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Abstract

Rank fusion is a technique for combining multiple rankings into
a single aggregated ranking, commonly used in high-stakes ap-
plications. For hiring decisions, a fused ranking might combine
evaluations of different candidates from various job boards into
one list. Ideally, such fused rankings are fair. Meaning they do
not withhold opportunities or resources from marginalized groups
of candidates, even if such biases may be present in the to-be-
fused rankings. Prior work fairly aggregating rankings is limited
to ensuring proportional (not addressing equality) fairness when
combining ranked lists containing the same candidate items. Yet,
real-world fusion tasks often combine rankings of varying candi-
date sets, may also contain relevance scores, or are better suited
to equal representation. To address fairness in these settings, we
present a new plug-and-play fairness-aware fusion strategy: Wise
fusion. Wise works in fusion settings where we have closed-box
access to a score-powered rank fusion (SRF) method, making it
possible to fairness-enhance existing fusion pipelines with little
added cost.Wise uses existing evaluations of candidates from an
as-is SRF method to achieve proportional or equal rank fairness in
the final fused ranking. Our experimental study demonstrates that
Wise beats the fairness and utility performance of state-of-the-art
methods applied to these new fair rank fusion settings.

CCS Concepts

• Information systems→ Information retrieval; • Social and
professional topics→ User characteristics.
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1 Introduction

Background. Rank fusion methods combine multiple, potentially
conflicting, base rankings of candidate items into a single fused
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Figure 1: Fair Rank Fusion. Given to-be-fused rankings with

varying degrees of candidate overlap and possibly relevance

scores, the goal, illustrated with the fused ranking (d.), is

to create a ranking that is fair with respective to multiple

groups and provides a high utility representation of base

rankings. The balance of these two objectives is also tunable.

ranking [7, 56]. Such systems play a pivotal role in fusing rank-
ings in impactful domains, including employment [49, 54], medical
decision-making [25], and modern metasearch engines [10, 56]. The
leading approach to fusing multiple rankings is the class of score-
powered rank fusion (SRF) algorithms, e.g., Borda Fuse [6], Coomb
Fuse [39], and many others [5–7, 26, 32, 58, 60, 61, 63, 66–68]. These
SRF methods take in multiple rankings, each of which may contain
relevance scores. The final fused ranking is generated by ordering
candidates based on each method’s specific scoring function, which
incorporates factors such as candidate positioning, accompanying
relevance scores, and popularity among base rankings.

Existing SRF methods are ideal for providing a fused ranking
that represents the base rankings, i.e., has high utility. However, in
high-stakes domains, we must also ensure that a high utility fused
ranking does not unfairly disadvantage marginalized groups, such
as race or gender. When fusing rankings, the detrimental effects
of societal biases in individual rankings can be exacerbated, as the
very act of combining potentially biased rankings can strengthen
existing biases or even introduce new ones [17, 54]. This realization
has led to the recent proposal of methods that incorporate group
proportional fairness into Kemeny rank aggregation [50], e.g., fair
rank aggregation methods (FRA) [17, 18, 54, 89].

Limitation of the State-of-the-Art. Despite significant advances,
these solutions [17, 18, 54, 89] do not support many prevalent types
of to-be-fused ranked data. In particular, existing FRA methods
make two restrictive assumptions. First, they assume that base
rankings are conjoint ranked lists 1. Then, they ignore any rele-
vance scores associated with candidates which risks unnecessarily
1Throughout this work we use the term conjoint to describe rankings that order the
exact same items.
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lowering the final fused ranking’s utility. For instance, some hir-
ing recruitment systems combine the results of multiple ranking
models to surface a final candidate ranking for the recruiter to act
on [4]. Each ranking model may produce an ordering of applica-
ble candidates from a platform-specific API, e.g., Monster, Indeed,
Linkedin, etc. Such models might also provide a relevance score
for a desired purpose, e.g., experience level or “company fit” [73].
However, when combining rankings from different platforms, it is
unlikely that the same people are all on the same platform. Ignoring
the learned relevance score could also overlook valuable candidates.
The fairness community has yet to address such fusion contexts.

Furthermore, adopting existing FRA methods [17, 18, 54, 89] re-
quires replacing a fusion system with an entirely new one. Because
FRA methods adopt the Kemeny approach to rank aggregation
[17, 18, 54, 89], the internal mechanics of the fusion approach must
also use the Kemeny criteria [50]. This is undesirable for domains
that have rigorously validated and designed custom SRF methods.

Problem. Addressing previously overlooked forms of to-be-fused
rankings, we conceptualize a fair rank fusion problem. Consider a
set of base rankings that may be positional, score-enhanced, and/or
non-conjoint. The goal is to combine these rankings into a fused
ranking that ensures all groups receive favorable shares of higher
positions in the fused ranking while maintaining as much overall
utility as possible. This is a multi-objective problem – with the
goals of fairness and utility often conflicting. Section 3 presents our
detailed problem, while Figure 1 depicts our ideal solution.

Challenges. We identify three core challenges in addressing this
fair rank fusion problem. First, multiple popular notions of fairness
apply to rankings [71, 74], and the decision of which notion to
utilize when debiasing depends on the task at hand. Stakeholders
may wish to represent groups either equally or proportionally at
favorable positions in the fused ranking. Yet, these two distinct
notions of fairness require different debiasing approaches [40, 71].
Addressing this challenge is of practical value as FRA methods to
date only support proportional fairness [17, 18, 54, 89].

Second, prior to fusion, the dynamics of the tradeoff between
utility and fairness is unknown. As illustrated in Figure 1, multi-
ple combinations of utility and fairness exist in a fused ranking.
Practical solutions must facilitate navigating the tradeoff between
the two objectives. Third, while we aim to support fairly fusing
a variety of input base rankings, e.g., disjoint, conjoint, positional,
and relevance-scored (and combinations thereof), proposing many
distinct custom solutions coupled with multiple fairness notions is
impractical. To ensure the ease of bias-mitigation adoption, a single
easy-to-use solution agnostic to specific input forms is essential.

Proposed Approach. Addressing the aforementioned challenges,
we present Within-a-group Similarity Enhanced fusion, in short,
Wise. As a conceptual foundation for Wise’s machinery, we intro-
duce the fair fusion principle, stating that candidates who perform
similarly within their respective groups should receive similar fa-
vorable positions in the fused ranking. Wise operationalizes this
principle through novel group similarity-determination strategies
for proportional and equal fairness.

