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Abstract 
 
Chemical probing technologies enable high-throughput examination of diverse structural 

features of RNA including local nucleotide flexibility, RNA secondary structure, protein- and 

ligand-binding, through-space interaction networks, and multi-state structural ensembles. Deep 

understanding of RNA structure-function relationships typically requires evaluating a system 

under structure- and function-altering conditions, linking these data with additional information, 

and visualizing multi-layered relationships. Current platforms lack the broad accessibility, 

flexibility, and efficiency needed to iterate on integrative analyses of these diverse, complex 

data. Here, we share the RNA visualization and graphical analysis toolset RNAvigate, a 

straightforward and flexible Python library that automatically parses twenty-one standard file 

formats (primary sequence annotations, per- and inter-nucleotide data, and secondary and 

tertiary structures) and outputs eighteen plot types. RNAvigate enables efficient exploration of 

nuanced relationships between multiple layers of RNA structure information and across multiple 

experimental conditions. Compatibility with Jupyter notebooks enables non-burdensome, 

reproducible, transparent, and organized sharing of multi-step analyses and data visualization 

strategies. RNAvigate simplifies and accelerates discovery and characterization of RNA-centric 

functions in biology. 

 

Introduction 
 
Primary, secondary, tertiary, and quaternary structural features all affect RNA function. Primary 

structure, the nucleotide sequence of an RNA transcript, is determined by transcription start and 

termination sites, splice sites, and polyadenylation sites. RNAs can contain diverse post-

transcriptional modifications, which expand the primary sequence alphabet. Secondary structure 

is the pattern of both canonical and non-canonical base pairing and can involve stable helical 

regions, local pseudoknots, and conformationally flexible regions. Tertiary structure, the three-
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dimensional arrangement of atoms in an RNA transcript, involves through-space interactions 

between nucleotide groups and can be stabilized by binding of ions, small molecules, or 

macromolecules. Quaternary structure, the multi-molecular structure of an RNA, includes its 

protein and RNA partner interactions. 

 

These diverse levels of RNA structure can be interrogated with a large and expanding high-

throughput toolbox (Table S1). Primary sequence features can be determined by sequencing-

based methods that measure transcript complexity (1) and numerous post-transcriptional 

modifications (2). Computational methods that model RNA secondary structure can (and 

generally should) be augmented by incorporating data from structure probing experiments. 

Current high-information structure probing methods employ structure-specific chemical probes 

that form covalent adducts with RNA. These covalent adducts are encoded into complementary 

DNA (cDNA) via reverse transcription as either mutations (mutational profiling or MaP) or 

reverse transcription stops and are quantified, per-nucleotide, using high-throughput sequencing 

(3, 4). Single-molecule correlated chemical probing (smCCP) strategies take advantage of the 

ability of MaP technology to detect multiple (potentially correlated) chemical events per 

molecule and provide deep insights into RNA secondary and tertiary structure, coordinated 

networks of protein-binding, and conformational ensembles (5). Proximity crosslinking methods 

use photo or chemical crosslinking to characterize RNA inter- and intramolecular interactions 

and RNA-protein binding (6–8). These experimental and computational methods are powerful 

tools for modeling higher-order RNA structure and macromolecular complexes (9–11). 

 

These strategies produce rich and complex data that pose two broad challenges for data 

exploration and hypothesis generation. First, to identify and highlight key features of a dataset, it 

is important to explore filtering and preprocessing steps, including background correction and 

normalization. Second, to gain a holistic understanding of an RNA system, multiple layers of 

data must be visualized together, in combination and as a function of experimental conditions. 

Many solutions exist for examining individual aspects of RNA structure, but a flexible and easy-

to-use toolset that enables integration of multiple complex datasets, visualization in the formats 

commonly used by the RNA community, and efficient generation of biological hypotheses has 

been missing. 

 

Jupyter notebooks are open-source interactive computing documents for use in web browsers 

and integrated development environments (12). These notebooks enable melding of code, 
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analyses, visualizations, and observational notes. A single document thus creates an 

environment for data exploration and hypothesis generation, a documented report of analysis 

findings, and a shareable and reproducible analysis pipeline. The widespread use and 

popularity of Jupyter notebooks has resulted in a well-developed ecosystem of open-source 

tools that support collaboration on and publication of data analyses. Until now, however, 

creation of the types of plots used by the RNA community required fluency in one of the 

programming languages compatible with Jupyter notebooks. 

 

Here we share a Jupyter-compatible Python module, RNAvigate, which simplifies creation of 

RNA community-standard visualizations and analyses derived from diverse data sources. 

