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Abstract Borehole Thermal Energy Storage (BTES) represents cutting-edge technology harnessing the
Earth’s subsurface to store and extract thermal energy for heating and cooling purposes. Achieving optimal
performance in BTES systems relies heavily on selecting the right operational parameters. Among these
parameters, charging and discharging flow rates play a significant role in determining the amount of heat
that can be recovered effectively from the system. In this study, we introduce a Genetic Algorithm as
an optimization tool aimed at fine-tuning these operational parameters within a baseline BTES model.
The BTES model was developed using FEFLOW and simulated over a 3-year period. After each 3-year
simulation, the Genetic Algorithm iteratively adjusted the operational parameters to attain the optimal
configuration for maximizing heat recovery from the BTES system. Additional analysis was conducted to
explore the impact of BTES system size and borehole spacing on heat recovery. Results indicate that the
Genetic Algorithm effectively optimized parameters, leading to enhanced heat recovery efficiency. Moreover,

the scenario studies highlighted that closer borehole spacing correlates with higher recovery efficiency.
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1 Introduction

Various countries have set targets for achieving net-zero carbon emissions. In the United States, Canada,
the UK, and the European Union, a target has been set to achieve net-zero carbon emissions and other
greenhouse gases by 2050 (Brown et al. 2023a). However, the dominant role of non-renewable energy such
as fossil fuel in meeting the world’s energy demands has been a historical constant. Renewable sources of
energy are an alternative that will help reduce the growing consumption of fossil fuels. Particularly within
the heating sector, excess thermal energy can be temporarily stored and used during peak demand periods

(Lanahan and Tabares-Velasco 2017).

Thermal Energy Storage (TES) is a technology that has the ability to store extra energy during times
of abundance and release it during peaks in demand (Tamme et al. 2012). This makes it a versatile and
scalable solution that improves efficiency and dependability. During times of high energy production or
in the summer period, excess heat can be captured by solar collectors, waste heat can be recovered from
industrial operations, and heat can be captured from various homes. After being captured, this heat is
stored in the subsurface for later use. This thermal energy can be released later to heat homes, especially
in the cold seasons, and to power turbines. Thermal energy storage can be performed by exploiting the
heat in different ways (Zhang 2016); thermo-chemical storage which utilizes reversible chemical reactions
to store and release thermal energy, latent heat storage which stores the energy through phase changes,
and sensible heat storage which works by increasing/decreasing the temperature of materials such as water,

thermal oils, molten salts, or subsurface geological media.

The subsurface is increasingly being utilized as a reservoir for storing thermal energy, which is referred to
as Underground Thermal Energy Storage (UTES) (Aktas and Kirgigek 2021). UTES has been exploited in
many areas on both large and small scales. Large scale includes commercial and industrial sectors helping
to power turbines as well as heating and cooling buildings. It is used on a small scale as a medium to
extract heat during the cold season and cold during the hot periods. During the summer, excess heat is
stored underground and retrieved in winter for heating, and vice versa for cooling in the summer. This
method helps balance seasonal variations in energy demand, contributing to grid stability. UTES uses a
variety of storage media (Casasso et al. 2022), including deep aquifers confined by impermeable geological
layers for Aquifer Thermal Energy Storage (ATES), and subsurface rock environments accessed through
Borehole Heat Exchangers (BHE) for Borehole Thermal Energy Storage (BTES). ATES became popular
for storing and retrieving thermal energy both in small and large quantities and also provided a reliable
source of thermal energy due to the stable temperature of aquifers (Possemiers et al. 2014). A major setback
ATES systems face is unfavorable hydrogeologic conditions (Shi et al. 2023). Not all geological environments
possess suitable aquifers for efficient energy storage, making it difficult to store energy through an ATES

system. An alternative option to use is a BTES system. BTES is a seasonal storage system that stores heat
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in soil or rock environment during the summer months through a BHE embedded in the drilled holes to a
desired depth. The stored heat is extracted to meet the heating demands in the winter heating season. A
BTES system may consist of a single borehole with a coaxial BHE (Xie et al. 2018; Brown et al. 2023b),
where fluid is circulated down the annular space, exchanging heat with the subsurface via conduction
through the borehole wall before being circulated back to the surface, or an array of boreholes where heat
transfer fluid circulates through the BHEs installed in the boreholes to exchange heat with the surrounding
rock or sediment mass (Pourahmadiyan et al. 2023). After drilling the boreholes, a U-Tube or coaxial pipe
is installed in the borehole, allowing the fluid to continuously circulate from the bottom of the borehole
to the surface. Once the piping is fitted, the borehole may be left un-grouted and filled with groundwater,
as is common in Scandinavia (e.g., Sweden and Norway) where boreholes are typically drilled in hard rock
with the groundwater table a few meters below ground surface (Gehlin 2002), or grout may be poured into
the remaining volume of the drilled borehole to provide structural support and improve heat conductivity

between the earth and the heat transfer pipes.

