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Abstract

We present FairRankTune, a multi-purpose open-source Python
toolkit offering three primary services: quantifying fairness-related
harms, leveraging bias mitigation algorithms, and constructing cus-
tom fairness-relevant datasets. FairRankTune provides researchers
and practitioners with a self-contained resource for fairness audit-
ing, experimentation, and advancing research. The central piece
of FairRankTune is a novel fairness-tunable ranked data generator,
RankTune, that streamlines the creation of custom fairness-relevant
ranked datasets. FairRankTune also offers numerous fair ranking
metrics and fairness-aware ranking algorithms within the same
plug-and-play package. We demonstrate the key innovations of
FairRankTune, focusing on features that are valuable to stakehold-
ers via use cases highlighting workflows in the end-to-end process
of mitigating bias in ranking systems. FairRankTune addresses
the gap of limited publicly available datasets, auditing tools, and
implementations for fair ranking.
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1 Introduction

Motivation. Over the last few years, fair ranking has become an
active area of research due to the ubiquitous nature and societal
impact of ranking-based tasks. As this impactful area grows, a
substantial obstacle faced by researchers is the unavailability of
rich fairness-relevant ranked datasets [10, 13]. This is in part due to
the challenge of releasing sensitive real-world datasets for fairness
research. Fairness analysis necessitates protected information such
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as gender, age, or race, which, when made public, can pose privacy
risks. Moreover, legal restrictions often prevent platforms from
collecting such information in the first place, along with restricting
its use, sharing, and retention [5]. Despite the breadth of recent
work in fair ranking [13, 14], very few fairness metrics and fair
ranking algorithms have publicly available implementations.

State-of-the-Art. Fairness-focused toolkits such as Fairlearn [3],
Aequitas [15], LiFT [20], FairML [1], and AIF360 [2] are dedicated
almost exclusively for fair classification and its corresponding met-
rics and algorithms. However, these fair classification tools cannot
be used directly for ranking-based contexts due to the task-specific
nature of fairness metrics and algorithms. For instance, rankings
are inherently ordinal objects that require relative positioning de-
cisions. Thus, fair classification constructs that evenly represent
groups in different (often binary) classes are not applicable.

To the best of our knowledge, FARE [9], librec-auto [19] and
Fairsearch [23] are the available tools supporting fair ranking work-
flows. FARE and librec-auto provide group fair ranking metrics,
while Fairsearch implements the FA*IR [21] and DELTR [22] fair
ranking algorithms. However, these resources are restricted in that
they support only on the simplified case of binary demographic
groups (e.g., black vs. white) compared to real-world scenarios
such as multiple races. Based on the limited landscape of open
fair-ranking toolkits, practitioners, and researchers lack tools for
assessing and improving the fairness of ranking systems, particu-
larly for the setting of multiple groups.

Our Approach. To address the above gap and reduce the friction
posed by current tools, we present the open-source FairRankTune
Python toolkit. The objective is to provide researchers and practi-
tioners with an end-to-end fair ranking toolkit supporting (1) data
generation, (2) bias measurement, and (3) bias mitigation. The RANK-
TuNE toolkit contains three primary components. First, a novel
fairness-tunable data generation method, called RANKTUNE , is
packaged in FairRankTune. RANKTUNE provides the following prac-
tical capabilities. It can: (a.) produce ranked data along the entire
statistical parity fairness spectrum, (b.) generate distinct rankings
all with the same degree of fairness, (c.) its fairness-tuning mech-
anism offers a consistent usage-pattern and interpretation across
diverse item sets, and (d.) supports multiple, not just binary, groups.

Second, FairRankTune offers a Fairness Metric library containing
numerous popular fairness metric implementations. This Metric
library provides toolkit users with multiple alternative approaches
for how to calculate top-level metrics. For instance, for group expo-
sure [18], a popular fairness criteria [18, 22], FairRankTune offers
seven ways of calculating a top-level exposure metric (e.g., min-max
ratios, max absolute difference, L-2 norms of per-group exposures,
etc.). This provides enhanced customizability by allowing toolkit
users to utilize their preferred formulation. This also lowers the
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Figure 1: FairRankTune Toolkit: Architecture and Components for Supporting Fair Ranking Tasks

barrier for researchers to conduct studies comparing these formu-
lations with one another or adding new formulations. Third, we
provide a fair ranking bias mitigation module containing open-
sourced implementations of fair ranking algorithms [6, 7]. These
can be applied to any given or generated dataset and then evaluated
with the user’s choice of provided metrics.

In a nutshell, FairRankTune’s wide range of functionalities pro-
motes reproducibility, ease of use, and customization. The Fair-
RankTune toolkit has been open-sourced on the PyPi platform. Our
demonstration video is available at: https://tinyurl.com/frtdvid.