RNAvigate rapidly aligns sequences and enables comparison, filtering, analysis, and display of 

RNA structural information.  RNAvigate is fast: Most operations are completed within seconds 

on modern, mid-tier CPUs. These features significantly streamline the analysis of complex RNA-

centric datasets and the generation of impactful hypotheses regarding RNA structure-function 

interrelationships. 

 

Methods and Data 
Data files and Jupyter notebooks containing all data and methods described here are included 

in the supplemental data and are available on GitHub (https://github.com/Weeks-

UNC/RNAvigate_figures). Notebooks on GitHub were made interactive using the free Binder 

web service (part of the Jupyter Project). Users can reproduce these analyses and explore the 

data using RNAvigate in a web browser with no required downloads or software installations. 

 

Results and Discussion 

RNAvigate scope 
RNAvigate is a highly flexible data visualization and communication tool.  Initial aligning and 

processing of structure probing data, typically a resource intensive task, is performed, prior to 

using RNAvigate, with specialized software written and optimized for a specific purpose; for 

example, ShapeMapper (13, 14) or RNA Framework (15) to analyze per-nucleotide reactivities 

or DanceMapper, DREEM, or DRACO (16–18) to analyze smCCP experiments.  The raw 

information provided by these programs is typically insufficient to understand a particular RNA 

system deeply.  Indeed, the work of interpreting and developing hypotheses based on large-

scale chemical probing data has just begun. 
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Individual chemical probing experiments are most advantageously interpreted in context with 

additional information, including measures of global structure, models of secondary and tertiary 

structure for individual RNA motifs, estimates of model confidence, and relationships to other 

RNA-centric features such as regulatory elements and protein-binding sites. RNAvigate accepts 

initial information from a wide variety of state-of-the-art technologies (and is extensible to 

others) and then facilitates integrative analysis of multiple classes of RNA-centric information 

and modeling.   

 

We have found that researchers who are new to programming quickly learn to use RNAvigate to 

better understand diverse RNA systems and to produce intuitive visualizations of complex data, 

tasks which previously required programming expertise. RNAvigate is an accessible solution to 

efficiently produce illustrations that have proven especially impactful within the RNA structure 

community for generating mechanistic models and biological hypotheses. 

 

RNAvigate workflow 
The RNAvigate workflow is organized into three steps (Figure 1). First, inputs are curated from 

the raw output of experiments, computations, and database searches. Second, data classes are 

created and organized within units called samples by providing RNAvigate with input file names. 

Finally, visualizations are created using plotting functions built into RNAvigate. 

 

RNAvigate includes a high-level interface, described here, that allows the second and third 

steps in this workflow to be executed using a single command each. The commands are 

designed to be simple to use, to automate many otherwise tedious tasks, and to remain highly 

flexible. This design choice allows users to access RNAvigate features without learning object-

oriented programming. RNAvigate also includes a more granular and extensive object-oriented 

programming interface that is not discussed in detail here. The full API is documented online 

(see Code Availability statement). This two-tiered design makes RNAvigate useful to both RNA 

bench scientists (including those with limited programming experience) and software and data 

specialists. 

 

Curate inputs 
RNAvigate automatically parses RNA structural information in many standard file and data 

formats. The simplest inputs are annotations of the primary sequence of RNA. These 

annotations describe transcript features (translation start sites, exon junctions, untranslated 
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regions), functional regions, modified nucleotides, or binding sites for proteins, ligands, and 

other nucleic acids. RNAvigate also accepts file formats output by structure modeling software 

(including RNAStructure and Vienna RNA (19, 20)) and secondary structure drawing software 

(XRNA, VARNA, StructureEditor, FORNA, and R2DT (19, 21–23)). Supported tertiary structure 

formats include CIF and PDB. Inputted experimental data can include chemical probe 

reactivities, such as those from MaP experiments, single-molecule events detected by smCCP, 

and sequencing enrichments such as those obtained from CLIP experiments. Inputted 

computational data can include pairing probabilities, covariation, and sequence conservation. 

Most widely used file formats are natively supported by RNAvigate, and additional formats can 

be supported with simple code additions (Table S1).  

 

RNAvigate is primarily designed for analyzing single transcripts. However, RNAvigate can also 

read genome sequences (fasta), transcript annotations (GFF, GTF), and genomic or 

transcriptomic per-nucleotide or region data (BED/NarrowPeak or WIG). If provided with 

transcript identifiers, such as ENSEMBL or RefSeq IDs, RNAvigate extracts data in transcript 

coordinates. This information can include sequence, exon junctions, coding and untranslated 

regions, per-nucleotide measurements, protein-binding sites (eCLIP), and other annotations. 

