPLE ANALYSIS

A. Proof of Proposition VIII 1

The first portion of this proof follows that of [17, Lemma
10], in that we first consider the following problem:

n
* .
w,, € argmin max  —y; ((z; + d;, w))
fwll,<1 =7 Nillc<e
n
= argmax min_y; ((z; + d;, w)) .
wll,<1 =] Iillc<e

In the inner minimization problem, it holds that

min  y;(z; + 6, w) = yi(z;, w) — e ||w||;,
0ill o <e
by the definition of the dual norm. Therefore the original
problem takes the form

n
wy, € argmaXZyi@i,w —ellwl,
wll,<1 5=

— argmaxn ((u,w) — & |w]l,).
lwll,<1

where we have defined u := 1 3" | y;z;. Now if we let w(j)
and u(j) denote the j™ components of the vectors w and u

respectively, we have

d

wy, € eTlr%TnjfZ u(f)w(f) — elw(j)l,

wl|, < j=1
Notice that if u(j) # 0, then sign(u(j)) = sign(w}(j)) as
flipping the signs will only make the j® term smaller. On the
other hand, if u(j) = 0, then the maximum is achieved when
w(j) = 0. Thus sign(u) = sign(wy). Now in a similar way
to what was done in the proof of Theorem V1.3, let us assume
WLOG that w > 0, which implies that w; > 0 as well. Then

we wish to solve

argmax (u —el, w) s.t.
w

It follows that w} = n(u,e)/ ||n(u,e)| where n is the soft-
thresholding operator. B



B. Proof of Theorem VIII.2

The formula of the robust risk for a classifier ¢ is

R(Q,&') = P(y = 1)P:c|y:1(571 + Bg)
+ P(y = *1)Pz‘y=_1(51 + Bs).

This expression holds for any classification problem, and the
set S7 (resp. S_1) denotes the set of all x € RP which are
classified to +1 (resp. —1) by the classifier y. When ¢ is a
linear classifier, both sets S; and S_; are half-spaces, e.g.,
S1 = {z € R? : wl'z — ¢ > 0}. Furthermore, it is easy to
see that the sets S;1 + Be and S_; + B, are also half-spaces.
E.g., we have S; + B. = {z € R? : wTz — ¢+ ¢|lwl/, > 0}
where || - ||« is the dual norm. In other words, we can interpret
S1 + Bep as the set of all the points that are classified as +1
by a slightly shifted linear classifier (w,c — €||w||.). Hence,
the term P,,—_1(S1 + B.) is the probability that the the new
linear classifier (w,c — e|jw||.) labels a point 2 as +1 while

z is generated conditioned on y = —1.
Let now (x;,y;) for ¢ = 1,...,n be sampled iid from a
joint distribution P, , for ¢ = 1,...,n. Let the fraction of 1-s

be 7, € [0,1]. Let P,+ be the empirical distributions of x;
given y; = 1 and —1, respectively. We can write the finite
sample robust risk as

Ry (9,€) = 7 - Poy(S—1 + Be)
+ (1 —mp) - P (S1 + Be).

(38)

As explained above, for any linear classifier (w,c) the sets
S1+ B and S_; + B are equivalent to half-spaces created
by slightly shifted linear classifiers. Hence, considering the
hypothesis class of all linear classifiers, the complexity of the
sets S7 (resp. S_1) is the same as the complexity of the sets
St1+ B: (resp. S_1+ B;). Now, by using standard arguments
from uniform-convergence theory and PAC learning, and not-
ing that the class of halfspaces has VC-dimension p + 1, we
conclude that for any § > 0,

Pr {v(w,c)ERPXR
[Pt (1 + Be) = Pujyea(S-1 + B)
> 1— exp(Clp — nd?)),

<o}

where C' is a constant independent of n, p. A similar result can
be obtained for uniform concentration on the sets S_; + B..
We also note (using, e.g., Hoeffding’s inequality) that Pr(|m,, —
P(y =1)| < §) > 1—2exp(—nd?). The result of the theorem
now follows by incorporating the bounds obtained above into
(38) and choosing C sufficiently large but independent of n, p.
|
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