While BTES systems offer a sustainable and efficient solution for storing and retrieving thermal energy,
one significant area of research is to obtain optimal recovery efficiency (e.g., Woloszyn 2018; Casasso and
Sethi 2014). The ratio of the total thermal energy recovered from the subsurface storage system to the total
thermal energy injected during a yearly cycle is known as annual efficiency, which also can be termed as
recovery efficiency or round trip efficiency. Therefore, optimizing the BTES system is crucial to achieving
optimum energy efficiency. This is important because it reduces operational costs associated with heating
and cooling, ensures the long-term sustainability of the BTES system by preventing degradation, wear,
and inefficiencies over time, and contributes to the reduction of greenhouse gas emissions by promoting
the use of renewable energy sources. For this area of renewable energy where optimization is vital to
improve energy efficiency, published work reporting on optimization of the BTES systems is very scanty
and optimization has been done mostly by calibration of parameters of the BTES system. For example,
Rapantova et al. (2016) utilized a calibrated numerical model (FEFLOW finite element model) to simulate
various heat injection and extraction cycles. They conducted calibration using data from six monitoring
boreholes, measuring temperatures at depths up to 80 meters underground, with the aim of minimizing
heat loss through dissipation to the ground. Kumawat et al. (2024) conducted sensitivity studies to evaluate
BTES system performance across a range of operational, design, and geological parameters. Fiorentini
and Baldini (2021) focused on operational optimization within a framework designed to identify optimal
operating conditions for heat pump-driven BTES systems under different electricity CO2 intensity profiles.
Their work introduced a novel linearized control-oriented model describing storage temperature dynamics
under varying operational scenarios. Zhu et al. (2019) explored relationships between input parameters and
output indicators through global sensitivity analysis coupled with 3D transient numerical methods, revealing

significant interactions among different input variables influencing BTES performance. Disadvantages of
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manual calibration are the time cost of obtaining the optimal parameters used in the design of the BTES
system and the uncertainty that the achieved optimum recovery of heat after manual calibration is indeed

the true recovery capacity of a particular BTES system.

In order to successfully navigate the complexity involved in improving BTES systems, integration of
modern optimization techniques is essential. Metaheuristic algorithms have been introduced previously to
find optimal and near-optimal solutions for complex optimization problems. One optimzation algorithm that
falls under the umbrella of the metaheuristic algorithms is particle swarm optimization (PSO), introduced
by Kennedy and Eberhart (1995) drawing inspiration from the collective behavior of birds and fish. PSO
involves three main controlling parameters—inertia weight, cognitive ratio, and social ratio—where even a
slight adjustment can lead to different performances, as demonstrated by Eltamaly et al. (2020) and Harrison
et al. (2018). PSO also has some limitations; with regard to complex and large datasets, it produces poor
results. When faced with a considerable number of dimensions in the given problem, PSO often struggles
to identify the global optimum solution. This issue arises not only from the entrapment in local optima
but also from the potential variation in particle velocities, restricting the successive range of attempts to a

subset of the overall search space (Pant et al. 2009; Gad 2022).

Another type of metaheuristic algorithm is simulated annealing (SA). It stands out as a versatile and
potent optimization technique, particularly adept at identifying global optima amidst numerous local op-
tima. The term “annealing” draws an analogy from thermodynamics, specifically the cooling and annealing
process observed in metals (Press and Teukolsky 1991). In simulated annealing, the optimization prob-
lem’s objective function is employed, instead of using material energy in the metallurgical context. SA is
recognized as a straightforward yet highly effective metaheuristic approach in solving global optima prob-
lems, especially where the objective function is not explicitly defined and can only be assessed through

computationally intensive simulations (Delahaye et al. 2019).

