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Abstract—A hybrid exoskeleton is a class of wearable robotic
technology that simultaneously uses a powered exoskeleton and
functional electrical stimulation (FES) to generate assistive joint
torques for people with impaired mobility due to neurological
disorders such as spinal cord injury (SCI). The hybrid assistive
technology benefits from FES that actively elicits force from
paralyzed muscles via their neural excitation, leading to muscle
strengthening. The main technical barrier to realizing the hybrid
technology is to attain stable coordination between FES and
the exoskeleton despite the quick onset of FES-induced muscle
fatigue, which causes a rapid decline in the muscle force.
Current methods to measure the induced fatigue lack direct
muscle state measurements and may be ineffective at capturing
the muscle force decay due to FES. Instead, ultrasound (US)
imaging accurately quantifies FES-related muscle contractility
and fatigue due to the direct visualization of muscle fibers. In
this paper, we use real-time US imaging-derived muscle strain
changes as biomarkers of FES-induced fatigue in an optimal
controller that modulates exoskeleton assistance and FES dosage.
To demonstrate that real-time US imaging is a promising muscle-
machine interface technology that can optimize shared control
in a hybrid exoskeleton, we perform experiments involving
continuous seated knee extension and over-ground walking tasks
on two participants with SCI and four participants without
disabilities. Furthermore, this work helps design a novel and
unprecedented robotic gait technology with the capability to
impart FES-associated therapeutic benefits while assisting the
gait of neurologically impaired individuals, including those with
SCI, stroke, multiple sclerosis, etc.

I. INTRODUCTION

Paraplegia (paralysis) and paraparesis (weakness) are de-
bilitating outcomes of spinal cord injury (SCI) that result in
mobility limitations such as difficulty transferring to standing
and walking. In the United States alone, 40.6% of approxi-
mately 288,000 people living with SCI have paraplegia, and
thousands of new cases of SCI occur each year [1]. These
mobility impairments result in frequent hospitalizations and
preventable complications such as urinary tract infections and
pressure injuries of the skin, with average lifetime medical
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costs exceeding $1 million per individual [2], [3]. In con-
trast, the functional and therapeutic benefits associated with
enabling gait mobility for those with incomplete SCI leads to
fewer secondary medical complications and re-hospitalizations
(4], [5].

Functional electrical stimulation (FES) is an assistive tech-
nology that induces active but artificial muscle contractions
that have the potential to generate the power required to
perform standing and walking tasks and thus help people
with SCI recover mobility [6], yet FES is not widely used
for standing and walking following SCI [7]. Notably, due
to its non-physiological manner of muscle recruitment, FES
is prone to induce a rapid onset of muscle fatigue that
limits its effectiveness in long-term periodic and high-powered
motions such as walking or sitting-to-standing. This is more
problematic in persons with chronic SCI, where due to mus-
cle atrophy, muscle fiber-type composition changes to fast-
fatiguing muscle fiber types [8], [9]. As a result, the force
output of the stimulated muscle drops by 50% shortly after
stimulation onset (compared to 30% in non-paralyzed muscles)
[10]. Commonly, an orthosis is applied to stabilize the limbs
in lieu of FES [11], foregoing the benefits of activating the
lower-limb muscles to improve the kinematics and kinetics of
walking. The use of an orthosis instead of FES is largely due
to the inability of current technology to address muscle fatigue
or compensate for its effect while synergistically adapting
walking motion [12].

Recently, powered exoskeletons have emerged as a tech-
nology that can restore lower limb mobility during functions
such as sit-to-stand and walking [13]. Potentially, robotic
exoskeleton devices, when augmented with FES, can enhance
the rehabilitative attributes of powered exoskeletons by helping
users achieve active muscle contractions while simultaneously
receiving assistance from the exoskeleton. The cooperative
torque assistance from FES also reduces the power require-
ment from the robotic exoskeleton and potentially leads to
portable, longer-lasting solutions [14]-[16].

The addition of FES creates actuator redundancy, which
remains one of the primary challenges in the design and
control of a hybrid exoskeleton. The control problem is
non-trivial mainly because the designed controller needs to
dynamically determine a proper FES dosage and motor torque
while maintaining a desired lower limb motion despite the
onset of muscle fatigue. Indeed, control methods have been
developed to achieve a hybrid exoskeleton, but they address
the control problem in an ad hoc manner. For example,
proportional-integral-derivative control of an exoskeleton [17],
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Figure 1. Overview of proposed real-time ultrasound imaging technique
for shared control. Measuring US-derived strain changes during isometric
contractions in real-time could lead to more accurate allocation between
FES and motors during shared control. As the muscle fatigues, the hybrid
exoskeleton should reduce the FES input while increasing motor usage.

[18] has been combined with muscle torque estimation [17]
and event-based FES triggering [18] to coordinate FES and a
hybrid exoskeleton. In [19], a switched control framework was
designed to switch between control modes that used motors
only and motors and FES based on a muscle fatigue level from
a mathematical model. These control approaches do not opti-
mally distribute control between FES and the exoskeleton or
resolve actuator redundancy based on the muscle fatigue state.
In this context, optimal control or dynamic optimization is
more suitable for cooperative control of a hybrid exoskeleton.
Studies in [20], [21] used a model predictive control (MPC)
approach to regulate the knee joint and determined the optimal
FES and motor torque dosage based on a dynamic model
(e.g., musculoskeletal model of a user). A major benefit of
this control design is that it ensures state and input constraints,
such as limits of FES dosage, are met. While promising, these
MPC approaches use estimates of fatigue onset based on a
dynamic fatigue model [22]. The fatigue model depends on
an accurate initial condition and person-specific parameters,
which potentially leads to model inaccuracy without the avail-
ability of a direct fatigue measurement to update the model.

A key to effective shared control in a hybrid exoskeleton
is to directly measure the muscle’s fatigue state, update the
fatigue model, and then use an optimal control framework,
such as MPC, to optimize and automate the distribution of
inputs to FES and exoskeleton. However, sensors that provide
direct, non-invasive physiological state measurements of tar-
geted skeletal muscles are lacking. Current efforts to measure
muscle fatigue include force measurements from load cells
or dynamometers [23] and surface electromyography (SEMG)
[24]-[26]. While a decay in isometric force generation is
directly related to muscle fatigue, it is difficult to measure
the fatigue of individual muscles within a group such as the
quadriceps. Further, it is difficult to estimate force generation
in a dynamic setting, and most dynamometers are not portable
for real-time exoskeleton control. While helpful, these mea-
sures do not provide direct metrics of muscle-related changes
due to FES-elicited contractions. SEMG is suitable to measure
fatigue at the neuromuscular level but has its has its own

limitations such as sensitivity to electrode placement, cross
talk between neighboring muscles [25], inability to measure
signals from deep muscles [25], and signal interference from
electrical stimulation [27]. The lack of direct measurements
of muscle fatigue may limit the maximization of FES dosage
during therapy by not effectively modulating the adminis-
tered FES in response to the fatigue level of the stimulated
muscle. Thus, we believe that there is a need for real-time
direct muscle fatigue feedback to assist a hybrid exoskeleton
controller’s decision-making regarding FES and motor torque
input. Ideally, if user-specific muscle fatigue during FES can
be monitored, the motor torque can be adjusted as a fatigue
compensation technique (i.e., as the user’s muscle fatigues, the
hybrid exoskeleton will rely more on the motors to provide
assistance until the muscle recovers).

