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ABSTRACT

The Channeled Scabland of eastern Washington (USA) was formed by outburst floods from
glacial Lake Missoula. Despite chronological advances, the timing of erosion in the main flood
channels is unresolved. In particular, it is still uncertain whether upper Grand Coulee, the
largest canyon in the Channeled Scabland, was incised during or prior to the last glaciation. We
report "Be exposure ages from erratics in upper Grand Coulee, glacial Lake Columbia, and
surrounding flood routes. Flood-transported boulders on the high-elevation east rim of Grand
Coulee date to ca. 17-15 ka. Ages from boulders on the floor of Grand Coulee indicate later
flooding at ca. 14 ka, which post-dated canyon incision and occurred after inundation of the
Telford-Crab Creek scabland at ca. 15-14.5 ka. Prior hydraulic modeling and dating suggest
the entrance to Grand Coulee was blocked by rock and that canyon incision was incomplete at
ca. 17 ka; hence, we interpret the 17-15 ka exposure ages on the east rim to coincide with flow
over a retreating cataract during canyon incision. Our results indicate incision of Grand Coulee
was completed between 17 ka and 14 ka. The short duration of canyon incision suggests that
glacial Lake Missoula generated some of the most erosive outburst floods in Earth’s history.

INTRODUCTION

The Columbia Plateau in eastern Washington
(USA; Fig. 1) was carved into a nexus of basalt-
floored channels by Pleistocene outburst floods
from glacial Lake Missoula (Bretz, 1923; Bretz
et al., 1956; Baker, 1973; Lehnigk et al., 2024).
Periodic failure of the Purcell Trench lobe of the
Cordilleran ice sheet released at least 100 Mis-
soula floods (O’Connor et al., 2020) between ca.
17 ka and 13 ka (Balbas et al., 2017; all exposure
ages from Balbas et al., 2017, have been recalcu-
lated to be directly comparable with our ages, as
described in the Supplemental Material'). Early
Missoula flood(s) flowed down Columbia valley,
but the Okanogan ice lobe then advanced across
Columbia valley, where it impounded glacial
Lake Columbia and blocked down-valley floods
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until at least ca. 1415 ka (Balbas et al., 2017).
When ice blocked Columbia valley, Missoula
floods flowed into glacial Lake Columbia, which
overtopped at whichever divide was lowest at the
time, diverting water across the Columbia Pla-
teau (Fig. 1A). The floods deeply incised Grand
and Moses Coulees (Bretz, 1932; Hanson, 1970;
O’Connor et al., 2020; Waitt, 2021) and eroded
loess and scoured bedrock in the Cheney-Palouse
and Telford-Crab Creek scabland tracts (Fig. 1B).

The largest canyon, upper Grand Coulee,
formed by headward retreat of an ~200 m-high
cataract driven by floods that were diverted out
of Columbia valley (Bretz, 1932; Lehnigk and
Larsen, 2022). Canyon incision was completed
when the cataract retreated entirely through the
drainage divide separating Grand Coulee and
Columbia valley, after which Grand Coulee
became the lowest-elevation spillway (~471 m;
Fig. 1B) from glacial Lake Columbia, and hence
the preferred route of Missoula floods (O’Connor
etal., 2020). Cataract retreat removed the entirety
of the Columbia River basalt in the upstream
15 km of Grand Coulee, exposing granitic rock
(Bretz, 1932). Glacial striae on a granitic insel-
berg indicate the Okanogan lobe advanced into

a fully incised Grand Coulee during the last,
Marine Isotope Stage (MIS) 2, glaciation (Waitt
et al., 2021), timing that is consistent with 3¢Cl
exposure ages from glacial erratics deposited on
nearby Steamboat Rock (Keszthelyi et al., 2009).
However, whether Grand Coulee was incised
entirely during MIS 2 or reached its present depth
during a prior glaciation is debated (O’Connor
et al., 2020; Waitt et al., 2021).

OLD VERSUS RECENT INCISION

Evidence supporting pre-MIS 2 incision
of Grand Coulee is based on the argument that
Missoula flood beds should be thinner and finer-
grained if deposited in a deep versus a shallow
glacial Lake Columbia (Atwater, 1986). Glacial
Lake Columbia would have been deep before
upper Grand Coulee was incised but would have
shallowed by ~200 m following completion of
cataract recession. Flood beds at the base of the
Manila Creek section, which records deposi-
tion from 89 Missoula floods in glacial Lake
Columbia, are thick and coarse-grained, leading
to the inferences that glacial Lake Columbia was
shallow at the onset of Missoula flooding and
that upper Grand Coulee had completely incised
prior to the last glaciation (Atwater, 1986).