Genetic Algorithm (GA) (Holland 1975) is another type of metaheuristic algorithms that emerged as
a cutting-edge methodology to navigate the complexity inherent in optimizing BTES systems. It stands
as one of the oldest and most widely recognized optimization techniques inspired by natural processes.
Within the framework of GA, the exploration of solution space mimics the natural occurrences observed in
the environment, incorporating principles from Darwinian theory of species evolution (Slowik and Kwas-
nicka 2020). GAs offer several advantages over conventional optimization methods, with two particularly
noteworthy strengths: their capability to handle complex problems and their inherent parallelism (Yang
2021). GAs exhibit versatility in addressing diverse optimization types, accommodating objective functions
that are either stationary or non-stationary (changing over time), linear or nonlinear, continuous or dis-
continuous, and those affected by random noise. The parallelism inherent in genetic algorithms stems from
multiple offspring within a population acting as independent agents, enabling the exploration of the search

space in numerous directions simultaneously. GAs employ three key operators during the optimization
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process: selection, crossover, and mutation. The selection process involves selecting the best individuals
from the current generations as parents to form a mating pool for producing offspring for the next genera-
tion. Individuals are selected based on their fitness, which is determined by their performance with respect
to the objective function. Individuals with higher fitness are selected to form the mating pool. selection
mimics the natural selection process, where individuals with better adaptability are more likely to pass
their genetic information to the next generation. After forming the mating pool, a crossover operation is
implemented. Crossover involves combining genetic information from two parents to produce offspring with
a mix of their traits, thereby exploring new regions of the solution space. Parts of the genetic informa-
tion (chromosomes) from two parents are exchanged, creating one or more offspring. Common methods
include one-point crossover, two-point crossover, and uniform crossover. Crossover introduces diversity in
the population, allowing the algorithm to exploit the beneficial combinations of traits present in the parent
individuals. Mutation introduces random changes in the genetic information of individuals, preventing the
algorithm from getting stuck in local optima and promoting exploration of the search space. A percentage of
genes in an individual’s chromosome is randomly changed. The percentage is generally termed as mutation
rate which determines the likelihood of a gene being mutated.

Optimizing a BTES system entails addressing numerous parameters, including borehole spacing, op-
erational parameters such as the flow rates, design parameters such as the thermal conductivity of the
grouting material, and other factors. The challenge lies in finding a configuration that maximizes energy
storage and recovery, minimizes losses, and adapts to varying thermal demands. GA excel in tackling such
multidimensional optimization problems, offering a holistic approach to fine-tuning the intricate parameters
of BTES systems. In this study, to be best of our knowledge, GA will be employed for the first time to
search for two optimal operational parameters (charging and discharging flow rate) that emerge as critical

operating parameters with substantial implications for the performance of a BTES system.

2 Methodology

2.1 Optimization of parameters

In this study, three categories of parameters that influence the recovery efficiency of a BTES system were
considered: (a) design, (b) operational, and (c) geological parameters. Design parameters, such as BHE
spacing and grout thermal conductivity, influence heat transfer rates, thereby affecting system efficiency.
Operational parameters, such as charging and discharging volumetric flow rate, are directly related to
energy storage and recovery. Geological parameters consider the thermal conductivity of the ground.

The separation distance between BHEs in a BTES model plays a crucial role in determining the system’s
effectiveness. If the distance is too small, thermal interference can occur between the boreholes, impacting

overall system efficiency. This interference involves the heat transfer fluid from one borehole affecting the
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surrounding ground of another, diminishing the system’s overall effectiveness. Conversely, if the spacing is
too large, it can result in increased costs and reduced efficiency. Larger land areas would be needed for the
same thermal energy storage, and the heat transfer fluid would have to travel a greater distance, requiring
more energy for circulation. Consequently, the optimal spacing between two BHEs in a BTES model must
be meticulously considered to optimize the system’s performance.

The thermal conductivity of the grout holds significant importance in the context of a BTES model. It
dictates the speed at which heat exchange occurs between the ground and the heat transfer fluid circulating
within the borehole. Grout is employed to fill the annular space between the borehole wall and the heat
exchanger pipes, influencing the heat transfer between the ground and the heat transfer fluid. In cases
where the grout exhibits low thermal conductivity, it acts as a thermal barrier, impeding heat transfer
and diminishing the efficiency of the BTES system. Conversely, high thermal conductivity in the grout
enhances heat transfer, thereby increasing the overall system efficiency. Consequently, the careful selection
of a grout material with appropriate thermal conductivity is pivotal for optimizing the performance of a
BTES system.

The flow rate during charging and discharging operations emerges as a critical operating parameter with
substantial implications for the performance of a BTES system. In the charging phase, the heat transfer
fluid circulates through the BTES to store heat in the nearby ground, and the flow rate influences the
efficiency of heat transfer from the working fluid to the BTES system. Conversely, in the discharging phase,
the heat transfer fluid circulates through the BHEs to release stored heat into a building’s heating system.
The flow rate during discharging determines the rate at which stored heat is released into a building. While
a higher flow rate accelerates heat transfer, impacting the charging and discharging phases, it also could lead
to elevated pressure drop, potentially affecting energy consumption and reducing system efficiency. Hence,
obtaining an optimal flow rate for both charging and discharging becomes crucial, striking a balance between
efficient heat transfer and the energy consumption of the system.