Recently, ultrasound (US) imaging has been used as a non-
invasive sensing modality to directly assess changes in muscle
contractility [28], which may be used as an index to monitor
muscle functions [29]-[32]. US imaging is advantageous for
multiple reasons. First, it has a relatively wide field of view
(FOV) and has the capability to collect 2-dimensional (2D)
information on a targeted muscle in vivo. Additionally, unlike
SEMG signals, US imaging is unaffected by interference from
FES artifacts and neighboring muscle activity. Further, in [33],
US imaging was shown to be a viable approach for detecting
isometric muscle contractions, and in [34]-[36], US imaging
was used as a method for motion prediction in the upper
limb. Overall, US imaging is beneficial because it concurrently
provides a direct visualization of the desired muscles and
a variety of US-derived signals, such as muscle thickness,
pennation angle, and fascicle length, that can be used to
analyze muscle contractility both superficially and at greater
muscle depths. Our recent studies [37]-[39] highlight the
potential use of US in closed loop control of assistive devices.
In [38], US echogenicity signals from ankle muscles were
fused with EMG to estimate muscle activation levels for use in
an assist-as-needed controller during treadmill walking tasks.
[37] demonstrated that the axial strain derived from US images
is a promising indicator of contractility change in the human
quadriceps muscles due to FES-induced fatigue. US images
were captured during isometric muscle contractions generated
by FES, and a strain tensor was computed based on estimates
of tissue motion in the captured images. [39] investigated in
vivo continuous variation of muscle contractility at different
stages over the time course of the stimulation protocol. The
correlation between the degraded contractility and the varying
force produced by a repeatedly stimulated muscle was derived
and validated on human participants, showing that US imaging
can be a novel noninvasive sensing tool to measure the internal
muscle state. When combined with predictive mathematical
models of FES-induced force and fatigue, this will signifi-
cantly improve their fatigue prediction. However, the studies
in [37], [39] performed US imaging analysis offline, leaving
much room to investigate the use of real-time US-derived
fatigue measurements.

The main objective of this paper is to evaluate a real-time
US-based sensing technique that has the capability of measur-
ing FES-induced fatigue via changes in muscle contractility



and informing an MPC-based control allocation framework
(Fig. 1). We designed an experimental protocol to study the
use of real-time fatigue measurements in an MPC framework
to track a continuous knee joint angle during seated knee
flexion/extension and walking tasks on participants with and
without SCI while addressing the need for real-time state
measurements of fatigue by using a graphical processing unit
(GPU)-based implementation of the US imaging-driven adap-
tive speckle tracking algorithm in [37]. Further, we compare
the US-derived real-time fatigue measurements during FES-
elicited muscle contractions with the fatigue measurements
from a dynamometer to validate its real-time accuracy. We
also compare the performance of the MPC scheme with
real-time US-based measurements and with only the fatigue
model to determine if inaccurate fatigue indication causes
under/over-stimulation of the quadriceps. Because cooperative
control between FES and exoskeleton may reduce the torque
requirement from the exoskeleton, we also want to validate if
the exoskeleton torques are reduced upon the addition of FES
when compared to a case when only exoskeleton is used.

The innovation of this work lies in the use of real-time

US-derived muscle strain signals that update a muscle fatigue
and recovery model through quantifying muscle contractility
changes. Particularly, we demonstrate the following contribu-
tions:

« We develop and implement a real-time GPU-based archi-
tecture to measure muscle contractility from US images
during FES-induced muscle contractions of the quadri-
ceps.

« We propose a sampled-data observer (SDO) structure to
incorporate the real-time US measurement into a pre-
existing mathematical fatigue model.

o The use of the SDO in an MPC framework is experimen-
tally tested in both seated knee extension and walking
tasks on two participants with SCI and four participants
without disability.

The demonstrated work is significant to inform optimal con-
trol methods and fatigue characterization for US-based gait
assistance. The research outcomes inform the design of a
wearable exoskeleton gait technology that encourages using
FES. The inclusion of FES can potentially infuse a variety of
potential muscle health benefits (e.g., muscle strengthening,
positive neuroplasticity, and cardiovascular fitness) while the
elicited walking improves the quality of life and overall health
goals post-SCI by increasing mobility and ambulation in
social life. The rest of this article is organized as follows:
Section II describes modeling of knee extension dynamics with
ultrasound-derived fatigue measurements. The MPC develop-
ment is shown in Section III. Section IV presents the real-time
speckle tracking algorithm to estimate MEI. Section V shows
the experimental study design. Sections VI and VII present
the results and discussion. Finally, Section VIII concludes this
article.

II. KNEE EXTENSION DYNAMIC MODELING WITH
REAL-TIME US DERIVED FATIGUE MEASUREMENTS

Our goal is to model and investigate cooperative control of a
single degree of freedom leg extension model during both knee

extension and walking tasks. The leg extension dynamics for
a single degree of freedom musculoskeletal model are given
as

JO+7,(0,0) + G(0) + w(t) =, M

where 6, 99 € R represent the angular position, velocity, and
acceleration of the knee joint, J € RT is the moment of
inertia of the leg, and G(6) = mglsin(f + 6.,) is a term that
represents the torque due to gravity where m € R is the mass
of the lower leg, g is the gravitational acceleration constant,
and 0., € R is the equilibrium position of the lower leg with
respect to the vertical. w(t) € R is an unkown distubrbance,
and 7, is the passive torque of the knee joint and is modeled
as 7,(0,0) = di(¢p — ¢o) + dag + dze™? — dse®®, where
®, & are the anatomical knee joint angle and angular velocity
defined as ¢ = 5 —0—0.q, ¢ = —f,and d;(i = 1,2,..6) € R
are person-specific parameters. The total torque 7 € R is the
sum of torques generated from an electric motor and FES and
is defined as 7 = 7,,, + Tk, Where 7, is the motor torque and
Tke 1S the torque generated by FES. The FES-elicited torque
is modeled as )

