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A search is performed for charged-lepton flavor violating processes in top quark (t) production
and decay. The data were collected by the CMS experiment from proton-proton collisions at a center-of-
mass energy of 13 TeV and correspond to an integrated luminosity of 138 fb−1. The selected events
are required to contain one opposite-sign electron-muon pair, a third charged lepton (electron or muon),
and at least one jet of which no more than one is associated with a bottom quark. Boosted decision
trees are used to distinguish signal from background, exploiting differences in the kinematics of the final
states particles. The data are consistent with the standard model expectation. Upper limits at
95% confidence level are placed in the context of effective field theory on the Wilson coefficients,
which range between 0.024–0.424 TeV−2 depending on the flavor of the associated light quark
and the Lorentz structure of the interaction. These limits are converted to upper limits on branching
fractions involving up (charm) quarks, t → eμu (t → eμc), of 0.032ð0.498Þ × 10−6, 0.022ð0.369Þ × 10−6,
and 0.012ð0.216Þ × 10−6 for tensorlike, vectorlike, and scalarlike interactions, respectively.
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I. INTRODUCTION

Lepton flavor is conserved in the standard model (SM)
with massless neutrinos. However, the observation of
neutrino oscillations [1,2] confirms the existence and
the mixing of massive neutrinos, and it also indicates
that lepton flavor violation (LFV) is expected to
occur in the charged-lepton sector. The CERN LHC
can provide sensitivity [3] to charged-LFV (CLFV)
searches, including in two- or three-body decays of heavy
particles, X → ll0ðYÞ, and in heavy-particle production,
pp → ll0X. Here, X refers to a heavy SM particle such as
a top quark (t) or a Higgs, W, or Z boson, lðl0Þ are
charged leptons with different flavor and opposite charge,
Y denotes an additional generic SM particle, and p stands
for proton. For CLFV processes involving the heaviest of
all elementary particles, the top quark, competitive sensi-
tivity is predicted at the LHC compared to previous
bounds on such interactions [4]. Recent flavor anomalies
in decays of B mesons, including the recent potential
lepton flavor universality violation reported by the LHCb
experiment [5], has prompted renewed experimental

interest in CLFV searches. Moreover, some models that
accommodate these flavor anomalies also suggest that
CLFV involving a top quark is within the reach of the
LHC sensitivity [6]. This paper presents a search for
CLFV processes in top quark production and decay. The
search utilizes the pp collision data collected by the CMS
experiment at the LHC in 2016–2018 at a center-of-mass
energy of 13 TeV, corresponding to an integrated lumi-
nosity of 138 fb−1.
The signal processes considered are shown with repre-

sentative Feynman diagrams in Fig. 1. Final states with
exactly three charged leptons, either electrons (e) or muons
(μ), are considered. One of the three leptons is presumed to
originate from the leptonic decay of the SM top quark and
the other two from CLFV interactions. While the signal
models considered do not include tau leptons (τ), tau
leptons from SM top quark decays that subsequently decay
into an electron or a muon do contribute. In addition, the
selected events are required to contain at least one jet of
which no more than one is consistent with originating from
a bottom (b) quark.
The CMS Collaboration has previously searched for

CLFV in the top quark sector utilizing final states with two
oppositely charged leptons [7]. This paper, which requires
three leptons in the final state, follows a similar strategy to
parametrize CLFV signals with dimension-6 effective field
theory (EFT) operators,
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where Lð4Þ
SM is the renormalizable Lagrangian of the SM.

The Oð6Þ
a denote dimension-6 nonrenormalizable operators,

and Cð6Þ
a are the corresponding Wilson coefficients. The

dimension-6 terms are suppressed by the square of a mass
scale Λ where new physics is presumed to emerge.
Assuming the CLFV coupling involves exactly one elec-
tron, one muon, one top quark, and one up ðuÞ=charm (c)
quark, the complete list of dimension-6 operators [8] can be
shortened. We summarize the relevant operators in Table I.
The background processes that enter the final selection

are categorized into two groups: prompt and nonprompt
backgrounds. Prompt backgrounds include SM processes
that produce at least three leptons via decays of electroweak
gauge bosons. Processes that fail to meet this criterion
are categorized as nonprompt backgrounds. Prompt back-
grounds in this analysis are modeled with Monte Carlo

(MC) simulation while the nonprompt backgrounds are
modeled using control samples in data.
To distinguish CLFV signal and background events,

machine learning techniques, specifically boosted decision
trees (BDTs), are employed. The full BDT discriminant
distributions are used to construct a binned likelihood
function, which is used to interpret the observed data in
terms of limits on Wilson coefficients and branching
fractions associated to various signal processes.
The paper is organized as follows. Section II gives a brief

overview of the experimental apparatus and Sec. III
describes the data and simulated samples used for the
analysis. The reconstruction of physics objects is presented
in Sec. IV followed by the event selection in Sec. V.
Descriptions of the background estimation and signal
extraction are given in Secs. VI and VII, respectively.
The systematic uncertainties that contribute to this analysis
are outlined in Sec. VIII. Finally, the limit-setting pro-
cedure and results are discussed in Sec. IX, and a summary
is given in Sec. X.

II. THE CMS DETECTOR

The central feature of the CMS apparatus is a super-
conducting solenoid of 6 m internal diameter, providing a
magnetic field of 3.8 T. Within the solenoid volume are a
silicon pixel and strip tracker, a lead tungstate crystal
electromagnetic calorimeter (ECAL), and a brass and
scintillator hadron calorimeter (HCAL), each composed
of a barrel and two endcap sections. Forward calorimeters
extend the pseudorapidity (η) coverage provided by the
barrel and endcap detectors. Muons are measured in gas-
ionization detectors embedded in the steel flux-return yoke
outside the solenoid. A more detailed description of the
CMS detector, together with a definition of the coordinate
system used and the relevant kinematic variables, can be
found in Ref. [9].
Events of interest are selected using a two-tiered trigger

system. The first level (L1), composed of custom hardware
processors, uses information from the calorimeters and
muon detectors to select events at a rate of around 100 kHz
within a fixed latency of about 4 μs [10]. The second level,

TABLE I. Summary of relevant dimension-6 operators con-
sidered in this analysis. Here, ε is the two-dimensional Levi-
Civita symbol, γμ the Dirac gamma matrices, and σμν ¼ i

2 ½γ
μ; γν&.

