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Machine learned potential for high-
throughput phonon calculations of metal
—organic frameworks
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Metal–organic frameworks (MOFs) are highly porous and versatile materials studied extensively for
applications such as carbon capture and water harvesting. However, computing phonon-mediated
properties in MOFs, like thermal expansion and mechanical stability, remains challenging due to the
large number of atoms per unit cell, making traditional Density Functional Theory (DFT) methods
impractical for high-throughput screening.Recent advances inmachine learningpotentials have led to
foundation atomistic models, such asMACE-MP-0, that accurately predict equilibrium structures but
struggle with phonon properties of MOFs. In this work, we developed a workflow for computing
phonons in MOFs within the quasi-harmonic approximation with a fine-tuned MACE model, MACE-
MP-MOF0. Themodel was trained on a curated dataset of 127 representative and diverseMOFs. The
fine-tuned MACE-MP-MOF0 improves the accuracy of phonon density of states and corrects the
imaginary phonon modes of MACE-MP-0, enabling high-throughput phonon calculations with state-
of-the-art precision. Themodel successfully predicts thermal expansion andbulkmoduli in agreement
with DFT and experimental data for several well-knownMOFs. These results highlight the potential of
MACE-MP-MOF0 in guiding MOF design for applications in energy storage and thermoelectrics.

Metal–organic frameworks (MOFs) are composed of organic molecules,
called linkers, connected to inorganic ions or clusters, called nodes1–3. MOFs
are nanoporous materials that, due to their large modular nature and high
porosity, have become strong candidates for many potential applications
ranging fromwater harvesting4,5 and catalysis to biosensing. Some important
physical properties that make MOFs suitable for such potential applications
include mechanical stability, thermal expansion, heat conduction and
superconductivity which are influenced by phonon-mediated lattice
dynamics6–9. Phonons describe the collective vibrations of atoms in a crystal
and interact with electronic and thermal excitations that affect these physical
characteristics of MOFs10. However, the current understanding of these
properties in MOFs is limited due to the computational complexity of pre-
dicting phonons in these large structures. Currently, one of the most reliable
methods to study the electronic structure of materials and their properties is
DensityFunctionalTheory (DFT)11–13.However, formaterials likeMOFs that
can have several hundreds or even thousands of atoms in their unit cell,

performing supercell calculations necessary for obtaining accurate phonons
becomes too computationally expensive for screening applications.

Semi-empirical Quantum Mechanical methods, such as the Density
Functional Tight Binding (DFTB) method, have been used to compute
phonons in few highly symmetric isoreticular MOFs14. Several DFTB
schemes have been developed, with DFTB315 being the most widely used.
While DFTB is 2-3 orders of magnitude faster than DFT, its pair- wise
parametrization strategy and lack of available metal atom parameters limits
its use in screening applications, particularly pertaining to phonons in
MOFs. A notable variant of DFTB3,GFN1-xTB16 follows a element-specific
parameters strategy and extends its applicability to nearly the entire periodic
table, up to thousands of atoms. In17, the GFN1-xTB method has been
reported to produce cell parameters within a 5% deviation (relative to
experiments) for 75% of the MOFs in the CoRE database18,19, showing
promise for adsorption applications and obtaining binding energies.
However, GFN1-xTB still scales quadratically with the number of electrons
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which may present challenges for larger MOFs, and has not been used for
the analysis of vibrational properties in MOFs.

Traditional forcefields likeUFF20 andCHARMM21arewidelyuseddue
to their scalability and significant speed up in calculations compared to
tight-bindingDFT.UFF4MOF22, theUFFparametrizationonMOFs, canbe
used for rapid structure prediction and screening. However, this transfer-
ability comeswith limitations in accurately predicting dynamical properties
such as phonons.22,23. Other force fields, like the MOF-FF model24 also
predicted accurately the lattice parameters of some well known MOFs like
MOF-5, UiO-66 within 0.5% deviation relative to DFT. Force fields derived
with a focus on vibrational properties forMOFs have also been reported like
VMOF25.While theVMOFmodel reproducedoptimized lattice parameters
and phonon density of states in good agreement with DFT, important
phonon-derived properties like bulk modulus obtained with VMOF
underestimated DFT predictions by more than 50% even for standard
MOFs like UiO-66 and MOF-525. These limitations of such classical force
fields are because of the vast combinations of possible frameworks in the
MOF chemical space that make their parameter optimization and selection
of functional form extremely challenging.

Recently, several neural network-based machine learning potentials
(MLPs) such as26,27 and on-the-fly MLPs such as kernel-based potentials in
the Vienna Ab initio Simulation Package28–31 (VASP MLPs) and Moment
Tensor Potentials (MTP)32 reported in23 have emerged that produce
vibrational properties with sufficient accuracy relative to DFT for MOFs.
However, such on-the-flyMLPs are restricted to the specificMOF included
in the training set, and the need for continuous regeneration and retraining
on DFT data to incorporate new configurations renders them impractical
for high-throughput screening ofMOFs. Therefore, the need for a ready-to-
use transferrable model for screening dynamical properties in MOFs
motivates the development of new MLPs.