Tre = p(0,0)na 2)

where ) )
p(0,0) = (c20® + 1+ co)(1 + c30) A3)

is a positive, bounded function that represents nonlinear
muscle length/muscle velocity dynamics, ¢;(0,1,..,3) € R
are person-specific parameters, and a € [0, 1] is the muscle
activation from FES. The activation is modeled as
. u f— a
a=——- 4
T, (4)
where uy € [0, 1] is the normalized FES pulse width or current
input, T, € R* is a muscle activation time constant, and
7 € [Nmin, 1] is the FES-induced muscle fatigue, modeled
as muscle effectiveness index (MEI)

1 =ws(1min —n)a+ wr(1 = n)(1 —a), ®)

where wy,w, € R are fatigue and recovery time constants
and 7,,,:, € (0, 1) is the person-specific minimum MEI. Based
on this model, when the muscle is rested, the MEI level is one,
whereas when the muscle is completely fatigued, the MEI is

Nmin-

A. Fused Real-Time Ultrasound Imaging-Based MEI Estimate

Our goal is to update the model in (5) with normalized strain
measurements from US images obtained at a lower sampling
frequency than the exoskeleton controller. To achieve this, we
use a sampled-data-observer structure to fuse each independent
US-derived strain measurement with the model defined as

ﬁ:wf(nmin _77)a+wr(1 _77)(1 _a) +)‘7~7(tk)7 (6)

where 7 is the estimated MEI, a is the muscle activation from
a normalized FES current input, A € R*is a positive gain, and

n(te) = ntk) = n(te), @)

where 7)(t)) is the normalized strain measurement obtained
by US at time instant ¢; and 7(tx) is held constant until a



subsequent measurement is available at ¢y, with the time
between two measurements denoted as 7'.

Theorem 1. The error between the model in (5) and the SDO
in (6) asymptotically converges to zero if A is chosen as 2’;’7‘ <

A < 2w, and the sampling time between two consecutive US

. 2 A 2w,
measurements is 5= In(55=5) > 1.

Proof: Choose a Lyapunov functional candidate as

where 7] is defined in (7). Taking the derivative of V' (t), using
the definitions of 7jand 1), and using the assumption that 7, >
Ty (i.e., the muscle fatigues faster than it recovers and w, <
wy ), gives

V= —(wy —wp)ai® —w,” +iXj(ts). )
Invoking the lower bound on a and applying Young’s Inequal-
ity gives

A

V< —(w = 5"+ %Aﬁz(tk)- (10)

Provided A\ < 2w, V can be further bounded as
V < =TV + AV (ty), (11)

where T = w, — 3. Multiplying both sides of (11) by e** and
integrating on the interval [tx, tx11] gives

V(thr) < sV(t), (12)
where \ \
T ARA R, ¥/ N o o
¢ = [T ¢ e . (13)

For any iteration k, it can be seen that

V(ty) < FV (to). (14)

It is clear that if ¢ < 1, V (¢;) approaches zero as k increases.

To determine bounds on A that satisfy ¢ < 1, and noting that
A < 2w,., define auxiliary variable § such that A = 2w, — 4.
Rearranging the terms of ¢ < 1 and substituting A = 2w, — §
into (13) gives

4w, — 26

S _1§e_(%)T(4’U}r_—2(5

1).
5 Y

15)

Further algebraic manipulation yields

2 4w, =96
T< Sin(—-—2).
<5 G =35

Substituting A back into (16) gives

(16)

2 A+ 2w,
T < .
= S = G o,

a7

Thus, if 2’:‘,)“ < A < 2w, is satisfied, and if the sampling time
between consecutive US measurements satisfies (17), it is true
that ¢ < 1. Thus, from (14), the error between the augmented
and nominal model in (7) converges to zero. [ |
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Figure 2. Control framework of MPC with real-time US to perform knee
extension tasks. A sinusoidal knee flexion-extension motion was performed
for two minutes using MPC, which allocated FES and motors based on the
US imaging-derived MEI. When the leg was in the vertical position during the
trajectory, a diagnostic FES pulse was delivered to obtain an MEI estimate.
As the muscle fatigues due to continuous stimulation from FES, the MPC
should ensure that the FES dosage decreases and that the motor increases its
contribution to guarantee joint angle tracking performance.

III. MPC FRAMEWORK

The goal of the MPC framework as previously shown in [40]
is to determine the motor and FES inputs, 7,,, and uy, to track
a desired joint angle trajectory 64(¢) € R. In this framework,
parameters for the nominal leg extension model without any
disturbances are denoted by #, while = is a generalized state
of the actual system. To achieve this goal, a tracking error
term e € R is defined as

e=04—0. (18)
To further ease the subsequent control development, we intro-
duce an auxiliary error term 7 € R that is defined as

r=é+ ae, (19)

where o € RY is a positive gain. Introducing the auxiliary
error term helps in rewriting the second-order dynamics in
terms of the first-order dynamics. Further, an additional acti-
vation error, e, € R, is introduced to accomodate the cascaded
activation dynamics in (4) as

(20)

€y =& — Qgq,

where @g is a desired activation dynamics defined as aq =
7~ 1(J,(0q + é) + L,), where J,, L, are defined as J, = %

and Zp = 2% for nominal torque-length and torque-velocity
relation p in (3). It is important to note that the FES control
input does not directly influence the knee dynamics in (1) but
appears in the dynamics of activation variable, a in (4). Thus,
introducing the error term, e, helps to design the FES control
input, uy.

Taking the time derivative of (19) and using (18) and (1),
the closed loop error system becomes [40]

Tm

Ji = —fey — -2 @



Further, taking the time derivative of e, in (20) gives an error
dynamics that fac111tates the design of the FES control input,
by = 7 TUf = T—a — Gg. Now if one designs the FES input,
ug, as uf = T(v + dq + %, + 7r), where v(t) € R is
the unknown control input to be determined by the MPC, the
feedback linearized error dynamics is written as

€y =1Nr+v. 22)

Above, we have transformed the dynamics in (1)-(4) into

first-order dynamics. Further, by defining a nominal state T €
T ) _
R¥asx=[e r e, | and control input & € R? as

U = [ Tm U(t) ]Tv

the first-order error system in (19), (21), and (22) is written
for MPC formulation as

(23)

r— Qe
= T[ e —
nr + s

=] | = f(z.0). (24)

The MPC framework determines the optimal @ in (23) by
solving the optimization problem

te+T
In_in/ l(z,a)dt+V(Z(try +T)) (25)
u t
subject to:
z = f(z,u)
1= w(min — )@ + we(1 = 7)1 = 7) + A(ty)
T(ty + 1) € Qp (26)

Thag <1 =T, =Ty

where U is a set of control inputs that bounds @ and Qp is a
terminal region defined as

i+
k2 + k%’

lz(t, + DII* <3 27)
where 1,72, ks, k € Rt are positive control gains.