 

Organize data: samples and data classes 
Input data are stored in RNAvigate as one of five data classes: annotations, secondary 

structures, tertiary structures, profiles, or interactions (Figure 1). Data classes standardize data 

representation for diverse input file formats and enable RNAvigate functionality.  A sample in 

RNAvigate is an organizational grouping of multiple data classes (for example: experimental 

data, structure models, and sequence annotations) describing a single RNA interrogated under 

a specific experimental condition. The user creates a sample and populates it with inputs, which 

RNAvigate converts to data classes. This step is repeated to accommodate multiple 

experimental conditions, standardizes data organization across conditions, and simplifies 

downstream commands. 

 

Annotations contain regions of interest, single and grouped nucleotides of interest, and primer-

binding sites. Secondary structures contain base-pairing information and optional diagram-

drawing coordinates for secondary structure models. Tertiary structures contain atomic 

coordinates for tertiary structure models. Profiles contain any type of experimental or 

computational measurement made on a per-nucleotide basis. Examples of per-nucleotide data 
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include chemical probing reactivities, structure-based entropies, and sequence conservation. 

Interactions contain experimental or computational measurements made between two 

nucleotides. These measurements include sequence covariation, base-pairing probabilities, 

single-molecule correlations, and crosslinking information. These five classes of transcript-

centric information are flexible and extensible and allow RNAvigate to represent most types of 

RNA structural data (see Table S1). 

 

Create visualizations 
RNAvigate automates many community-standard analyses and visualizations with easy-to-use, 

flexible functions. Two standard visualizations commonly used by the RNA community are per-

nucleotide graphs and connectivity diagrams. Per-nucleotide graphs display nucleotide position 

along the x-axis and a measured value on the y-axis. RNAvigate can output two types of per-

nucleotide graphs: colored bar graphs for displaying a single dataset (Figure 1) and stepped-line 

graphs (skyline plots) for comparing multiple datasets (Figures 1 and 2B). 

 

RNAvigate can create four types of connectivity diagrams: arc plots, circle plots, secondary 

structure diagrams, and interactive three-dimensional molecular renderings. Connectivity 

diagrams display through-space intra-nucleotide interactions such as base pairs, crosslinks, or 

correlated single-molecule events. Arc plots arrange nucleotides along the x-axis and show 

interactions as semi-circles (Figures 1, 2C, 5A, and 6C). Circle plots arrange nucleotides around 

a circle with interactions drawn as parabolas (Figure 1). Secondary structure diagrams have 

custom arrangements of nucleotides and display interactions as lines (Figures 1, 4A-B, and 5B). 

Finally, interactive three-dimensional molecule renderings arrange nucleotides according to 

atomic coordinates and display interactions as thin cylinders (Figures 1, 2D, 4C, and 5C). Other 

visualizations automated by RNAvigate include 3D-distance histograms, heatmaps (Figure 4B), 

and contour plots (8, 24). Automated analyses include identification of regions with low SHAPE 

reactivity and low Shannon entropy (lowSS regions) (25) (Figure 2), linear regressions (Figure 

6A), deltaSHAPE (26), and windowed area under receiver-operator characteristic curves (27). 

Users can view those plotting functions that are compatible with a given sample with the 

rnav.plot_options() function. 

 

Example workflows 
The following sections provide examples of the use of RNAvigate to analyze RNA structure and 

to generate hypotheses regarding underlying RNA-mediated function. Figures 3-5 replicate 
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published figures and illustrate the ability of RNAvigate to create high-content illustrations 

efficiently.  Figure 6 compares data from four independent studies and illustrates the flexibility of 

RNAvigate in integrating analysis of data from multiple sources, in different original formats.  

The raw data, full code, and Jupyter notebooks used to generate these analyses and figures are 

fully and freely available via GitHub and Binder, the latter allows interaction with these 

notebooks with no required software download or installation (see Methods and Data 

statement). 

 

smCCP analysis 
The development of smCCP (single molecule correlated chemical probing) is a revolution in 

RNA structure probing as these strategies allow multiple classes of through-space interactions 

to be measured in a simple chemical probing experiment (5). smCCP measures structural 

communication between two nucleotides as correlated chemical modification events (5).  

Correlated events from probing experiments can be analyzed and attributed to base-pairing 

interactions (pairing ascertained from interacting RNA strands, or PAIRs) or to through-space 

interactions reflective of tertiary structure (RNA interacting groups, or RINGs).  Whereas 

smCCP experiments are generally straightforward to perform, their analysis and interpretation 

can be complex.  RNAvigate dramatically streamlines the required analysis.  Here we illustrate 

one such analysis, showing all RNAvigate code.  

 

Bacterial transfer-messenger RNA (tmRNA) is responsible for rescuing stalled ribosomes. This 

RNA has a complex secondary structure, including four pseudoknots, and a large open ring 

tertiary structure. Secondary structures for tmRNAs are poorly predicted by computational 

methods alone (28). We used RNAvigate to facilitate analysis of publicly available structure 

probing data of E. coli RNA treated under in-cell and cell-free conditions using dimethyl sulfate 

(DMS) (28). The original data set was used to assess the ability of PAIRs to improve modeling 

of RNA secondary structure in cells. We confirmed that result, and further explored through-

space tertiary interactions measurable from these data but not previously reported. 

