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Abstract Borehole Thermal Energy Storage (BTES) represents cutting-edge technology harnessing the

Earth’s subsurface to store and extract thermal energy for heating and cooling purposes. Achieving optimal

performance in BTES systems relies heavily on selecting the right operational parameters. Among these

parameters, charging and discharging flow rates play a significant role in determining the amount of heat

that can be recovered effectively from the system. In this study, we introduce a Genetic Algorithm as

an optimization tool aimed at fine-tuning these operational parameters within a baseline BTES model.

The BTES model was developed using FEFLOW and simulated over a 3-year period. After each 3-year

simulation, the Genetic Algorithm iteratively adjusted the operational parameters to attain the optimal

configuration for maximizing heat recovery from the BTES system. Additional analysis was conducted to

explore the impact of BTES system size and borehole spacing on heat recovery. Results indicate that the

Genetic Algorithm effectively optimized parameters, leading to enhanced heat recovery efficiency. Moreover,

the scenario studies highlighted that closer borehole spacing correlates with higher recovery efficiency.
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1 Introduction1

Various countries have set targets for achieving net-zero carbon emissions. In the United States, Canada,2

the UK, and the European Union, a target has been set to achieve net-zero carbon emissions and other3

greenhouse gases by 2050 (Brown et al. 2023a). However, the dominant role of non-renewable energy such4

as fossil fuel in meeting the world’s energy demands has been a historical constant. Renewable sources of5

energy are an alternative that will help reduce the growing consumption of fossil fuels. Particularly within6

the heating sector, excess thermal energy can be temporarily stored and used during peak demand periods7

(Lanahan and Tabares-Velasco 2017).8

Thermal Energy Storage (TES) is a technology that has the ability to store extra energy during times9

of abundance and release it during peaks in demand (Tamme et al. 2012). This makes it a versatile and10

scalable solution that improves efficiency and dependability. During times of high energy production or11

in the summer period, excess heat can be captured by solar collectors, waste heat can be recovered from12

industrial operations, and heat can be captured from various homes. After being captured, this heat is13

stored in the subsurface for later use. This thermal energy can be released later to heat homes, especially14

in the cold seasons, and to power turbines. Thermal energy storage can be performed by exploiting the15

heat in different ways (Zhang 2016); thermo-chemical storage which utilizes reversible chemical reactions16

to store and release thermal energy, latent heat storage which stores the energy through phase changes,17

and sensible heat storage which works by increasing/decreasing the temperature of materials such as water,18

thermal oils, molten salts, or subsurface geological media.19

The subsurface is increasingly being utilized as a reservoir for storing thermal energy, which is referred to20

as Underground Thermal Energy Storage (UTES) (Aktaş and Kirçiçek 2021). UTES has been exploited in21

many areas on both large and small scales. Large scale includes commercial and industrial sectors helping22

to power turbines as well as heating and cooling buildings. It is used on a small scale as a medium to23

extract heat during the cold season and cold during the hot periods. During the summer, excess heat is24

stored underground and retrieved in winter for heating, and vice versa for cooling in the summer. This25

method helps balance seasonal variations in energy demand, contributing to grid stability. UTES uses a26

variety of storage media (Casasso et al. 2022), including deep aquifers confined by impermeable geological27

layers for Aquifer Thermal Energy Storage (ATES), and subsurface rock environments accessed through28

Borehole Heat Exchangers (BHE) for Borehole Thermal Energy Storage (BTES). ATES became popular29

for storing and retrieving thermal energy both in small and large quantities and also provided a reliable30

source of thermal energy due to the stable temperature of aquifers (Possemiers et al. 2014). A major setback31

ATES systems face is unfavorable hydrogeologic conditions (Shi et al. 2023). Not all geological environments32

possess suitable aquifers for efficient energy storage, making it difficult to store energy through an ATES33

system. An alternative option to use is a BTES system. BTES is a seasonal storage system that stores heat34
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in soil or rock environment during the summer months through a BHE embedded in the drilled holes to a35

desired depth. The stored heat is extracted to meet the heating demands in the winter heating season. A36

BTES system may consist of a single borehole with a coaxial BHE (Xie et al. 2018; Brown et al. 2023b),37

where fluid is circulated down the annular space, exchanging heat with the subsurface via conduction38

through the borehole wall before being circulated back to the surface, or an array of boreholes where heat39

transfer fluid circulates through the BHEs installed in the boreholes to exchange heat with the surrounding40

rock or sediment mass (Pourahmadiyan et al. 2023). After drilling the boreholes, a U-Tube or coaxial pipe41

is installed in the borehole, allowing the fluid to continuously circulate from the bottom of the borehole42

to the surface. Once the piping is fitted, the borehole may be left un-grouted and filled with groundwater,43

as is common in Scandinavia (e.g., Sweden and Norway) where boreholes are typically drilled in hard rock44

with the groundwater table a few meters below ground surface (Gehlin 2002), or grout may be poured into45

the remaining volume of the drilled borehole to provide structural support and improve heat conductivity46

between the earth and the heat transfer pipes.47

While BTES systems offer a sustainable and efficient solution for storing and retrieving thermal energy,48

one significant area of research is to obtain optimal recovery efficiency (e.g., Wo loszyn 2018; Casasso and49