Advancing in capabilities beyond prior methods [17, 18, 54, 89]
(see Table 1),Wise integrates with an off-the-shelf fairness-unaware

SRF method (e.g., [6, 7, 39]), making it applicable to fusing a wide
variety of input base rankings. We design Wise with a fairness-
control mechanism, which allows users to trade-off between the
maximal utility of the existing SRF method and fairness by adjust-
ing a single parameter 𝜆. Wise is an easy-to-use approach with
a relatively low engineering footprint, and, unlike past methods
[17, 18, 54, 89], can be easily added on top of existing rank fusion
pipelines.

In summary, we make the following contributions:
• Wedefine the fair rank fusion problem bridging a gap between
the capabilities of fair rank aggregation methods andmodern
forms of to-be-fused rankings.
• We designWise, the first solution to this problem. By enhanc-
ing a given SRF method with our proposed within-a-group
similarity knowledge, Wise operationalizes the fair rank
fusion principle introduced for debiasing rank fusion.
• We conduct extensive experiments comparing Wise to state-
of-the-art bias mitigation methods [17, 37, 42, 89] adapted
to our problem. On real-world and controlled datasets repre-
senting previously unstudied forms of rank fusion, we ob-
serve Wise outperforms these methods in terms of fairness
and utility while providing similar computational efficiency.

2 Related Work

Fairness-Unaware Rank Fusion. The task of combining multiple
ranked lists has origins in the field of social choice theory [16],
where such methods, generally referred to as voting rules [95], are
studied for democratic elections [24, 34, 35]. Likewise, rank aggre-
gation mechanisms underpin many modern information access
systems [9, 70]. This branch of work designs algorithms that can be
categorized into three algorithmic approaches: distance-based opti-
mization methods [11, 23, 28, 80] (including deterministic heuristics
[21, 87]), randomized methods [1, 2], or, as described at the outset,
score-powered rank fusion [5–7, 26, 32, 39, 58, 60, 61, 63, 66–68].

For distance-based aggregation, popular optimization functions
include the Kemeny criteria which minimizes the Kendall Tau dis-
tance between a final ranking and each of the base rankings [3, 94].
Pick-A-Perm [2] is an example of a randomized aggregation ap-
proach. This method randomly selects a single base ranking as the
final ranking. Score-powered rank fusion (SRF), has gained popu-
larity in information access systems, because unlike distance-based
aggregation methods [11, 21, 23, 28, 80, 87], these methods do not
require that base rankings be conjoint ranked lists. Moreover, SRF
methods often incorporate relevance scores that may be associ-
ated with candidates in each of the to-be-fused rankings [6, 39, 57].
Prominent SRF algorithms include Borda Fuse [6], Coomb Fuse fam-
ily [39], ProbFuse [63], Reciprocal Rank Fuse [26], and Rank-Biased
Centroid Fusion [7]. Unlike our work, the above methods do not
address group fairness during the rank fusion process.

Fairness in Rankings. The field of fair ranking is a broad research
area, including many different fairness metrics [12, 30, 40, 69, 79,
83, 93], bias-mitigation methods, empirical studies [8, 22, 38, 41,
72, 86, 90], and relevant surveys [33, 59, 71, 98, 99]. Fair ranking
metrics typically quantify either individual [13, 15, 83] or group fair-
ness [12, 31, 69, 79, 82, 93]. Bias-mitigation methods are described
as either pre-processing [19, 36], in-processing [12, 75, 84, 97], or
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Table 1: Comparison of fair rank aggregation (FRA) methods.

Approaches:
Distance-based

FRA [17, 18, 54]

Randomized

FRA [89]

This work

(Wise)

Supports Equal & Prop. Fairness X X ✓
Incorporates Relevance Scores X X ✓
Fuses Non-conjoint rankings X ✓ ✓
Has Fairness Control Parameter ✓ X ✓

post-processing [20, 30, 37, 42, 83, 96] with respect to the task of
learning to rank. Empirical studies have analyzed gender bias in
resume rankings [22], and performed fairness analyses of specific
platforms such as TaskRabbit ranking algorithms [86], Pymetrics
candidate rankers [91], and music streaming services [38]. The
aforementioned works in this category do not address fairness con-
cerns when combining multiple rankings. Our work complements
this line of research, by employing existing fair ranking metrics
[40] and adding to the toolkit of bias-mitigation methods.

Fair Rank Aggregation. As stated in Section 1, the prior work
most closely related to our target task is fair rank aggregation (FRA,
for short) [17, 18, 54, 89]. We group these methods into two cat-
egories summarized in Table 1. The distance-based FRA category
encompasses strategies that enforce notions of proportional group
fairness as constraints in the Kemeny rank aggregation optimization
program [17, 18, 54]. Departing from this literature, our work does
not assume to-be-fused rankings are conjoint lists, and we handle
incorporating candidate relevance scores in the fusion process.

Rank Aggregation Proportional Fairness, or Rapf [89] is a FRA
approach we refer to as randomized FRA because it, like Pick-a-
Perm [2], picks a random base ranking to re-rank until proportional
fairness is satisfied. Rapf does not contain a mechanism to control
the level of bias-mitigation. It also ignores any relevance scores
associated with ranked candidate items. While Wei et al. [89] ex-
plicitly state that Rapf assumes all base rankings rank an identical
set of candidates, we observe in our experiments (Section 5) that
its Pick-A-Perm-based approach does not break on non-conjoint
input. We thus categorize this method as “handling” non-conjoint
base rankings (Table 1). Nonetheless, only the candidates that are
in the selected individual ranking will be in the final Rapf ranking.

As neither the distance-based FRA [17, 18, 54] nor randomized
FRA [89] approaches explicitly address combining non-conjoint
lists, equal rank fairness, or make use of candidate relevance scores
we experimentally find that they underperform our proposed solu-
tion in such fusion settings.

3 Problem Formulation

Fusing Ranked Lists. Our setting involves a set𝑋 = {𝑥1, 𝑥𝑖 , ..., 𝑥𝑚}
of𝑚 candidate items, and a set R = {𝑅1, 𝑅2, ..., 𝑅𝑛} of 𝑛 ranked lists
over set 𝑋 [7, 39, 61]. For instance, ranked list 𝑅𝑖 could represent a
base ranking produced by a ranking model 𝑖 . Every base ranking 𝑅𝑖
ranks ≤ |𝑋 | candidates. We do not assume that each base ranking
necessarily orders exactly the same set 𝑋 . We assume that each
candidate 𝑥 𝑗 ∈ 𝑋 appears in at least one base ranking.