The q and l denote left-handed doublets for leptons and quarks,
respectively, whereas u and e denote right-handed singlets for
quarks and leptons, respectively. The indices i and j are lepton
flavor indices that run from 1 to 2 with i ≠ j; k and l are quark
flavor indices with the condition that one of them is 3 and the
other one is 1 or 2. The four vectorlike operators are merged in
this analysis because the final-state particles produced by these
operators have very similar kinematics.

Lorentz structure Operator

Vector Oð1Þijkl
lq

= ðl̄iγμljÞðq̄kγμqlÞ

Oijkl
lu

= ðl̄iγμljÞðūkγμulÞ
Oijkl

eq = ðēiγμejÞðq̄kγμqlÞ
Oijkl

eu = ðēiγμejÞðūkγμulÞ
Scalar Oð1Þijkl

lequ
= ðl̄iejÞεðq̄kulÞ

Tensor Oð3Þijkl
lequ

= ðl̄iσμνejÞεðq̄kσμνulÞ

FIG. 1. Representative Feynman diagrams for the signal processes that are targeted by this analysis. Both top quark decay (left) and
production (middle and right) CLFV processes are shown. The CLFV interaction vertex is shown as a solid red circle to indicate that it is
not allowed in the SM. The charge conjugate diagrams also contribute.
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known as the high-level trigger, consists of a farm of
processors running a version of the full event reconstruction
software optimized for fast processing, and reduces the
event rate to around 1 kHz before data storage [11].

III. DATA AND SIMULATED SAMPLES

The pp collision data used in this search were recorded
with a large number of triggers that require the presence of
one, two, or three electrons or muons to ensure a high
trigger efficiency. Only data collected during periods when
the CMS detector was fully operational are included. The
resulting integrated luminosity for the 2016–2018 dataset
is 138 fb−1.
To model the signal and to estimate the contributions

from some of the background processes, MC simulations
are used. Independent samples are generated for the
years 2016, 2017, and 2018 to match the different data-
taking conditions. The signal events are generated at
leading order using MadGraph5_aMC@NLO 2.6.5 [12], which
makes use of the external model SmeftFR [13] to incorporate
EFT effects. The events generated with SmeftFR are
reweighted event-by-event to match the predictions from
SMEFTsim [14].
Utilizing the strategy described in Ref. [7], we can

describe the potential CLFV couplings with exactly six
independent Wilson coefficients: Ctensor

eμtu , Cvector
eμtu , Cscalar

eμtu ,
Ctensor
eμtc , Cvector

eμtc , Cscalar
eμtc , where the subscript describes the

CLFV interaction vertex and the superscript indicates the
Lorentz structure of the operators. The signal samples are
produced for each of these six couplings, separately for
production and decay signal modes, with an arbitrary choice
ofCa ¼ 1 andΛ ¼ 1 TeV for allWilson coefficients during
the event generation. Theoretical cross sections for the
different signal processes are shown in Table II. The quoted
uncertainties are related to the choice of parton distribution
function (PDF) and QCD renormalization and factorization
scales. The top quark production signal cross sections are
determined with SMEFTsim [14], while the top quark decay
signal cross sections are obtained by

σCLFV ¼ 4σðpp → tt̄ÞSMBðt → eμqÞ; ð2Þ

where σðpp → tt̄ÞSM ¼ 831.7 pb is the SM tt̄ production
cross section at next-to-next-to-leading order (NNLO) as
calculatedwith the Top++2.0 program [15] andBðt → eμqÞ is
shown in Eq. (4).
The simulated background processes are divided into

three categories: (i) WZ production; (ii) multiboson pro-
duction other than WZ (VV(V), where V ¼ W, Z), which
includes ZZ and triboson production; and (iii) the asso-
ciated production of tðtÞ with a boson and/or a quark
(tðt̄Þ þ XðXÞ, where X is a boson or quark), which includes
tt̄W, tt̄Z, tt̄H, tZq, and smaller backgrounds containing
one or two top quarks plus a boson or quark. Additionally,
simulated samples of tt̄ and Drell–Yan (DY) events are used
in the data-driven nonprompt-lepton background estimate
as well as in the BDT training. The tt̄, tt̄H, and ZZ
processes are simulated at next-to-leading order (NLO)
precision using the POWHEG 2.0 event generator [16–19].
Simulated WZ, tt̄W, tt̄Z, tZq, DYþ jets, and triboson
events are generated at NLO using MadGraph5_aMC@NLO

2.4.2 [12]. The parton showering and hadronization are
modeled using PYTHIA8 [20].
For simulated signal and background events correspond-

ing to the 2016 data-taking period, the NLO PDF set
NNPDF3.0 [21] and the PYTHIA8 tune CUETP8M1 [22] are
used. For simulated events matching the conditions of the
2017–2018 data, the NNLO PDF set NNPDF3.1 [23] and the
PYTHIA8 tune CP5 [24] are used.
The presence of additional pp collisions within the same

or adjacent bunch crossings (pileup) is accounted for by
overlaying each simulated event with a number of inelastic
collisions, simulated using PYTHIA8. Simulated events are
weighted such that the distribution of pileup events in the
simulated samples matches that observed in the data. All
simulated events include a detailed simulation of the CMS
detector response based on Geant4 [25], and are processed
using the same CMS event reconstruction software as used
for the data.