Sethi 2014). The ratio of the total thermal energy recovered from the subsurface storage system to the total50

thermal energy injected during a yearly cycle is known as annual efficiency, which also can be termed as51

recovery efficiency or round trip efficiency. Therefore, optimizing the BTES system is crucial to achieving52

optimum energy efficiency. This is important because it reduces operational costs associated with heating53

and cooling, ensures the long-term sustainability of the BTES system by preventing degradation, wear,54

and inefficiencies over time, and contributes to the reduction of greenhouse gas emissions by promoting55

the use of renewable energy sources. For this area of renewable energy where optimization is vital to56

improve energy efficiency, published work reporting on optimization of the BTES systems is very scanty57

and optimization has been done mostly by calibration of parameters of the BTES system. For example,58

Rapantova et al. (2016) utilized a calibrated numerical model (FEFLOW finite element model) to simulate59

various heat injection and extraction cycles. They conducted calibration using data from six monitoring60

boreholes, measuring temperatures at depths up to 80 meters underground, with the aim of minimizing61

heat loss through dissipation to the ground. Kumawat et al. (2024) conducted sensitivity studies to evaluate62

BTES system performance across a range of operational, design, and geological parameters. Fiorentini63

and Baldini (2021) focused on operational optimization within a framework designed to identify optimal64

operating conditions for heat pump-driven BTES systems under different electricity CO2 intensity profiles.65

Their work introduced a novel linearized control-oriented model describing storage temperature dynamics66

under varying operational scenarios. Zhu et al. (2019) explored relationships between input parameters and67

output indicators through global sensitivity analysis coupled with 3D transient numerical methods, revealing68

significant interactions among different input variables influencing BTES performance. Disadvantages of69
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manual calibration are the time cost of obtaining the optimal parameters used in the design of the BTES70

system and the uncertainty that the achieved optimum recovery of heat after manual calibration is indeed71

the true recovery capacity of a particular BTES system.72

In order to successfully navigate the complexity involved in improving BTES systems, integration of73

modern optimization techniques is essential. Metaheuristic algorithms have been introduced previously to74

find optimal and near-optimal solutions for complex optimization problems. One optimzation algorithm that75

falls under the umbrella of the metaheuristic algorithms is particle swarm optimization (PSO), introduced76

by Kennedy and Eberhart (1995) drawing inspiration from the collective behavior of birds and fish. PSO77

involves three main controlling parameters—inertia weight, cognitive ratio, and social ratio—where even a78

slight adjustment can lead to different performances, as demonstrated by Eltamaly et al. (2020) and Harrison79

et al. (2018). PSO also has some limitations; with regard to complex and large datasets, it produces poor80

results. When faced with a considerable number of dimensions in the given problem, PSO often struggles81

to identify the global optimum solution. This issue arises not only from the entrapment in local optima82

but also from the potential variation in particle velocities, restricting the successive range of attempts to a83

subset of the overall search space (Pant et al. 2009; Gad 2022).84

Another type of metaheuristic algorithm is simulated annealing (SA). It stands out as a versatile and85

potent optimization technique, particularly adept at identifying global optima amidst numerous local op-86

tima. The term “annealing” draws an analogy from thermodynamics, specifically the cooling and annealing87

process observed in metals (Press and Teukolsky 1991). In simulated annealing, the optimization prob-88

lem’s objective function is employed, instead of using material energy in the metallurgical context. SA is89

recognized as a straightforward yet highly effective metaheuristic approach in solving global optima prob-90

lems, especially where the objective function is not explicitly defined and can only be assessed through91

computationally intensive simulations (Delahaye et al. 2019).92

Genetic Algorithm (GA) (Holland 1975) is another type of metaheuristic algorithms that emerged as93

a cutting-edge methodology to navigate the complexity inherent in optimizing BTES systems. It stands94

as one of the oldest and most widely recognized optimization techniques inspired by natural processes.95

Within the framework of GA, the exploration of solution space mimics the natural occurrences observed in96

the environment, incorporating principles from Darwinian theory of species evolution (Slowik and Kwas-97

nicka 2020). GAs offer several advantages over conventional optimization methods, with two particularly98

noteworthy strengths: their capability to handle complex problems and their inherent parallelism (Yang99