We consider two main types of base rankings. First, those that
only provide an ordering of candidates, e.g., 𝑅𝑖 = 𝑥1 ≺ 𝑥4 ≺ 𝑥7,
where 𝑎 ≺ 𝑏 means 𝑎 is ranked higher than 𝑏. We refer to these as

positional-only rankings or in short R𝑝 . The second form is base
rankings which provide an ordering and a numeric score associated
with each candidate item [39]. Each base ranking is a ranked list
of items of the format (𝑥 𝑗 , 𝑠𝑖 (𝑥 𝑗 )), with 𝑥 𝑗 indicating the candidate
item and 𝑠𝑖 (𝑥 𝑗 ) denoting a relevance value associated with can-
didate 𝑥 𝑗 for base ranking 𝑅𝑖 . We refer to these base rankings as
score-enhanced base rankings, or in short R𝑠 . Base rankings (either
R𝑝 or R𝑠 ) are combined into a single fused ranking 𝑅∗.

Fairness. Specific to our rank fusion problem, candidate items
have an associated categorical protected attribute 𝑝 . Examples of
protected attributes include nationality, race, gender, or their com-
bination. The set of candidates in𝑋 that share the same value in the
protected attribute is referred to as a group. We use𝐺 = {𝑔1, ..., 𝑔𝑣}
to denote the set of 𝑣 groups in candidate set 𝑋 . For fairness, we
mitigate bias with respect to the protected attribute 𝑝 .

Our Problem: Fair Rank Fusion. The notion of what constitutes a
fair representation of candidate groups at favorable fused ranking
𝑅∗ positions is a contextual decision dictated by the domain [85].
Thus, we handle both popular forms of group rank fairness, equal
and proportional, so that practitioners can customize the approach
to their needs. Table 2 defines the two fairness metrics we employ
and our measure of utility (fusion quality). For fairness metrics, we
use Normalized Discounted KL-Divergence [40] since it has equal,
i.e., NDKL eq., and proportional, i.e., NDKL prop. formulations. In
each formula, 𝑑𝐾𝐿 is the KL-divergence score [55], Dr:i the pro-
portions of each group in the first 𝑖 positions of ranking 𝑅, and
𝑍 =

∑ |𝑅 |
𝑖=1

1
𝑙𝑜𝑔2 (𝑖+1) is a normalizing factor [40].

In Table 2 we define Average Rank Biased Overlap, or ARBO as
our utility metric. In ARBO, we utilize Rank Bias Overlap 𝑟𝑏𝑜 , with
the persistence parameter 𝑝 = 1 to evaluate all positions [88]. We
choose Rank Bias Overlap as opposed to other similarity measures
(e.g., Kendall Tau [50]), as it does not require conjoint ranked lists.

Having described its elements, our fair rank fusion problem is to
combine a given set of base rankings (e.g., positional-only ranked
lists R𝑝 or score-enhanced ranked lists R𝑠 ), representing candidate
item set 𝑋 , into a final fused ranking 𝑅∗. 𝑅∗ ensures all groups
receive comparable shares of favorable rank positions (equal or
proportional) and simultaneously provides a high-quality fusion
of the potentially conflicting ranked lists. Ranking 𝑅∗ has a low
NDKL (eq. or prop) value and a high ARBO value. Fair rank fusion
prioritizes fairness while also seeking to maximize utility. However,
how to balance the tradeoff between the two objectives is a question
best answered by practitioners and stakeholders [27, 85]. Thus, we
seek a tunable solution design that allows for adjusting the level of
bias-mitigation applied to the task at hand.

4 Proposed Methodology: Wise

We provide the key conceptual idea underlying our proposed so-
lution to the fair rank fusion task in Section 4.1. Then, we present
the proposed Wise fusion solution. in Section 4.2.

4.1 Wise: Key Idea of Fair Fusion Principle

Conventional SRF methods [6, 7, 39] take as input a set of base
rankings and calculate for every 𝑥𝑖 ∈ 𝑋 a single fusion score 𝑓 (𝑥𝑖 ).
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Table 2: Fairness and utility metrics employed in evaluating Fair Rank Fusion. rbo refers to rank biased overlap [88].

Metric Measures Formula Interpretation

NDKL eq. [40] Equal group representation at favorable positions in 𝑅∗ 1
𝑍

∑ |𝑅∗ |
𝑖=1

1
𝑙𝑜𝑔2 (𝑖+1) 𝑑𝐾𝐿 (𝐷𝑅∗:𝑖 | | [ |𝑋 |\|𝑔1 |, ..., |𝑋 |\|𝑔𝑣 |]) ↓more fair

NDKL prop. [40] Proportional group representation at favorable positions in 𝑅∗ 1
𝑍

∑ |𝑅∗ |
𝑖=1

1
𝑙𝑜𝑔2 (𝑖+1) 𝑑𝐾𝐿 (𝐷𝑅∗:𝑖 | | [ |𝐺 |

−1, ..., |𝐺 |−1]1𝑥 |𝐺 | ) ↓more fair
ARBO (𝑟𝑏𝑜 [88]) Utility of fused 𝑅∗ in representing R 1

𝑛

∑𝑛
𝑗=1 𝑟𝑏𝑜 (𝑅∗, 𝑅 𝑗 ) ↑more utility
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Figure 2:Wise uses evaluations of candidates from an existing SRF method to achieve proportional or equal rank fairness in

the final fused ranking. As parameter 𝜆 ∈ (0, 1] increases, the final fused ranking incorporates more within-a-group similarity

information. Candidates that perform similarly within their respective groups receive similar positions in the fused ranking.

Thereafter, the fused ranking orders candidate items in 𝑋 by de-
creasing fusion scores. These methods only focus on maximizing
utility; thus, when certain groups occupy large shares of favorable
positions, their final fused ranking can be biased or unfair.

Remark 1 formally establishes our core conceptual principle for
mitigating unfair group treatment during rank fusion.

Remark 1 (Fair Fusion Principle). If two candidate items be-
longing to disjoint groups perform similarly within their respective
groups, they should be placed in similar positions in the fused ranking.

Our motivation for proposing the fair fusion principle is the
group model of bias [14, 52, 78], which was introduced by Kleinberg
and Raghavan [52]. The group model of bias is a theoretical frame-
work for conceptualizing how discriminatory bias affects empirical
evaluations of demographic groups. It states that bias is applied in-
consistently to different groups but consistently within each group
[52, 77]. In other words, given empirical evaluations of candidates,
those evaluations are often accurate within each group but are not
necessarily accurate when performing comparisons across groups.

The fair fusion principle addresses the concerns of the group
model of bias in the context of fusing multiple rankings. The core
implication of the fair fusion principle is that fusion scores 𝑓 (𝑥𝑖 )
within each group reveal performance within a group. Then, simi-
lar performance across groups can be derived from within-a-group
performance. For example, the best candidates in each group should
be somewhat closely positioned to one another. Likewise, the best
candidate for one group should not be in a position similar to that
of the 10th, 20th, 50th, etc. candidate of another group. Mechanisti-
cally, we can use the introduced notion of similar within-a-group
performance to “lift up” candidate items in disadvantaged groups.
For now, we intentionally under-specify the definition of similar
within-a-group performance to provide applicability to both equal
and proportional fairness notions. We formalize within-a-group

similarity in Section 4.2.2, illustrating that the fair fusion principle
can be applied to both forms of fairness.