 

We collected raw sequencing reads from the DMS probing experiments from a sequence read 

archive, the literature-accepted secondary structure in the form of a .ct file, and the cryo-

electron microscopy structure from the RCSB (29). Raw sequencing reads were analyzed with 

ShapeMapper2, PairMapper, and RingMapper (13, 28). ShapeMapper2 calculates per-

nucleotide mutation rates reflective of DMS reactivity with RNA, PairMapper detects smCCP 
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events indicative of base-pairing (PAIRs), and RingMapper detects smCCP events arising from 

through-space interactions (RINGs). DMS reactivities and PAIRs were used to direct minimum 

free energy (MFE)-based secondary structure modeling using the RNAstructure fold program 

(19) (using -dmsnt and -x parameters, respectively). 

 

The RNAvigate Python module was imported into a Jupyter notebook and given the alias rnav 

(Figure 2A). Input file names were provided for each experimental condition using 

rnav.Sample(). This important step accomplishes three tasks simultaneously: The data 

contained in each file are associated with an RNAvigate sample, converted into a data class, 

and assigned to a short keyword for easy access. Here, each RNAvigate sample contains all 

data relating to a specific experimental condition: cell-free or in-cell . These RNAvigate samples 

were assigned to variable names cellfree and incell, respectively (Figure 2A).  Three classes of 

smCCP data analysis were performed; each plot was created with a single command, optionally 

with modifying arguments. 

 

We first visualized overall reactivity profiles under in-cell and cell-free conditions using a skyline 

plot (Figure 2B). Per-nucleotide reactivity rates were similar but slightly higher under cell-free 

conditions, reflective of a more highly structured state for this non-coding RNA in cells, a 

common observation. Next, an arc plot was used to compare modeled and accepted structures 

and to visualize the DMS reactivities and PAIRs that informed the structure model. This 

visualization revealed that in-cell data produced a more accurate model of the secondary 

structure than did data obtained under cell-free conditions. The RNAvigate analysis showed that 

the increased accuracy is driven by more abundant and accurate PAIRs (Figure 2C). Finally, 

RINGs were visualized superimposed on the cryo-EM structure. This superposition revealed 

extensive structural communication between the adjacent pseudoknots along the outer ring of 

the structure and an absence of structural communication across the circle-like opening (Figure 

2D). 

 

Analysis of regions of low SHAPE reactivity and low Shannon entropy 
One especially informative analysis of long RNAs is to identify regions that have both low 

SHAPE reactivities, indicative of extensive base-pairing, and low Shannon entropy, which 

indicates a well-defined structure.  These low SHAPE-low Shannon entropy (lowSS) regions are 

strongly associated with functional regions in long RNAs (25, 30, 31).  RNAvigate makes 

identification and visualization of lowSS regions straightforward.  Here, we describe use of 
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RNAvigate to reproduce a useful analysis based on a publicly available dataset obtained from 

SHAPE probing of Dengue virus serotype 2 (DENV2) genomic RNA (25). 

 

Dengue virus has a positive-sense, single-stranded RNA genome of about 11 kilobases. 

Conserved structures in the 5' and 3' untranslated regions regulate viral processes and are well 

characterized (32), but identification of functional structures in less conserved regions has 

proven challenging. Previously reported analyses of lowSS regions made it possible to define 

novel regions of functional importance and to identify regions likely to have complex tertiary 

structures (25, 33). 

 

The RNAstructure programs fold and partition were used to model a minimum free energy 

structure and determine base-pairing probabilities, respectively, using SHAPE reactivity data as 

pseudo-free-energy constraints (--shape parameter) (19). These results were imported into a 

Jupyter notebook with RNAvigate. RNAvigate was used to calculate 51-nucleotide windowed 

median SHAPE reactivities and median Shannon entropies based on the provided pairing 

probabilities (Figure 3, top and middle). The program then identified lowSS regions where the 

windowed median SHAPE reactivity was below 0.4 and the median Shannon entropy was below 

0.15. RNAvigate enables visualization of this analysis as stacked profiles of SHAPE reactivity 

and Shannon entropy and of predicted minimum free energy structures and pairing probabilities 

displayed as arc plots (Figure 3). Visualization of the first 2000 nucleotides of the DENV2 

genome revealed eight lowSS regions. 