IV. OBJECT RECONSTRUCTION

The particle-flow (PF) algorithm [26] aims to reconstruct
and identify each individual particle in an event, with an
optimized combination of information from the various

TABLE II. Theoretical cross sections for top quark production and decay for each CLFV coupling. The cross
sections are calculated with Ca=Λ2 ¼ 1 TeV−2, mt ¼ 172.5 GeV, ΓSM

t ¼ 1.33 GeV. The cross section for the top
quark decay process is the same for eμtu and eμtc couplings, therefore, only one cross section is quoted for each
Lorentz structure. The first uncertainty represents the effect of QCD renormalization and factorization scales. The
second uncertainty is the PDF uncertainty.

Signal mode Tensor Vector Scalar

Production (eμtu) 2140þ370
−290 ' 30 fb 460þ81

−64 ' 6 fb 97þ18
−14 ' 1 fb

Production (eμtc) 164þ22
−18 ' 27 fb 33þ5

−4 ' 6 fb 6.3þ0.9
−0.8 ' 1.4 fb

Decay (eμtq, where q ¼ u=c) 187þ5
−6 ' 8 fb 32.0þ0.8

−1.1 ' 1.3 fb 4.0þ0.1
−0.1 ' 0.2 fb
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elements of the CMS detector, including charged particle
tracks from the tracking detector, energy deposits in the
HCAL and ECAL, and reconstructed tracks from the muon
chambers. Particles in each event are reconstructed and
identified as either electrons, muons, photons, charged
hadrons, or neutral hadrons. The primary interaction vertex
is taken to be the vertex corresponding to the hardest
scattering in the event, evaluated using tracking informa-
tion alone, as described in Sec. 9.4.1 of Ref. [27].
Photons are identified as ECAL energy clusters not

linked to the extrapolation of any charged particle trajec-
tory. Electrons are identified as a primary charged particle
track and potentially multiple ECAL energy clusters
corresponding to the extrapolation of this track to the
ECAL and to possible bremsstrahlung photons emitted
along the way. Muons are identified as tracks in the tracker
consistent with either a track or several hits in the muon
system, and associated with calorimeter deposits compat-
ible with the muon hypothesis. Charged hadrons are
identified as charged particle tracks neither identified as
electrons nor as muons. Finally, neutral hadrons are
identified as HCAL energy clusters not linked to any
charged hadron candidates, or as a combined ECAL and
HCAL energy excess with respect to the expected charged
hadron energy deposit.
The energy of electrons is determined from a combina-

tion of the electron momentum measurement in the tracker
at the primary interaction vertex, the energy of the
corresponding ECAL cluster, and the energy sum of all
bremsstrahlung photons spatially compatible with originat-
ing from the electron track. The energy of muons is
obtained from the curvature of the corresponding track.
The energy of charged hadrons is determined from a
combination of their momentum measured in the tracker
and the matching ECAL and HCAL energy deposits,
corrected for the response function of the calorimeters to
hadronic showers. Finally, the energy of neutral hadrons is
obtained from the corresponding corrected ECAL and
HCAL energy deposits.
The PF candidates are clustered into jets using the anti-

kT clustering algorithm [28] with a distance parameter of
0.4, implemented in the FastJet package [29,30]. The jet
momentum is determined as the vectorial sum of all particle
momenta in the jet, and is found from simulation to be, on
average, within 5%–10% of the true momentum over the
entire transverse momentum (pT) spectrum and detector
acceptance. Additional pileup interactions can contribute
additional tracks and calorimetric energy depositions,
increasing the apparent jet momentum. To mitigate this
effect, tracks identified as originating from pileup vertices
are discarded and a correction is applied for the remaining
contributions. Jet energy corrections are derived from
simulation studies so that the average measured energy
of reconstructed jets becomes identical to that of particle-
level jets. In situ measurements of the momentum balance

in dijet, photonþ jet, Z þ jet, and multijet events are used
to determine any residual differences between the jet
energy scale in data and in simulation, and appropriate
corrections are made [31]. Additional selection criteria are
applied to each jet to remove jets potentially dominated by
instrumental effects or reconstruction failures [32].
The missing transverse momentum vector p⃗miss

T is
computed as the negative vector pT sum of all the PF
candidates in an event, and its magnitude is denoted as pmiss

T
[33]. The p⃗miss

T is modified to account for corrections to the
energy scale of the reconstructed jets in the event.

V. EVENT SELECTION

Electrons and muons used in the analysis are identified
using a set of kinematic and quality selection criteria, as
well as a multivariate analysis (MVA) discriminant derived
from a BDT, described in Ref. [34]. All leptons are required
to fulfill pT > 20 GeV and jηj < 2.4. Electrons that
are reconstructed within the transition region between
the barrel and the endcap sections of the ECAL,
1.44 < jηj < 1.57, are excluded from the analysis as the
reconstruction of an electron object in this region is
suboptimal. The BDT uses multiple discriminating observ-
ables, such as lepton kinematic and isolation variables. It is
trained on simulated tt̄W, tt̄Z, tZq, and tt̄ events, and is
optimized to reduce the contamination from nonprompt
leptons. Both electrons and muons are required to pass the
tight MVA working point, corresponding to 90% (1%)
signal (background) efficiency.
A lepton isolation variable is defined as the pT

sum of all reconstructed PF particles within ΔR ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔηÞ2 þ ðΔφÞ2

p
< Rmax (whereΔφ is the azimuthal angle

difference in radians) around the direction of the lepton,
excluding the lepton itself. The cone size Rmax depends on
the lepton pT as Rmax ¼ maxð0.05;minð0.2; 10 GeV