MLPs like the MACE foundation model (MACE-MP-0)33, which
utilizes the MACE architecture34 of an equivariant message-passing graph
tensor network withmany-body information of atomic features encoded in
each layer, has been tested onMOFs. Like severalMLPs and force fields that
are trained on MOF building blocks22,25,26 rather than on whole MOFs
because of their large chemical space and size of the unit cell, the MACE-
MP-0 model was trained on the MPtrj dataset of 150k inorganic crystals35.
The MACE-MP-0 demonstrated high accuracy in predicting the potential
energy surface, with a root-mean-squared-error of 33meV/atom in energies
relative to DFT for the 20k MOFs in the QMOF database36,37. The foun-
dation model thus, demonstrates its transferability in being able to capture
some of the complex interactions in MOFs and shows potential to further
improve and investigate its accuracy for phonons and derived properties
in MOFs.

In this work, we introduce MACE-MP-MOF0, a highly accurate
model derived from MACE-MP-0b (medium model), fine-tuned on a
high-quality dataset of 127 representative MOFs. The MACE-MP-0b
model is a slightly modified version of the original MACE-MP-0 (which
was released in April 2024) to address few shortcomings of the original
model such as dealing with short-distance collapse by adding a ZBL
potential (at the time of writing, a new version MACE-MP-0c was relea-
sed).The model is evaluated for key properties derived from phonons in
well-known and representative MOFs, such as bulk moduli and thermal
expansions, within the quasi-harmonic approximation, allowing for a
comprehensive comparison with previous models and experimental data
reported in the literature. MACE-MP-MOF0 accurately reproduces
experimentally observable phenomena, such as negative thermal expan-
sion in MOFs, demonstrating its applicability beyond computational
predictions. In addition to analyzing the performance of the model on
MOFs in the curateddataset,we test its transferability onotherwell-known
MOFs not seen by the model during the training and find excellent
agreement in the predicted bulk modulus wih DFT and experiments. The
presented model is therefore ready-to-use for high-throughput phonon
calculations of MOFs and aims to incorporate more chemically diverse
MOFs in future generations of the model.

Results
Dataset curation
To date, tens of thousands of MOFs have been synthesized38, and countless
more can be designed39 due to the vast diversity of their chemical building
blocks, making the selection of an appropriate training set particularly
challenging. In this work, in addition to studying 19 prototypical and
experimentally widely studied MOFs for gas storage, catalysis and defect
engineering (see Supplementary Tables 1 and 2), we expand our dataset by
curating 108 more structures from the 20,375 diverse MOFs in the QMOF
database36,37.

For sampling these 108 structures, we considered predominantly non-
spin polarized MOFs with pore limiting diameters (PLDs) greater than
3.6 Å, using nitrogen as a probe molecule. MACE34 descriptors hold a large
amount of information regarding the atomic features of MOFs and hence
were used to sample 100 diverse MOFs. These MOFs were selected to span
over all the 7 crystal symmetry systems and diverse bonding interactions.
Therefore, as shown in (Fig. 1c, d) this dataset consists of 127 representative
MOFs spread over a wide range of 24 elements in the inorganic clusters and
organic ligands. (Figure 1a, b) shows the MACE descriptor space diversity
for the curated 127 MOFs (refer the Supplementary Fig. 1 for the main
features of the sampled MOFs).

On this curateddataset of 127MOFs,wehave used various strategies to
generateDFTdata points forfine tuning: i)molecular dynamics simulations
(an NPT ensemble using MACE-MP-0b+D3), from which frames were
selected with a farthest point sampling (FPS) approach to maximize spread
in descriptor space (refer SI), ii) strained configurations generated by
expanding and compressing unit cells using an equation of state approach,
iii) geometry optimization trajectories of various structures by retaining a
relatively small number of frames (up to 10, if available), using the FPS
approach (refer the “Methods” section and Supplementary Note 1 for fur-
ther details). The aforementioned calculations result in a total of 4764 DFT
data points split into 85% for training and 7.5% each for testing and vali-
dation. We have fine-tuned two models, MACE-MP-MOF0 and MACE-
MP-MOF0-v2 where the two models differ only via the way in which the
data was split into train, test and validation sets, with the former using a
random approach, while the latter using an FPS approach. The goal of
comparing the two versions of the fine-tuned model is to show that the
performance of these models is comparable regardless of the reference
configurations in the training set sampled from this curated dataset.

Phonon workflow
As illustrated in Fig. 2, the phonon workflow forMACE-MP-MOF0 begins
with a full cell relaxation, unconstrained by the symmetry of the input
configuration. This step is crucial for ensuring the model’s applicability in
screening scenarios, particularly when working with MOFs whose stable
symmetry configurations are unknown. The full cell relaxation is performed
with ASE’s40 L-BFGS and FrechetCellFilter optimizers until the max force
component is≤ 10−6 eV/Å.The search for equilibriumstructure is stopped if
any negative phonon frequencies present ≤ ∣10�4∣ THz. The process for
eliminating spurious imaginary modes that are larger than this threshold is
discussed in the Methods section. The symmetry of the equilibrium struc-
ture is determined using Pymatgen’s41 space group analyzer with a sym-
metry search tolerance of 10−5 Å for determining number of symmetry
inequivalent displacements.

This work aims to quantitatively compare MACE-MP-MOF0 with
models based on various theoretical levels reported in the literature and to
ensure consistency across all levels of theory, the Finite Difference (FD)
approach is chosen for phonon calculations. The displacements of 0.001 Å
are produced on the atoms in the 2 × 2 × 2 supercell for obtaining force
constants with the FD approach.