 

This straightforward application of RNAvigate rapidly recapitulated the results of the published 

analysis (25), which required significantly greater effort to create. The original illustration was 

created using command-line tools to generate a PDF image of the arc plot and a spreadsheet 

program to calculate and to visualize windowed SHAPE and Shannon entropy profiles. These 

plots were copied into a vector drawing program, where they were manually adjusted to align 

the x-axes and to highlight lowSS regions. Plot labels, legends, and axes were added manually. 

RNAvigate accomplished a similar, if not improved, result in three lines of code; similar 

efficiencies were achieved in all examples described here. 

 

Analysis of time-resolved probing 

Many dynamic RNA processes are best analyzed in a time-resolved way. These experiments 

result in complex datasets across multiple experimental conditions. In a recent example of time-
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resolved analysis, trimethyloxonium (TMO) was devised as a fast-reacting alkylating reagent 

and used to study the folding of the catalytic core of the ribonuclease P (RNase P) enzyme from 

Bacillus stearothermophilus (34). The catalytic core of RNase P is a long non-coding RNA that 

catalyzes cleavage of 5' leader sequences of precursor tRNAs, an essential step for tRNA 

maturation. TMO reacts with RNA via a chemical mechanism similar to that of DMS, but the 

TMO reaction is 90 times faster.  The in vitro-transcribed RNase P RNA was treated with TMO, 

initially in the absence of Mg2+, and then at multiple time points after adding Mg2+. Raw 

sequencing reads were obtained corresponding to MaP analyses at each time point. The folding 

pathway was examined in smCCP experiments and involved creating secondary and tertiary 

structure diagrams and heatmaps of through-space RINGs for every time point in the 

experiment. This complex analysis is now rendered straightforward with RNAvigate. 

 

For the RNAvigate analysis, the raw data were analyzed using ShapeMapper2 and 

RingMapper. A secondary structure diagram and three-dimensional model of the RNA (based 

on PDB 3DHS (35)) were obtained from the authors. A detailed secondary structure was 

generated in RNAvigate that includes annotations of the catalytic core, the P2-P5 pseudoknot, 

and the L5.1-L15.1 loop-loop interaction (Figure 4A). The strongest RINGs with positive 

correlations were displayed on the secondary structure drawing. This superposition revealed 

large changes in the structural communication network as folding progresses. Analysis of 

RINGs as a function of time revealed that the L5.1-L15.1 loop-loop interaction formed very 

quickly and was present in an early partially folded state. In the fully folded state, interactions 

within the catalytic core became more pronounced, revealing this structure forms more slowly 

(Figure 4B, top). 

 

The spatial density of positively correlated RINGs, plotted as heatmaps, across the three states 

revealed additional interactions where through-space RING correlations changed during the 

folding process (Figure 4B, bottom). This visualization confirmed rapid formation of the L5.1-

L15.1 loop-loop interaction upon addition of Mg2+. These heatmaps also reveal that interactions 

in the P4-P7 region disappeared and interactions in P2-P5,P7 region formed quickly after 

addition of Mg2+, indicating interdependency between the pseudoknot helices. RING densities 

also revealed a slower forming interaction between P4 and P19. Finally, RINGs from the fully 

folded state were filtered to isolate likely tertiary interactions and plotted on the three-

dimensional structure (Figure 4C). There are a high density of RINGs in the catalytic core, and 



 11 

this fully folded state closely matches the known structure (Figure 4C). This example illustrates 

that complex, time-resolved data are analyzed efficiently using RNAvigate.  

 

Deconvolution of a conformational ensemble 

smCCP strategies can now resolve complex conformational ensembles of RNA, including in the 

cellular environment (5). The DANCE (deconvolution and annotation of ribonucleic 

conformational ensembles) framework uses machine learning to deconvolute smCCP data to 

define and to characterize the dominant states in an RNA conformational ensemble. This single 

experiment and subsequent analyses produce multiple layers of data for each state including 

population percentages, reactivity profiles, through-space PAIRs and RINGs, secondary 

structure models, and base-pairing probabilities (16). Using RNAvigate, analysis of this layered 

information, and closely related smCCP experiments (7, 17, 18, 36), is performed efficiently. 

 

We used RNAvigate to reanalyze a previous DANCE-MaP analysis of the adenine riboswitch 

(16). The adenine riboswitch region of the Vibrio vulnificus add mRNA populates two dominant 

conformations. Adenine binds to the ON state and shifts the equilibrium toward this state. 

Formation of the ON state results in production of adenine deaminase, because, in this 

conformation, the Shine-Dalgarno sequence of the mRNA is single-stranded and accessible to 

the ribosome. In the OFF state, the Shine-Dalgarno sequence is sequestered in a duplex. 

Conventional per-nucleotide structure probing methods measure population averages and are 

misleading for this riboswitch, because the RNA samples two well-populated conformations 

(16). 

