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This paper introduces a novel matrix-based approach for the simultaneous type and dimen-
sional synthesis of planar four-bar linkage mechanisms, accommodating various practical
constraints, including position, velocity, acceleration, and joint placements. Traditional

design processes segregate type synthesis, the determination of joint and link configura-
tions, from dimensional synthesis, which involves specifying link sizes and pivot locations.

This segregation often leads to complexities in addressing the complete design challenge.
The novel methodology proposed in this paper departs from the conventional sequential
design approach by concurrently evaluating type and dimensional parameters using a
data-driven matrix formulation. The crux of the paper’s methodology involves formulating
a singular design equation through a transformation matrix, parameterized by the Carte-
sian parameters of the mechanism’s dyads. This formulation linearly expresses a broad

range of constraints, facilitating the identification of viable solutions through singular
value decomposition and null space analysis. This integrated approach not only simplifies

the synthesis process but also provides direct insights into the mechanism’s parameters,
encompassing both type and dimensions, thereby obviating the need for further interpreta-
tive steps common to the use of quaternions and kinematic mapping. In essence, the paper
presents two main contributions: the development of a unified design equation capable of
encompassing a wide array of constraints within the mechanism synthesis process, and
the introduction of an algorithm that effectively identifies all potential planar four-bar
linkage mechanisms by accurately satisfying up to five constraints. This approach promises
to enhance the design and optimization of mechanical systems by offering a more holistic
and efficient pathway to mechanism synthesis. [DOI: 10.1115/1.4066661]
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synthesis, acceleration synthesis, computational synthesis, computer-aided design

1 Introduction

Planar four-bar linkage mechanisms are widely acknowledged
as the foundational and most comprehensively studied single-
degree-of-freedom (DOF) closed-loop mechanisms, well-known
for their capacity to generate complex motion patterns and trajecto-
ries. These mechanisms are integral to a myriad of ubiquitous
devices, including but not limited to, automotive windshield wipers,
elliptical exercise machines, exoskeletons, and internal combustion
engines. Figure 1 shows two predominant variants of four-bar link-
ages. The synthesis of such mechanisms entails the specification of

joints and links, including number, type, and interconnection
pattern (referred to as number and type synthesis), along with the
determination of pivot locations and link dimensions (referred to
as dimensional synthesis). Type synthesis is often perceived as
the more formidable challenge within mechanism design, while
dimensional synthesis is systematically categorized into path,
motion, and function synthesis. Path synthesis focuses on designing
mechanisms that direct a point on a coupler along a predetermined
trajectory or follow a few precision points while motion synthesis is
concerned with the guided movement of the coupler as a rigid body,
and function synthesis aims to delineate the input–output relation-
ship within a mechanism. This paper deals with the simultaneous
type and dimensional synthesis of planar four-bar linkages, taking
into account various practical geometric and kinematic constraints
such as position, velocity, acceleration, and pivot placements. The
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conventional sequential approach involves presupposing a mecha-
nism type and then deducing dimensional parameters with individ-
ual equations for each type. Departing from the conventional
sequential approach, this paper introduces a matrix-based method-
ology that concurrently determines both type and dimensional attri-
butes from given data with one unified design equation.
Quaternions, initially introduced by Hamilton [1], are four-

dimensional complex numbers, which have been used for represent-
ing rotations in 3D space [2]. Kinematicians have utilized their
extension to dual quaternions for representing rigid body displace-
ments in SE(3) [3], and a special case of dual quaternions called
planar quaternions are used to represent an element of SE(2). The
concept of kinematic mapping has been used to represent rigid body
motions as a curve in a higher-dimensional projective space [4].
Ravani and Roth [5,6] laid the foundation for a comprehensive
theory of kinematic mapping in both planar and spatial motion
synthesis. Subsequent researches by Bottema and Roth [7], Boddu-
luri and McCarthy [8], McCarthy [9], Larochelle [10,11], and Ge
and McCarthy [12,13] further refined and extended this theory to
encompass exact and approximate motion synthesis for various
types of mechanisms, including planar, spherical, and spatial dyads.
It is well-known that the aforementioned methods for motion
synthesis are not independent of the location of moving and fixed
reference frames, a problem commonly known as bi-invariance
[14,15]. Xue et al. [16] recently presented a bi-invariant approach
to approximate motion synthesis of planar four-bar linkage mecha-
nisms using pole displacement. McCarthy’s book [3] provides a
comprehensive introduction to the derivation of constraint equa-
tions for dyads and triads of various mechanism types.
The concept of simultaneous type and dimensional synthesis of