The thermal conductivity of solids determines how easily heat can be transferred between the ground
and the wall of the borehole. The rate of heat transfer between the borehole wall and the surrounding
geological material is directly influenced by the thermal conductivity of the solid. A geological environment
with high thermal conductivity facilitates easier heat transfer compared to an environment with low thermal
conductivity. Understanding the thermal properties of the subsurface geologic properties is very crucial for

attaining the highest recovery efficiency of the BTES system.

2.2 Finite element model (FEM)

The FEFLOW software (Diersch 2005), which is a finite element modeling tool, was employed to simu-

late and compute temperature variations in the subsurface while transferring heat during charging and
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discharging. The temperature changes in the ground around the borehole can be expressed through the
following equation:
or

p~c-§—v-(k~VT)+Q (1)

where p (kg/m?) is the density of the ground, ¢ (J/(kg* K) is the specific heat capacity of the ground, and
T (°C) is the temperature, t is time, k (W/(m * K)) is the thermal conductivity of the ground, @ (J/s) is

the heat source and sink in the system.

The study considered a BTES system with a circular configuration, primarily because of the favorable
packing density it provides for boreholes within a designated area. This allows for the efficient installation
of more boreholes in a given space, thereby optimizing the overall thermal energy storage capacity of the
system (Skarphagen et al. 2019). To streamline our model, we focused on one quadrant of the circular

BTES system, as shown in Figure 1.

The FEM model employed is a homogeneous system with a depth of 30 m, consisting of 6 layers with
a vertical discretization of 5 m. The modeling of BHEs employs a quasi-stationary computational method
based on the work by Eskilson and Claesson (1988). This approach is advantageous for long-term simulations
spanning hours or longer, particularly when inflow temperature changes are less frequent and less steep. The
quasi-stationary method offers reasonable accuracy at a lower computational cost. The analytical solution
assumes local thermal equilibrium between all elements of the BHE (pipes, grout, ground) at any point
during the simulation. The model considers a configuration of double U-shaped BHEs connected in parallel.
The borehole diameter is 12 cm, with a pipe separation of 4 cm between each U-shaped BHE. The pipes
have a diameter of 3.2 cm, and the pipe walls are 0.29 cm thick. Figure 2 shows the cross-section of the
borehole heat exchanger. The double U-shaped BHE comprises two pipes with fluid flowing in opposite
directions, providing an increased contact area for enhanced heat transfer. The initial temperature of the

BTES model before simulation was 10°C. The base case model parameters are listed in table 1 below:

Table 1 BTES model parameters

Parameter Value
Thermal conductivity of solid (J/m/s/K) 3
Thermal conductivity of liquid (J/m/s/K) 0.65

Volumetric heat capacity of solid (MJ/m?/K)  2.52
Volumetric heat capacity of liquid (MJ/m3/K) 4.2

Grout thermal conductivity (J/m/s/K) 3
Inlet pipe thermal conductivity (J/m/s/K) 0.42
Outlet pipe thermal conductivity (J/m/s/K) 0.42
Inlet temperature during injection (°C) 45
Inlet temperature during recovery (OC) 10

Flow rate during charging/discharging (m?®/day 20
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2.3 Genetic Algorithm

The implementation of the genetic algorithm is demonstrated in the step below. The algorithm goes through
a series of generations to obtain optimal results:

Step 1: Generate population:

The initial population consists of random candidate solutions (chromosomes) aimed at optimizing recov-
ery efficiency. Each chromosome represents a potential solution for achieving the highest recovery efficiency.
In this context, each chromosome is defined by two real numbers: the first number represents the flow rate
during charging, and the second number represents the flow rate during discharging.

Details of Generation:

— Initialization: An initial set of chromosomes was randomly generated.
— Population Size: The population size was set to five, balancing computational complexity with the need

for diversity and exploration in the solution space.

P11 Pi1,2

P2,1 P22
Newpop = ) ) (2)

[Pm,1 Pm,2 |
where p represents the model parameters to be inserted into the FEFLOW model in the fitness function.
Each row is a set of parameters also known as chromosomes. p,, represents the my, parameter in the myp,
chromosome. For this study, the first parameter in each row represents the charging flow rate and the
second parameter is the discharging flow rate.

Step 2: Compute the fitness function:
Fitness function = f(Newpop) (3)

where f(.) represents the fitness function. In the fitness function, each chromosome is first inserted into
the FEFLOW model. Subsequently, following the model’s execution, we calculate the recovery efficiency,
RE = % x 100% as our objective function. The objective is to maximize this function, which is
the RE.