Geomorphic evidence indicates a long-
lived glacial Lake Columbia was graded to the
~471 m elevation spillway into upper Grand
Coulee, also indicating upper Grand Coulee
was incised to its current elevation near the
beginning of the last glaciation (O’Connor
et al., 2020). Higher-level glacial Lake Colum-
bia stages of 715-730 m, with Missoula floods
temporarily raising stages to 750 m, are attrib-
uted to the Okanogan lobe advancing into and
blocking the inlet to Grand Coulee (Waitt and
Thorson, 1983; Atwater, 1986; O’Connor et al.,
2020), rather than rock impounding a high-level
lake, as well-developed shorelines are lacking at
these higher elevations (Waitt, 2021).
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Figure 1. The study area (A) in the Channeled Scabland of eastern Washington (USA) show-
ing the Columbia Plateau and Columbia River basalt (Burns et al., 2011), ice sheets, glacial
lakes, and Missoula flood inundation (Ehlers et al., 2011). Inset: site location in the northwest
United States. (B) Flood pathways, flow direction arrows, and glacial Lake Columbia spillover

elevations (Waitt, 2021).

Evidence supporting MIS 2 incision of
Grand Coulee is based on geological constraints
and hydraulic modeling. Large flood bars down-
stream from Okanogan lobe moraine deposits
show that Missoula flood(s) preceded block-
ing of Columbia valley by ice (Waitt, 2016).
Exposure ages on high-elevation iceberg-
rafted erratics deposited by those floods date
to 16.9 & 0.2 ka (Balbas et al., 2017; Fig. 2).
Hydraulic models that route Missoula floods
across the present-day topography predict that
these erratics are not inundated because too
much flow is routed through Grand Coulee,
lowering flood stages downstream in Columbia
valley (O’Connor et al., 2020; Denlinger et al.,
2021). Only models where topography is recon-
structed with rock filling a still-unincised upper
Grand Coulee predict flood stages approach-
ing the elevation of the erratics, indicating that
incision of Grand Coulee was still incomplete
at ca. 17 ka (O’Connor et al., 2020). The same
hydraulic models predict a stage of ~730 m
at the head of upper Grand Coulee, indicating
water would have been diverted out of Colum-
bia valley here prior to completion of coulee
incision (O’Connor et al., 2020).

Further evidence for MIS 2 incision of upper
Grand Coulee comes from a bar in Hartline basin
(Fig. 2A) that contains gravel and sand clasts that
were eroded from upper Grand Coulee and are
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nearly entirely composed of basalt, suggesting the
cataract had not retreated far enough to unroof
the granitic rock in the uppermost coulee when
the bar was deposited (Waitt et al., 2021). Bretz
(1932) described the weathering of the deposit as
“almost perfectly fresh,” implying deposition, and
hence cataract retreat, during MIS 2.

Given the contradictory evidence, the enig-
matic history of Grand Coulee continues to be
debated (O’Connor et al., 2020; Waitt et al.,
2021). Due to the huge volume of eroded rock,
Bretz (1932) speculated that floods spanning
two or more glaciations were required to incise
Grand Coulee. In contrast, sediment transport
constraints suggest upper Grand Coulee may
have been eroded by only six floods (Lehnigk
et al., 2024). Hence, determining when Grand
Coulee formed yields insights on the history
of outburst flooding on the Columbia Plateau,
and, more generally, the time scales required for
bedrock canyon formation by outburst floods.

SAMPLE COLLECTION AND ANALYSIS

We dated 28 granitic samples from Grand
Coulee and adjacent flood routes using in situ—
produced '“Be. Exposure ages were calculated
following the method of Balco et al. (2008). We
report ages and internal uncertainties from our
samples and recalibrated ages from Balbas et al.
(2017) using production rate calibration data from

Promontory Point, Utah (Borchers et al., 2015;
Lifton et al., 2015), and Lifton et al. (2014) scal-
ing. Sample information and analytical details are
reported in the Supplemental Material.