The running cost I(z, ) and terminal cost V(z(t +T)) in
(25) are defined as

I(z,u) =zTQ7x + uT Ru

V(.ﬁl‘(tk + T)) = %eQ —+ %J_pr,ﬁ + %ei (28)

where Q € R3*3 and R?*? are positive definite, symmetric
matrices. The terminal region and terminal cost are introduced
to ensure recursive feasibility of the MPC framework [40].
To account for disturbances between the measured states
and the states from the nominal model, a nonlinear feedback
controller is designed as
1)
)+ wsat(

) Hed(29)

0

upa = 9(||o]])||o[sat(—
€1
where ¢1,x € R are gains, w is the upper bound of the
disturbance to the nominal system w(t), and ¢, € R are
terms that represent the error between the nominal and actual

knee joint angle and are defined as

) . T
where 3 € RT is a positive constant, ¢ = [ § € |, and

?(||o]]) € RT is a positive monotonic bounded function such
that
7(6.6) —7,(8.6) + G(0) — G()
+ 5(0,0)an — p(0,6)an + B — B2Je (30)
< d(lle[Dllel]
The total input that goes to the motor is then given as
Tm = Tm + Ufd- 3D

[40] further derives a terminal controller to guarantee re-
cursive feasibility and ensure that the control inputs of the
original system stay within their constraints. The optimal
control problem in (25) was solved in real-time using a fast
gradient projection algorithm described in [41]. The overall
implementation of the shared control framework during the
knee extension study is shown in Fig. 2.

IV. REAL-TIME GPU-BASED SPECKLE TRACKING TO
ESTIMATE MEI

In this section, we present a real-time US imaging based
METI estimation algorithm based on [37]. A speckle tracking
algorithm was developed to measure tissue motion during
FES-induced contractions. It was observed that as the quadri-
ceps fatigued, the decay in tissue motion correlated with the
force decay from FES-induced fatigue. The speckle tracking
algorithm consists of the following steps:

1) Determine the tissue motion between two consecutive
US images m and n by calculating a displacement
matrix in axial (depth) and lateral directions at each
spatial position (z,y) in the region of interest (ROI)
of US images. The displacement matrix dm,n(x,y) is
calculated as

dm (2, y) = argmax(y(u, v)), (32)

where y(z,y) is a normalized cross-correlation given as

EK:: Ly fnl(a b) f,,,,)(f,,,(a-‘ru b-‘r’U) fn u, v) 133)
\/ZKz (fnl(a b) fm)z(fn(a‘Fu b+U) fn u,v )}

where f,, fn are the magnitudes of the US image at
spatial positions a,b € K,,. K, is a rectangular
kernel centered at (z,y), and w,v are displacement
offsets that form a search window K, , around (z,y).
Further, f,,, and f,, are averaged values of f,,(a,b) and
frla+u,b+v).

2) Spatially filter d,, n(z,y) to mitigate tracking noise
between each pair of frames. A 21 x 11 pixel kernel
was generated and centered around (z,y). The median
value of d,, ,,(«,y) within the kernel was assigned to a
filtered displacement map d¢(z,y).

3) Accumulate the displacement with respect to the first
image of the motion. The accumulated displacement at
frame n, defined as s, (x,y), can be calculated as

971(7:11) = (Tnayn) - (-77(),?/0), (34)



where
(35)

4) Calculate axial strain by applying a Savitzky-Golay filter
[42] on the cumulative displacement in the direction of
propagation of US images.

It is noted that the computation time of the normalized cross-
correlation increases quadratically with the size of the kernel,
search window, and ROI. Additionally, to estimate small
tissue motion between a set of US images, it is necessary
to interpolate the US images to obtain a smaller lateral
resolution, thus increasing the number of spatial locations at
which the correlation coefficient is computed. To overcome
these challenges, because y(x,y) at each spatial location is
independent, the speckle tracking algorithm was implemented
using a parallel processing GPU framework in which each set
of US images was loaded on a GPU, and all values of v(z, y)
were computed simultaneously [43].

When using the GPU implementation, the fatigue estimate
between two consecutive images is reduced from the time
scale of minutes to < 1 second. To obtain a fatigue es-
timate for a full isometric contraction, the frame-to-frame
displacement is accumulated across the total number of frames
in the contraction. Thus, the total computation time is the
time required to calculate tissue motion between two frames
multiplied by the number of frames in the contraction. The
final fatigue estimate is obtained by taking the gradient of the
accumulated displacement in the direction of US propagation,
and its computation time is dependent on the sizes of the
kernel, search window, and region of interest, the interpolation
factor, and the contraction duration.

Since the fatigue measurement from US images is computed
by accumulating displacement across multiple frames, the
sampling frequency of US fatigue measurements is much
lower than the control frequency of the exoskeleton. Addition-
ally, each measurement is treated as an independent sample
which indicates the strain during an independent contraction
along with a noise component due to the tradeoff between
robust speckle tracking parameters and computation time.
The SDO addresses these issues by fusing the fatigue model
with each measurement. The workflow for the GPU-adapted
speckle tracking algorithm is shown in Fig. 3.

In our previous studies [37], [39], US images were captured
during isometric contractions within a fatiguing protocol, and
strain measurements were computed offline, providing the
capability of analyzing larger ROIs and prolonged muscle
contractions. To mimic these methods in a real-time exoskele-
ton control environment, we designed a diagnostic stimulation
protocol for both knee extension and walking tasks. The diag-
nostic stimulation protocol consists of a one-second diagnostic
pulse applied at a point during the desired trajectory at which
the knee joint has zero velocity to ensure a quasi-isometric
contraction. During the diagnostic pulse, the US system was
delay triggered to collect raw radio frequency (RF) data and
transfer it to the GPU platform (Titan V, NVIDIA, USA)
after 150 ms of stimulation. The delayed trigger accounted for
electromechanical delay when estimating the muscle response
to FES. All images were reconstructed by sum and delay

(xnv yn) = (xn—ly yn—l) + dn—l,n(xv y)
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Figure 3. Parallel computation of an adaptive speckle tracking algorithm
to measure real-time strain changes. The displacements at each point in
the region of interest (ROI, green squares) between two US images are
independent and can be computed simultaneously. US images are loaded
onto the GPU, and the tissue motion at each point is computed using in
parallel NVIDIA’s CUDA architecture. The solid red squares highlight original
tracking points with solid lines indicating the surrounding kernels in the
original frame, while the blue squares represent the displaced points in the
tracking frame. Red highlights a positive strain (i.e., tension), while blue
represents a negative strain (i.e., compression) in the direction of propagation
of US.

beamforming, and the US speckle tracking was implemented
on the GPU. The MEI, 7({;) at time ¢ in (7), is then
calculated by averaging the strain at each pixel in the ROI and
normalizing to the first contraction in the trial. The fatigue
measurement was then sent to the MPC via a data transfer
protocol (UDP). The procedure can be summarized in the
following steps:

1) Start diagnostic stimulation.