Step 3: Selection of parents:

In this step, parents (chromosomes) are selected based on their fitness scores to ensure that superior
solutions have a higher likelihood of passing their genetic material to the next generation. Consequently, in

this step, the chromosome with the lowest RE is excluded, while the remaining chromosomes are retained

as parents to generate offspring for the next generation.
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Selection Method: The tournament selection method was employed for this selection process. This
method involves randomly choosing a subset (tournament size) of chromosomes from the population and
selecting the fittest chromosome from this subset as a parent. Tournament selection provides a balanced

approach that is robust to noise and outliers in fitness values.

Process:

— Randomly select a fixed number of chromosomes (tournament size) from the population.
— Evaluate their fitness and select the chromosome with the highest fitness as a parent.

— Repeat the process to select multiple parents for crossover.

Parent = . . (4)

| Pm—1,1 Pm—1,2]
Step 4: Crossover function:

After selecting the parents, the chromosome with the highest RE replaces the eliminated chromosome
to maintain the original size of the population. Subsequently, the crossover function is employed to merge
two chromosomes, exchanging portions of parameters between them. The population generated after the

crossover function is termed the offspring.
Process:

Crossover Points: In this case, a single-point crossover was employed because the chromosome contains

only two values, making the crossover point the last value in the chromosome.

Offspring Creation: Apply crossover to pairs of selected parent chromosomes to generate offspring
that inherit genetic information from both parents.
pT,l pT,Q

. P§,1 P§,2
Offspring = ] ) (5)

_Prn,1 P:;q,2_
Step 5: Mutation:
In the final stages of the genetic algorithm’s implementation, the mutation step is applied. During

this step, all chromosomes are selected for mutation. Genes within each chromosome are chosen randomly,

ensuring that each gene has an equal chance of being mutated.



242

243

244

245

246

247

248

249

250

251

252

3 Synthetic Cases

In this study, a genetic algorithm is employed to optimize the two operational parameters, while the grout
thermal conductivity and the thermal conductivity of the ground remains fixed. This study considered two
BHE spacings, a 2.5 m spacing and a 10 m spacing. The genetic algorithm ran for 30 generations because,
following a pilot experiment, there was a considerable reduction in recovery efficiency differences from the
25th generation to the 30th generation. The objective was to explore the efficacy of mathematical algorithms
in obtaining optimal parameters for a BTES system design. Algorithm 1 shows the process of implementing
the optimization. During the optimization process, three scenarios were considered, as shown in Table 2.
These scenarios are presented to analyze the impact of the number of boreholes and their spacing on the
overall heat recovery efficiency. The implementation of the genetic algorithm for the optimization process

is illustrated in algorithm 1.

Table 2 Scenarios studies.

Scenarios BHE spacing (m) Number of BHEs

1 2.5 127
2 2.5 37
3 10 13

Algorithm 1: Optimization of Parameters using Genetic Algorithm and FEFLOW Model

Set: Ny = Number of parameters
Set: Npop = Number of population
Set: Ngen = Number of generations

begin
Generate new population, Newpop = (Npop, Nw)
for generation =1,2,--- , Ngen, do

Implement the fitness function

fori=1,2,---, Npop do
Insert parameters into the FEFLOW model
Run Feflow model and calculate recovery efficiency (RE)
RE = Ylgeenered 5 100%

tored

Select the best chromosomes in the current population to join the mating pool:
fori=1,2,---, Npop do
L Eliminate the chromosome with the least RE

Replace it with the chromosome with the highest RE
parent = (Npop, Nu)

Generate next generation using the crossover function:
offspring = (Npop, Nw)

Add variation to the offspring using the mutation function:
| Newpop = (Npop, Nuw)

L end

10
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4 Results
4.0.1 Optimization for 2.5 m BHE spacing

The optimization process for the BTES with a 2.5 m BHE spacing considered two scenarios. In the first
scenario, a large number of BHEs, approximately 127, were deployed, as shown in Figure 3a. The second
scenario involved fewer BHEs, approximately 37, as depicted in Figure 3b.