The Harmonic Approximation (HA) for computing phonons fails to
capture essential physical properties for MOFs such as thermal expansion,
phase transition and elastic moduli42. On the other hand, the Quasi-
Harmonic approximation (QHA) is an extension of the HA that aims to
capture anharmonicity by introducing the volume dependence of
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frequencies due to temperature and pressure effects. In this work, we use the
Phonopy package43 version 2.29.0 to study thermal and mechanical prop-
erties of MOFs by studying the lattice dynamics under the QHA. A
11 × 11 × 11 k-point grid, beyond the Γ point, is consistently used for all
phonon calculations, which is essential to accurately capture heat transport
properties.

Overview of the investigated systems and potentials for
benchmarking
In this work, we benchmark the MACE-MP-MOF0 and MACE-MP-
MOF0-v2 models against DFT, extended tight-binding DFT, MLPs and
experiments. Among MLPs, we focus on a wide range of models from
MACE-MP-0b (with D3 dispersion) to MTP and VASP MLP for MOFs23.
For extended tight-binding DFT, we use the GFN1-xTB model17. The
GFN1-xTB model was built with a focus on the computation of molecular
geometries, vibrational frequencies, and non-covalent interaction energies
which are all important for this study of MOFs Table 1.

The MOFs chosen for benchmarking the phonons calculated with the
MACE-MP-MOF0models are widely studied and hence, enables thorough
comparison of performance across the aforementioned models and
experiments reported in literature. The investigated systemsofMOF-5 (Zn),
UiO-66 (Zr), MOF-74 (Zn) and MIL-53 (Al) are diverse in their nodes,

linkers and topology (refer Table 2). In this work, we study the large-pore
configuration of the flexible framework, MIL-53 (Al). The number of
reference configurations of these MOFs in the training sets of the two
versions ofMACE-MP-MOF0models help analyze the transferability of the
model and the performance dependence on the choice and size of training
set. In addition to the primary benchmarking of phonon density of states
and band structures for these four MOFs, benchmarking of the phonon-
derived bulk modulus is done for several other well-known MOFs in lit-
erature which are not a part of the curated dataset for demonstrating the
transferability of the MACE-MP-MOF0 model.

Fig. 1 | Overview of dataset characteristics. Diversity in the MACE descriptors of
the (a) linkers and (b) nodes of the curated 127 MOFs using gaussian kernel density
estimation method (c) The symmetry distribution of the dataset (d) The heat map

for elemental counts for the atoms included in the dataset. The blank elements in the
heat map are not included in the dataset.

Table 1 | Total number of generated reference configurations
present in the training sets

MOF MACE-MP-MOF0 MACE-MP-MOF0-v2

MOF-5 (Zn2+) 114 92

UiO-66 (Zr4+) 68 58

MOF-74 (Zn2+) 59 60

MIL-53 (Al3+) 30 29

The number of reference structures generated for the investigated MOFs for benchmarking the
MACE-MP-MOF0 models in their respective training sets.
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Benchmarking prediction of unit cell parameters of equilibrium
structures
The first crucial step of benchmarking phonons is to accurately capture the
equilibrium structure of the MOFs. Predictions of bothMACE-MP-MOF0
and MACE-MP-MOF0-v2 show excellent agreement with DFT with a
largest deviation of 1.02% as shown in Fig. 3. TheMACE-MP-0b deviations
are much larger, with the largest deviation of 10%.

As shown in Table 2, MACE-MP-MOF0 and MACE-MP-MOF0-v2
also predict the right space group for all MOFs while GFN1-xTB and
MACE-MP-0b transform the unit cell to different space groups after a full
cell relaxation. Even though GFN1-xTB produces deviations ≤ 2% which
are in good agreement with DFT, the minor distortions in unit cell lengths
and angles shown in Table 2, cause the identification of a different sym-
metry. As a result, obtaining phonons with GFN1-xTB for a highly sym-
metric structure likeMOF-5 incurs a 17-fold increase in computational cost
compared to the MACE-MP-MOF0 models. Symmetrizing the optimized

unit cell by loosening the symmetry search tolerance does not eliminate the
distortions anddoesnot achieve the true symmetrywithGFN1-xTB(see SI).
Such symmetrizing procedures are not needed with theMACE-MP-MOF0
models, which enables a full cell relaxation. Hence, in this work, the equi-
librium structure is obtained by allowing the relaxation of only atomic
positions with GFN1-xTB for phonon calculations.

Benchmarking predictions of forces, energies and stress
As phonon dispersion curves and density of states are obtained from force
constants, an accurate description of interatomic forces in MOFs is neces-
sary. Table 3 shows the performance of both MACE-MP-MOF0 and
MACE-MP-MOF0-v2 in obtaining the forces, energies and stress on their
respective test sets. A linearfit with anR2 score≥ 0.999 is obtained for forces,
energies and stress with MACE-MP-MOF0 and MACE-MP-MOF0-v2
relative to DFT for their respective training, test and validation sets (refer
Supplementary Fig. 2).

Fig. 2 | Overview of the lattice dynamics workflow. The workflow implemented with MACE-MP-MOF0 includes a tight geometry optimization followed by phonon
calculations after eliminating any spurious imaginary modes (if present).