2) Trigger US system after 150 ms of stimulation.

3) Collect 1 second of US images at 100 Hz (100 images
in total)

4) Beamform images and perform speckle tracking of the
image sequence.

5) Average strain map of the final image, normalize, and
send to exoskeleton controller.

It is noted that in real-time, Steps 1-5 provide a visualization
of a partial muscle contraction in comparison to the offline
approach during which the whole muscle contraction can be
imaged. To image a longer contraction, the number of frames
in Step 3 can be increased, thus increasing the computation
time of a fatigue measurement.

V. EXPERIMENTAL DESIGN

All experimental procedures performed in this study were
approved by the Institutional Review Board (IRB) at the
North Carolina State University (IRB approval #: 20553). Four
participants without disability and two participants with SCI
were recruited to participate in this study. The overall study
was broken into two sections: continuous knee extension and
walking. During each section, the MPC framework to allocate
FES and motors was implemented with and without ultrasound
feedback. Details on each participant are shown in Table I.

A. Continuous Knee Extension

The framework and experimental setup for the continuous
knee extension study is shown in Fig. 4. Participants were
seated in a lab-fabricated exoskeleton as seen in Fig. 4A with



Table T
PARTICIPANT DEMOGRAPHICS

Participant | Age | Gender Injury Level Continuous Knee Extension (Leg) | Walking
Bl 26 M N/A Yes (L,R) No
B2 26 M N/A Yes (R) Yes
B3 27 M N/A Yes (L,R) Yes
B4 28 M N/A Yes (L) No
S1 52 M T10, incomplete Yes (L,R) Yes
S2 60 M T7, complete Yes (L,R) Yes
A B Before and after each trial, participants sat in a dynamome-
ter (Biodex, Medical Systems, NY, USA) and isometric torque
Desired Knee Angle . . . .
measurements at the knee joint during a one-second stimu-
g o wec lation pulse were recorded as a benchmark for fatigue. In
Ultrasound Probe - b between the fatigue and recovery trial, real-time US mea-
:V L surements were collected based on a diagnostic pulse for
Knee Motor = - e comparison with the normalized isometric torque and model
/ — & =y PATSon.
] re-initialization.

Benchmark

MPC with US Upda
Fatigue » S

MPC with US Updates e
(2 minutes, ‘recovery

(2 minutes , “fatigue”
trial)

Figure 4. (A) Experimental setup for the continuous knee extension using a
lab-developed exoskeleton. (B) MPC with real-time US was used to allocate
FES and motors during a continuous knee extension task. Each participant
performed two continuous knee extension trials during which the MPC
framework tracked a sinusoidal trajectory for two minutes.

the left knee joint actuated by an electric motor (Harmonic
Drive LLC, MA, USA) and electrical stimulation of the
quadriceps achieved using a commercial stimulator (Rehastim
2, HASOMED GmbH, Germany) which administered FES
at a frequency of 33 Hz and a pulse width of 300 ps
through adhesive electrode pads (PALS, 7.62 cm by 10.16
cm, Axelgaard Manufacturing Co., Ltd., USA). A clinical
ultrasound linear transducer (L7.5SC Prodigy Probe, S-Sharp,
Taiwan) was placed longitudinally on the thigh and fixed by
a customized probe holder to image the targeted quadriceps
muscle.

Participants went through an experimental protocol that
consists of two two-minute trials (“fatigue” and “recovery”)
during a seated knee extension task as shown in Fig. 4B. The
MPC with real-time US updates was administered to track
a desired trajectory, shown in Fig. 4B. Overall, each trial
consisted of 24 knee extension repitions resulting in a total
of 96 knee extension repetitions throughout the whole study
(fatigue trial, recovery trial, with and without US). The goal
of the fatigue and recovery trial was to test allocation when
the fatigue was initialized at different initial fatigue values.
During the fatigue trial, because FES was being used for a two-
minute duration, the quadriceps would fatigue. The goal of the
recovery trial is to determine allocation when the muscle starts
at a fatigued state (i.e., during the recovery trial, the MPC
should rely more on motors and less on FES, as compared to
the fatigue trial, to maintain the tracking performance). During
each trial, strain measurements were obtained for each knee
extension cycle based on the diagnostic stimulation protocol
and strain measurement algorithm described in section IV.
Thus through the course of a single trial, 2400 images were
processed overall.

B. Over-Ground Walking

The overall framework and experimental setup for the
walking experiments is shown in Fig. 5. Two participants
with no disability and two participants with SCI (n = 4)
donned an INDEGO (Ohio, USA) exoskeleton embedded with
FES capabilities as seen in Fig. SA and performed four trials
consisting of 20 steps (10 left, 10 right) in which the MPC
framework was used to track the left knee trajectory during
the gait cycle. Overall, each participant performed four trials
of 20 steps with and without ultrasound resulting in a total of
80 steps taken in the exoskeleton. The linear transducer used
in the walking experiments (L7.0SC Prodigy Probe, S-Sharp,
Taiwan) was oriented and secured using medical tape as seen
in Fig. 5A as to obtain transverse images of the quadriceps
during the stance phase of each left step. This results in a total
of 1000 US images collected-during each walking trial.

At the beginning of each trial, real-time US measurements
were collected to initialize the fatigue model for that trial.
Additionally, the participant started each trial in a seated posi-
tion and performed a sit-to-stand task solely using a feedback
controller before performing the walking. The trajectories for
the sit-to-stand task were designed based on a virtual constraint
method in [44].

The timing and control of the exoskeleton was governed by
a finite state machine (FSM) with four states:

1) Sit-To-Stand

2) Right Half Step

3) Left Step

4) Right Step
The FSM started by transitioning from sit-to-stand followed
by a right half step, and it proceeded to alternate between left
step and right step for the entire 10 left step trial. The left and
right steps in states 3 and 4 were divided into the following
three sub-states: a) swing leg hip and knee flexion, stance leg
flexion/extension, b) swing leg knee extension, and c) stance
leg hip extension.

