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Abstract

A new optimal control approach was developed to
control stochastic systems which minimizes the variance of
the cost function using a model predictive framework. The
nominal control was applied to a stochastic linear model
for longitudinal aircraft trajectory tracking in simulation to

evaluate the effectiveness of the developed control.

l. Introduction

Minimal Cost Variance (MCV) Control is a branch of
stochastic optimal control first developed in a 1966 [1] and
has been developed and improved over the years [2].
Extensions of this control theory to the multi-cumulant
case is presented in [3] and the discrete form of the MCV

control is developed in [4]. We extend this MCV control

with model predictive approach.

Model Predictive Control (MPC) is also referred to as
Receding Horizon Control was initially developed in the
1970s with initial applications in the process industry [5, 6,
7, 8]. The main idea behind MPC is to use an explicit model
of the plant to be controlled to predict the future output
behavior, and optimize that behavior according to some
objective function [8]. This prediction capability allows one
to solve an optimal control problem online, where a
tracking error is minimized over a future horizon.

In this paper, a new form of the MCV control is
developed for stochastic aircraft systems. To do this, two
modifications to the MCV control were needed. First, the
controller was modified to allow for optimal tracking of a
known reference signal. Second, the controller was cast
into a model predictive framework to allow for the control

solution to be computed continuously online out to
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prediction horizon.

The new control method, called Model Predictive
Minimal Cost Variance (MPMCV) control is developed for
a linearized aircraft model around an operating point. The
controller is developed and simulated for an aircraft
tracking of a prescribed trajectory. Simulated results show
the performance of the MPMCV controller for aircraft

tracking application.

[I. Model Predictive Minimal Cost Variance

Control System

For the MPMCV control, the discrete-time stochastic
system is of the form,
x(k +1) = Ax(k) + Bu(k) + Gw(k)
with cost function
J = Tty () — 2000)" 0 (k) — %(1)
+uT(k — 1)Ru(k — 1)]
with symmetric weighting matrices @ and R being
positive semidefinite and positive definite respectively, and
%(k) is the state reference trajectory. The system additive
noise w(k) is assumed to be zero-mean Gaussian noise

with covariance,
E{w(k)wT ()} =W.
The optimal control solution for the MPMCV control is

computed online at each time-step k out to time k + N,,,
where N, is the prediction horizon selected a-priori. The
first element of the resulting control sequence u(k + 1) is
then applied to the plant, and the process is repeated at
the next timestep. The optimal control sequence u(k + 1)
is found by solving a sequence of 9 discrete recursion
equations for each timestep in the prediction. The resulting
optimal control is of the form,

u* (k) = Ko(k)x (k) + texe (k)

where K,(k) and u,,: (k) are found via the following

recursion equations,

Qu(k) =Q+M(k+1), )
A(k) = Qu(k)GWGTQpy (k) + v (k) Qp (k)

Vo(k +1) @)
T
Ko(k) = —=(BTA(K)B +y(K)R) " BTA(K)A, @3)
Uer (k) = —(BTA(k)B +y(k)R)™* BT A(k)X(k
4)
+1),
Ay(k) = A+ BKy(k), (5)
M (k) = AG(k)Qu (k) Ao (k) + Kg (k)RK, (), ©6)
m(k) = m(k + 1) + Tr{GTQu (k)GW}, @)

Vo(k) = A5 (k) (4Qu ()W Qyy (k)
+ Vo(k + 1)) 4, (),
vo(k) = vo(k + 1) + Tr{Vy(k + W}

+E{(0"()Que®)}  ©
— Tr{Qu(Owy,
with boundary conditions
M(N,) = m(N,) = Va(My) = vo(Ny,) = 0.
The desired state trajectory is denoted as %(k), and is
known from timestep k to prediction horizon k + N,,.

In addition to the weighting matrices Q and R, two
additional control parameters are available to the designer
to tune the tracking response of the system. They are the
mean cost constraint y and prediction horizon N,, .

The MPMCV controller was developed by first deriving
the tracking form of the continuous time MCV controller
presented in [1]. The discrete form of the tracking MCV
controller was then developed to allow for use within a
model predictive control  framework, as online
implementation of MPC is most commonly applied in the
discrete time form [9].

Due to the discrete nature of the MPMCV controller,
these control parameters may be tuned once and remain
fixed for the entire control period or adjusted throughout
the process. Continuous adjustment of the control
parameters based on schedules or measured values from
the plant constitutes an adaptive approach to the MPMCV

problem and is considered future work.



. Aircraft Control Simulation

An MPMCV control was developed for the linear
longitudinal aircraft model given in [10] to track a desired
altitude reference trajectory in the presence of noise. The
linear model consists of five states (altitude, forward speed,
pitch angle, pitch rate, and vertical speed) and three inputs
(spoiler angle, forward acceleration, and elevator angle).
The controller was implemented in simulation and tuned
using the weighting parameters. The simulation was
designed for the aircraft to track a series of step changes
to altitude over the course of 60 seconds in the presence

of wind gusts modeled as zero-mean Gaussian noise.

Aircraft Altitude Tracking
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Figure 1, Simulated altitude compared to reference.

The tracking response of the aircraft altitude over time
for the MPMCV controller is shown in Figure 1. Simulated
trajectories for the other four states, which were desired to
track the zero-state as closely as possible, are shown in

Figure 2.
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Figure 2, Other States

The computed inputs for the controller are shown in Figure
3. The tuned control parameters found for the simulated
results presented above are Q = Isy5,R = 0.01 I35, ¥y =
0.05, and N, = 5. The developed controller successfully
tracks the altitude reference input in the presence of noise
and minimizes the deviation of the other states from the

zero-state.
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Figure 3. Control Input versus time

IV. Conclusion and Future Research

Direction

The results presented above indicate the proposed
control approach can accurately track reference inputs for
stochastic systems by minimizing the variance of the cost

function. We conclude that MPMCV tracks aircraft altitude



accurately despite of the stochastic noises.

This MPMCV controller is also appropriate for use in the
control of compliant robotic arms applied to medical
diagnostics. In this application, the compliant joints used
in the robot arm to improve safety when working in
proximity to humans also introduce noise into the system
in the form of zero-mean Gaussian disturbances. Ongoing
work by the authors has shown that the MPMCV controller
presented here can improve control in these robotic
applications. This is an area of active research.

Future work in this area will focus on the implementation
of the proposed MPMCV controller on physical systems,
as well as exploring extensions of the MPMCV controller
into areas such as constrained MPMCV and adaptive

MPMCV controllers.
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