The results of the optimization process for the two scenarios are shown in Figures 4 and 5. For scenario
1, after 30 generations, the optimal recovery efficiency reached approximately 65% by the 28th generation.
At this point, the charging and discharging flow rates were approximately 18 m? /day and 39 m3 /day,
respectively. Scenario 2, with fewer BHEs, achieved an approximate recovery efficiency of 52.9% at the 29th
generation. The charging and discharging flow rates were approximately 20.5 m?/day and 36.9 m?/day,
respectively. The results of the analysis provide compelling evidence indicating a direct relationship between
the increase in discharging flow rates and the corresponding rise in recovery efficiency. Upon closer exam-
ination of Figure 4, a discernible trend emerges wherein successive generations witness a notable uptick
in both discharging flow rates and recovery efficiency. This suggests a positive correlation between these
variables over time. Additionally, Figure 5 further reinforces this observation by highlighting instances
where the algorithm generates higher discharging flow rates, coinciding with significant spikes in recovery
efficiency. These findings underscore the importance of monitoring and optimizing discharging flow rates as
a critical factor in enhancing overall recovery efficiency within our operational processes. By understanding
and leveraging this relationship, we can effectively improve our process performance and achieve greater
efficiency.

One of the primary goals of optimizing the recovery efficiency in a BTES system is to maximize the
amount of heat recovered from the subsurface while minimizing costs during the design, construction,
operation, and production phases of the heat storage and retrieval process. A significant cost factor is the
number of wells drilled for the BTES system. More boreholes result in higher initial and maintenance costs.
The results of the recovery efficiency after the optimization process for the two scenarios show that using
fewer BHEs in scenario 2 (37 BHEs) compared to scenario 1 (127 BHEs) did not result in poor performance.
Scenario 2 achieved a RE of 52.9%, despite having less than a third of the boreholes used in scenario 1.
Therefore, the optimization process revealed that a substantial reduction in the number of boreholes can
still yield significant heat recovery from the BTES system without incurring the additional costs associated
with a larger number of boreholes during the design and operation phases.

The analysis also focused on examining the temperature distributions within the BTES model under
two different scenarios, as visually represented in Figure 6 and Figure 7. In Scenario 1, characterized by a
higher number of 127 BHEs, the temperature distribution appears to be more extensive across the model

domain compared to Scenario 2. This disparity arises because Scenario 1 features a greater number of BHEs

11
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covering a larger area. Consequently, there are more points within the system where heat exchange occurs,
leading to a more even distribution of heat throughout the system. This results in a smoother transition in
temperature from the inlet to the outlet, with the temperature change being more gradual and uniform along
the length of the BTES system. Conversely, in Scenario 2, which has fewer BHEs covering a smaller area, the
distribution of heat exchange points is more limited. As a result, heat transfer becomes more concentrated
and localized around these points. This concentration of heat exchange leads to a more abrupt and less
gradual temperature change from the inlet to the outlet compared to Scenario 1. Consequently, Scenario 2
exhibits a steeper temperature gradient along the length of the BTES system. Moreover, the higher number
of BHESs covering a larger area in Scenario 1 results in a greater density of heat exchange locations per unit
area of the model domain. This increased density provides more opportunities for heat exchange to occur
across a larger portion of the BTES domain compared to Scenario 2, where fewer BHESs cover a smaller
portion of the model domain. Leading to scenario 1 achieving higher recovery efficiency than scenario 2.
Additionally, another contributing factor to the lower temperature levels observed in Scenario 2 could
be the migration of a substantial amount of heat to areas devoid of BHEs. This dispersion of heat poses
challenges in its retrieval, thereby increasing the likelihood of heat dissipation. Conversely, Scenario 1
benefits from a more extensive coverage of BHEs across a larger portion of the model domain, facilitating
more efficient heat retention and retrieval mechanisms. Thus, the interplay between BHE distribution, heat
storage capacity, and the dynamics of heat migration in the surrounding environment elucidates the nuanced

variations in temperature distributions and the utilization of heat observed between the two scenarios.

4.0.2 Optimization for 10 m BHE spacing

This optimization process involved a 10 m BHE spacing, as illustrated in Figure 8. After 30 generations,
the optimal recovery efficiency of approximately 14.9% was achieved in the 30th generation (Figure 9).
The charging and discharging flow rates were 24.8 m? /day and 36.2 m3 /day, respectively. Throughout the
process of optimization, there was a little improvement in the overall recovery efficiency. This observation
becomes particularly evident upon examining the trends in both charging and discharging flow rates.
Across successive generations, there seemed to be minimal changes (increase or decrease) between the
previous parameters of charging and discharging flow rates and the subsequent ones generated. However,
an interesting pattern emerges when there’s a notable difference between the discharging and charging flow
rates, specifically when the former exceeds the latter. It is in these instances that a significant increase in
recovery efficiency was observed. Moreover, it is worth noting a stark contrast in the flow rate dynamics
between this scenario and scenarios 1 and 2. Here, both the charging and discharging flow rates appear to
be relatively high. This deviation from the previous scenarios, where the charging flow rates were notably
lower compared to discharging flow rates, can be attributed to the larger distances between the BHEs.