To the best of our knowledge, this is the first conceptual frame-
work for integrating contemporary group fairness with SRF ap-
proaches. Past work has introduced conceptual frameworks focused
on solely increasing the utility of the final fused ranking. Most
prominently, for contexts in which ranked candidate items are tex-
tual documents, the cluster hypothesis [48] underpins a number of
methods for combining rankings [29, 51, 61]. The cluster hypothesis
states that documents with similar contents have a similar degree
of relevance for the given information need [48].

Cluster hypothesis-powered SRF methods [29, 51, 61] opera-
tionalize the cluster hypothesis by regularizing fusion scores with
inter-document similarity information using the regularization par-
adigm proposed in Zhou et al. [100] and Liu et al. [64]. This para-
digm is an efficient closed-form solution to regularizing item scores
with additional pairwise item information. Like prior state-of-the-
art rank fusion methods [29, 51, 61], we also adopt this regulariza-
tion paradigm, but for a new objective – namely, bias mitigation.

4.2 The Wise Fusion Solution

We introduce Wise. Wise is SRF method agnostic in the sense that
it relies only on the fusion scores provided by a score-powered
rank fusion methodHR , making it applicable to fairness-enhance a
wide array of rank fusion systems. The high-levelWise approach is
illustrated in Figure 2. Once fairness-unaware fusion scores 𝑓 (𝑥𝑖 )
are determined fromHR ,Wise extracts how candidates perform
within their respective groups. Then, addressing the need to support
multiple notions of rank fairness, Wise introduces two within-a-
group similarity-determination procedures designed to “lift up"
disadvantaged candidate groups. This allows practitioners to con-
trol whether the fused ranking satisfies equal or proportional rank
fairness.Wise then regularizes fusion scores 𝑓 (𝑥𝑖 ) with this new

 

166



Wise Fusion: Group Fairness Enhanced Rank Fusion CIKM ’24, October 21–25, 2024, Boise, ID, USA

Algorithm 1 Wise Fusion
Input: Base rankings R (e.g., R𝑝 , scored) of a candidate item set 𝑋 ,
including each candidate item’s group membership in the set of
groups 𝐺 , a desired rank fairness 𝜙 ∈ {equal, proportional}, and
fairness tuning parameter 𝜆 ∈ (0, 1].
Require: Use of a fairness-unaware SRF methodHR .
Output: Fused ranking 𝑅∗ ordering a candidate item set 𝑋 .
1: Obtain fusion scores 𝑓 ← fromHR
2: for every 𝑥𝑖 ∈ 𝑋 do

3: for every 𝑥 𝑗 ∈ 𝑋 do

4: if 𝑥 𝑗 and 𝑥 𝑗 belong to different groups in 𝐺 then

5: if 𝜙 == equal then
6: A𝑖 𝑗 ← 𝛿𝑒𝑞 (𝑥𝑖 , 𝑥 𝑗 ) // Eq. 2
7: if 𝜙 == proportional then
8: A𝑖 𝑗 ← 𝛿𝑝𝑟𝑜𝑝 (𝑥𝑖 , 𝑥 𝑗 ) // Eq. 3
9: D← Diagonal normalizing matrix of A

10: 𝑓 ∗ ←
(
I − 𝜆D−1/2AD−1/2

)−1
𝑓

11: Obtain the fused ranking 𝑅∗ by sorting candidate items 𝑥𝑖 ∈ 𝑋
by decreasing debiased fusion scores 𝑓 ∗

12: return 𝑅∗

within-a-group similarity knowledge. The level of debiasing is con-
trolled via the fairness-tuning parameter 𝜆. Increasing 𝜆 integrates
more within-a-group similarity knowledge into the fusion process.

4.2.1 Wise: Enhancing existing SRF methods. As illustrated in Fig-
ure 2, and shown in line 1 of Algorithm 1, Wise uses an existing
fairness-unaware SRF method HR as-is. HR determines fusion
scores for the entire candidate item set𝑋 based on the provided base
rankings.Wise produces fair fused rankings via as free-standing
“plug and play” component that integrates withHR . This design
choice frees Wise from restrictive assumptions on the type of base
rankings that it can fairly fuse. For example, prior FRA ranking
methods (e.g., [17, 54]) are restricted to combining only conjoint
ranked lists into a final fair ranking.Wise can combine any form
of to-be-fused base rankings thatHR can. This opens up fairness
support for disjoint, conjoint, positional, and relevance-scored (and
combinations thereof) base rankings.

In our experiments, we utilize two SRF methods: Borda [6] for
R𝑝 base rankings and Combmnz [39] for R𝑠 base rankings, as each
is designed for that respective setting. The standard fusion scores
𝑓 produced by this first step, namely,HR , are then used as part of
the subsequent debiasing process.

4.2.2 Wise: Debiasing Fusion Scores. To generate fair fused rank-
ings,Wise enhances fusion scores to incorporate pairwise informa-
tion on how two candidates compare in terms of their performance
within their groups. Specifically, Wise determines debiased fusion
scores 𝑓 ∗ as shown in line 10 of Algorithm 1. The key ingredient
in determining 𝑓 ∗ is a matrix, 𝐴, capturing the within-a-group
similarities of candidate items. We define A ∈ R𝑚×𝑚 to be com-
posed of candidate similarity information. A is generated from the
overarching fairness objective stipulated by the user, i.e., if input
𝜙 in Algorithm 1 is equal or proportional rank fairness. Matrix A
values are set to zero when the compared candidate items 𝑥𝑖 and
𝑥 𝑗 belong to the same group, since our objective is to establish

Figure 3: Example of within-a-group similarity for both

forms of fairness in the sample data shown in Figure 3a.

Item 𝑥𝑖 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8 𝑥9 𝑥10 𝑥11
Group 𝑔𝑣 𝑔1 𝑔1 𝑔1 𝑔1 𝑔1 𝑔1 𝑔2 𝑔2 𝑔3 𝑔3 𝑔3
Fusion score 𝑓 (𝑥𝑖 ) 30 27 24 21 18 15 12 9 6 3 0

(a) 𝑋 with group membership and standard fusion scores.