pT
ÞÞ. The

value of the isolation variable divided by the lepton pT,
referred to as relative isolation, is required to be less than
0.12. Leptons selected by these requirements are referred to
as tight leptons.
A selection of loose leptons is also used in the estimation

of the nonprompt background. The loose lepton criteria
require leptons to pass a much looser MVAworking point,
corresponding to 99% (10%) and 98% (5%) signal (back-
ground) efficiency for electrons and muons, respectively,
and to have a relative isolation less than 0.4. Unless
explicitly stated, all leptons must pass the tight criteria.
Jets are required to have pT > 30 GeV, jηj < 2.4, and be

separated from the selected leptons by ΔR > 0.4. An
MVA-based discriminant (DeepJet) is used to identify
jets that originate from the hadronization of bottom quarks
[35–37]. The working point is chosen such that the b jet
selection efficiency is 75% while the rate of misidentified
light-quark or gluon jets as b jets is 1% [37].
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Events selected for the analysis are required to contain
exactly three leptons with a net charge of '1. The leading
(highest pT) lepton must have pT > 38 GeV and be
matched with the corresponding object used by the trigger
within ΔR < 0.2. Events are further divided into three
categories (eee, μμμ, and eμl), and within each category
different regions are defined to further study and validate
signal and background events—these are described below.

A. Event categories

Events with three leptons of the same flavor are
categorized into the eee or μμμ category and are used to
study the background composition. Remaining events are
categorized into the eμl category, which is where the signal
is expected; for this category, we require at least one pair of
opposite-sign, different-flavor (OSDF) leptons. The OSDF
lepton pair is assumed to be the product of the CLFV
interaction, and is referred to as the LFV eμ pair. Leptons
that form the LFV eμ pair are referred to as the LFV
electron/muon. The third lepton (referred to as the stand-
alone lepton), together with a neutrino, are assumed to be
the products of the leptonically decaying W boson, which
arises from the SM top quark decay—the lepton assign-
ments are described below.
A kinematic reconstruction of the neutrino momentum is

performed, which proceeds as follows. The x and y
components of the neutrino momentum are taken from
p⃗miss
T , while the z component (pz) is calculated by imposing

the constraint that the invariant mass of the stand-alone
lepton and the neutrino must equal the W boson mass. If
there is no real solution for pz, we take the real part of the
complex solution and if there is more than one real solution,
we select the one closest to the pz of the stand-alone lepton.
The jet with the highest b tagging score is assumed to

originate from a bottom quark decay and is combined with
the stand-alone lepton and the neutrino to construct the SM
top quark candidate. In events where there is more than one
candidate for the stand-alone lepton, the lepton that gives a
top quark candidate mass closest to the nominal top quark
mass (mt ¼ 172.5 GeV) is chosen. Once the stand-alone
lepton has been determined, the OSDF pair is combined
with each selected jet in the event (other than the one with
the highest b tagging score) to reconstruct potential LFV

top quark candidates. From the LFV top quark candidates,
the one with mass closest to mt is chosen. For events with
only one jet (used to reconstruct the SM top quark), no LFV
top quark candidate is formed.

B. Signal region

The signal region (SR) targeting LFV processes is
defined from events selected in the eμl category. In
addition to the OSDF lepton pair, we require the events
to have pmiss

T > 20 GeV. Events with an opposite-sign,
same-flavor (OSSF) lepton pair with an invariant mass
between 50 and 106 GeV are removed (OffZ requirement)
to suppress contributions from Z boson production in
association with jets. To further suppress background
events, we require the presence of at least one jet of which
at most one is b tagged. The selection criteria used to define
the SR are summarized in Table III.
Since the invariant mass of the opposite-sign eμ pair in

the top quark production signal is not bounded by mt, the
SR is further subdivided to create regions enriched in either
top quark decay (Fig. 1 left) or production (Fig. 1 middle
and right) signal events:

(i) SRþmðeμÞ < 150 GeV: top quark decay enriched.
(ii) SRþmðeμÞ > 150 GeV: top quark production en-

riched.

C. Signal-depleted regions

We define a nonprompt background validation region
(VR) within each event category (eee=μμμ VR and eμl
VR). For the eμl VR, at least one OSSF lepton pair with an
invariant mass between 50 and 106 GeV is required (OnZ)
to ensure orthogonality with the SR. We also define a WZ
VR in each category—for these VRs at least one OnZ
OSSF lepton pair with pmiss

T > 20 GeV is required. The
selection criteria associated with each event region are
listed in Table III. The VRs are further discussed in Sec. VI.
The nonprompt and WZ VRs are only used to validate the
modeling of the background and are not included in the
statistical analysis described in Sec. IX.
A modified version of theWZ VR, the jet modeling VR,

is used to study the modeling of the jet multiplicity for the
diboson production processes. The jet modeling VR has the
same OnZ requirement, no jet multiplicity requirement, a

TABLE III. Summary of the selection criteria used to define different event regions. The jet modeling VR contains
events from all three categories (eee, eμl, μμμ).

Category Region OnZ OffZ pmiss
T (GeV) Number of jets Number of b jets

3l Jet modeling VR ✓ … >85 … ¼ 0

eee=μμμ Nonprompt VR … … … … …
WZ VR ✓ … >20 ≥1 ≤1

eμl SR … ✓ >20 ≥1 ≤1
Nonprompt VR ✓ … … … …

WZ VR ✓ … >20 ≥1 ≤ 1
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pmiss
T > 85 GeV requirement, and a requirement of no

b-tagged jets with pT > 20 GeV. Unlike for the WZ
VR, events with different lepton flavor compositions are
combined.