2021). GAs exhibit versatility in addressing diverse optimization types, accommodating objective functions100

that are either stationary or non-stationary (changing over time), linear or nonlinear, continuous or dis-101

continuous, and those affected by random noise. The parallelism inherent in genetic algorithms stems from102

multiple offspring within a population acting as independent agents, enabling the exploration of the search103

space in numerous directions simultaneously. GAs employ three key operators during the optimization104
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process: selection, crossover, and mutation. The selection process involves selecting the best individuals105

from the current generations as parents to form a mating pool for producing offspring for the next genera-106

tion. Individuals are selected based on their fitness, which is determined by their performance with respect107

to the objective function. Individuals with higher fitness are selected to form the mating pool. selection108

mimics the natural selection process, where individuals with better adaptability are more likely to pass109

their genetic information to the next generation. After forming the mating pool, a crossover operation is110

implemented. Crossover involves combining genetic information from two parents to produce offspring with111

a mix of their traits, thereby exploring new regions of the solution space. Parts of the genetic informa-112

tion (chromosomes) from two parents are exchanged, creating one or more offspring. Common methods113

include one-point crossover, two-point crossover, and uniform crossover. Crossover introduces diversity in114

the population, allowing the algorithm to exploit the beneficial combinations of traits present in the parent115

individuals. Mutation introduces random changes in the genetic information of individuals, preventing the116

algorithm from getting stuck in local optima and promoting exploration of the search space. A percentage of117

genes in an individual’s chromosome is randomly changed. The percentage is generally termed as mutation118

rate which determines the likelihood of a gene being mutated.119

Optimizing a BTES system entails addressing numerous parameters, including borehole spacing, op-120

erational parameters such as the flow rates, design parameters such as the thermal conductivity of the121

grouting material, and other factors. The challenge lies in finding a configuration that maximizes energy122

storage and recovery, minimizes losses, and adapts to varying thermal demands. GA excel in tackling such123

multidimensional optimization problems, offering a holistic approach to fine-tuning the intricate parameters124

of BTES systems. In this study, to be best of our knowledge, GA will be employed for the first time to125

search for two optimal operational parameters (charging and discharging flow rate) that emerge as critical126

operating parameters with substantial implications for the performance of a BTES system.127

2 Methodology128

2.1 Optimization of parameters129

In this study, three categories of parameters that influence the recovery efficiency of a BTES system were130

considered: (a) design, (b) operational, and (c) geological parameters. Design parameters, such as BHE131

spacing and grout thermal conductivity, influence heat transfer rates, thereby affecting system efficiency.132

Operational parameters, such as charging and discharging volumetric flow rate, are directly related to133

energy storage and recovery. Geological parameters consider the thermal conductivity of the ground.134

The separation distance between BHEs in a BTES model plays a crucial role in determining the system’s135

effectiveness. If the distance is too small, thermal interference can occur between the boreholes, impacting136

overall system efficiency. This interference involves the heat transfer fluid from one borehole affecting the137
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surrounding ground of another, diminishing the system’s overall effectiveness. Conversely, if the spacing is138

too large, it can result in increased costs and reduced efficiency. Larger land areas would be needed for the139

same thermal energy storage, and the heat transfer fluid would have to travel a greater distance, requiring140

more energy for circulation. Consequently, the optimal spacing between two BHEs in a BTES model must141

be meticulously considered to optimize the system’s performance.142

The thermal conductivity of the grout holds significant importance in the context of a BTES model. It143

dictates the speed at which heat exchange occurs between the ground and the heat transfer fluid circulating144

within the borehole. Grout is employed to fill the annular space between the borehole wall and the heat145

exchanger pipes, influencing the heat transfer between the ground and the heat transfer fluid. In cases146

where the grout exhibits low thermal conductivity, it acts as a thermal barrier, impeding heat transfer147

and diminishing the efficiency of the BTES system. Conversely, high thermal conductivity in the grout148

enhances heat transfer, thereby increasing the overall system efficiency. Consequently, the careful selection149

of a grout material with appropriate thermal conductivity is pivotal for optimizing the performance of a150

BTES system.151

The flow rate during charging and discharging operations emerges as a critical operating parameter with152

substantial implications for the performance of a BTES system. In the charging phase, the heat transfer153

fluid circulates through the BTES to store heat in the nearby ground, and the flow rate influences the154

efficiency of heat transfer from the working fluid to the BTES system. Conversely, in the discharging phase,155

the heat transfer fluid circulates through the BHEs to release stored heat into a building’s heating system.156