2 The FairRankTune Framework

The high-level framework of the FairRankTune toolkit is depicted in
Figure 1. FairRankTune consists of complementary components that
play a crucial role in facilitating algorithmic fairness research, con-
ducting real-world bias analysis, and developing fairness-enhanced
systems. These components encompass an easy-to-use ranked data
generator, a comprehensive metrics module for tasks such as exper-
imental benchmarking or auditing, and an extensible fair ranking
algorithm library. All components are included as subpackages
under the main FairRankTune Python package, and the toolkit
user only needs to import the FairRankTune library to access these
functionalities. Extensive details, usage instructions, and example
Jupyter Notebooks are available in the accompanying FairRankTune
documentation: https://kcachel.github.io/fairranktune/.

3 FAIRRANKTUNE Capabilities

3.1 Novel RaANKTuUNE Data Generator

RankTune is a novel group fairness-tunable data generation mecha-
nism released in FairRankTune. RankTune makes it easy to create
custom fairness-relevant datasets for research, experimentation,
and software testing. The assumption of RANKTUNE is that to gen-
erate rankings satisfying the general notion of statistical parity
fairness [13, 14], the likelihood of a group receiving a positive out-
come should be equal to that group’s proportion of the candidate
pool. We thus first record each group’s proportion of the candidate
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pool. Then we add “unfairness" by distorting the proportional re-
lationship between the likelihood of a group receiving a positive
outcome! and its proportion of the candidate pool.

Next, the RankTune algorithm places candidate items individu-
ally into the to-be-constructed ranking using a controlled pseudo-
stochastic process that steers the fairness of the generated rank-
ing(s) using a group “representativeness” parameter ¢ € [0, 1].
When ¢ = 0, RankTune generates unfair rankings, meaning there
are significant disparities in the presence of groups in favorable
rank positions. As ¢ increases to a maximum value of 1, groups
are represented more fairly, meaning groups receive proportional
shares of advantageous rank positions.

The key mechanism of RANKTUNE is a repeat insertion process.
The ranking is generated by iteratively placing items into it by
sampling the uniform [0, 1] interval. The sampled value determines
which item, and thus group, is placed into the ranking next. Each
group is “assigned” a region of this interval. Specifically, when ¢ = 1
(most fair), each group’s region is equal to that group’s proportion of
the ranked item set. Unfairness is added by manipulating the size of
each group’s region via the ¢ representativeness tuning parameter.
Our sampling-driven generation concept ensures RANKTUNE can
generate multiple distinct rankings of similar degrees of fairness
yet it remains easily reproducible via a random seed.

The capabilities of RANKTUNE can be seen in Figure 2 which
displays the average values of two fairness metrics, including 95%
confidence intervals evaluating a spectrum of RANKTUNE gener-
ated rankings. Specifically, we generate 200 rankings for ¢ ranging
from 0 to 1 (x-axis), in increments of 0.1 for six multi-group distri-
butions (e.g., ranging from three to eleven groups). We can see that
RANKTUNE outputs progressively more fair rankings as ¢ increases.
Robustness is seen through the relatively small confidence intervals.
RANKTUNE behaves consistently across both different item sets and
multiple metrics (EXP [18] on left and AWRF [16] on right).

'We view the positive outcome to be the placement of a candidate into higher favorable
positions in the generated ranking.
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Figure 2: Example of RANKTUNE’s effectiveness and control-
lability. Average metric values (with 95% confidence intervals)
are plotted for 200 RANKTUNE generated rankings at each ¢.

Table 1: Overview of core metrics in FairRankTune.

Metric Fairness Form Score-based
Group Exp (EXP) [18] Group X
Exposure Utility (EXPU) [18] Group v
Exposure Realized Utility (EXPRU) [18] Group v
Attention Weighted Rank Fairness [16] Group X
Exposure Rank Biased Precision Equality [8] Group X
Exposure Rank Biased Precision Proportionality [8] Group X
Exposure Rank Biased Precision Proportional to Relevance [8] Group v
Attribute Rank Parity [4] Group X
Normalized Discounted KL-Divergence [7] Group X
Inequity of Amortized Attention Individual v

In the RANKTUNE module, toolkit users have four different ways
to generate ranked data. Each function operates on the ¢ represen-
tativeness parameter but differs in whether rankings are generated
from user-given candidates or group proportions. GenFromGroups
generates rankings from the number of items to be ranked, an
array of each group’s proportion of the total number of items,
and the ¢ representativeness parameter. GenFromItems generates
rankings based on the ¢ parameter and an existing dataset. The
sibling methods ScoredGenFromGroups and ScoredGenFromItems
also generate relevance scores modeling the desired level of bias.