Fig. 3 | Percentage deviations in unit cell length predictions relative to DFT.
Comparison of percentage deviations in force field predictions of average equili-
briumunit cell lengths LFF relative toDFT LDFTwhere FF stands for different models

represented by bars of their respective colors for the investigated systems (a) full
range (b) zoomed for better visualization of small deviations.
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The analysis of element-wise mean absolute errors (MAE) in energies
relative to DFT for the MOFs in the QMOF database containing the 24
elements in the curated dataset reveal that the MACE-MP-0b predictions
were 80% larger than the MACE-MP-MOF0-v2 MAE predictions of 0.016
eV/atom (see SI). The MACE-MP-MOF0-v2 model shows significant
improvement of 50% in the energy MAE for MOFs with metal nodes like
Zn, Al, Mg (which constitute a large set in the QMOF database) and in Hf
and Zr-based MOFs (which are widely studied due to their importance in
defect engineering of MOFs44). In this subset of the QMOF database, more
than 75% of MOFs show improved predictions, with the remaining 25%
primarily coming from the Cu-MOFs. The energy MAEs for integral ele-
ments of organic linkers like C, H and O common to all MOFs are also
approximately lowered by 36% with MACE-MP-MOF0-v2. Hence, overall
we achieve a significant improvement in theMAE for themajority of the 24
elements in the curatedMOFs, which cover 60% of the QMOF database, by
only including a small number of their reference configurations in the
training dataset.

In addition to benchmarking the MACE-MP-MOF0 models for the
curateddataset,we evaluate its performance on forces, aswell as energies, on
a set of 70 more diverse MOFs unseen by the model during training (see
Supplementary Table 4 for structure details). As shown in Table 4, the

MACE-MP-MOF0 models exhibit energy RMSDs relative to DFT that are
five times lower than those of MACE-MP-0b, while also delivering 30%
more accurate forces and stresses for these out-of-sample MOFs. We
observe the deviations onout-of-sampleMOFs to be 10 times theRMSDsof
MACE-MP-MOF0 models on the curated dataset in Table 3, which
demonstrates the significant improvement that can be achieved by adding a
few reference configurations of MOFs to the training DFT data.

Benchmarking vibrational properties
After benchmarking forces, energies and stresses we quantitatively analyze
the derived phonon density of states and band structures. In Fig. 4, phonon
density of states (DOS)data is shownup to20THz (see SupplementaryFig. 4
for the full range of predicted frequencies). The MACE-MP-MOF0 and
MACE-MP-MOF0-v2 models are in very good agreement with DFT DOS,
even well above the low frequency range (≤ 6THz). We were able to elim-
inate all spurious imaginary modes with the MACE-MP-MOF0 models to
obtain physically meaningful frequencies. While GFN1-xTB and MACE-
MP-0b capture certain aspects of the DOS curves accurately, they fail to
accurately capture the vibrational properties of themost prototypicalMOFs
like MOF-5 and UiO-66.

Table 2 | Prediction of unit cell parameters with different methods

Method MOF Space Group Unit Cell Lengths Unit Cell Angles No. of Symmetry
Symbol a,b,c (Å) α, β, γ Inequivalent Displacements

DFT MOF-5 Fm-3m 18.433, 18.433, 18.433 60.000, 60.000,60.000 19

UiO-66 F-43m 14.803, 14.803, 14.803 60.000, 60.000, 60.000 126

MIL-53 Cc 6.664, 17.263, 12.267 90.000, 90.000, 90.986 114

MOF-74 R-3 6.665, 15.272, 15.272 62.088, 81.634, 98.366 162

GFN1-xTB MOF-5 R-3m 18.225, 18.225, 18.225 59.204, 59.204, 59.204 318

UiO-66 F-43m 14.560, 14.560, 14.560 59.996, 59.997, 59.995 684

MIL-53 P1 6.772, 17.519, 12.219 90.095, 89.939, 89.643 456

MOF-74 P1 6.693, 15.184, 15.230 62.284, 81.561, 98.497 324

MACE-MP-0b MOF-5 Fm-3m 18.412, 18.412, 18.412 60.000, 60.000, 60.000 19

UiO-66 F-43m 14.713, 14.713, 14.713 60.000, 60.000, 60.000 126

MIL-53 C2/c 6.665, 19.447, 6.198 90.000, 90.000, 95.155 456

MOF-74 R-3 6.453, 15.249, 15.249 61.956, 81.891, 98.109 54

MACE-MP-MOF0 MOF-5 Fm-3m 18.424, 18.424, 18.424 60.000, 60.000, 60.000 19

UiO-66 F-43m 14.799, 14.799, 14.799 60.000, 60.000, 60.000 34

MIL-53 Cc 6.669, 16.703, 13.099 90.000, 90.000, 90.331 228

MOF-74 R-3 6.692, 15.238, 15.238 62.105, 81.582, 98.418 54

MACE-MP-MOF0-v2 MOF-5 Fm-3m 18.428, 18.428, 18.428 60.000, 60.000, 60.000 19

UiO-66 F-43m 14.798, 14.798, 14.798 60.000, 60.000, 60.000 34

MIL-53 Cc 6.673, 17.795, 11.357 90.000, 90.000, 90.950 228

MOF-74 R-3 6.654, 15.231, 15.231 62.083, 81.627, 98.373 54

Comparison of optimized lattice parameters obtained from different models after a full cell relaxation of the investigated systems showing that the minor distortions up to the thousandths place in lattice
parameters leads to significantly larger number of symmetry inequivalent displacements.