EXPOSURE AGES AND
INTERPRETATIONS
Grand Coulee and Ephrata Fan

Two high-elevation (>700 m) iceberg-rafted
erratics deposited on the east rim scabland of
upper Grand Coulee date to 15.2 £ 0.5 ka and
17.1 £ 0.5 ka (Figs. 2 and 3). We classify a
nearby erratic with an age of 21.2 + 0.5 ka as an
outlier due to potential inherited '°Be but note that
this age agrees with the timing of marine fresh-
water pulses inferred to originate from glacial
Lake Missoula (Lopes and Mix, 2009). The errat-
ics could have been deposited either by broad,
shallow floods when the cataract in upper Grand
Coulee was still retreating toward Columbia val-
ley or, alternatively, after upper Grand Coulee
had completely incised, when the Okanogan lobe
advanced into the coulee, forcing overflow from
glacial Lake Columbia to drain around the ice
(Lehnigk and Larsen, 2022). The short duration
of Missoula flooding relative to the age uncertain-
ties makes it difficult to distinguish between these
possibilities based on ages alone. However, given
that the 17.1 £ 0.5 ka age aligns closely with the
16.9 £ 0.2 ka age of the Wenatchee erratics (Bal-
bas et al., 2017), which must have been emplaced
by floods that occurred prior to incision of upper
Grand Coulee (O’Connor et al., 2020), we infer
that the erratics on the east rim were emplaced
when cataract retreat through upper Grand Cou-
lee was ongoing.

Ages of boulders on the Paynes Gulch bar
on the floor of upper Grand Coulee, which were
entrained from bedrock after floods eroded the
overlying basalt, range from 12.7 £ 0.7 ka to
14.5 £+ 0.6 ka with a mean of 13.6 + 0.5 ka
(n =9). The exposure age of a bedrock sample
on the floor of upper Grand Coulee is 13.3 + 0.6
ka. Because the samples on the coulee floor
originated from beneath ~200 m of Miocene-
age basalt, they are unlikely to have inherited
10Be. The spread in ages is potentially related to
post-exposure erosion, such that the deposit age
may be best characterized by the older ca. 14 ka
ages. Two samples from flood-transported boul-
ders on the Ephrata Fan, downstream of Grand
Coulee (n = 2), when evaluated with samples
from Balbas et al. (2017), yield a mean age of
14.5 + 0.6 ka (n = 9) (Fig. 3) that constrains the
minimum timing of unroofing of granitic rock
in upper Grand Coulee.

The youngest and oldest high-elevation errat-
ics on upper Grand Coulee’s east rim pre-date
deposition of the oldest Paynes Gulch bar sample
by 0.7 £ 0.8 k.y. and 2.6 £ 0.8 k.y. (£1 standard
deviation error propagation), respectively, indicat-
ing that upper Grand Coulee conveyed Missoula
floods for less than a few millennia. Given our
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Figure 2. (A) Sample locations, elevations, and exposure ages in the Channeled Scabland,
including ages from Balbas et al. (2017). Location shown in Figure 1A. (B, C) Ages of samples
in upper Grand Coulee (B) and the Telford-Crab Creek scabland and glacial Lake Columbia (C).

interpretation that the erratics on the east rim were
deposited during cataract retreat, the time scale
for completing incision of upper Grand Coulee
was similar. The ages on the coulee floor also
indicate the Okanogan lobe had retreated from
upper Grand Coulee, but still blocked Columbia
valley, prior to ca. 14 ka, otherwise floods would
have been routed down Columbia valley rather
than through Grand Coulee. Small floods and the
Columbia River itself would have flowed through
Grand Coulee until re-opening of the Columbia
valley by retreat of the Okanogan lobe (Atwater,
1987) at ca. 13 ka (Balbas et al., 2017; Fig. 3).

Telford-Crab Creek and Glacial Lake
Columbia

Ages of two ice-rafted erratics at the head of
the Telford-Crab Creek tract at elevations of 745 m
and 740 m are 14.9 4= 0.4 ka and 14.4 + 0.8 ka,

respectively (Figs. 2B and 3). The elevations cor-
respond to the stage of a flood-swollen glacial
Lake Columbia (Waitt and Thorson, 1983; Atwa-
ter, 1986; O’Connor et al., 2020), and the ages are
similar to the ca. 14-15 ka initiation of Okanogan
lobe retreat from the Withrow moraine (Balbas
et al., 2017). We interpret the ages to constrain
the timing of Missoula floods overtopping glacial
Lake Columbia and spilling into the Telford-Crab
Creek tract when the entrance to an already-incised
upper Grand Coulee was blocked by the Okano-
gan lobe. The maximum age of the glacial Lake
Columbia high-stand (14.9 + 0.4 ka) overlaps
with, but postdates, the latest possible estimate of
erosion through the upper Grand Coulee drainage
divide of 15.2 4 0.5 ka, which is consistent with
prior interpretations that upper Grand Coulee was
fully incised prior to subsequent closure by Okano-
gan lobe ice (Bretz, 1932; Atwater, 1987; Waitt
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et al., 2021). The ages also indicate that block-
age of upper Grand Coulee by ice occurred within
centuries or less following its incision. Ages from
lower-elevation (556-622 m) ice-rafted erratics
in the glacial Lake Columbia basin range from
15.6 £ 0.5 ka to 13.4 4= 0.4 ka and indicate lake
stages exceeded the ~471 m elevation of the upper
Grand Coulee threshold during this interval.