The trajectory for each sub-state was designed using a third-
order polynomial trajectory based on the desired angles of
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Figure 5. (A) Experimental setup while a participant with SCI was seated and after they performed a sitting-to-standing task with assistance of the INDEGO
exoskeleton, highlighting US probe placement during the walking trials. (B) Framework for experiments where MPC with real-time US is used to perform
knee flexion/extension during a walking task. Each participant donned the exoskeleton and performed four trials of 20 steps (10 left, 10 right) during which
the MPC was used to control knee flexion/extension on the left leg during the swing phase and a RISE controller was used on the right knee and both hip

joints.

hip and knee flexion and extension. The desired flexion and
extension angles for the hip and knee are highlighted in Fig.
5B. The MPC algorithm was implemented on the left knee
during knee flexion/extension of the swing phase, while the
right knee and both hips were controlled by a robust-integral-
signum-error (RISE) controller [45]. The RISE controller is
given by the control law

¢
T =kies + / [kas + Bsgn(eq)]ds (36)
0
with tracking errors e, e defined as
€1 = 9d -0 (37)

€y = é1 + aq€éq,

where k1,1, € RT are positive gains, 64(t) € R is the
desired trajectory, 6(¢) € R is the joint angle, and sgn is a
signum function. Similar to the knee extension experiments,
US imaging-based MEI measurements were received during
each left step based on images collected during a diagnostic
pulse to provide a quasi-isometric contraction while the left
leg was in the stance phase. The periods during which the
quadriceps were stimulated by the MPC and by a diagnostic
FES pulse are seen in Fig. 6. -

VI. RESULTS

Experiments were performed on two participants with SCI
and four participants without disability under two conditions:
seated knee extension and over-ground walking. In each case,
we compared the motor and FES inputs under conditions in
which US was used as MEI feedback and when no US was
used. We also compared the MEI from the model and from
US images in the case in which US was used in the loop. To
compare the MEIs from the Biodex dynamometer and from
strain imaging, we normalized each modality for consistency
with the MEI model.

A. Continuous knee extension tracking and actuator allocation

The average root mean squared error (RMSE) between de-
sired and actual trajectories for all participants was 2.74+0.53
(mean + STD) and 2.67+0.41 degrees during the fatigue and
recovery trials, respectively. The average knee joint position
and motor and FES inputs along with the MEI profile with US
updates for a participant without disability during the fatigue
trial are shown in Fig. 7.

To determine a performance metric which highlights motor
and FES usage, we computed the time integrals of motor
torque and normalized FES for each knee extension cycle
during the fatigue and recovery trials for all participants
(Fig. 8A). The average integral of normalized FES during the
fatigue and recovery trials was 0.38 +0.24 and 0.075 % 0.056
seconds, respectively. The average integral of motor torque
during the fatigue and recovery trials was 14.60 + 4.26 and
20.96 &+ 5.11 Nm-s, respectively. A one-tailed t-test revealed
a significant difference in motor and FES inputs during the
fatigue and recovery trial (one-tailed t-test, p = 0.004 for
motors, p = 0.009 for FES, o = 0.05).

The experimental protocol was repeated using only the
MEI dynamic model in the MPC. In this case, the initial
condition for the recovery trial was re-initialized from nor-
malized isometric torque measurements. The average RMSE
was 2.81 & 0.60 and 2.78 & 0.61 degrees during the fatigue
and recovery trials, respectively, when the MPC allocation
relied only on the MEI model without US-derived MEI
updates. The RMSE for each trial and participant is shown
in supplementary table S1. There is no significant difference
in RMSE in either the fatigue or recovery trials when US
is used as feedback compared to the fatigue model without
US updates. The average integral of normalized FES during
the fatigue and recovery trials with only the fatigue model
was 0.43 £ 0.19 and 0.10 £ 0.07 seconds, respectively (one-
tailed t-test, p < 0.001,a = 0.05), while the average integral
of motor torque during the fatigue and recovery trials was
13.48 +2.86 and 18.21 £ 1.85 Nm-s, respectively (one-tailed
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available (indicated by the red circles).

t-test, p = 0.001, o = 0.05). The integrals of normalized
FES and motor torques for each participant with and without
ultrasound feedback is shown in supplementary table S2.

B. Real-time US fatigue measurements compared to the dy-
namic model

We compared the MEI values during the final flex-
ion/extension cycle of fatigue and recovery trials when US
updates were used as feedback to using the model only. Due to
the different fatigue rates of people with and without disability,
we grouped their MEI values separately (Fig. 8B). For the
participants with no disability, the average MEI after the final
cycle of the fatigue trial with the model with US updates and
with the model only was 0.69£0.11 and 0.78=+0.05 (one-tailed
t-test, p = 0.046,ac = 0.05), respectively. The average MEI
value after the final cycle of the fatigue trial was 0.39 £ 0.01
and 0.46 +0.01 (one-tailed t-test, p = 0.02, a = 0.05) for the
participant with SCI. For the participants with no disability,
the average final MEI value after the final cycle of the recovery

trial with the model with US updates and with the model only
was 0.55+0.17 and 0.84 £+ 0.03 (one-tailed t-test, p = 0.004,
a = 0.05), respectively. For the participant with SCI, the
average MEI value after the final cycle of the recovery trial
was 0.50 £ 0.02 and 0.90 £ 0.03 (one-tailed t-test, p = 0.003,
a = 0.05). The final MEI for each participant in each case is
shown in supplementary table S3.

We further compared the integral of the total MEI over time
across both fatigue and recovery trials with and without US
updates (Fig 8C). For the participants with no disability, the
average integral of MEI over both fatigue and recovery trials
was 172.45£17.43 and 201.4845.47 seconds with US updates
and with the MEI model only, respectively (one-tailed t-test,
p = 0.004, o = 0.05). The average integral of MEI over both
fatigue and recovery trials was 144.8+3.39 and 167.904+2.97
seconds for the participant with SCI when US updates and
the MEI model only were used, respectively (one-tailed t-test,
p = 0.009, a = 0.05).

C. Benchmarking real-time US measurements with MEI from
a dynamometer

It is seen in Fig. 7 that when a real-time ultrasound measure-
ment is available, the SDO described in (6) is used to update
the model. The amplitude of the difference in MEI between
the model update and the original model is determined by the
discrepancy between the model and measurement. However,
it is unclear if the model or the measurement is closer to the
true MEI of the muscle since the model is heavily dependent
on system identification parameters and an accurate initial
condition while the ultrasound measurement is susceptible
to a variance and noise due to the discrete time points at
which measurements are taken. To benchmark the ultrasound
measurement, normalized strain values were collected after
each trial as descried in the experimental procedure and
compared to MEI recorded by the isometric torques (Fig. 8D).
The average MEI from the US and the dynamometer after the
fatigue trial was 0.76 + 0.14 and 0.76 £ 0.13, respectively,
and the average difference between MEI measured from the
dynamometer and real-time US was 0.03 +.02. We performed
a one-tailed t-test, which indicated no statistical difference
between the MEIs from real-time US and the dynamometer
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Figure 9. Average horizontal and vertical foot placement of the left foot during the walking experiment during which the knee joint was controlled using
MPC with US MEI updates with a shaded standard deviation for all participants. The foot position was calculated using forward kinematics from the left hip
and knee joint angles. The labels B2 and B3 represent the kinematics from participants 2 and 3 from the group without disabilities, and S1 and S2 represent
the two participants with SCI.