The flow rate during discharging determines the rate at which stored heat is released into a building. While157

a higher flow rate accelerates heat transfer, impacting the charging and discharging phases, it also could lead158

to elevated pressure drop, potentially affecting energy consumption and reducing system efficiency. Hence,159

obtaining an optimal flow rate for both charging and discharging becomes crucial, striking a balance between160

efficient heat transfer and the energy consumption of the system.161

The thermal conductivity of solids determines how easily heat can be transferred between the ground162

and the wall of the borehole. The rate of heat transfer between the borehole wall and the surrounding163

geological material is directly influenced by the thermal conductivity of the solid. A geological environment164

with high thermal conductivity facilitates easier heat transfer compared to an environment with low thermal165

conductivity. Understanding the thermal properties of the subsurface geologic properties is very crucial for166

attaining the highest recovery efficiency of the BTES system.167

2.2 Finite element model (FEM)168

The FEFLOW software (Diersch 2005), which is a finite element modeling tool, was employed to simu-169

late and compute temperature variations in the subsurface while transferring heat during charging and170
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discharging. The temperature changes in the ground around the borehole can be expressed through the171

following equation:172

ρ · c · ∂T
∂t

= ∇ · (k · ∇T ) + Q (1)

where ρ (kg/m3) is the density of the ground, c (J/(kg ∗K) is the specific heat capacity of the ground, and173

T (0C) is the temperature, t is time, k (W/(m ∗K)) is the thermal conductivity of the ground, Q (J/s) is174

the heat source and sink in the system.175

The study considered a BTES system with a circular configuration, primarily because of the favorable176

packing density it provides for boreholes within a designated area. This allows for the efficient installation177

of more boreholes in a given space, thereby optimizing the overall thermal energy storage capacity of the178

system (Skarphagen et al. 2019). To streamline our model, we focused on one quadrant of the circular179

BTES system, as shown in Figure 1.180

The FEM model employed is a homogeneous system with a depth of 30 m, consisting of 6 layers with181

a vertical discretization of 5 m. The modeling of BHEs employs a quasi-stationary computational method182

based on the work by Eskilson and Claesson (1988). This approach is advantageous for long-term simulations183

spanning hours or longer, particularly when inflow temperature changes are less frequent and less steep. The184

quasi-stationary method offers reasonable accuracy at a lower computational cost. The analytical solution185

assumes local thermal equilibrium between all elements of the BHE (pipes, grout, ground) at any point186

during the simulation. The model considers a configuration of double U-shaped BHEs connected in parallel.187

The borehole diameter is 12 cm, with a pipe separation of 4 cm between each U-shaped BHE. The pipes188

have a diameter of 3.2 cm, and the pipe walls are 0.29 cm thick. Figure 2 shows the cross-section of the189

borehole heat exchanger. The double U-shaped BHE comprises two pipes with fluid flowing in opposite190

directions, providing an increased contact area for enhanced heat transfer. The initial temperature of the191

BTES model before simulation was 10°C. The base case model parameters are listed in table 1 below:192

Table 1 BTES model parameters

Parameter Value

Thermal conductivity of solid (J/m/s/K) 3
Thermal conductivity of liquid (J/m/s/K) 0.65
Volumetric heat capacity of solid (MJ/m3/K) 2.52
Volumetric heat capacity of liquid (MJ/m3/K) 4.2
Grout thermal conductivity (J/m/s/K) 3
Inlet pipe thermal conductivity (J/m/s/K) 0.42
Outlet pipe thermal conductivity (J/m/s/K) 0.42
Inlet temperature during injection (0C) 45
Inlet temperature during recovery (0C) 10
Flow rate during charging/discharging (m3/day 20
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2.3 Genetic Algorithm193

The implementation of the genetic algorithm is demonstrated in the step below. The algorithm goes through194

a series of generations to obtain optimal results:195

Step 1: Generate population:196

The initial population consists of random candidate solutions (chromosomes) aimed at optimizing recov-197

ery efficiency. Each chromosome represents a potential solution for achieving the highest recovery efficiency.198

In this context, each chromosome is defined by two real numbers: the first number represents the flow rate199

during charging, and the second number represents the flow rate during discharging.200

Details of Generation:201

– Initialization: An initial set of chromosomes was randomly generated.202

– Population Size: The population size was set to five, balancing computational complexity with the need203

for diversity and exploration in the solution space.204

Newpop =



p1,1 p1,2

p2,1 p2,2

...
...

pm,1 pm,2


(2)

where p represents the model parameters to be inserted into the FEFLOW model in the fitness function.205

Each row is a set of parameters also known as chromosomes. pm represents the mth parameter in the mth206

chromosome. For this study, the first parameter in each row represents the charging flow rate and the207

second parameter is the discharging flow rate.208

Step 2: Compute the fitness function:209

Fitness function = f(Newpop) (3)

where f(.) represents the fitness function. In the fitness function, each chromosome is first inserted into210

the FEFLOW model. Subsequently, following the model’s execution, we calculate the recovery efficiency,211