Table 3 | Deviations in the predicted energies, forces, and stresses

Model RMSDEnergy RMSDEnergy/atom RMSDForces RMSDStress

(eV) (meV/atom) (eV/Å) (meV/Å3)

MACE-MP-MOF0 0.132 1.4 0.014 0.2

MACE-MP-MOF0-v2 0.163 3.6 0.029 0.3

Root Mean Square Deviations (RMSDs) of forces, energies and stress predicted by MACE-MP-MOF0 and MACE-MP-MOF0-v2 relative to DFT on their respective test sets sampled from the curated
dataset.
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Table 5 shows the performance of MACE-MP-MOF0 and MACE-
MP-MOF0-v2 in accurately obtaining the phonon frequencies for the
full frequency range over the entire Brillouin Zone relative to DFT. The
low errors over the full mesh ensure an accurate prediction of
mechanical stability and heat transport properties as they depend
heavily on off-Γ phonons45. For direct comparison with the phonon
frequencies reported at Γ-only with MTP and VASP MLP in23, we also
report the Γ-only predictions with our models in Table 5. A Γ-only
comparison reveals that the MACE-MP-MOF0 models achieve a better
or comparable performance for MOF-5, UiO-66 andMIL-53 thanMTP
and VASP MLP, while the errors are larger for MOF-74. It is important
to emphasize that achieving this level of accuracy with such on-the-fly
MLPs requires generating extensive DFT datasets tailored to specific
MOFs. On the other hand, the MACE-MP-MOF0 training set had 10 to
100 times lower number of reference configurations for the respective
MOFs, as indicated in Table 1, than the training set for these on-the-fly
MLPs23. The DFT data used here for benchmarking phonons, as well as
the training data for theMTP andVASPMLPwas generated in23 with an
extremely tight convergence criteria of ENCUT = 900 eV, EDIFF =
1 × 10−8eV with a max force component ≤ 1 × 10−3ev/Å, which are
necessary to obtain accurate phonons rendering the DFT calculations
very expensive. Whereas, the training DFT data generated in this work
for MACE-MP-MOF0 models used a significantly cheaper convergence
criteria of ENCUT = 520 eV, EDIFF = 1 × 10−5eV and EDIFFG =−0.02
eV/Å (refer to the “Methods” section for details). This demonstrates that
the fine-tuned transferable MLP, MACE-MP-MOF0, can achieve the
same high-quality ab initio description as other accurate machine-
learned force field potentials for MOFs23,27,46, but with significantly
reduced model training and DFT data generation costs.

The similar errors obtained withMACE-MP-MOF0 andMACE-MP-
MOF0-v2 in Table 5 show that the different reference configurations of the
investigated systems in their respective training sets does not significantly
affect the performance of themodels. SinceMACE-MP-MOF0andMACE-
MP-MOF0-v2 models exhibit similar frequency errors, we use the slightly
better performingMACE-MP-MOF0-v2model for theseMOFs to show the
accurate overlap between the band structures predicted with DFT and
MACE-MP-MOF0-v2 in Fig. 5.Due to the large number of bands inMOFs,
the band structures in fig. 5 are restricted to the low frequency region.

Benchmarking of mechanical properties
The bulkmodulus serves as a sensitive and computationally efficientmetric
for assessing phonon accuracy, as both phonon frequencies and bulk
modulus arise from second derivatives of energy- phonons with respect to
atomic displacements and bulkmodulus with respect to volume. Since both
properties share similar force accuracy requirements, an accurate bulk
modulus indicates that the elastic response and interatomic potential cur-
vature are well captured, suggesting reasonable phonon predictions. Hence,
in this section, we analyzemechanical properties, such as the bulkmodulus,
for additional widely studied MOFs beyond the four systems investigated,
comparing them to experimental and DFT data reported in the literature.
The bulk modulus is obtained from fitting the Birch-Murnaghan equation
of state to energy-volume data obtained by straining the cell ± 2%. From
Fig. 6, we observe that MACE-MP-MOF0 and MACE-MP-MOF0-v2 are
able to qualitatively capture bulk moduli trends, compared to DFT and
experimental data, as well as quantitatively reproduce the values withminor
deviations.

The deviations in bulk modulus with MACE-MP-MOF0 versions
relative to DFT are the largest for MIL-125 in Fig. 6b, which notably, is the
only Ti-based MOF in the curated dataset. We hypothesize that the
deviation is due to insufficient training data for Ti-based MOFs. Serendi-
pitously, the MACE-MP-MOF0 and MACE-MP-MOF0-v2 predictions of
bulk moduli actually perform better than the explicit DFT data, relative to
experiments. The DFT data includes VdW corrections, which tends to
overestimate the long range interactions in MOFs and therefore produces
higher bulk modulus than experiments47. As theMACE-MP-MOF0model
was trained on DFT data with vdW corrections included, these long-range
interactions are therefore slightly underestimated in the model relative to
DFT, which moderates the bulk moduli predictions. Hence, the small
RMSDs obtained for phonon frequencies with MACE-MP-MOF0-v2 and
MACE-MP-MOF0 translate to low deviations in phonon-derived proper-
ties such as the bulk modulus.