VI. NONPROMPT BACKGROUND ESTIMATION

Different background processes contribute to the SR. We
distinguish between events with three prompt leptons and
events containing nonprompt leptons. In this analysis, the
term prompt leptons include leptons that originate from the
CLFV vertex, the DY process, or an electroweak boson
decay, including leptons from τ decays if the τ originates
from the latter two processes. Nonprompt leptons include
leptons from hadron decays and photon conversions, as well
as particles misidentified as leptons. Nonprompt leptons are
suppressed through isolation requirements and an MVA-
based identification specifically trained to reject them.
The nonprompt background consists of events with at

least one nonprompt lepton passing the analysis selection,
and is dominated by DY and tt̄ production. An accurate
estimation of the nonprompt-background yield is difficult
to achieve through MC simulation. Therefore, a technique
based on control samples in data, known as the matrix
method (described, e.g., in Ref. [38]) is used to estimate this
background contribution.

A. The matrix method

The matrix method estimates the number of events with
nonprompt leptons passing the tight lepton selection. We
consider a maximum of three nonprompt leptons in the
event. The matrix method requires knowledge of the
probability for prompt and nonprompt leptons that pass
a loose lepton selection to also pass a tight lepton selection.
The loose selection is such that any leptons that pass it will
fall into one of two exclusive categories: tight or not tight.
The tight and loose selections are detailed in Sec. V.
The prompt (real) and nonprompt (fake) rates (r and f)

measure the probability for prompt and nonprompt leptons,
respectively, to pass the tight selection. The measurements
of r and f are performed in dedicated dilepton VRs, where
a high purity of prompt and nonprompt leptons, respec-
tively, is expected. The leading lepton is selected with the
tight criteria while the subleading lepton is selected with the
loose criteria. Events in these dilepton VRs are further
required to contain at least one jet of which no more than
one is associated with a bottom quark.
The prompt rate r is measured using tt̄ simulation in an

opposite-sign dilepton region, where only eμ events are
included. The nonprompt rate f is measured using data in
a same-sign dilepton region, where all lepton-flavor compo-
sites (ee, eμ, and μμ) are included. Both r and f are measured
separately for electrons and muons, and are parameterized as
functions of pT, jηj, and jet multiplicity. It is assumed that r
and f are local properties of the lepton identification, which

are largely independent of the event-level quantities.
Nevertheless, the variation of f for nonprompt leptons
produced in different processes can be quite significant.
The dependency of f on the physics processes can manifest
when different lepton flavors are required: the same-flavor
dilepton VRs (ee, μμ) are mostly populated by DY events
while tt̄ is the primary contributor to the different-flavor (eμ)
dilepton VR. The dependency of f measured with different
lepton-flavor composites, which cannot be fully captured by
our parametrization, is covered by introducing a dedicated
uncertainty, corresponding to a shift of f by up to 20%.
The nonprompt background estimate in a given event

region (e.g., the SR) is determined with the matrix method
using a number of application regions (ARs). The event-
level selections for these ARs are the same as for the event
region in question, except that all three leptons are selected
by loose lepton selection criteria. Since the loose leptons
selected in the ARs can either pass or fail the tight lepton
requirement, the ARs are categorized based on the com-
position of tight/not tight leptons. Events in each AR are
reweighted according to weights produced by the matrix
method using r and f to obtain the nonprompt background
estimate in a given region.

B. Validation of the matrix method

Three nonprompt VRs that are orthogonal to the SR are
used to validate the performance of the matrix method. The
selection criteria used to define the VRs are summarized in
Sec. V. For each VR, the prompt backgrounds are estimated
with MC simulation, while the nonprompt background is
estimated with the matrix method. The distribution of the
leading lepton η and the jet multiplicity are shown in Fig. 2
for the three nonprompt VRs (eee, eμl, and μμμ VRs).
Good agreement is observed between the data and back-
ground estimates, serving as a validation of the matrix
method.

C. Signal region background estimation

The matrix method is used to estimate the nonprompt
background in the SR. Distributions of LFV electron pT,
LFV muon pT, LFV eμ mass, LFV top quark mass, OSSF
boson mass, and b jet multiplicity are shown in Fig. 3. In
these plots, the signal strength μ describes the scaling of the
signal cross section as

μðC=Λ2Þ ¼ σCLFVðC=Λ2Þ
σCLFVð1 TeV−2Þ

∝ ðC=Λ2Þ2: ð3Þ

Signal events generated with the vectorlike operator that
features an up quark in the CLFV coupling are used
as an example in these plots to highlight the difference
between signal and background in various distributions.
Event yields for the various background processes are
summarized in Table IV. The data are observed to agree
well with the background estimate.
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VII. SIGNAL EXTRACTION

To separate a possible LFV signal from the back-
ground contributions, BDTs are implemented using the
XGBoost package [39]. The kinematics of signal events
from the top quark decay and production CLFV proc-
esses differ significantly. The most prominent difference

is the presence of high-pT leptons for the top quark
production signal. Separate BDTs are therefore trained
for the two SRs, top quark decay enriched
(mðeμÞ < 150 GeV) and top quark production enriched
(mðeμÞ > 150 GeV), to optimally target each signal
process.

FIG. 2. Distributions of the leading lepton η (left) and the jet multiplicity (right) in the nonprompt VRs. Events in the eee, eμl, and μμμ
nonprompt VRs are shown in the upper, middle, and lower row, respectively. The data are shown as filled points and the SM background
predictions as histograms. The VV(V) background includes ZZ and triboson production, while the tðtÞ þ XðXÞ component includes tt̄W,
tt̄Z, tt̄H, tZq, and smaller backgrounds containing one or two top quarks plus a boson or quark. The nonprompt background is estimated
using control samples in data, while other backgrounds are estimated using MC simulation. The hatched bands indicate statistical and
systematic uncertainties in the background predictions. The last bin of the right column histograms includes the overflow events.
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The signal samples used for the BDT training are
simulated events that correspond to the CLFV top quark
production and decay signal processes. The Lorentz struc-
ture and the flavor of the up-type quark involved in the LFV
interaction (u or c) were shown to have a negligible impact

on the kinematics of the final-state particles. Therefore,
they are combined in the training. The background sam-
ples, also obtained from simulation, include prompt back-
grounds from all the sources described in Sec. III and two
major nonprompt backgrounds (DY and tt̄ production).