RE = ∇Hrecovered

∇Hstored
× 100% as our objective function. The objective is to maximize this function, which is212

the RE.213

Step 3: Selection of parents:214

In this step, parents (chromosomes) are selected based on their fitness scores to ensure that superior215

solutions have a higher likelihood of passing their genetic material to the next generation. Consequently, in216

this step, the chromosome with the lowest RE is excluded, while the remaining chromosomes are retained217

as parents to generate offspring for the next generation.218
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Selection Method: The tournament selection method was employed for this selection process. This219

method involves randomly choosing a subset (tournament size) of chromosomes from the population and220

selecting the fittest chromosome from this subset as a parent. Tournament selection provides a balanced221

approach that is robust to noise and outliers in fitness values.222

Process:223

– Randomly select a fixed number of chromosomes (tournament size) from the population.224

– Evaluate their fitness and select the chromosome with the highest fitness as a parent.225

– Repeat the process to select multiple parents for crossover.226

Parent =



p1,1 p1,2

p2,1 p2,2

...
...

pm−1,1 pm−1,2


(4)

Step 4: Crossover function:227

After selecting the parents, the chromosome with the highest RE replaces the eliminated chromosome228

to maintain the original size of the population. Subsequently, the crossover function is employed to merge229

two chromosomes, exchanging portions of parameters between them. The population generated after the230

crossover function is termed the offspring.231

Process:232

Crossover Points: In this case, a single-point crossover was employed because the chromosome contains233

only two values, making the crossover point the last value in the chromosome.234

Offspring Creation: Apply crossover to pairs of selected parent chromosomes to generate offspring235

that inherit genetic information from both parents.236

237

Offspring =



p∗
1,1 p∗

1,2

p∗
2,1 p∗

2,2

...
...

p∗
m,1 p∗

m,2


(5)

Step 5: Mutation:238

In the final stages of the genetic algorithm’s implementation, the mutation step is applied. During239

this step, all chromosomes are selected for mutation. Genes within each chromosome are chosen randomly,240

ensuring that each gene has an equal chance of being mutated.241
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3 Synthetic Cases242

In this study, a genetic algorithm is employed to optimize the two operational parameters, while the grout243

thermal conductivity and the thermal conductivity of the ground remains fixed. This study considered two244

BHE spacings, a 2.5 m spacing and a 10 m spacing. The genetic algorithm ran for 30 generations because,245

following a pilot experiment, there was a considerable reduction in recovery efficiency differences from the246

25th generation to the 30th generation. The objective was to explore the efficacy of mathematical algorithms247

in obtaining optimal parameters for a BTES system design. Algorithm 1 shows the process of implementing248

the optimization. During the optimization process, three scenarios were considered, as shown in Table 2.249

These scenarios are presented to analyze the impact of the number of boreholes and their spacing on the250

overall heat recovery efficiency. The implementation of the genetic algorithm for the optimization process251

is illustrated in algorithm 1.252

Table 2 Scenarios studies.

Scenarios BHE spacing (m) Number of BHEs

1 2.5 127
2 2.5 37
3 10 13

Algorithm 1: Optimization of Parameters using Genetic Algorithm and FEFLOW Model

Set: Nw = Number of parameters
Set: Npop = Number of population
Set: Ngen = Number of generations
begin

Generate new population, Newpop = (Npop, Nw)
for generation = 1, 2, · · · , Ngen do

Implement the fitness function
for i = 1, 2, · · · , Npop do

Insert parameters into the FEFLOW model
Run Feflow model and calculate recovery efficiency (RE)

RE = ∇Hrecovered

∇Hstored
× 100%

Select the best chromosomes in the current population to join the mating pool:
for i = 1, 2, · · · , Npop do

Eliminate the chromosome with the least RE

Replace it with the chromosome with the highest RE
parent = (Npop, Nw)
Generate next generation using the crossover function:
offspring = (Npop, Nw)
Add variation to the offspring using the mutation function:
Newpop = (Npop, Nw)

end
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4 Results253

4.0.1 Optimization for 2.5 m BHE spacing254

The optimization process for the BTES with a 2.5 m BHE spacing considered two scenarios. In the first255

scenario, a large number of BHEs, approximately 127, were deployed, as shown in Figure 3a. The second256

scenario involved fewer BHEs, approximately 37, as depicted in Figure 3b.257

The results of the optimization process for the two scenarios are shown in Figures 4 and 5. For scenario258

1, after 30 generations, the optimal recovery efficiency reached approximately 65% by the 28th generation.259

At this point, the charging and discharging flow rates were approximately 18 m3/day and 39 m3/day,260

respectively. Scenario 2, with fewer BHEs, achieved an approximate recovery efficiency of 52.9% at the 29th261

generation. The charging and discharging flow rates were approximately 20.5 m3/day and 36.9 m3/day,262

respectively. The results of the analysis provide compelling evidence indicating a direct relationship between263

the increase in discharging flow rates and the corresponding rise in recovery efficiency. Upon closer exam-264

ination of Figure 4, a discernible trend emerges wherein successive generations witness a notable uptick265

in both discharging flow rates and recovery efficiency. This suggests a positive correlation between these266

variables over time. Additionally, Figure 5 further reinforces this observation by highlighting instances267

where the algorithm generates higher discharging flow rates, coinciding with significant spikes in recovery268

efficiency. These findings underscore the importance of monitoring and optimizing discharging flow rates as269

a critical factor in enhancing overall recovery efficiency within our operational processes. By understanding270

and leveraging this relationship, we can effectively improve our process performance and achieve greater271

efficiency.272

One of the primary goals of optimizing the recovery efficiency in a BTES system is to maximize the273

amount of heat recovered from the subsurface while minimizing costs during the design, construction,274

operation, and production phases of the heat storage and retrieval process. A significant cost factor is the275

number of wells drilled for the BTES system. More boreholes result in higher initial and maintenance costs.276