 

For RNAvigate analysis, data files from the DANCE-MaP analysis of the adenine riboswitch in 

the absence of adenine (16) were obtained from the GEO (GSE182552). These data files 

contained reactivity profiles, PAIRs, and RINGs for each of the dominant conformations. The 

foldClusters module of DanceMapper was used to predict minimum free energy structure 

models for each conformation from the reactivities and PAIR constraints (--bp parameter) for 

each conformation. These structure models were loaded into StructureEditor (19) and manually 

arranged to match the original publication. A three-dimensional structure for the translation ON 

state was obtained from the PDB (4TZX) (37). File names were then provided to RNAvigate 

within a Jupyter notebook and used to create the visualizations. 
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RNAvigate analysis showed that PAIRs accurately and sensitively detected most base-paired 

helices, recapitulating the accepted secondary structures of both states (Figure 5A). Consistent 

with the original publication (16), even in the absence of ligand, both ON and OFF states are 

significantly populated. RINGs captured the loop-loop tertiary interaction stabilizing the three-

dimensional structure of the riboswitch ON state (Figure 5B-C). In the context of the crystal 

structure, through-space RING interactions link two close-in-space loops (Figure 5C). 

RNAvigate efficiently analyzes information-rich DANCE-MaP experiments and straightforwardly 

visualizes the multiple dominant states present in an RNA structural ensemble. 

 

Comparison of chemical probing methods 
Comparing chemical probing datasets from different laboratories can inform understanding of 

the effects of experimental choices. Four groups recently reported secondary structure models 

of the SARS-CoV-2 RNA genome based on in-cell structure probing (27, 38–40). We used 

RNAvigate to compare these per-nucleotide reactivities and secondary structure models, and to 

evaluate the overall robustness of chemical probing to produce consensus secondary structure 

models. 

 

The SARS-CoV-2 betacoronavirus is encoded by a single-stranded, positive-sense RNA 

genome of about 29 kilobases.  The four studies examined here performed the same steps, but 

experimental and computational parameters differed at each step (detailed in Table S2) (27, 

38–40). First, chemical probing (SHAPE or DMS) was performed on native viral RNA in infected 

cell cultures. Sites of adducts were then encoded using MaP or an RT-STOP strategy (using 

one of three reverse transcriptases). Finally, per-nucleotide reactivities were calculated and 

used to guide thermodynamic modelling of viral genomic RNA secondary structure. 

 

Per-nucleotide reactivities and secondary structure model data files were downloaded from the 

supporting data for each publication. Downloaded data files were either in standard formats (.ct, 

dot-bracket, ShapeMapper2 profile.txt, or RNA Framework XML), all natively supported by 

RNAvigate, or in Excel spreadsheets (loaded via the Python command Pandas.read_excel). We 

focused on population average reactivities and structure models in a representative region 

spanning the first 7 kilobases of ORF1ab.  

 

Reactivity data were unintuitively dissimilar as indicated by Pearson correlation coefficients 

(0.19 < r < 0.49) and as visualized using kernel density plots (Figure 6A). Nevertheless, 61% of 
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modeled base pairs were shared across all studies (Figure 6B). All four studies based their 

structure modeling strategy on the ∆GSHAPE (or ∆GDMS) framework (4).  In this strategy, structure 

probing reactivities are converted to ∆G bonuses and used to improve thermodynamics-based 

calculations of high-probability structures (4, 19). The similarity in structural models supports 

previous findings that this structure modeling strategy is robust. Modeling large structures 

typically requires imposing a maximum pairing distance constraint to prevent over-modeling of 

long-range base-pairs. The four studies chose different constraints, ranging from 300 to 600 

nucleotides, limiting similarity in structure models, especially for longer-range interactions 

(Figure 6C).  These differences can have important functional consequences (4, 5) and can be 

resolved by smCCP (28). 

  

The data-driven models differed notably from the minimum free energy (MFE) structure 

obtained using no probing data. We found that 24% of the 2,257 total base-pairs in the MFE 

model (calculated with maximum pairing distance of 300 base pairs) do not appear in any 

probing-directed model and that 12% of the 1,234 consensus base pairs, defined as those 

present in models from at least three studies are not present in the MFE model. Differences 

between the data-driven and MFE models are not evenly distributed; some regions are modeled 

particularly poorly, and it is not possible to define a priori where the MFE model is most 

misleading (Figure 6C, bottom).  In sum, this exercise demonstrates that RNAvigate efficiently 

compares reactivities and structure models from multiple experiments, identifying both 

consensus and divergent helices, and emphasizes there are many structural elements that are 

difficult to model without guiding per-nucleotide experimental information. 