The greater distance between the BHES necessitates a higher flow rate to effectively circulate heat through
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the system and extract it efficiently. Consequently, the requirement for higher flow rates in this scenario
highlights the intricate interplay between system design parameters, such as BHE spacing, and operational
variables like flow rates, all of which impact the overall efficiency and effectiveness of the system.

Similar to Scenario 1, the cross-section of the model domain reveals a broad temperature distribution.
Additionally, the wider spacing between BHEs leads to extensive temperature migration and interaction
with surrounding materials, resulting in a decrease in temperature. As depicted in Figure 10, there is a
noticeable temperature reduction between successive BHEs. Specifically, the surrounding temperature of

the last BHE is approximately 13°C, which is close to the boundary temperature.

The temperature profile and recovery efficiency for a 3-year cycle are depicted in Figure 11 for both
2.5 m (scenario 1) and 10 m spacings. The analysis reveals distinct trends. During charging, the 10m
spacing exhibits a rapid initial temperature rise followed by a gradual increase, while the 2.5 m spacing
shows a steady incremental change throughout the charging phase. Throughout the 3-year cycle, the 2.5 m
spacing records consistently higher temperatures during the charging phase, with the temperature difference
between the two spacings increasing in successive cycles. During discharging, the 2.5 m spacing also records
higher temperatures compared to the 10m spacing, with both systems experiencing significant temperature
increases in successive cycles, however the 2.5 m spacing scenario recovered more heat than the 10m spacing.
These temperature profile trends are reflected in the recovery efficiency, with the 2.5 m spacing consistently
achieving higher heat recovery across the 3-year cycle. The difference in recovery efficiency between the two
BHE spacings widens at each successive year, indicating that the 2.5 m spacing will continue to recover

more heat than the 10m spacing in additional cycles.

4.0.3 Base case vs optimum case

The BTES system for scenario 1 underwent simulation spanning a six-year cycle to conduct a comparative
analysis between a base case scenario, characterized by a charging and discharging flow rate of 20 m®/day,
and the optimized configuration of scenario 1. Throughout this simulation, the dynamic interplay between
charging and discharging cycles and their consequent impact on outlet temperature variations highlighted
the critical importance of optimizing operational parameters for achieving peak system performance.
Figure 12 provides a comparative overview of the recovery efficiency between the base and optimized
scenarios. Within the initial year, the base case attained a recovery efficiency of 34.1%, while the optimized
scenario showcased a notably higher efficiency of 62.2%. This difference in recovery efficiency signifies
that a larger proportion of the energy injected is recovered during the discharging phase in the optimized
scenario, thereby enhancing the energy efficiency and cost-effectiveness of the BTES system. Furthermore,
it also implies a diminished environmental footprint, as the system operates with greater efficiency, thereby

minimizing energy wastage.
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To comprehensively evaluate the long-term efficacy of the BTES system, it’s imperative to consider the
recovery rates across multiple cycles. Over the span of the six-year cycle, the base case peaked at a recovery
efficiency of 60.6%, whereas the optimized scenario consistently outperformed, achieving a significantly
higher recovery efficiency of 96.5%. The widening gap in recovery efficiency between the optimized and
base scenarios with each successive cycle underscores the optimized scenario’s ability to extract more heat

per cycle compared to the base scenario, indicating sustained superior performance over time.

5 Discussion

Several sensitivity analysis studies have been conducted to determine the impact of design, operational,
and geological parameters on BTES system efficiency. These studies focus on optimizing the heat transfer
process, minimizing heat loss, and enhancing overall system performance. Han and Yu (2016) conducted
a sensitivity analysis on geological attributes (initial ground temperature, groundwater velocity, and ther-
mal properties of materials), design factors (borehole depth), and operational parameters (working fluid
velocity, inlet temperature, and intermittent mode) for a vertical Ground Source Heat Pump (GSHP). The
results showed that geological properties, borehole depth, and working fluid velocity significantly influence
performance, while specific heat capacity showed no noticeable impact. Woloszyn and Gotas (2014) ana-
lyzed BTES efficiency with single U-tube boreholes, focusing on geological thermal properties, including
thermal conductivity, specific heat, and density of the rock mass and grout material. The study found that
thermal conductivity of the rock mass had the most significant impact. Woloszyn (2018) conducted a global
sensitivity analysis (GSA) on BTES efficiency during long-term operation, assessing the influence of BHE
arrangement parameters (distance between BHE axes in the x-direction and y-direction, and the angle
between the top surface of the rock mass and borehole axes). The results showed that BHE inclination
crucially impacts BTES efficiency. Baser and McCartney (2015) studied the influence of different variables
on a BTES model with five boreholes, including heat injection rate, duration, ground thermal conductivity,
and borehole spacing. The study indicated that soil with lower thermal conductivity had less lateral heat
loss, and arrays with smaller borehole spacing allowed more concentrated heat storage at higher tempera-
tures. Kumawat et al. (2024) conducted a sensitivity analysis of BTES modeling on a wedge-shaped model,
examining five parameters: well spacing, grout thermal conductivity, charging and discharging rates, and
soil thermal conductivity. The analysis revealed that BHE spacing and volumetric flow rate had the highest
impact on roundtrip efficiency.