The agreement between experiments, DFT and MACE-MP-MOF0
models in obtaining the bulk modulus of several diverse out-of-sample,
well-known MOFs like ZIF-4, ZIF-8, UiO-66-Ce, UiO-66-Hf and promis-
ing MOFs for direct air capture like XEDPON, SUSZOW and XEXMEU48,
thus demonstrates the transferability andaccuracyof themodel in obtaining
bulk modulus of MOFs unseen by the model during training.

Table 4 | Testing the out-of-sample accuracy

Model RMSDEnergy RMSDEnergy/atom RMSDForces RMSDStress

(eV) (meV/atom) (eV/Å) (meV/Å3)

MACE-MP-MOF0 0.773 12 0.146 1.1

MACE-MP-MOF0-v2 0.792 10 0.171 1.4

MACE-MP-0b 3.543 53 0.200 1.7

RootMeanSquare Deviations (RMSDs) of forces, energies and stress predicted byMACE-MP-MOF0,MACE-MP-MOF0-v2 andMACE-MP-0b relative to DFT on a diverse dataset consisting of 70 out-of-
sample MOFs obtained from the QMOF database.

Table 5 | Deviations in the predicted phonon frequencies of the investigated systems

MOF Full_MeshMACE-

MP-MOF0-v2

Full_MeshMACE-

MP-MOF0

Γ −
onlyMTP

Γ −
onlyVASP
MLP

(THz) (THz) (THz) (THz)

MOF-5 0.033 (0.085) 0.039 (0.083) 0.099 0.27

UiO-66 0.082 (0.186) 0.122 (0.198) 0.111 0.312

MOF-
74

0.173 (0.427) 0.243 (0.436) 0.093 0.126

MIL-53 0.138 (0.257) 0.126 (0.239) 0.156 0.264

Comparison of Root Mean Square Deviations (RMSDs) of the phonon frequencies in the full range for the investigatedMOFs with MTP and VASPMLP data as reported in23. Γ-only errors with MACE-MP-
MOF0 models are provided in brackets.
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Negative thermal expansion in MOFs
Finally, we evaluated our model on negative thermal expansion (NTE).
Experimental data on NTE for MOFs is limited, making it challenging to
benchmark against a wide range of models and structures. In addition,
obtaining NTE with DFT is computationally expensive due to the quasi-
harmonic phonon calculations required for MOFs. To address this chal-
lenge, in this work, we focused our NTE analysis onMOF-5 and UiO-66 as
they are widely studied in experiments, and their high symmetry and iso-
tropic nature reduce the cost of such expensive computations.

Comparing DFT and MACE-MP-MOF0-v2 predictions to experi-
mental data is challenging, as factors such as pressure, cooling or heating
rates, as well as defect concentration, can vary significantly in experiments,
influencing the recorded NTE49,50. For example, in50, the authors observed
that, while the equilibrium UiO-66 intrinsically shows a coefficient of

thermal expansion (CTE) of -35 × 10−6K−1, a wide range of CTE from+ 45
to−80 × 10−6K−1 is recorded depending on the rate of thermal treatment in
UiO-66, suggesting a re-evaluation of previous experimental reports ofNTE
in MOFs.

Based on the available data, we find that MACE-MP-MOF0-v2 pre-
dictions are in very good agreement with DFT and other computational
models and qualitatively capture experimental NTE trends, such as the
larger NTE observed for UiO-66 compared to MOF-5 (see Table 6).

Discussion
Benchmarking the vibrational properties of the investigated MOFs high-
lights the limitations of MACE-MP-0b and GFN-1xTB, while demon-
strating the excellent agreement of theMACE-MP-MOF0modelswithDFT
in accurately capturing the full phonon vibrational spectra. We further

Fig. 4 | Comparison of low frequency phonon density of states withDFT. Density
of states (DOS) in the frequency range (≤ 20 THz) for the investigated MOFs,
aMOF-5 b UiO-66 cMOF-74 and dMIL-53, obtained with the linear tetrahedron

method with a pitch of 0.01 THz predicted by the respective methods overlaid on
DFT data. DFT DOS were calculated from force constants available in23,62 on a
11 × 11 × 11 mesh.

https://doi.org/10.1038/s41524-025-01611-8 Article

npj Computational Materials | (2025)11:125 7

www.nature.com/npjcompumats


Fig. 5 | Comparison of predicted phonon band structures with DFT. Low frequency band structures (≤ 6THz) predicted byMACE-MP-MOF0-v2 overlaid on DFT band
structure for the investigated MOFs, aMOF-5 b UiO-66 cMOF-74 and d MIL-53. DFT band structures were calculated from force constants available in23,62.

Fig. 6 | Bulk Modulus Predictions of MACE-MP-MOF0 relative to DFT and
experiments for diverse MOFs. Bulk modulus predictions of MACE-MP-MOF0
models as compared to (a) only DFT and (b) DFT and Experiments where ZIF-4,

ZIF-8, XEDPON, XEXMEU, SUSZOW48, UiO-66-Hf/Ce are diverse out-of-curated
dataset MOFs. DFT data is self-generated or reported in25,63–65 and experiment
reported in66–70.
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rationalize the performance of these models by analyzing their ability in
accurately capturing the atomic positions and interactions in the equili-
brium structure in Table 7 for MOF-74. An accurate capture of atomic
positions in the MOF provides a better description of forces, which ulti-
mately correlates to the partial phonon density of states (PDOS) obtained
with DFT in Fig. 7.