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8 𝑥9 𝑥10 𝑥11
𝑥1 0 0 0 0 𝜖 0 1 0 1 𝜖 𝜖

𝑥2 0 0 0 0 0 0 𝜖 1 𝜖 1 𝜖

𝑥3 0 0 0 0 0 0 𝜖 𝜖 𝜖 𝜖 1
𝑥4 0 0 0 0 0 0 𝜖 𝜖 𝜖 𝜖 𝜖

𝑥5 0 0 0 0 0 0 𝜖 𝜖 𝜖 𝜖 𝜖

𝑥6 0 0 0 0 0 0 𝜖 𝜖 𝜖 𝜖 𝜖

𝑥7 1 𝜖 𝜖 𝜖 𝜖 𝜖 0 0 1 𝜖 𝜖

𝑥8 𝜖 1 𝜖 𝜖 𝜖 𝜖 0 0 𝜖 1 𝜖

𝑥9 1 𝜖 𝜖 𝜖 𝜖 𝜖 1 𝜖 0 0 0
𝑥10 𝜖 1 𝜖 𝜖 𝜖 𝜖 𝜖 1 0 0 0
𝑥11 𝜖 𝜖 1 𝜖 𝜖 𝜖 𝜖 𝜖 0 0 0

(b) Result of 𝛿𝑒𝑞 (𝑥𝑖 , 𝑥 𝑗 ) , Eq. 2.

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8 𝑥9 𝑥10 𝑥11
𝑥1 0 0 0 0 0 0 1 𝜖 1 𝜖 𝜖

𝑥2 0 0 0 0 0 0 1 𝜖 1 𝜖 𝜖

𝑥3 0 0 0 0 0 0 1 𝜖 𝜖 1 𝜖

𝑥4 0 0 0 0 0 0 𝜖 1 𝜖 1 𝜖

𝑥5 0 0 0 0 0 0 𝜖 1 𝜖 𝜖 1
𝑥6 0 0 0 0 0 0 𝜖 1 𝜖 𝜖 1
𝑥7 1 1 1 𝜖 𝜖 𝜖 0 0 1 𝜖 𝜖

𝑥8 𝜖 𝜖 𝜖 1 1 1 0 0 𝜖 1 1
𝑥9 1 1 𝜖 𝜖 𝜖 𝜖 1 𝜖 0 0 0
𝑥10 𝜖 𝜖 1 1 𝜖 𝜖 𝜖 1 0 0 0
𝑥11 𝜖 𝜖 𝜖 𝜖 1 1 𝜖 1 0 0 0

(c) Result of 𝛿𝑝𝑟𝑜𝑝 (𝑥𝑖 , 𝑥 𝑗 ) , Eq. 3.

similarity as a means of comparing groups. That is, A𝑗 𝑗 = 0, then
the non-diagonal entries are determined using one of two similarity
functions depending on 𝜙 as below.

A𝑖 𝑗 =

{
𝛿𝑒𝑞 (𝑥𝑖 , 𝑥 𝑗 ), for 𝜙 = equal rank fairness
𝛿𝑝𝑟𝑜𝑝 (𝑥𝑖 , 𝑥 𝑗 ), for 𝜙 = proportional rank fairness

(1)

Next, we describe how we determine the within-a-group simi-
larly functions, e.g., 𝛿𝑒𝑞 (𝑥𝑖 , 𝑥 𝑗 ) and 𝛿𝑝𝑟𝑜𝑝 (𝑥𝑖 , 𝑥 𝑗 ). An example can
be seen in Figure 3. The proposed within-a-group similarity func-
tions are easy to calculate. This provides practitioners with a flexible
yet user-friendly solution that is relatively simple to implement.

For the fairness objective of equal rank fairness, we operationalize
the fair fusion principle by defining that candidates holding the
same position within their respective groups are exactly similar
and should thus be treated similarly. In other words, candidate
item 𝑥𝑜 that has the second-highest fusion score in their group 𝑔𝑢
is “similar” to 𝑥𝑒 , which also has the second-highest fusion score
in their group 𝑔𝑣 . In contrast, 𝑥𝑜 is not similar to candidate 𝑥𝑞 ,
which has the eighth-highest fusion score in their group 𝑔𝑢 . This is
formally expressed as:

𝛿𝑒𝑞 (𝑥𝑖 , 𝑥 𝑗 ) =
{
1, if |𝜏 (𝑥𝑖 ) − 𝜏 (𝑥 𝑗 ) | < 1
𝜖, otherwise

(2)

where 𝜏 (𝑥𝑖 ) is the one-indexed ranked position of 𝑥𝑖 in a ranking
of 𝑥𝑖 ’s respective group, when ordered by decreasing fusion scores
𝑓 , and 𝜖 = 0.00001.

For realizing proportional rank fairness2, we apply the fair fusion
principle by proposing that two candidates are similar if their posi-
tions with their respective groups are in the same percentile. This
effectively adjusts equal treatment, as in Eq. 2, by the potentially
distinct sizes of groups to represent them proportionally. In propor-
tional representation, unlike in equal representation, the sum of the
rows of A can vary drastically due to group sizes. For this reason,
we normalize A, once it is determined. To make this more concrete,
we define𝑚𝑖𝑛𝑥𝑖 ,𝑥 𝑗 ∈ {𝑥𝑖 , 𝑥 𝑗 } as the candidate among 𝑥𝑖 or 𝑥 𝑗 that
belongs to the smaller group of size 𝜃𝑔𝑚𝑖𝑛 , and𝑚𝑎𝑥𝑥𝑖 ,𝑥 𝑗 ∈ {𝑥𝑖 , 𝑥 𝑗 }
to be the candidate that belongs to the larger group of size 𝜃𝑔𝑚𝑎𝑥 .
If the sizes of the two compared groups are equal, candidates are

2Proportional is defined as proportional to the group’s share of the population.
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Table 3: Overview of real-world datasets.

Dataset 𝑛 |𝑋 | Protected Attribute Groups R Form Bias Mitigation Conjoint

Adult 4 11687 Race 5 R𝑝 Equal Yes
Happiness 17 153 Continent 5 R𝑝 Prop. No
Ibm-Hr 4 1462 Age 5 R𝑠 Prop. Yes
Economic 10 145 Bank Region 7 R𝑠 Equal No

chosen at random. As a formal expression,

𝛿𝑝𝑟𝑜𝑝 (𝑥𝑖 , 𝑥 𝑗 ) =

1, if | ⌈

𝜏 (𝑚𝑎𝑥𝑥𝑖 ,𝑥 𝑗 )
(𝜃𝑔𝑚𝑎𝑥 /𝜃𝑔𝑚𝑖𝑛 ) ⌉ − 𝜏 (𝑚𝑖𝑛𝑥𝑖 ,𝑥 𝑗

) | < 1

𝜖, otherwise
(3)

where 𝜏 (𝑥𝑖 ) and 𝜖 are the same as defined in Eq. 2.
Wise uses Eq. 2 and Eq. 3 repectively to generate matrix A

that is then utilized to debias the standard fusion scores 𝑓 into
𝑓 ∗ based on parameter 𝜆 (line 10). The regularization expression
in line 10 is the previously discussed closed-from regularization
formula introduced in Zhou et al. [100] and Liu et al. [64]. These
matrix operations regularize a set of candidate scores (in our case,
𝑓 ) by candidate pairwise information (in our case, the proposed
matrix 𝐴). In line 10, D is a diagonal normalizing matrix so that
D𝑖𝑖 =

∑𝑚
𝑗=1 A𝑖 𝑗 , I is an𝑚 ×𝑚 identity matrix, and 𝜆 is our input

fairness control parameter.Wise produces the final fused ranking
by sorting items by their decreasing now debiased fusion scores 𝑓 ∗.