The results of the recovery efficiency after the optimization process for the two scenarios show that using277

fewer BHEs in scenario 2 (37 BHEs) compared to scenario 1 (127 BHEs) did not result in poor performance.278

Scenario 2 achieved a RE of 52.9%, despite having less than a third of the boreholes used in scenario 1.279

Therefore, the optimization process revealed that a substantial reduction in the number of boreholes can280

still yield significant heat recovery from the BTES system without incurring the additional costs associated281

with a larger number of boreholes during the design and operation phases.282

The analysis also focused on examining the temperature distributions within the BTES model under283

two different scenarios, as visually represented in Figure 6 and Figure 7. In Scenario 1, characterized by a284

higher number of 127 BHEs, the temperature distribution appears to be more extensive across the model285

domain compared to Scenario 2. This disparity arises because Scenario 1 features a greater number of BHEs286
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covering a larger area. Consequently, there are more points within the system where heat exchange occurs,287

leading to a more even distribution of heat throughout the system. This results in a smoother transition in288

temperature from the inlet to the outlet, with the temperature change being more gradual and uniform along289

the length of the BTES system. Conversely, in Scenario 2, which has fewer BHEs covering a smaller area, the290

distribution of heat exchange points is more limited. As a result, heat transfer becomes more concentrated291

and localized around these points. This concentration of heat exchange leads to a more abrupt and less292

gradual temperature change from the inlet to the outlet compared to Scenario 1. Consequently, Scenario 2293

exhibits a steeper temperature gradient along the length of the BTES system. Moreover, the higher number294

of BHEs covering a larger area in Scenario 1 results in a greater density of heat exchange locations per unit295

area of the model domain. This increased density provides more opportunities for heat exchange to occur296

across a larger portion of the BTES domain compared to Scenario 2, where fewer BHEs cover a smaller297

portion of the model domain. Leading to scenario 1 achieving higher recovery efficiency than scenario 2.298

Additionally, another contributing factor to the lower temperature levels observed in Scenario 2 could299

be the migration of a substantial amount of heat to areas devoid of BHEs. This dispersion of heat poses300

challenges in its retrieval, thereby increasing the likelihood of heat dissipation. Conversely, Scenario 1301

benefits from a more extensive coverage of BHEs across a larger portion of the model domain, facilitating302

more efficient heat retention and retrieval mechanisms. Thus, the interplay between BHE distribution, heat303

storage capacity, and the dynamics of heat migration in the surrounding environment elucidates the nuanced304

variations in temperature distributions and the utilization of heat observed between the two scenarios.305

4.0.2 Optimization for 10 m BHE spacing306

This optimization process involved a 10 m BHE spacing, as illustrated in Figure 8. After 30 generations,307

the optimal recovery efficiency of approximately 14.9% was achieved in the 30th generation (Figure 9).308

The charging and discharging flow rates were 24.8 m3/day and 36.2 m3/day, respectively. Throughout the309

process of optimization, there was a little improvement in the overall recovery efficiency. This observation310

becomes particularly evident upon examining the trends in both charging and discharging flow rates.311

Across successive generations, there seemed to be minimal changes (increase or decrease) between the312

previous parameters of charging and discharging flow rates and the subsequent ones generated. However,313

an interesting pattern emerges when there’s a notable difference between the discharging and charging flow314

rates, specifically when the former exceeds the latter. It is in these instances that a significant increase in315

recovery efficiency was observed. Moreover, it is worth noting a stark contrast in the flow rate dynamics316

between this scenario and scenarios 1 and 2. Here, both the charging and discharging flow rates appear to317

be relatively high. This deviation from the previous scenarios, where the charging flow rates were notably318

lower compared to discharging flow rates, can be attributed to the larger distances between the BHEs.319

The greater distance between the BHEs necessitates a higher flow rate to effectively circulate heat through320
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the system and extract it efficiently. Consequently, the requirement for higher flow rates in this scenario321

highlights the intricate interplay between system design parameters, such as BHE spacing, and operational322

variables like flow rates, all of which impact the overall efficiency and effectiveness of the system.323

Similar to Scenario 1, the cross-section of the model domain reveals a broad temperature distribution.324