3.2 Modular and Diverse Metric Library

The Metric library of FairRankTune provides over fifty ways to
measure fairness in rankings. It encompasses the two prominent
dimensions of fairness in the Algorithmic Fairness community —
group and individual fairness [13]. Group fairness metrics include
metrics that incorporate relevance scores associated with items, so-
called score-based fairness [18], and statistical parity metrics that
are based on the representation of groups [17]. All group fairness
metrics support multiple groups.

The Metric library currently contains ten core metrics summa-
rized in Figure 3. A key innovation of FairRankTune is to provide
toolkit users multiple choices for how to calculate a top-level fairness
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metric. The fairness literature shows that most fair classification
metrics are aggregation metrics that, through a mathematical for-
mula, distill per-group metrics into one value [12]. This single value
is typically reported as the fairness metric itself. For instance, in
fair classification, we measure the true positive rate (TPR) for each
group, and then combine them into a single value by taking the min-
max ratio of the TPRs. Thus, the per-group metric is TPR, which
can be combined in any number of ways. We put forth that the same
conceptual idea is true in contemporary fair ranking metrics and
specifically design FairRankTune with this additional modularity.

import FairRankTune as frt

EXPMaxMinDiff, exps_d = frt.Metrics.EXP(ranking_df,
item_group_dict, 'MaxMinDiff"')
frt.Metrics.EXP(ranking_df,
item_group_dict, 'MinMaxRatio')

EXPMinMaxRto, exps_r

Listing 1: Usage example of the Metrics library to calculate
EXP two alternate ways using different cross-group formulas.

Eight of the FairRankTune core metrics are “meta-metrics”, i.e.,
they combine per-group measurements into a single value. Across
the fairness literature, these per-group metrics are combined in
diverse ways, e.g., min-max ratios, variance, or L-2 norm [18, 22].
FairRankTune offers seven modes of calculating top-level fairness
metrics. This implementation allows for toolkit users to choose
their preferred formulation. An example of how to specific the
metric calculation can bee seen in listing 1. Further, this design
lowers the barrier for researchers to conduct additional studies, such
as comparing these formulations and conducting user studies on
their interpretability. The metric documentation, we have prepared
with FairRankTune is also a resource to the community at large,
explaining each metric’s conceptualization of fairness, offering
multiple usage examples, and highlighting source papers and their
BibTeX references.

3.3 Open-Sourced Fair Ranking Algorithms

We have also implemented and added to FairRankTune an initial
set of multi-group fair ranking algorithms. These algorithms can
be used as experimental baselines or as fairness interventions. The
library is extensible, meaning the community is invited to add
additional implementations into the toolkit. The Rankers module
allows users to leverage fair ranking methods within the FairRank-
Tune ecosystem. It currently provides the DetConstSort [7] and
Epsilon-Greedy [6] algorithms, with others easily added in the fu-
ture. As neither algorithm has a publicly available implementation
accompanying its introduction, this allows toolkit users to easily
work with state-of-the-art ranking methods.

4 FAIRRANKTUNE Demonstration

We will demonstrate several of the critical features of FairRankTune
via a concrete bias mitigation use case.

Fairness Analyzing a New Algorithm. Imagine you’re a data sci-
entist who has been developing a new ranking algorithm, rankify.
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Your company wants to use rankify to prioritize how job appli-
cants are shown to hiring teams. Thus, they want to make sure that
rankify does not advantage certain groups, specifically males or
females. Using historical data, you would like to understand how
this algorithm impacts different groups compared to the company’s
old ranking process. You're also interested in comparing rankify
to methods that already exist for making fair rankings.

Setup. We use the German Credit dataset [11] as the company’s
historical data. The old candidate ranking algorithm, old-rank,
simply sorts candidates by descending scores. Your new algorithm,
rankify, works by adding the average score of males to every
female’s score before ordering candidates. More details can be found
in the corresponding notebook https://tinyurl.com/frtdemo.

#Calculate metrics using MinMaxRatio Calculate Metrics
EXP_minmax_o, avg_exp_o = frt.Metrics.EXP(old_ranking[[’candnumber]],
item group_dictionary, ‘MinMaxRatic')
EXP_minmax_r, avg exp_r = frt.Metrics.EXP(rankify ranking[['candnumber’]],
item_group_dictionary, ‘MinMaxRatio')
EXPU_minmax_o, per_grp_o = frt.Metrics.EXPU(old_ranking[['candnumber']],
item_group_dictionary, old_ranking[[score]], 'MinMaxRatio')
EXPU_minmax_r, per_gp_r = frt.Metrics.EXPU(rankify_ranking[['candnumber']],
item _group dictionary, rankify ranking[[score]], "MinMaxRatic®

Fairness Test rankify & old using EXP (Statistical Parity) and EXPU (Score-based)
EXP-old - |

Exp-rankify - |

Metric

EXPU-old -

EXPU-rankify - |

Figure 3: Using diverse fairness metrics in FairRankTune,
toolkit users can easily calculate and compare metrics.