 

Perspective 
RNA structure-function interrelationships are complex. Powerful and orthogonal computational 

and experimental strategies have been developed to identify the hierarchical and 

interdependent elements of RNA structure.  It is both important and challenging to understand, 

integrate, and interpret these rich layers of information. The visualization and analysis tools of 

RNAvigate facilitate analysis of diverse structural features of RNA. RNAvigate in conjunction 

with Jupyter notebooks enables rapid analysis and thorough documentation of data quality 

control, data exploration, and hypothesis generation. RNAvigate then directly generates 

publication-quality figures. 
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RNAvigate, when used within a Jupyter notebook, provides a convenient, non-burdensome 

platform for documentation and for transparent and reproducible sharing, which enhances the 

longevity and impact of analyses of RNA experimental and computational data. Full pipelines for 

analysis and figure generation can be recreated, repurposed, or reconfigured without the 

requirement to download additional data or install specialized software, as demonstrated by the 

Jupyter notebooks accompanying this manuscript. 

 

RNAvigate is modular and readily extensible and thus provides a framework to support analysis 

and visualization of diverse experimental and computational data types. We anticipate that 

RNAvigate will enhance development, implementation, reproducibility, and sharing of strategies 

for discovery and characterization of diverse RNA-centric functions in biology. 

 
Code availability 
The RNAvigate python module is available on GitHub (https://github.com/Weeks-

UNC/RNAvigate) and is installable via Docker by following the instructions included in the 

documentation. RNAvigate documentation is available on Read the Docs 

(https://rnavigate.readthedocs.io). 
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Figure Legends 
 

Figure 1.  Workflow for data exploration using RNAvigate.  
 

Figure 2.  A complete RNAvigate workflow:  smCCP of tmRNA. In this example, full 

RNAvigate code is shown and essential coding steps are explained with code-like examples. (A) 

First, the RNAvigate module is imported and then in-cell and cell-free DMS probing data and 

contextual structure information are imported. These steps create RNAvigate samples, each 

containing all of the data related to a specific experimental condition. (B) To compare data 

between experimental conditions, a skyline plot was generated. (C) To show multiple types of 

data on single plots, two arc plots with the literature-accepted base pairs, data-informed 

minimum free energy structure predictions, and PAIRs were generated. Base pairs are labeled 

“correct” (grey) if predicted and in the accepted structure, “incorrect” (purple) if predicted and not 

in the accepted structure, and “missing” (green) if not predicted and in the accepted structure. 

PAIRs of the highest confidence are labeled “primary” (dark blue), otherwise are “secondary” 

(light blue). (D) RINGs (red) from cell-free and in-cell experiments were then plotted on the 

three-dimensional tmRNA backbone (gray) obtained from the cryo-electron microscopy 

structure. Data are from ref. (28). 

 

Figure 3.  Identification and visualization of low-SHAPE–low-Shannon entropy (lowSS) 
regions in the DENV2 genome using RNAvigate. Median (top) SHAPE reactivity and (middle) 

Shannon entropies over 51-nucleotide windows across the first 2,000 nucleotides of the DENV2 

genome. (bottom) Modeled minimum free energy structure (gray) and pairing probabilities (see 

scale) illustrated as arc plots. Plots share the same x-axis (nucleotide position) for 

straightforward comparison. Regions with median SHAPE reactivity below 0.4 and median 

Shannon entropy below 0.15 are defined as lowSS regions and are shaded in gray and 

numbered. Full RNAvigate code used to generate this analysis and visualization shown at right; 

data are from ref. (25).  

 

Figure 4.  Time-resolved probing and folding of the RNase P RNA, visualized using 
RNAvigate. (A) Secondary structure of the catalytic core of RNase P RNA. Regions involved in 

major time-dependent changes are highlighted. (B) (top) Through-space RINGs as a function of 

folding time superimposed on the secondary structure. Newly formed RINGs at each time point 

are shown in green; RINGs retained from the prior time point are yellow. (bottom) Heatmaps of 
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RING densities at each time point. (C) Three-dimensional structure of the RNase P RNA with 

superimposed RINGs (green).  Data are from ref. (34). 

 

Figure 5.  DANCE-MaP analysis of the add riboswitch ensemble visualized using 
RNAvigate. (A) PAIRs, RINGs (each shown as arc plots), and reactivity profiles for DANCE-

identified ON and OFF states. (B) Secondary structure drawings of ON and OFF states with 

PAIRs (blue) and RINGs (red) superimposed. The Shine-Dalgarno sequence (SD) is 

highlighted. (C) Structure of add riboswitch in the ON state with RINGs unique to this state 

shown. Data were obtained in the absence of adenine ligand but, nonetheless, show that the 

add riboswitch populates the ON state.  Data are from ref. (16). 