FIG. 3. Distributions of kinematic variables in the SR: LFVelectron pT (upper left), LFVmuon pT (upper right), LFV eμmass (middle
left), LFV top quark mass (middle right), OSSF lepton pair mass (lower left), and b jet multiplicity (lower right). The CLFV top quark
decay and production signals are shown as dotted red and solid purple lines, respectively. The original signal normalization,
corresponding to Cvector

eμtu =Λ2 ¼ 1 TeV−2, is scaled up (down) by a factor of 3 (20) for the CLFV top quark decay (production) signal for
better visualization. The hatched bands indicate statistical and systematic uncertainties in the background predictions. The last bin of all
but the lower-right histogram includes the overflow events.
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The most important input variables to the BDT model
targeting the top quark decay signal are the invariant mass
of the OSSF lepton pair, the number of b-tagged jets, and
the invariant mass of the flavor-violating top quark candi-
date. If no OSSF lepton pair exists in an event, a mass value
of 0 is assigned for the purpose of BDT training. For the
BDT model targeting the top quark production signal, the

invariant mass of the LFV eμ pair, the pT of the LFV
electron, and the pT of the LFV muon are the most
important.
The BDT models targeting the two signals are used to

evaluate each event in the corresponding SR. The resulting
output BDT distributions are shown in Fig. 4. The BDT
discriminants efficiently distinguish signal from back-
ground events, with good agreement observed between
the data and background prediction.

VIII. SYSTEMATIC UNCERTAINTIES

Different sources of systematic uncertainty contribute to
the estimation of background events and modeling of the
signal. A summary of systematic uncertainties and their
average impact on predicted yields in the SRs can be found
in Table V. Individual uncertainties are discussed in
detail below.
Uncertainties of 1.2, 2.3, and 2.5% are assigned to the

integrated luminosity for 2016, 2017, and 2018, respec-
tively [40–42]. The uncertainties associated with the
number of pileup interactions are evaluated by varying
the inelastic pp cross section by '4.6% [43].
The reconstruction [44,45], identification, and isolation

efficiencies [34] of electrons and muons are measured by
applying the “tag-and-probe” method [46] in data samples
enriched in Z → ll events. Scale factors are applied to
simulated events to account for the differences in efficiency
between data and simulation. This correction is varied
independently for electrons and muons within their corre-
sponding uncertainties, which amount to approximately 1%

FIG. 4. Distributions of the BDT discriminant targeting the CLFV top quark decay (left) and production (right) signal. Contributions
from the two signal modes (production and decay) are combined within each SR and are shown as the solid red line. The pre-fit signal
strength (μvectoreμtu ¼ 1), corresponding to Cvector

eμtu =Λ2 ¼ 1 TeV−2, is scaled up (down) by a factor of 3 (20) for the CLFV top quark decay
(production) signal for better visualization. The hatched bands indicate statistical and systematic uncertainties in the background
predictions.

TABLE IV. Expected background contributions and the num-
ber of events observed in data collected during 2016–2018. The
quoted uncertainties include statistical and systematic sources,
which are added in quadrature. The category “Other” includes
smaller background contributions containing one or two top
quarks plus a boson or quark. The CLFV signal, generated with
Cvector
eμtu =Λ2 ¼ 1 TeV−2, is also listed for reference and includes

contributions from both top quark production and decay modes.

Process mðeμÞ < 150 GeV mðeμÞ > 150 GeV

Nonprompt 351' 92 146' 38
WZ 275' 64 145' 35
ZZ 33.2' 6.5 13.1' 2.6
VVV 17.0' 8.5 12.0' 6.0
tt̄W 47.6' 15.9 40.0' 13.8
tt̄Z 39.1' 7.9 25.8' 5.4
tt̄H 28.2' 4.5 10.0' 1.6
tZq 5.5' 1.1 2.5' 0.5

Other 7.3' 3.7 4.5' 2.3
Total expected 805' 124 398' 58

Data 783 378
CLFV 207' 15 4440' 215
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in the overall prediction. An additional uncertainty is
assigned to the leptons with pT > 200 GeV, as such
high-pT leptons are not well represented in these calibra-
tion studies. This uncertainty is approximately 3% or less,
affecting primarily the signal processes.
The trigger efficiencies are measured in separate data

control samples and are close to 100% for both data and
simulation due to the use of single-, double-, and triple-
lepton triggers. Therefore, no correction to the trigger
efficiency is applied (i.e., a data to simulation scale factor
of 1 is applied to simulated events). A flat uncertainty in the
scale factor of 2% is used to cover the statistical fluctua-
tions of the efficiency measurement.
During the 2016–2017 data taking, a gradual shift in the

timing of the inputs of the ECAL L1 trigger in the region
jηj > 2.0 (L1 prefiring) caused a specific inefficiency [10].
Correction factors were computed from data and applied to
the acceptance evaluated by simulation. An uncertainty of
20% is assigned to this correction.
The uncertainties due to the jet energy scale (JES) and jet

energy resolution (JER) are evaluated by varying, in
simulated events, the jet energies up and down by the
corresponding uncertainties, as described in Ref. [31]. The
uncertainties are split into multiple sources that are either
correlated or uncorrelated across the years. For each of the
uncertainty sources, kinematic quantities are recalculated
and the event selections are reapplied. The effects of JES
and JER are also propagated to the pmiss