Additionally, the wider spacing between BHEs leads to extensive temperature migration and interaction325

with surrounding materials, resulting in a decrease in temperature. As depicted in Figure 10, there is a326

noticeable temperature reduction between successive BHEs. Specifically, the surrounding temperature of327

the last BHE is approximately 13oC, which is close to the boundary temperature.328

The temperature profile and recovery efficiency for a 3-year cycle are depicted in Figure 11 for both329

2.5 m (scenario 1) and 10 m spacings. The analysis reveals distinct trends. During charging, the 10m330

spacing exhibits a rapid initial temperature rise followed by a gradual increase, while the 2.5 m spacing331

shows a steady incremental change throughout the charging phase. Throughout the 3-year cycle, the 2.5 m332

spacing records consistently higher temperatures during the charging phase, with the temperature difference333

between the two spacings increasing in successive cycles. During discharging, the 2.5 m spacing also records334

higher temperatures compared to the 10m spacing, with both systems experiencing significant temperature335

increases in successive cycles, however the 2.5 m spacing scenario recovered more heat than the 10m spacing.336

These temperature profile trends are reflected in the recovery efficiency, with the 2.5 m spacing consistently337

achieving higher heat recovery across the 3-year cycle. The difference in recovery efficiency between the two338

BHE spacings widens at each successive year, indicating that the 2.5 m spacing will continue to recover339

more heat than the 10m spacing in additional cycles.340

4.0.3 Base case vs optimum case341

The BTES system for scenario 1 underwent simulation spanning a six-year cycle to conduct a comparative342

analysis between a base case scenario, characterized by a charging and discharging flow rate of 20 m3/day,343

and the optimized configuration of scenario 1. Throughout this simulation, the dynamic interplay between344

charging and discharging cycles and their consequent impact on outlet temperature variations highlighted345

the critical importance of optimizing operational parameters for achieving peak system performance.346

Figure 12 provides a comparative overview of the recovery efficiency between the base and optimized347

scenarios. Within the initial year, the base case attained a recovery efficiency of 34.1%, while the optimized348

scenario showcased a notably higher efficiency of 62.2%. This difference in recovery efficiency signifies349

that a larger proportion of the energy injected is recovered during the discharging phase in the optimized350

scenario, thereby enhancing the energy efficiency and cost-effectiveness of the BTES system. Furthermore,351

it also implies a diminished environmental footprint, as the system operates with greater efficiency, thereby352

minimizing energy wastage.353

13



To comprehensively evaluate the long-term efficacy of the BTES system, it’s imperative to consider the354

recovery rates across multiple cycles. Over the span of the six-year cycle, the base case peaked at a recovery355

efficiency of 60.6%, whereas the optimized scenario consistently outperformed, achieving a significantly356

higher recovery efficiency of 96.5%. The widening gap in recovery efficiency between the optimized and357

base scenarios with each successive cycle underscores the optimized scenario’s ability to extract more heat358

per cycle compared to the base scenario, indicating sustained superior performance over time.359

5 Discussion360

Several sensitivity analysis studies have been conducted to determine the impact of design, operational,361

and geological parameters on BTES system efficiency. These studies focus on optimizing the heat transfer362

process, minimizing heat loss, and enhancing overall system performance. Han and Yu (2016) conducted363

a sensitivity analysis on geological attributes (initial ground temperature, groundwater velocity, and ther-364

mal properties of materials), design factors (borehole depth), and operational parameters (working fluid365

velocity, inlet temperature, and intermittent mode) for a vertical Ground Source Heat Pump (GSHP). The366

results showed that geological properties, borehole depth, and working fluid velocity significantly influence367

performance, while specific heat capacity showed no noticeable impact. Wo loszyn and Go laś (2014) ana-368

lyzed BTES efficiency with single U-tube boreholes, focusing on geological thermal properties, including369

thermal conductivity, specific heat, and density of the rock mass and grout material. The study found that370

thermal conductivity of the rock mass had the most significant impact. Wo loszyn (2018) conducted a global371

sensitivity analysis (GSA) on BTES efficiency during long-term operation, assessing the influence of BHE372

arrangement parameters (distance between BHE axes in the x-direction and y-direction, and the angle373

between the top surface of the rock mass and borehole axes). The results showed that BHE inclination374

crucially impacts BTES efficiency. Baser and McCartney (2015) studied the influence of different variables375

on a BTES model with five boreholes, including heat injection rate, duration, ground thermal conductivity,376

and borehole spacing. The study indicated that soil with lower thermal conductivity had less lateral heat377

loss, and arrays with smaller borehole spacing allowed more concentrated heat storage at higher tempera-378

tures. Kumawat et al. (2024) conducted a sensitivity analysis of BTES modeling on a wedge-shaped model,379

examining five parameters: well spacing, grout thermal conductivity, charging and discharging rates, and380

soil thermal conductivity. The analysis revealed that BHE spacing and volumetric flow rate had the highest381

impact on roundtrip efficiency.382

Other optimization techniques for BTES systems have also been studied. Schulte et al. (2015) presented383

an approach for simulating and optimizing borehole thermal energy storage systems, using a software tool384

to optimize the number and length of borehole heat exchangers based on specific annual heat demand.385