Figure 4 for MOF-74 shows that the GFN1-xTB method is in good
agreement with DFT for frequencies lower than 6 THz, above which the
errors significantly increase. The overlap is better in the lower frequency
range because this region is dominated by the heavy Zn atom vibrations
which have low RMSDs in Table 7. The GFN1-xTB and MACE-MP-0b
errors in the atomic positions for C and O, dominating the vibrations
beyond 6THz, are ten to hundred times larger than the MACE-MP-MOF0
errors. The greater flexibility and higher rotational degrees of freedom of
these atoms in the organic linkers are more difficult to capture than the
surrounding metal nodes17.Therefore, the GFN1-xTB method accurately
captures the vibrations of themetal nodes, but it inadequately represents the
interactions between atoms in the organic linkers for phonon calculations.
As the MACE-MP-MOF0 models consistently achieves ten to thousand
times lower errors for all the elements present in theMOFs thanGFN1-xTB
and MACE-MP-0b, we obtain the high agreement between DFT and
MACE-MP-MOF0 model predictions throughout the phonon spectra (see
Supplementary Table 5 for the analysis of otherMOFs).MACE-MP-MOF0
demonstrates a significant improvement in capturing the covalent inter-
actions in MOFs, addressing the limitations of MACE-MP-0b and GFN1-
xTB,which primarily capture non-covalent interactions. This enhancement
positionsMACE-MP-MOF0as a promising tool for systemsbeyondMOFs,
where covalent interactions dominate, such as in covalent organic
frameworks.51.

In summary, in this work, we present a fine-tuned MLP for MOFs,
MACE-MP-MOF0, that canbeused to produce ab initio quality phonons in
a high-throughput way. The model was trained on a representative dataset
of 127 MOFs selected by efficiently sampling the phase space based on
MACE descriptors which significantly reduced the computational efforts in
generating DFT reference data. The MACE-MP-MOF0 model predicts
phonon-derivedbulkmodulus in excellent agreementwith experiments and
DFT on MOFs unseen by the model, demonstrating its transferability.

The MACE-MP-MOF0 model presented here is also 50% faster than
the MACE-MP-0b foundation model (with dispersion corrections inclu-
ded) and 10 times more accurate in obtaining optimized geometries, forces,
energies and stresses which are crucial for obtaining accurate vibrational
properties. Additionally, MACE-MP-MOF0 model is 90% faster than
GFN1-xTB for large MOFs (500 atoms per unit cell) (see SI) The compu-
tational efficiency and accuracy of themodel make it an excellent candidate
for screening phonon-derived properties, such as bulk modulus, in MOFs,
providing a quantitative description that aligns closely with experimental
and DFT results. The model can calculate phonons within the quasi-
harmonic approximation to obtain ab initio-level thermal expansions,
which would otherwise be computationally expensive to obtain using DFT
for MOFs.

Through thepreliminary analysis for thermal expansionofMOF-5and
UiO-66 with MACE-MP-MOF0 and DFT, we conclude that the quasi-
harmonic approximation does not provide a sufficient description of
anharmonic effects in MOFs and is an area with scope for improvement in
the computational study of vibrational properties of MOFs. While MACE-
MP-MOF0 accurately predicts phonons in the majority of the frequency

range (0–60 THz) which dominate most of the physical properties of
interest, nevertheless, further improvement is possible by capturing the high
frequency range (90–100 THz, which correspond to the vibration of H
atoms in the linkers) as shown in Fig. 8.Wewould also like to highlight that
while the current model covers 60% of MOFs in the QMOF database that
span the same chemical space of metal nodes as the 127 MOFs, these
sampledMOFs aremajority closed-shellmetal ions, which avoids electronic
spin-degrees of freedom. InMOFs withmagnetic elements, having training
data of atomic configurations with different spin-states in the same MOF
can lead to poor training of the MLP. HKUST-1, a well-known Cu-based
MOF, is the only MOF in the curated dataset with the magnetic element
which contributes to the higher element-wise MAE obtained with MACE-
MP-MOF0 for Cu (refer SI). In addition to the model presented here being
ready-to-use for a wide range of metallic nodes, organic linkers, and
topologies, it is also significantly easier to re-parameterize for new species by
simply including a few reference configurations of the MOF into the DFT
training set, compared to traditional force fields.

In conclusion, the presentedmodel provides a platform for performing
high-throughput calculations in an efficientmanner to guide the design and
synthesis of MOFs for complex dynamical properties. The reported data
motivates further development of MLPs that are easy-to-train and

Table 6 | Predicting negative thermal expansion in MOFs

MOF MACE-MP-MOF0-v2 DFT Simulation Experiment
[10−6K−1] [10−6K−1] [10−6K−1] [10−6K−1]

MOF-5 (300K) −6.65 −3. 5(1)59 −860 −13.161

UiO-66 (350K) −9.35 −4(1)25 −6(1)25 − 5.3 to −35 ((323K–523K), Rate of cooling)50

Comparison of Coefficient of Thermal Expansion (CTE) predictions by different methods at different specified temperature and experimental conditions, (1) indicate values read from graph.

Table 7 | Evaluation of the accuracy of fractional atomic
positions

Method RMSDZn RMSDC RMSDH RMSDO

GFN1-xTB 0.026 0.11 0.010 0.125

MACE-MP-0b 0.009 0.005 0.005 0.013

MACE-
MP-MOF0

0.002 0.001 0.001 0.002

MACE-MP-
MOF0-v2

0.003 0.002 0.001 0.004

RootMean Square Deviations (RMSD)s of optimized fractional atomic positions with the respective
methods relative to DFT.