5 Experimental Evaluation

5.1 Real-World and Synthetic Datasets

5.1.1 Real-world Datasets. The real-world datasets consist of base
rankings with only positional orderings of candidates (e.g., base
rankings R𝑝 ) and base rankings with positional orderings and rele-
vance scores (e.g, base rankings R𝑠 ). Table 1 presents a summary
of dataset characteristics and their use.

For positional base rankings R𝑝 , we use the Adult [53] fair-
ness benchmark dataset, containing to-be fused rankings of people
whose income is ≥ $50𝐾 , the protected attribute is race. This dataset
contains conjoint base rankings. The second dataset Happiness [43]
contains annual rankings of countries that are fused into an overall
ranking; the protected attribute is geographical continents. The
base rankings have a strong bias toward European countries and
are non-conjoint not every country is in each year’s ranking.

For score-enhanced base rankings,R𝑠 , we use Ibm-Hr [45] which
ranks and scores employees by performance indicators. These are
conjoint base rankings. Groups are five distinct age categories; em-
ployees in their 30s are most preferred. Lastly, Economic [46] pro-
vides annual rankings of countries by economic freedom over 10
years. These base rankings are non-conjoint. Groups areWorld Bank
Regions, and base rankings contain a strong European bias.

5.1.2 Synthetic Datasets. We create two synthetic datasets to per-
form controlled studies on (1.) the spectrum of disjoint to conjoint
base rankings in Section 5.5 and (2.) the influence of base ranking
agreement in Section 5.6.

First, we generate base rankings with the popularMallows model
[47, 65]. Given a reference ranking, the model’s spread parameter 𝛼 ,
is increased to generate base rankings that contain more agreement
with the provided reference ranking. For 𝑛 = 50 base rankings, and
|𝑋 | = 100 candidates, we create a reference ranking stacking four

Table 4: Runtimes, in seconds, of all methods for the study

described in Section 5.4. Base is Combmnz on Ibm-Hr and

Economic, and Borda on Happiness and Adult datasets.

Method Ibm-Hr Economic Happiness Adult

Wise 19.510 0.244 0.313 2533.452
Base 0.156 0.031 0.005 0.055
Post-Eg 0.202 0.043 0.012 2.054
Post-Fq 282.156 5.988 8.727 40086.445
Pre-Eg 0.325 0.070 0.049 8.110
Pre-Fq 1114.646 40.595 77.751 161013.532
Rapf 9.493 0.068 0.043 3886.102
Epira 226.095 - - 37539.840

groups of 25 candidates each on top of each other, thereby creating
an extremely biased ranking. Since groups are equally sized, NDKL
eq. is equal to NDKL prop. [40]. We refer to the set of six base
rankings parametrized by 𝛼 as the Mallows dataset.

Second, we utilize the German Credit dataset [62], which has
|𝑋 | = 1000 candidates to generate base rankings ranging from dis-
joint to conjoint (varying degrees of candidate overlap). We use a
parameter 𝛿 representing the proportion of overlapping candidates,
i.e., shared amongst all base rankings. Then, for𝛿 ∈ {0, 0.2, 0.4, 0.6, 0.8, 1},
we sample without replacement 𝛿 candidates to determine the fixed
set of candidates that will appear in all base rankings. For each of
the 10 base rankings, we sample without replacement 100 ∗ (1 − 𝛿)
candidates. The final base rankings sort candidates by their credit
amount. The groups are males and females. We refer to the set of
six base rankings parametrized by 𝛿 as Overlap Credit.

5.2 Compared Methods

We compareWise with six state-of-the-art methodologies, includ-
ing (1) fairness-unaware score-powered rank fusion (SRF) methods,
(2) fair-ranking augmented SRF methods and (3) fair rank aggrega-
tion (FRA) methods.

Core Fairness-Unaware SRF Baselines. We use two prominent SRF
methods, one for fusing positional rankings R𝑝 and the other for
score-based rankings R𝑠 .

i.) Borda [6]: This SRF receives positional R𝑝 base rankings.
ii.) Combmnz [39]: This SRF method uses both candidate posi-

tions and scores to produce the fused ranking.

Fair-Ranker Augmented SRF Methods. SinceWise integrates with
a given SRFmethod (Section 4.2), we compose comparative methods
by using fair ranking algorithms to either fairness re-rank base
rankings prior to conventional SRF fusion or fairness re-rank the
SRF-produced fused ranking.

We select two commonly used fair rankers: Epsilon-Greedy [37]
and Fair Queues [42]. Epsilon-Greedy repeatedly swaps pairs of
items so that each item has probability 𝜀 of swapping with a random
item below it. As suggested in [37], we use 𝜀 = 0.6. Fair Queues
[42], a multi-group version of the FA*IR [96] algorithm, ensures
that the difference in fairness of exposure between groups is ≤
𝐷𝐷𝑃 . Following [42], we use 𝐷𝐷𝑃 = 0.1. Using these methods, we
compare with the four approaches below.

iii.) Pre-Eg: Epsilon-Greedy [37] re-ranks rankings pre-fusion.
iv.) Post-Eg: Epsilon-Greedy [37] re-ranks the fused ranking.
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v.) Pre-Fq: Fair Queues [42] re-ranks rankings pre-fusion.
vi.) Post-Fq: Fair Queues [42] re-ranks the fused ranking.
Post-Eg, Pre-Eg, Post-Fq, Pre-Fq, andWise integrate with an

SRF method. For a level comparison, when the input is positional-
only base rankings R𝑝 , we utilize Borda. We denote this by append-
ing *B to the method name. When the input also includes scores,
i.e., R𝑠 base rankings, we utilize Combmnz, and append *C.