Cheney-Palouse

Ages of four ice-rafted erratics in the
Cheney-Palouse tract (Fig. 2) range from
13.9 £ 0.6 kato 17.8 £ 0.7 ka, spanning nearly
the entire duration of flooding observed in other
flood routes (Fig. 3), but more dates are needed
to assess whether exposure age populations
reveal the timing of distinct floods. Hydraulic
modeling indicates the Cheney-Palouse scab-
land was likely inundated by Missoula floods
for all ice margin scenarios and both prior to and
after incision of upper Grand Coulee (Denlinger
et al., 2021). Hence, though these ages do not
constrain the timing of Grand Coulee incision,
they are consistent with hydraulic predictions.

Moses Coulee

Two erratics from a Moses Coulee flood
bar have ages of 14.9 + 0.3 and 15.6 + 0.4 ka
(Fig. 3). The erratics are small (see the Supple-
mental Material) and hence are interpreted to
constrain the minimum timing of Moses Cou-
lee flooding because it is possible they were
exhumed, but the oldest age overlaps with the
17.4-15.5 ka age range reported for Moses Cou-
lee flooding (Gombiner and Lesemann, 2024). If
Missoula floods inundated Moses Coulee (Han-
son, 1970; O’Connor et al., 2020; Waitt, 2021),
hydraulic modeling indicates floods of sufficient
volume only enter Moses Coulee if Grand Cou-
lee is not yet incised, because discharge through
upper Grand Coulee lowers flood stages at Moses
Coulee inlets (O’Connor et al., 2020). The only
scenario in which hydraulic models predict
Moses and Grand Coulees are completely and
simultaneously flooded is when upper Grand
Coulee is not fully incised and the Okanogan
lobe blocks Columbia Valley downstream from
Moses Coulee (Denlinger et al., 2021). The simi-
lar timing of flooding in Moses Coulee (17.4—
15.5 ka; Gombiner and Lesemann, 2024) and on
the east rim of upper Grand Coulee (17.1 + 0.5
ka to 15.2 + 0.5 ka; Fig. 3) is consistent with
these hydraulic modeling results. It has been pro-
posed that Moses Coulee floods originated sub-
glacially (Gombiner and Lesemann, 2024), but
there were likely many Missoula floods during
the centuries between the blocking of Columbia
valley and the closure of the Moses Coulee flood
route by the advancing Okanogan lobe. Moses
Coulee would have conveyed floods at that time
if upper Grand Coulee had not yet incised (Baker,
1978; O’Connor et al., 2020); hence, the Moses
Coulee flood chronology is consistent with our
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interpretation that incision of upper Grand Cou-
lee was completed during MIS 2, rather than dur-
ing a prior glaciation.

CONCLUSION

We interpret that our dating and results from
prior work (e.g., Baker, 1978; Keszthelyi et al.,
2009; Balbas et al., 2017; O’Connor et al., 2020;
Denlinger et al., 2021; Waitt et al., 2021) indi-
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cate a sequence where (1) Missoula flood(s)
flowed down Columbia valley before upper
Grand Coulee was fully incised at ca. 17 ka; (2)
the Okanogan lobe advanced across Columbia
valley and impounded glacial Lake Columbia,
diverting Missoula floods across the Columbia
Plateau and incising upper Grand Coulee at ca.
17-15 ka; (3) the Okanogan lobe advanced into
a fully incised Grand Coulee, raising the stage

of glacial Lake Columbia and diverting Mis-
soula floods into the Telford-Crab Creek tract
at ca. 15.0-14.5 ka; and (4) flooding through a
fully incised Grand Coulee deposited the Paynes
Gulch bar at ca. 14 ka (Fig. 4).

Exposure ages indicate Missoula floods
occurred from ca. 17 to 13 ka. The short dura-
tion of flooding and the uncertainty in expo-
sure ages make it challenging to differentiate
the timing of the closely sequenced events at
Grand Coulee. However, our interpretation that
the erratics on the east rim of upper Grand Cou-
lee are related to cataract retreat at ca. 17-15 ka
is supported by hydraulic modeling (O’Connor
etal., 2020), sediment composition (Waitt et al.,
2021), and relative weathering (Bretz, 1932)
constraints. The Missoula flood record in gla-
cial Lake Columbia (Atwater, 1986) can be rec-
onciled with MIS 2 formation of upper Grand
Coulee if incision was completed early in the
flood sequence (O’ Connor et al., 2020) by floods
that pre-date the lake. Our findings suggest that
the largest canyon in the Channeled Scabland
was incised in a few thousand years or less, and
the short duration indicates the Missoula floods
were exceptional agents of landscape evolution.
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