Other optimization techniques for BTES systems have also been studied. Schulte et al. (2015) presented
an approach for simulating and optimizing borehole thermal energy storage systems, using a software tool
to optimize the number and length of borehole heat exchangers based on specific annual heat demand.

The tool effectively determined the ideal size of the thermal energy storage, showing that BTES systems
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operate efficiently in large-scale applications. Fiorentini and Baldini (2021) proposed a control-oriented
numerical optimization model to determine the best operating conditions for a heat pump-driven BTES,
aiming to reduce yearly CO2 emissions by shifting the heat pump’s electricity load based on CO2 intensity
profiles. The study demonstrated that this boundary condition is crucial for optimal system operation.
Rapantova et al. (2016) optimized the lengths of charging and discharging cycles to minimize heat loss
due to ground dissipation, finding borehole depth optimization crucial for reducing heat exchange surface
area and heat losses. Lanini et al. (2014) established a 1D analytical model and a 3D multilayer numerical
model, validated against experimental data, to simulate different configurations over many years. The study
included a full-scale experiment evaluating the energetic potential of BTES, showing that the heat transfer
fluid lost 15% of its energy at a depth of 100 m and 25% at 150 m.

The conclusions from these studies primarily analyze the influence of various BTES parameters on
system performance. While geological parameters (e.g., ground thermal conductivity) significantly affect
performance, they cannot be easily altered to optimize heat recovery. However, operational and design
parameters, as noted in the literature, also have a significant influence and can be regulated for optimal
recovery. Existing theoretical research on optimizing BTES parameters for optimal heat recovery is insuffi-
cient. In this paper, we propose a method using a genetic algorithm to optimize BTES recovery efficiency
by automatically adjusting the operational parameters (charging and discharging flow rate) of the BTES
system. The results were promising, indicating that by using the genetic algorithm to calibrate the BTES
operational parameters, and adjusting the BHE spacing, optimal recovery efficiency was achieved after the

optimization process.

6 Conclusion

This research study aimed to optimize the operation of BTES systems by utilizing a genetic algorithm to
compute optimal parameters for maximizing energy recovery. The study focused on design, operational, and
geological parameters. Design parameters included thermal conductivity of the grout and BHE spacing, with
two spacing configurations considered. The geological parameter was the subsurface’s thermal conductivity,
of which both the subsurface’s thermal conductivity and the grout thermal conductivity were held constant.
The optimization algorithm focused on operational parameters, such as charging and discharging flow rates.
Finite element simulation was employed to simulate the BTES system and compute recovery efficiency as
the performance metric for testing the optimized parameters.

The results highlighted the intricate relationship between recovery efficiency, BHE spacing, and the
volumetric charging and discharging flow rates within the BTES system. It was evident that smaller BHE
spacing correlated with higher recovery rates, while, within a specific BHE spacing, higher discharging flow

rates contributed to enhanced recovery efficiency. However, an interesting observation emerged regarding
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the interplay between BHE spacing and flow rates during charging. It was noted that when the BHE spacing
was smaller, the flow rate during charging tended to be lower compared to configurations with larger BHE
spacing. This suggests a trade-off between BHE spacing and flow rates during charging, indicating the
need for careful consideration when optimizing these parameters. Moreover, an optimal BTES model was
developed and compared against the base case. The findings revealed that the optimal model achieved an
impressive recovery efficiency of 96.5% over a simulated six-year period. This highlights the effectiveness of
optimizing system parameters in maximizing energy recovery and overall system performance.

By delving into the impact of various parameters on system performance, this study contributes to the
use of mathematical algorithms for obtaining optimal parameters, ultimately enhancing the efficient design

and operation of BTES systems.
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Fig. 1 Finite element model grid for this study
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Fig. 2 Cross-section of the borehole heat exchanger
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Fig. 3 Top view of a simulated BTES system containing: a. 127 BHEs and b. 37 BHEs
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