Fig. 7 | Understanding elemental contributions to the phonon spectrum. Nor-
malized Partial Density of States (PDOS) for MOF-74 showing the contributions of
the composing elements to the phonon spectrum.
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transferable to replace extremely expensive ab initio methods for the ana-
lysis of lattice dynamics in MOFs.

Methods
DFT calculations
The DFT computations for generating the dataset were performed using
VASP28–31 and the atomate2 software52. SinceMACE-MP-0bwas trained on
the MPtrj dataset35, we ensured consistency by using the same parameters
and pseudo potentials to produce our DFT training dataset. The Perdew-
Burke-Ernzerhof (PBE) form of the generalized gradient approximation
(GGA) exchange-correlation functional53 was used along with the Projector
AugmentedWave (PAW) method (version 54)54. A D3(BJ) van der Waals
correction55,56 was included for all MOFs, which eliminated some spurious
phonon instabilities. In57, it has been shown that different functionals per-
form similarly in structure prediction when applied to chemically diverse
MOFs for screening purposes. Hence, the chosen PBE-D3 (BJ) functional
offers computational consistency and convenience for the diverse curated
dataset.Adding thedispersion correction to the trainingDFTdata insteadof
adding dispersion on the MACE-MP-0b model increased the speed of the
model by 1.5 times (refer SI).

Static DFT data was produced with an energy convergence of 10−5 eV.
The cutoff energy for the plane-wave basis set was set to 520 eV. Geometry
optimization was performed on deformed configurations of the curated
MOFs to produce trajectories with DFT with a force convergence of
EDIFFG=−0.02 ev/Å.DFTdata for Equation of State (EOS)was generated
by obtaining the energies of 6 isotropic deformations with a linear defor-
mation ranging from −10% to 10% using the Birch-Murnaghan EOS.

Improving accuracy of MLP via fine-tuning
Fine tuning was carried out on our curated dataset using the multi-head
approach as implemented in theMACEcode startingwith version 0.3.7.We
used MACE-MP-0b as one head and our PBE+D3(BJ)53–56 calculations as
the other head. The ratio of weights for the loss functions for energy, forces
and stresses was 1:10:100 andwe tuned theMLP training for 2500 epochs. It
is important to note that during the training process,MACE employs a FPS
approach to select configurations from the original MPtrj training set35 and
adds them to our data. Table 3 shows the final convergence results for the
fine tuning for the twomodels trained,MACE-MP-MOF0andMACE-MP-

MOF0-v2.Due to the relatively largenumberof atoms inour training set per
MOF, training was carried out on 16 A100@40GiB RAM NVIDIA GPUs.
The hyperparameters for fine tuning the model, are inherited from the
original MACE-MP-0b model (L=1, r_max = 6.0, hidden irreps
128 × 0e+ 128 × 1o, 2 layers, each with correlation order: 3 (body order: 4)
and spherical harmonics up to: l=3, see33 for the full list), Specifically
hyperparameters for fine tuning are: learning rate 0.005, ema decay 0.995,
batch size 8.

Dealing with phonon imaginary modes
Observing phonon imaginary modes for MOFs are common when the
geometry optimization leads to a configuration which does not corre-
spond to the minima of the potential energy surface. Among the curated
dataset, NOTT-300 is a prototypical example that shows this phenom-
enon. We tested three methods to eliminate such spurious imaginary
modes: i) ModeMapping—The process begins by identifyingmodes with
negative frequencies and generating a structure by displacing the atoms
along the imaginary mode. The structure is then geometry-optimized,
followed by standard phonon calculations. Large enough displacements
are needed to escape the local minima. This method is convenient for
structures having only few imaginary modes. ii) Structure rattling—this
method is by far the most brute-force method, but surprisingly effective.
Here, we used the ASE40,58 rattle implementation which perturbs atomic
positions with random displacements drawn from a normal distribution
of 0.01 standard deviation. It is possible to rattle the full structure or only
atoms involved in the imaginary modes, such as the H atoms that
hydroxylate the inorganic center in NOTT-300. Once rattled, the struc-
ture is regularly geometry optimized, and iii) Molecular Dynamics—in
this method, we perform a low-temperature NVE ensemble simulation at
T = 7.5 K or 10 K for as few as 40 steps, using either the MACE-MP-0b
potential or the fine-tuned MACE-MP-MOF0 potential. We perform
geometry optimization on the last frame of the resultant simulation.
Importantly, specific atoms may be fixed in position if needed during the
molecular dynamics simulation. All three methods mentioned above
successfully eliminate imaginary modes, with methods ii) and iii) being
preferreddue to their ease of application andbetter suitability for handling
structures with a large number of negative frequencies. The process of
eliminating imaginary modes is stopped when the remaining negative
frequencies become negligible (≤ 10−4 THz).

Data availability
All datasets that were used and/or generated in this work are publicly
available in this repository: https://github.com/ddmms/data/tree/main/
mace-mof-0.

Code availability
The scripts used to generate the training DFT dataset, the MACE-MP-
MOF0 models are provided here: https://github.com/ddmms/data/tree/
main/mace-mof-0.
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