T and b tagging
discriminant distributions. These uncertainties amount to
1% or less in the overall prediction.
The b tagging efficiencies for b and light jets are

measured in tt̄ and Z þ jets events, respectively [35].
The b tagging efficiencies in the simulation are iteratively
fit to match the efficiencies in data. Multiple sources of
systematic uncertainties are considered to account for the

contamination of the efficiency measurement as well as
statistical fluctuations. These uncertainties amount to 1% or
less on the overall prediction.
Some discrepancy was observed between data and

simulation in the jet modeling VR. This is due to the
underestimation of additional jets in simulatedWZ and ZZ
samples, which has been observed in previous analyses
[47,48]. An uncertainty, referred to as “jet modeling,” is
therefore derived from the jet modeling VR to cover the
effect of the mismodeling. This uncertainty is estimated to
be 10%–20% and affects the WZ and ZZ background
estimates.
The uncertainty in the nonprompt background estimate

includes uncertainties in the measurement of the rates r and
f as well as a normalization uncertainty. The uncertainty in
r and f is estimated to be 10–30%. This uncertainty
includes three components: the effect of potential
differences in sample composition between the measure-
ment and application regions (this dominates and corre-
sponds to an uncertainty of up to 20% on f), accounting for
prompt-lepton background contamination in the measure-
ment region, and a statistical uncertainty. Additionally, an
uncertainty of 50% is assigned to the leading lepton f if it
fails the tight requirement. This uncertainty arises from the
leading lepton being matched with isolated trigger objects,
which means a rather stringent isolation requirement is
indirectly used for the selected leading leptons—incon-
sistent with the principle that leptons forming the ARs are
selected with loose selection criteria. Lastly, an additional
normalization uncertainty of 10% is applied to the output of
the matrix method to cover the possible variation in the
normalization of the nonprompt backgrounds.
The predicted yields for all prompt backgrounds are

normalized to their theoretical cross sections, which
are calculated at LO for tWZ, tHW, and tHq processes.

TABLE V. Summary of systematic uncertainties and the average change in signal and overall background yields in the SRs.
Uncertainties that only contain normalization effects, such as luminosity uncertainties and uncertainties in theoretical cross sections, are
not included in this table.

mðeμÞ < 150 GeV mðeμÞ > 150 GeV

Systematic uncertainty Background (%) Signal (%) Background (%) Signal (%)

Pileup <0.1 0.4 <0.1 0.3
Lepton reconstruction <0.1 0.6 <0.1 1.7
Lepton identification and isolation 0.5 1.4 0.5 1.3
High-pT lepton <0.1 0.2 <0.1 3.4
Muon momentum scale and resolution <0.1 0.3 <0.1 0.1
L1 prefiring <0.1 0.4 <0.1 0.4
Jet energy scale and resolution <0.1 1.0 0.6 0.4
b tagging <0.1 0.9 0.5 0.5
Jet modeling 6.5 … 6.9 …
Nonprompt 10.5 … 8.7 …
PDF <0.1 2.3 <0.1 1.3
QCD scale 4.2 2.8 5.3 1.4
Initial- and final-state radiation … 7.6 … 1.0
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For other processes, the theoretical cross sections calcu-
lated at NLO are used. Normalization uncertainties are
assigned to all prompt backgrounds to account for uncer-
tainties in the theoretical cross sections. A 6% uncertainty
[49] is assigned toWZ and ZZ processes, while for tt̄Z and
tt̄H, an uncertainty of 15% [50,51] is used. Conservative
normalization uncertainties of 20 and 30% are assigned to
the tZq and tt̄W processes, respectively. For other smaller
background contributions, an uncertainty of 50% is
estimated.
Two theory-related systematic uncertainties (QCD scale

and PDF uncertainties) are considered for the signal
processes and for irreducible background events, which
arise from WZ, tt̄V, and tt̄H production. For uncertainties
related to the PDFs, the procedure described in Ref. [52] is
followed: the NNPDF PDF sets [21,23] are used and the
root-mean-square value of the variations is taken as the
PDF uncertainty. The renormalization (μR) and factoriza-
tion (μF) scales are varied up and down by a factor of 2
individually and simultaneously, and the envelope of
the variations is taken as the QCD scale uncertainty.
For the QCD scale and PDF uncertainties, only the impact
on the event yields through changes in the acceptance are
considered since uncertainties in the overall normalization
are already accounted for through uncertainties in the
theoretical cross sections discussed above.
Uncertainties related to the parton shower are only

considered for signal events, and only the impact on the
acceptance is considered. It is evaluated by varying the μR
scale up and down by a factor of 2 for the simulation of
initial- and final-state radiation.

IX. RESULTS

A binned likelihood function Lðμ; θÞ is constructed to
perform the statistical analysis using the binned BDT
discriminant distributions. The choice of intervals for the
bins in the likelihood function is the same as in Fig. 4. Six
Wilson coefficients (Ctensor

eμtu , Cvector
eμtu , Cscalar

eμtu , Ctensor
eμtc , Cvector

eμtc ,
and Cscalar

eμtc ) are considered separately in the statistical
analysis, where only one of them is activated while the
others are set to zero. The top quark production and decay
signal modes that correspond to the same Wilson coef-
ficient are combined. The signal strength μ, defined
previously in Eq. (3), governs the cross section of the
two signal modes simultaneously.
All systematic uncertainties are incorporated into the

likelihood function as nuisance parameters, denoted by θ.
The uncertainties that affect the shape of the BDT dis-
criminant distributions utilize Gaussian distributions while
other uncertainties that only affect the normalizations
utilize log-normal distributions. The “Barlow-Beeston lite”
method [53] is used to incorporate the statistical uncer-
tainties in the signal and background predictions.
A profile likelihood fit is performed simultaneously in

six regions (three data-taking years and two SRs) by
maximizing the likelihood function Lðμ; θ̂μÞ, where θ̂μ
are the values of the nuisance parameters that maximize the
likelihood for a specific signal strength. The post-fit
distributions of the BDT discriminants are shown in
Fig. 5. The limited number of events in the signal region
is the dominant uncertainty in this analysis. Of the postfit
systematic uncertainties, the largest impact is from the