(p = 0.5,a = 0.05). This indicates that US-derived strain
measurements can be used as an indicator of MEI in real time.

kinematics. The average vertical and horizontal foot position
of all 40 steps of the left leg controlled by the MPC with
US measurements is shown in Fig. 9. A positive horizontal
position represents the foot being in front of the hip, and
a positive vertical position represents the foot being above
the ground. The average RMSE in the horizontal direction
between the desired and actual foot position across all four
trials of 10 steps was 0.14 +0.006, 0.124+0.01, 0.26 & 0.006,
and 0.17 = 0.008 meters for the two participants with no
disability and two participants with SCI, respectively. The
average RMSE in the vertical direction was 0.03 + 0.002,
0.03 &+ 0.004, 0.09 £ 0.01, and 0.06 £ 0.004 meters for
all participants, respectively. The RMSE for each participant
during each trial in the vertical and horizontal positions is

D. Comparison of shared control to FES only based knee
extension

We conducted another isolated seated knee extension trial
on all the participants with MPC to control only FES in which
no US updates or motor was used in the controller. In this case,
the average MEI measured from normalized isometric torque
measurements was 0.59 £ 0.07. In comparison, the MPC for
shared motor and FES assistance yielded the average MEI as
0.76 £ 0.12 (one-tailed t-test, p = 0.01, a = 0.05) (Fig. 8E).

E. Shared Control Framework with real-time US measure-
ments during walking

To show the functionality of the walking framework, we
computed the foot position of the left leg using forward

shown in Table S4. To highlight the fatigue-based allocation
during the walking task, we plotted the integral of FES and
motor inputs for each step across all 40 steps against the MEI
of each step derived from real-time US measurements along
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Figure 10. Experimental results for the walking study performed on the INDEGO exoskeleton. (A) Integrals of FES and motor torque for each step plotted
against the MEI measured from US images for participants with no disability (aggregated) and SCI along with a linear regression trend line. As MEI increases,
the total integral of FES decreases, while the integral of motor torques increases.The labels S1 and S2 represent the two participants with SCI. (B) Integrals
of FES and motor inputs during the 1st and 10th steps of each trial and integrals of FES and motor inputs after the 10th step of each trial with and without
US feedback. (C) MEI during the 10th step of each trial for participants with and without disability when walking with MPC which uses the MEI model with

US updates and the model only.

with a linear regression trend line (Fig. 10A). The results show
that as the MEI decreases (i.e., more fatigue), the integral of
normalized FES decreases while the integral of motor torques
increases.

We additionally compared the integral of normalized FES
during the swing phase of the Ist step of each trial with the
integral of normalized FES during the swing phase of the 10th
step (Fig. 10B) as well as the integral of motor torque during
the swing phase of the 1st and 10th steps for participants with
and without disability. The average integrals of normalized
FES and motor torques during the swing phase of the 1st
and 10th steps for participants with and without disability
are shown in Table II. The individual integrals of normalized
FES inputs and motor torques with and without US feedback
during the 1st and 10th steps for all participants is shown in
supplementary tables S5 - S8.

The experimental protocol was repeated on all four partici-
pants with the MPC relying on only fatigue dynamics instead
of US feedback. The MEI for all participants at each step
with US updates compared to the model only are shown
in supplementary Fig. S1 and supplementary table S9. We
compared the final MEI during the 10th step of each trial when
US was used to update the model and when only the model
was used in the MPC framework (Fig. 10C). The average
MEIs during the 10th step are shown in Table III. We also
compared the integral of normalized FES and motor torque
during the swing phase of the 10th step with and without US
feedback (Fig. 10B). The average integrals of normalized FES
and motor torques during the swing phase of the 10th step with
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Figure 11. Mean and standard deviation of knee motor torques when using
the RISE controller and MPC during the swing phase to perform a walking
task.

and without US updates are shown in Table IV.

Finally, to verify the reduced power consumption of motors
when using shared control, we compared the knee motor
torques from the RISE controller on the right knee to the
motor torques computed from the MPC as seen in Fig 11.
The average integral of motor torque across the swing phase
with the RISE controller and with MPC was 34.714+16.88 and
9.83 + 11.62 Nm-s, respectively (one-tailed t-test, p = 0.03,



Table 11
AVERAGE INTEGRALS OF MOTOR TORQUE AND NORMALIZED FES DURING THE SWING PHASE WHILE USING SHARED CONTROL WITH REAL-TIME US
MEI UPDATES

Participant Category Step 1 Step 10 p-value
sl FES (s) 1.47+0.19 1.22 £ 0.09 0.004
Motors (Nm-s) | 6.44+3.16 | 12.20 £5.32 0.002
No Disabilit FES (s) 1.71+0.17 1.46 £ 0.09 0.001
y Motor (Nm-s) [ 3.94£0.91 5.53 £1.25 0.006
Table IIT
AVERAGE MEI DURING THE 10TH STEP WHEN USING SHARED CONTROL WITH AND WITHOUT US UPDATES
Participant Category Model Only Model with US update | p-value
SCI 0.81 + 0.008 0.75 £ 0.07 0.02
No Disability 0.82 + 0.004 0.75 £ 0.07 0.02
Table IV

AVERAGE INTEGRALS OF MOTOR TORQUE AND NORMALIZED FES DURING THE SWING PHASE OF THE 10TH STEP WHILE USING SHARED CONTROL WITH
REAL-TIME US MEI UPDATES

Participant Category Model Only | Model with US update p-value
SCI FES (s) 1.48 +£0.08 1.22 £0.09 < 0.001
Motors (Nm-s) | 8.21 £ 1.72 12.20 +£5.32 0.038
No Disability FES (s) 1.58 £+ 0.06 1.46 £ 0.09 0.03
Motor (Nm-s) | 3.64 £ 2.60 5.53 +1.25 0.047
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Figure 12. MEI at each walking step during the first walking trial based

on fused US-model MEI measurements for both the shared control and FES
only framework.

a = 0.05).

F. Comparison of shared control with FES only walking

We additionally compared the shared control MPC frame-
work with US measurements to an FES-only walking frame-
work in which there was no motor assistance at the left
knee joint. Participant S2 (injury level T-10) participated in
two trials of 20 steps (10 left, 10 right). The fused MEI
measurements between US and the fatigue model during the
first trial for both FES only and the shared control framework
are shown in Fig. 12. The integrals of MEI across the walking
duration of two trials are 67.264+2.96 and 77.32£2.86 seconds
when using FES only and shared control, respectively. This
indicates that US-derived MEI is higher (less fatigue) in the
case of shared control when compared to FES only for one
participant with SCI, highlighting that using an exoskeleton
along with FES can induce less fatigue due to lower FES

dosage. This will likely improve fatigue resistance over an
extended time compared to the FES-only case.