Fair Rank Aggregation (FRA) methods. We also study two recent
FRA methods - Epira [17] and Rapf [89]. As described in Section 2,
these methods ignore any scores included with base rankings. Both
explicitly assume base rankings are conjoint ranked lists. However,
only Epira truly breaks on non-conjoint base rankings [18]; thus,
we only use it on base rankings of identical candidates.

vii.) Epira [17]: From the distance-based FRA methods (Table
1), this method handles multiple groups and is a fast approximation
of its ILP-based siblings, which are restricted to < 200 candidates
[17, 18, 54]. Epira ensures the min-max ratio in fairness of exposure
between groups is ≥ 𝛾 . As suggested in [17], we use 𝛾 = 0.9.

viii.) Rapf [89]: A randomized FRA method (Table 1) that en-
sures the fused ranking satisfies the proportional p-fairness notion
proposed by Wei et al. [89]. Rapf randomly selects a single base
ranking and re-ranks it to satisfy as much p-fairness as possible.
Thus, it has no fairness-controlling parameter.

Implementation Details. We utilize implementations provided by
the authors of Fair Queues (Pre-Fq, Post-Fq), Rapf, and Epira 3. We
implement the other methods for which no public implementation
exists ourselves. Unless otherwise specified, as in the parameter
tuning study in Section 5.7, we set 𝜆 = 0.9 forWise. We make all
our source and experimental code available at https://github.com/
KCachel/wisefuse.

5.3 Metrics for Evaluation

Fairness is measured by NDKL as defined in Table 2. The feasible
ranges of NDKL eq. and NDKL prop. vary based on the candidate
set𝑋 and its group sizes [40, 81]. They should be interpreted within
a dataset by comparing how different methods change the score up
or down as opposed to comparing these scores across datasets.

Utility is measured through ARBO (Table 2). As related work
suggests, preserving the initial orderings within each group can be a
desirable form of utility in some contexts [92, 96]. We also measure
how well a fused ranking preserves within-a-group orderings. To
get a single score for this group utility notion, we measure:

WG-RBO(𝑅∗, 𝑅′ ) = 1
|𝐺 |

∑︁
∀𝑔𝑖 ∈𝐺

𝑟𝑏𝑜 (order of 𝑔𝑖 ∈ 𝑅∗, order of 𝑔𝑖 ∈ 𝑅′ )

(4)
where 𝑟∗ is the evaluated fused ranking, 𝑟 ′ Borda for R𝑝 datasets,
and Combmnz for R𝑠 datasets. Its highest (best) value is 1.

Inspired by prior work [44, 76], using the above metrics, we also
study how predictably methods trade off utility with fairness when
method-specific fairness parameters are adjusted.

Computational efficiency is measured as the average time of five
runs permethod.While further optimizations and computing setups
might affect the reported runtimes, it is expected that relative trends
in runtime would be observed.

3The code repository contains code references.

WISE:  Better for 

equal fairness

RAPF: When fair, 

low group utility 

Figure 4: Fusing positional-only rankings R𝑝 .Wise outper-

forms the compared methods for equal rank fairness, and

Rapf does well in proportional settings but generally has

one of the lowest group utility values.

WISE:  Utilizing scores, 

higher utility than RAPF

Unified approach (WISE &

RAPF) better than pre- 


or post- processing

Figure 5: Fusing score-enhanced rankings R𝑠 . By utilizing

candidate scores Wise provides more utility for similar fair-

ness provided by Rapf. Unified approaches like Wise, Rapf,

and Epira offer better fairness than pre- (Pre-Eg) or post-

processing (Pre-Fq) an SRF method with a fair ranker.

5.4 Comparative Study on Real-world Datasets

Figures 4 and 5 plot the fairness, utility, andwithin-a-group ordering
preservation results of each method for R𝑝 and R𝑠 base rankings,
respectively. Then each setting contains one dataset where the
objective is either equal or proportional fairness. Table 4 displays
the runtime for each method. In the tested experimental settings,
when compared to the baseline methods, Wise achieves the best
fairness performance without drastically degrading utility.

Notably,Wise always occupies the most desirable top-left posi-
tion in the Figure 4 and Figure 5 scatterplots. In the fairness-utility
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Runtimes tend to decrease 

as more candidates overlap


 among base rankings 

Utility increases as more 
candidates overlap among 

base rankings

WISE : all conditions fair

RAPF: Group Utility very influenced

Figure 6: Influence of candidate overlap in base rankings. Wise can achieve the best fairness performance under all levels of

candidate overlap. All methods have lower utility and higher runtimes when base rankings have fewer overlapping candidates.

scatterplots, it is always furthest left, indicating the most bias mit-
igation, for both equal and proportional fairness. When another
method such as Rapf in the Ibm-Hr dataset or Post-Eg in the
Happiness dataset has a similar fairness level, Wise’s utility value
(y-axis) is higher – indicating it provides more overall utility for the
same level of bias mitigation.Wise also has high WG-RBO values
in Figures 4 and 5 – only surpassed by methods that offer no bias
mitigation (e.g., Borda or Combmnz). Lastly, Table 4 shows Wise’s
effective debiasing yields reasonable runtimes.

AfterWise, the next best methods are Rapf, Epira, and Post-Eg,
depending on the metric and input. Rapf is closest to Wise in fair-
ness performance – it tends to have the second lowest NDKL values.
However, as seen in Adult in Figure 4, it performs poorly when
the objective is equal fairness. Moreover, it tends to have drastically
lower WG-RBO values; meaning items are unnecessarily shuffled
around within groups. For instance, in the Economic dataset, Rapf
has WG-RBO of 0.71 compared to 0.95 in Wise. Next, Epira also
provides bias mitigation – though, as expected, since it is geared
toward proportional rank fairness, it does little to aid equal rank
fairness. Its primary drawbacks are inefficiency and that it only
handles the special case of base rankings with conjoint ranked lists.
Lastly, Epsilon-Greedy was designed to be fast [37]. Thus, as one
would expect, it is the fastest method after the fairness-unaware
methods. It contributes significantly towards mitigating bias but,
due to its candidate-swapping approach, has almost always the
worst utility (e.g., as in Ibm-Hr and Happiness).

The last tier of methods includes Pre-Eg, Post-Fq, Pre-Fq and
fairness-unaware Borda and Combmnz. As expected Borda and
Combmnz have the best WG-RBO, ARBO, and runtimes. But they
provide no bias mitigation. It is difficult to establish a clear order in
performance among Pre-Eg, Post-Fq, and Pre-Fq. Between Post-
Fq and Pre-Fq, Post-Fq appears slightly better. It mitigates some
bias in two out of the four datasets (Economic and Happiness).
Whereas Pre-Fq only has debiasing effects in Happiness.