FIG. 5. Distributions of the post-fit BDT discriminant targeting the CLFV top quark decay (left) and production (right) signal.
Contributions from the two signal modes (production and decay) are combined within each SR and are shown as the solid red line. The
post-fit signal strength (μvectoreμtu ¼ μ̂vectoreμtu ) is used to normalize the signal cross sections. The hatched bands indicate post-fit uncertainties
(statistical and systematic) for the SM background predictions.
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statistical uncertainty associated with the limited number of
events in the ARs constructed for the nonprompt back-
ground estimate. Other important systematic uncertainties
include the normalization uncertainties associated with the
VV and tt̄W backgrounds and the QCD scale uncertainty
used for the tt̄W background.
The results are interpreted as 95% confidence level

(CL) upper limits on the signal strength μ, which is
equivalent to ðC=Λ2Þ2, as shown in Eq. (3). The limit
setting procedure uses a modified frequentist CLs method
[54,55] as the criterion, which is based on a profile
likelihood ratio test statistic. An asymptotic approxima-
tion [56] is used to determine the distributions of the test
statistic. By convention, positive Wilson coefficients are
assumed, and the one-dimensional upper limits on a given
Wilson coefficient, Ca=Λ2, are obtained by taking the
square root of the upper limits on the corresponding signal
strength μa. The branching fractions, Bðt → eμqÞ with
q ¼ u or c, are obtained using the equation below, taken
from Ref. [57]:

Bðt → eμqÞ ¼

8
>>>>><

>>>>>:

jCtensor
eμtq j2

Λ4

m5
t

64π3ΓSM
t

jCvector
eμtq j2

Λ4

m5
t

384π3ΓSM
t

jCscalar
eμtq j2

Λ4

m5
t

3072π3ΓSM
t

ð4Þ

where the top quark mass mt and width ΓSM
t are assumed

to be 172.5 GeV and 1.33 GeV, respectively.
The resulting one-dimensional limits are summarized in

Table VI. Tabulated results are provided in the HEPData
record for this analysis [58]. The upper limits on Wilson
coefficients associated to operators with a tensorlike
Lorentz structure are more stringent because the predicted
cross sections for tensorlike operators are higher when all
Wilson coefficients are set to the same value (i.e.,
Ca=Λ2 ¼ 1 TeV−2), as shown in Table II. Signal processes
initiated by an up quark receive large contributions from
valence quarks coming from protons, which lead to
larger cross sections, and consequently limits on Wilson
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FIG. 6. Interpolated 95% CL upper limits on the Wilson coefficients (left) and the branching fractions (right). The observed (expected)
upper limits for tensor-, vector-, and scalarlike CLFV interactions are shown in red, blue, and black solid (dotted) lines, respectively. The
shaded bands contain 68% of the distribution of the expected upper limits.

TABLE VI. Expected (Exp.) and observed (Obs.) upper limits at 95% CL on Wilson coefficients and the
branching fractions for tensor-, vector-, and scalarlike CLFV interactions. The intervals that contain 68% of the
distribution of the expected upper limits are shown in parentheses.

Ceμtq=Λ2ðTeV−2Þ Bðt → eμqÞ × 10−6

CLFV coupling Lorentz structure Exp. (68% CL range) Obs. Exp. (68% CL range) Obs.

eμtu Tensor 0.022 (0.018–0.026) 0.024 0.027 (0.018–0.040) 0.032
Vector 0.044 (0.036–0.054) 0.048 0.019 (0.013–0.028) 0.022
Scalar 0.093 (0.077–0.114) 0.101 0.010 (0.007–0.016) 0.012

eμtc Tensor 0.084 (0.069–0.102) 0.094 0.396 (0.272–0.585) 0.498
Vector 0.175 (0.145–0.214) 0.196 0.296 (0.203–0.440) 0.369
Scalar 0.385 (0.318–0.471) 0.424 0.178 (0.122–0.266) 0.216
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coefficients involving an up quark are more stringent that
those with a charm quark. In addition to the cross sections,
the sensitivity for the branching fractions Bðt → eμqÞ are
also correlated to several constants specified in Eq. (4).
Relative to the vector- and scalarlike interactions, the
tensorlike CLFV interactions have the least stringent limits
on the corresponding branching fractions due to the small
combinatorial factor that appears in the denominator of
Eq. (4). The one-dimensional limits on eμtu and eμtc
couplings are interpolated to be visualized in two-
dimensional planes, which are shown in Fig. 6.

X. SUMMARY

This paper presents results from a search for charged-
lepton flavor violation in both top quark production and
decay processes. The data used were collected by the CMS
experiment during 2016–2018 and correspond to an inte-
grated luminosity of 138 fb−1. Events were selected for
analysis if they contain exactly three charged leptons—one
electron and one muon of opposite electric charge as well as
one additional electron or muon. Events must also contain
at least one jet of which no more than one is associated with
a bottom quark. An effective field theory approach is used
for parametrizing the charged-lepton flavor violating inter-
actions. Boosted decision trees are used to distinguish a
possible signal from the background. No significant excess
is observed over the prediction from the standard model.
Upper limits at the 95% confidence level are set on the
branching fractions involving up (charm) quarks, t → eμu
(t → eμc), of 0.032ð0.498Þ × 10−6, 0.022ð0.369Þ × 10−6,
and 0.012ð0.216Þ × 10−6 for tensor, vector, and scalar
interactions, respectively. These limits constitute the most
stringent ones to date on these processes, improving the
existing limits by roughly one order of magnitude.
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76bUniversità di Padova, Padova, Italy
76cUniversità di Trento, Trento, Italy

77aINFN Sezione di Pavia, Pavia, Italy
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