VII. DISCUSSION

We demonstrate using US imaging-derived strain measures
in real-time with MPC to allocate inputs between FES and
motors at the knee joint in a hybrid exoskeleton for both
a continuous knee extension task and a walking task. The
results of this study show that real-time US can be used as
a biomarker for fatigue measurements in closed loop MPC
algorithms. Specifically, real-time fatigue measurements from
US imaging and a dynamometer differed by less than 7% for
all participants (Fig. 8D).

FES-induced fatigue leads to a sharp decay in force gener-
ation by the stimulated muscle, which can also be observed
as a reduction in kinematic joint angle when performing
dynamic tasks such as continuous knee extension and walking.
In the presence of closed-loop control, the goal of which is
to track a prescribed trajectory, the kinematic angle decay
is not observable. Additionally, since current state of the art
fatigue indicators such as dynamometers, load cells and SEMG
are either difficult to incorporate into exoskeleton design,
suffer from stimulation artifact interference, or do not directly
indicate muscle fatigue state, there is a need for an alternative
fatigue indicator. Based on the results from this study, direct
fatigue measurement can be accomplished using US imaging.

The incorporation of US into the MPC algorithm was ac-
complished via a SDO to account for 1) the low sampling rate
of US-based fatigue measurements due to memory limitations
on the GPU as well as a tradeoff between measurement
accuracy and speed and 2) mismatches between the fatigue
differential model and real-time measurements. It is noted
that the propagation of fatigue dynamics is highly dependent
on fatigue and recovery time constants and a known initial
condition. At the beginning of any periodic long-term FES



task, it is assumed that the fatigue initial condition is one
(no fatigue) since the muscle starts at a rested state, but any
mismatch in time constants or initial condition will cause a
discrepancy in the fatigue model. In contrast, the US-derived
fatigue measurement detects unmodeled residual fatigue levels
based on tissue motion. The SDO generates a continuous
fatigue estimate that re-initializes whenever a fatigue measure-
ment becomes available.

The MPC algorithm with real-time US measurements was
also effective at performing knee flexion and extension during
a walking task while allocating motor and FES. As seen in Fig.
10A, as the MEI increases, the integral of FES input during
the swing phase trends negatively (i.e., as the muscle fatigues,
less FES is used, and the motor torque contributes more effort)
similar to Fig. 8A, where the integral of motor inputs increases
while the integral of normalized FES decreases during the
recovery trial of the continuous knee extension experiments.
This is further highlighted by the decrease in FES inputs
between the 1st and 10th steps of each trial (Fig. 10B). Thus,
the MPC with real-time US can adapt FES inputs based on
fatigue level during a walking task.

Additionally, from the comparison of the MEI at the 10th
step for all participants when using MPC with US feedback
to MEI at the 10th step when the MPC relied only on the
model, it is seen that the final MEI from the US is lower
(more fatigued) than when relying on the model (Fig 10C).
This is consistent with the continuous knee extension study
(Fig. 8B). Further, Fig. 10B shows the integral of FES during
the 10th step for all trials when the MPC relies on US
compared to only the model, and it is seen that the MPC
with US feedback uses less FES than the MPC with only the
model. Thus, the MPC scheme is more sensitive to fatigue
when US updates are included than when relying only on
the model. Simultaneously, it reduces the FES dosage and
maintains good tracking performance of the knee joint. Thus,
including real-time US in the MPC framework will lead to
less overstimulation and could enable muscle recovery over
extended periods of use. In addition to the therapeutic benefit
of FES, another benefit when using MPC during walking is
that the knee motors require less power than a traditional
feedback controller, as seen in Fig. 11. The lower power
requirement has implications in exoskeleton hardware design
and has the potential to enable the use of more lightweight
motors.

While the MPC with real-time US was shown to be effective
at performing a walking task and the results indicate that
the FES dosage and motor torque are allocated based on the
MEI, it is seen that there are certain outliers in Fig. 10A.
This is because the goal of the MPC algorithm is to track a
desired knee joint trajectory based on a leg extension model
in (1), which does not account for forces such as ground
reaction forces which may be present during walking but
not seated leg extension. Additional challenges arise with
participants with SCI, such as limitations of the range of
motion and the weakened strength of non-stimulated muscles
such as hamstrings, ankle dorsiflexors, and plantar flexors.
Further, desired trajectories from the finite state machine were
designed individually as time-based third-order polynomial

trajectories, leaving the possibility for coordination mismatch.
One potential solution would be to consider a holistic walking
model which includes trunk, hip, and knee dynamics as well
as the ground reaction forces and to design the trajectories
based on virtual constraints.

The presented results show promise in using real-time US
imaging as a fatigue biomarker in a hybrid exoskeleton. How-
ever, there are further limitations that should be addressed for
full-scale implementation as a clinical rehabilitation technique.
First, there is a tradeoff between real-time US computation
time and measurement accuracy. The computation time using
the GPU can be increased by reducing the size of the region
of interest of the quadriceps, size of the search window, kernel
size, and duration of the FES-induced diagnostic contraction.
Decreasing each of these parameters has the potential to lead
to additional noise in the real-time US measurement, which
could be corrected by parameters of the SDO. An alternative
option is to tune the size of the ROI, kernel, size of the search
window, and median filter parameters to track more precise
displacements. This usually involves increasing the size of the
ROI to track a larger region of the muscle as well as the
size of the kernel and search window and would increase the
sampling time, causing the MPC scheme to rely on fatigue
from the model for a longer duration. Further, the computation
time of US images can influence potential walking speeds
of the exoskeleton. For the presented results, the trajectories
were designed such that an MEI measurement was available at
each left step. To increase walking speed while still receiving
US updates, we could 1) relax speckle tracking parameters to
speed up US image computation and/or 2) design the real-time
US framework to obtain MEI measurements every Nth step,
where N = 2,3,4.... The first option reduces the accuracy
of each individual measurement, while option 2 increases the
duration during which the MPC relies on the model without a
US update and thus leaves room for overstimulation. Another
challenge and potential problem for future research is develop-
ing a US imaging system that is easy to don and doff and that
is more portable compared to the current US platform, which
requires a GPU, monitor, and desktop setup. In our current
experimental protocol, during the walking experiments, the US
platform was wheeled with the participant as they walked in
the exoskeleton, which creates a challenge of ensuring the
probe does not slip from the quadriceps during each step.
Developing a wearable US system that can detect real-time
fatigue is the potential next step in clinical implementation.

VIII. CONCLUSION

Overall, this study established a real-time US fatigue al-
gorithm, which can be used in conjunction with an MPC
algorithm to allocate FES and motors in a hybrid exoskeleton
based on the user’s muscle fatigue level. The real-time fatigue
measurements were benchmarked with isometric torque mea-
surements from a dynamometer and implemented in real-time
to perform continuous leg extension as well as a walking task
on a commercial exoskeleton. The implications of this study
can be expanded to perform other functional rehabilitation
tasks besides walking to improve the overall quality of life
of people with SCI.
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