In general, the fact that Pre-Eg performs worse than Post-Eg,
which is also true for Pre-Fq and Post-Fq, indicates that post-
processing is a significantly better approach to fair rank fusion
than pre-processing. This is because post-processing alters a utility-
maximized but unfair fused ranking to predictably decrease utility
until the desired fairness is enforced. In contrast, pre-processing
alters base rankings prior to fusion, yielding unpredictable results
in both objectives. Nonetheless, unlike Wise, these methods are
not near the top-left corner (ideal position) of the fairness-utility
scatterplots in Figures 4 and 5.

5.5 Varying Item Overlap in Base Rankings

In Figure 6, using the Overlap Credit dataset, we study how
varying levels of candidate overlap among base rankings affect
Wise and its compared methods. Parameter 𝛿 moves from base
rankings ordering completely disjoint candidates (𝛿 = 0) to all
base rankings ordering the exact same set of candidates (𝛿 = 1). An
implicit effect of increasing overlap is that as 𝛿 increases, the overall
number of candidates |𝑋 | decreases. We conclude, as in Section
5.4, there are two classes of methods. Those that (1.) provide the
most bias mitigation, (which in Figure 6 includes all explicit fair
rank fusion methodsWise, Rapf, and Epira), and (2.) the remaining
methods that provide very little to negligible bias mitigation.

In the first class, Wise offers more bias mitigation than Rapf.
Specifically, when 𝛿 ≤ 0.6, Wise provides more bias mitigation
for the same amount of utility. Then 𝛿 ≥ 0.6 (rankings have more
candidate overlap), Wise’s lower ARBO can be attributed to the
fact that Wise achieves more fairness. Thus, the fairness-utility
tradeoff explains its lower utility. Since Rapf turns a single base
ranking into the fused ranking, it has a steep drop in WG-RBO as
base rankings become less conjoint (smaller 𝛿). Then Epira has
the weakest performance in the first class. While it only handles
conjoint base rankings (𝛿 = 1), even in this setting, it has less bias
mitigation and a longer runtime compared to Rapf or Wise.

Lastly, because increasing candidate overlap decreases the num-
ber of candidates, we conclude that the utility and runtimes of all
methods are positively affected as the candidate overlap increases
in the base rankings. This is best seen in Post-Fq in which the Fair
Queues method takes less time to run as the number of candidates
decreases (e.g., 𝛿 increases).

5.6 Varying Agreement Among Base Rankings

In Figure 7, using the Mallows dataset, we study how varying
levels of agreement in to-be-fused base rankings impact Wise and
its compared methods.Mallows contains 6 different sets of base
rankings parameterized by 𝛼 . When 𝛼 increases, the base rankings
align more and more with a central biased ranking. Thus, Figure 7
displays how each method is influenced by varying base ranking
agreement from low to high.

Under the studied agreement conditions in to-be-fused base
rankings,Wise has the most bias-mitigation with the highest utility.
Of the other best debiasing methods Epira, Post-Eg, and Rapf, only
Rapf has comparable fairness values, butWise has higher utility
values than Rapf for all agreement conditions.Wise also has the
highest WG-RBO utility values. Second, while the ability of Wise
to mitigate bias is unaffected by base ranking agreement conditions,
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WISE more utility than RAPF 

WISE & RAPF: all conditions fair

WISE & EPIRA: Most Group Utility 

of Fair Approaches 

Figure 7: Influence of base ranking agreement. Wise is fair under all agreement conditions in the base rankings. Moreover, it

has higher utility than the also fairRapf. Fairness of Borda, Pre-Fq, and Pre-Eg is strongly affected by the levels of agreement.
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Figure 8: Fairness controllability of all methods. Each method’s chart displays fairness (NDKL) on the left y-axis and utility on

the right y-axis (ARBO). The x-axis displays variations in the fairness-control parameter of the respective method.

Wise’s actual ARBO scores are affected by agreement. This is a
natural effect of fusion. When base rankings are aligned and more
identical, there is less “compromise” and thus higher utility in the
fused ranking. Whereas when base rankings disagree, there is more
“compromise” in the fused ranking. This can be seen in the fairness-
unaware Borda method – when agreement increases along the
x-axis, the utility also increases. Regarding runtimes, we observe
that methods are mostly unaffected by agreement except for Pre-Fq.

5.7 Controllability of Fairness-Utility Tradeoff

Lastly, we compare to what degree methods can control the tradeoff
between fairness and utility. Using theMallows 𝛼 = 0.1 dataset,
Figure 8 plots fairness (left y-axis) and utility (right y-axis) scores
for five fairness-tuning parameter settings for each method. Neither
Borda nor Rapf have a parameter for controlling bias-mitigation.

Predominantly for methods that feature fairness-tuning parame-
ters, e.g, Wise, Epira, Post-Eg, Post-Fq, Pre-Eg, Pre-Fq, we ob-
serve, as expected, that as the tuning parameter is adjusted, un-
fairness and utility decrease accordingly. However, some methods
(e.g., Post-Eg, Post-Fq, Pre-Eg, Pre-Fq) provide less tuning power,
meaning they don’t span quite as large a range of NDKL values as
Wise or Epira. In the case of Pre-Fq, the 𝐷𝐷𝑃 parameter does not
apply much bias mitigation as seen by the relatively straight lines.
We also see this, although to a lesser degree, in Post-Eg and Pre-
Eg. Post-Fq appears somewhat unpredictable as unfairness dips
down and then up. Lastly, Epira andWise both provide predictable
fairness-utility trade-off tuning over the broadest range. However,
the drawbacks of Epira, as presented in our prior experimental

Sections 5.4 and 5.5, lead us to conclude that Wise offers better
bias-mitigation performance, in addition to the ability to easily
control the fairness-utility tradeoff.

6 Conclusion and Future Work

In this work, we introduce Wise a new plug-and-play fair rank fu-
sion approach.Wise can fairly fuse a variety of to-be-fused rankings
previously unaddressed by existing fair rank aggregation methods
(e.g., non-conjoint and score-augmented base rankings). Wise, op-
erationalizes our proposed fair fusion principle. Wise works in
any fusion setting where we have closed-box access to a score-
powered rank fusion (SRF) method, making it relatively easy to
fairness-enhance existing fusion pipelines. We demonstrate that,
compared to existing alternatives from the literature,Wise achieves
the best bias-mitigation and utility performance while providing
practitioners with an easy-to-control and efficient approach.

FutureWork.In the design of Wise, we assumed that the protected
group attribute is accurately given. To relax this assumption, more
work is needed to extendWise to incorporate either noisy protected
attribute information (probabilities) or function without protected
attributes. To offer additional functionality, future work could study
ways to bound the level of desired utility or fairness in the Wise
methodology, as well as the effect of ties within rankings.
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