 

Figure 6. Comparative analysis of SARS-CoV-2 structure probing data and secondary 
structure models, across multiple studies. (A) Study versus study per-nucleotide reactivities 

(shown as kernel density estimates) and Pearson correlations from linear regression analyses. 

(B) Pie chart showing percentage of predicted base pairs observed across the four studies. (C) 

Visualization of modeled base pairs as a function of study consensus (upper arcs) compared to 

the MFE structure (gray arcs).  All predicted base pairs from all studies are shown (as arcs); 

colors indicate the number of studies predicting that base pair. Dotted lines indicate maximum 

pairing distance constraints used by each study (modeled pairing arcs will not exceed this line). 

Analyses shown here correspond to 7,000 nucleotides of ORF1ab (positions 266 through 7265); 

data for this region were available for all studies.  Data are from refs. (27, 38–40). 
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Cell-free
In cell

import rnavigate as rnav
common_data = rnav.Sample(
  ss="tmRNA.ct",
  pdb={"pdb": "6q9A_tmRNA.pdb",
       "chain": "4",
       "sequence": "tmRNA.fa"})
cellfree = rnav.Sample(
  sample="Cell-free",
  inherit=common_data,
  dmsmap="cellfree_tmRNA_profile.txt",
  ringmap="cellfree_tmRNA_rings.txt",
  pairmap="cellfree_tmRNA-pairmap.txt",
  ss_predicted={"ss": "cellfree_tmRNA.all.f.ct"})
incell = rnav.Sample(
  sample="In cell",
  inherit=common_data,
  dmsmap="incell_tmRNA_profile.txt",
  ringmap="incell_tmRNA_rings.txt",
  pairmap="incell_tmRNA-pairmap.txt",
  ss_predicted={"ss": "incell_tmRNA.all.f.ct"})

rnav.plot_arcs(
  samples=[cellfree, incell],
  structure="ss",
  structure2="ss_predicted",
  profile="dmsmap",
  interactions="pairmap",
  profile_scale_factor=20,
  plot_error=False)

C  Show multiple layers of experimental and structural data on arc plots

rnav.plot_mol(
  samples=[cellfree, incell],
  structure="pdb",
  interactions={
    "interactions": "ringmap",
    "MI_ge": 0.000025,
    "ss_only": True,
    "positive_only": True,
    "Statistic_ge": 23,
    "min_cd": 6,
    "Zij_ge": 2},
  nt_color="grey",
  hide_cylinders=True)

Cell-free In cell

D  Plot per-nucleotide and internucleotide data on interactive 3D structures

rnav.plot_skyline(
  samples=[cellfree, incell],
  profile="dmsmap",
  columns="Modified_rate")
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A   Create samples and provide data inputs 

import rnavigate as rnav

Import the RNAvigate python module

sample_name = rnav.Sample(
    data_class_keyword="input_file.txt")

rnav.plotting_function(
    samples=[sample_name],
    plotting_keyword="data_class_keyword")

Create RNAvigate samples by providing
data file inputs with data class keywords

Create visualizations by providing plotting functions
with samples and data class keywords

Pseudocode

B  Compare per-nucleotide data between samples using skyline plots

PAIRs

RINGs



import rnavigate as rnav

denv = rnav.Sample(
  sample="DENV2 Genome",
  shapemap="DENV2.map",
  pairprob="DENV2.dp",
  ss="DENV2_MFE.ct")

lowss = rnav.analysis.LowSS(
  sample=denv)

lowss.plot_lowSS(
  region=[1, 2000])

Code
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sample = rnav.Sample(...)
plot_1 = rnav.plot_ss(...)
plot_2 = rnav.plot_ss(...)
plot_3 = rnav.plot_heatmap(...)
plot_4 = rnav.plot_mol(...)
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sample = rnav.Sample(...)
plot_1 = rnav.plot_arcs(...)
plot_2 = rnav.plot_ss(...)
plot_3 = rnav.plot_mol(...)

Code (abbreviated)

Figure 5

PAIRs

A B C

20 40 60 80 100
UCAACGCUUCAUAUAAUCCUAAUGAUAUGGUUUGGGAGUUUCUACCAAGAGCCUUAAACUCUUGAUUAUGAAGUCUGUCGCUUUAUCCGAAAUUUUAUAAAGAGAAGACUCAUGAAUUC

20 40 60 80 100
UCAACGCUUCAUAUAAUCCUAAUGAUAUGGUUUGGGAGUUUCUACCAAGAGCCUUAAACUCUUGAUUAUGAAGUCUGUCGCUUUAUCCGAAAUUUUAUAAAGAGAAGACUCAUGAAUUC

SD

SD



Figure 6
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sample = rnav.Sample(...)
plot_1 = rnav.plot_linreg(...)
plot_2 = pyplot.pie(...)
plot_3 = rnav.plot_arcs(...)
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