The tool effectively determined the ideal size of the thermal energy storage, showing that BTES systems386
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operate efficiently in large-scale applications. Fiorentini and Baldini (2021) proposed a control-oriented387

numerical optimization model to determine the best operating conditions for a heat pump-driven BTES,388

aiming to reduce yearly CO2 emissions by shifting the heat pump’s electricity load based on CO2 intensity389

profiles. The study demonstrated that this boundary condition is crucial for optimal system operation.390

Rapantova et al. (2016) optimized the lengths of charging and discharging cycles to minimize heat loss391

due to ground dissipation, finding borehole depth optimization crucial for reducing heat exchange surface392

area and heat losses. Lanini et al. (2014) established a 1D analytical model and a 3D multilayer numerical393

model, validated against experimental data, to simulate different configurations over many years. The study394

included a full-scale experiment evaluating the energetic potential of BTES, showing that the heat transfer395

fluid lost 15% of its energy at a depth of 100 m and 25% at 150 m.396

The conclusions from these studies primarily analyze the influence of various BTES parameters on397

system performance. While geological parameters (e.g., ground thermal conductivity) significantly affect398

performance, they cannot be easily altered to optimize heat recovery. However, operational and design399

parameters, as noted in the literature, also have a significant influence and can be regulated for optimal400

recovery. Existing theoretical research on optimizing BTES parameters for optimal heat recovery is insuffi-401

cient. In this paper, we propose a method using a genetic algorithm to optimize BTES recovery efficiency402

by automatically adjusting the operational parameters (charging and discharging flow rate) of the BTES403

system. The results were promising, indicating that by using the genetic algorithm to calibrate the BTES404

operational parameters, and adjusting the BHE spacing, optimal recovery efficiency was achieved after the405

optimization process.406

6 Conclusion407

This research study aimed to optimize the operation of BTES systems by utilizing a genetic algorithm to408

compute optimal parameters for maximizing energy recovery. The study focused on design, operational, and409

geological parameters. Design parameters included thermal conductivity of the grout and BHE spacing, with410

two spacing configurations considered. The geological parameter was the subsurface’s thermal conductivity,411

of which both the subsurface’s thermal conductivity and the grout thermal conductivity were held constant.412

The optimization algorithm focused on operational parameters, such as charging and discharging flow rates.413

Finite element simulation was employed to simulate the BTES system and compute recovery efficiency as414

the performance metric for testing the optimized parameters.415

The results highlighted the intricate relationship between recovery efficiency, BHE spacing, and the416

volumetric charging and discharging flow rates within the BTES system. It was evident that smaller BHE417

spacing correlated with higher recovery rates, while, within a specific BHE spacing, higher discharging flow418

rates contributed to enhanced recovery efficiency. However, an interesting observation emerged regarding419
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the interplay between BHE spacing and flow rates during charging. It was noted that when the BHE spacing420

was smaller, the flow rate during charging tended to be lower compared to configurations with larger BHE421

spacing. This suggests a trade-off between BHE spacing and flow rates during charging, indicating the422

need for careful consideration when optimizing these parameters. Moreover, an optimal BTES model was423

developed and compared against the base case. The findings revealed that the optimal model achieved an424

impressive recovery efficiency of 96.5% over a simulated six-year period. This highlights the effectiveness of425

optimizing system parameters in maximizing energy recovery and overall system performance.426

By delving into the impact of various parameters on system performance, this study contributes to the427

use of mathematical algorithms for obtaining optimal parameters, ultimately enhancing the efficient design428

and operation of BTES systems.429
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Fig. 1 Finite element model grid for this study

Fig. 2 Cross-section of the borehole heat exchanger
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Fig. 3 Top view of a simulated BTES system containing: a. 127 BHEs and b. 37 BHEs

Fig. 4 Optimal parameters and recovery efficiency for scenario 1

20



Fig. 5 Optimal parameters and recovery efficiency for scenario 2

Fig. 6 Cross-section of the BTES model showing spatial distribution of temperature after 3-year cycle for scenario 1
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Fig. 7 Cross-section of the BTES model showing spatial distribution of temperature after 3-year cycle for scenario 2

Fig. 8 Top view of the simulated BTES system for 10m BHE spacing
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Fig. 9 Optimum parameters and recovery efficiency for scenario 3

Fig. 10 Cross-section of the BTES model showing spatial distribution of temperature after 3-year cycle for scenario 3
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Fig. 11 Temperature profile and recovery efficiency for a 3-year cycle

Fig. 12 Recovery efficiency of base case and optimum case
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