Fairness Testing with Company Data. You begin by comparing the
fairness of rankify and old-rank using the FairRankTune Metric
library. Using two function calls per algorithm, you test two types of
group fairness, statistical parity and score-based fairness, using the
group exposure (EXP) and group exposure utility (EXPU) metrics,
respectively. The plotted results are in Figure 3. Using MaxMinRatio
to measure unfairness means that values closer to 1 are more fair.
You can see that using EXP old-rank was pretty fair to begin
with and rankify is fairer than old-rank. In EXPU, old-rank
was very fair, and rankify made it less fair. So, depending on
the fairness objective, rankify can help or hurt. Since rankify
is trying to push up a marginalized group, you focus on the EXP
metric. Nonetheless, the company’s historical data does not show
significant disparities between females and males, making it a poor
test bed for evaluating the bias-mitigation capabilities of those
algorithms. Data that exhibits more bias would be helpful in this
case.

Fairness Testing using RankTune Data. To get data with more bias,
you utilize the RANKTUNE data generator. Using a single function
call, you produce a dataset with the same group distribution as
the company’s historical data but with more bias. On this new
dataset, you test rankify using EXP. Using the Metric library, by
changing one parameter in the EXP function, you measure EXP
in two different ways with MaxMinRatio and MaxMinDiff. Figure
4 shows the procedure to generate this new scenario. Specifically,
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phi = @.1 #Generate a biased ranking
r_cnt = 1 #Generate 1 ranking

5 = 18 #For reproducibility

ranking_df, item_group dict, score_df =
frt.RankTune.ScoredGenFromItems(item_group dictionary, phi, r_cnt,

Generate Custom Fairness-
relevant Ranked Datasets

‘uniform’, s)

ExP-old - MaxMinDiff EXP-old - MinMaxRatio

ExP-rankify -

EXP-rankify - |

00925 0.0930 0.0935 0.0940 0.0945 0.0950 0.0955 0546 0548 0550 0552

Figure 4: Using the novel fairness-relevant ranked data gen-
erator RANKTUNE, users can easily create custom datasets
for testing their new methods (e.g., rankify compared to
old-rank). EXP is shown with two cross-group formulas.

working with the historical candidate pool you set ¢ = 0.1 and use
theScoredGenFromItems function.

Figure 4 shows the results of measuring EXP with two different
formulas. Examining the plots, you confirm that this generated data
is, in fact, very biased. Thus, the old-rank method that just ranks
candidates by decreasing score is now completely unfair. You verify
rankify offers improvements over the company’s prior method.

#Apply DetConstSort Algorithm Use open-source bias-mitigation algorithms
hist_dcs_df, item group_d, hist_dcs_scores = frit.Rankers.DETCONSTSORT(ranking,
int_grp dict, scr, distribution, k)

‘Compare rankify to DetConstSort (DSC) on Historic Data ‘Compare rankify to DetConstSort (DSC) on Hypothetical Scenario

EXPrankify - EXprankify -

ic

Metr

H
EXPdcs - EXPdes -

092 093 093 095 096 097 098 055 060 065 070 075 080 085 090

Figure 5: Using the state-of-the-art methods in FairRank-
Tune, users can seamlessly compare their new methods (e.g.,
rankify) to alternate fair ranking methods (e.g., DCS [7]).

Comparing Against State-of-the-Art. While rankify appears to
work well in mitigating biases, you’re curious if a better perfor-
mance can be achieved using other existing methods. For this, you
turn to the algorithms implemented in FairRankTune. In a line of
code, you run the DETCONSTSORT algorithm on the historic data
and on the hypothetical scenario you generated using RANKTUNE.
Figure 5 shows the produced plots of this comparison. You confirm
that in both cases, DETCONSTSORT outperforms rankify. Thus,
you consider suggesting the company use DETCONSTSORT instead.

Demonstration Engagement. In addition to our guided demon-
stration, participants can change the metrics that are calculated,
adjust the bias level in the RANKTUNE generated data, generate their
own custom datasets, and compare against additional algorithms.

5 Conclusion

This demonstration showcases the FairRankTune toolkit, a user-
friendly interface to many fairness metrics, bias-mitigation tech-
niques, and the first-of-its-kind fairness-aware ranked data genera-
tor. Our audience of engineers, researchers, and data scientists can
use FairRankTune for critical applications and explorations.
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