four-bar mechanisms for exact positions was introduced by Hayes
et al. [17,18], who employed heuristics to identify RR and PR
dyads, with R and P denoting revolute and prismatic joints, respec-
tively. Building on this foundation, Ge et al. [19] proposed an inno-
vative approach for concurrently determining the type and
dimensions of planar four-bar mechanisms. This novel approach
transformed the problem of synthesizing four-bar mechanisms
into a computational shape analysis problem, with the goal of iden-
tifying a pair of constraint manifolds whose intersection contains
the image curve. Deshpande and Purwar [20] extended this
approach to address a more generalized version of the classic Bur-
mester problem. Subsequently, Purwar et al. [21,22] implemented a
motion synthesis algorithm based on kinematic mapping in a web-
based mechanism design and simulation software known as
MOTIONGEN.2 Additionally, Zhao et al. [23] extended this approach
to address the five-position synthesis problem for planar six-bar
mechanisms.
In 1979, Schaefer and Kramer [24] presented precision synthesis

by incorporating pose and velocity constraints. Following their
work, Holte et al. [25,26] derived equations for approximate posi-
tion and velocity synthesis. Building on these contributions,
Robson et al. [27–29] further extended the problem to encompass
velocity and acceleration constraints for both planar and spatial

mechanisms. It is worth noting that all of these approaches, while
valuable in their own right, are primarily focused on specific mech-
anism types and do not seek to unify constraints in a manner that
simplifies computer implementation or seeks to find all possible
solutions to the problem.
This paper presents a novel matrix-based approach, unifying the

simultaneous type and dimensional synthesis of planar four-bar
mechanisms, while accommodating various constraints encompass-
ing pose, velocity, acceleration, and joint location considerations.
This work is built on the foundation given by Ge et al. [19].
However, unlike conventional methods that rely on kinematic
mapping and quaternions for synthesis, our approach directly formu-
lates a singular design equation capable of handling a wide array of
constraint types. This equation is constructed through a transforma-
tion matrix, parameterized by the Cartesian parameters and geometric
constraints of the constituent dyads, effectively expressing constraints
linearly. Additionally, we extend our approach to incorporate velocity
and acceleration constraints, achieved by differentiating with respect
to time. The resulting set of geometric and kinematic constraints con-
stitutes a system of linear equations, which is systematically solved
using singular value decomposition (SVD). Through a null space
analysis of this system, we identify candidate solutions, subject to
fundamental constraints governing the Cartesian parameters of the
mechanism. Subsequently, we ascertain the dyad types from the
derived solutions and perform an inverse kinematic computation to
determine the dimensions. Notably, our method offers direct access
to mechanism parameters, encapsulating information on both type
and dimensions in the Cartesian space, eliminating the need for
further interpretation or clarification. In summary, this paper presents
two original contributions: (1) a unified design equation has been
developed to handle position, velocity, acceleration, and geometric
constraints related to both pivots and lines within all categories of
planar dyads, and (2) an integrated algorithm has been introduced
to accurately meet up to five constraints, thus enabling the identifica-
tion of all potential planar four-bar linkage mechanisms.
The remainder of this paper is organized as follows. Section 2

provides an overview of four-bar mechanisms and their constituent
dyads, outlining their geometric constraints in terms of Cartesian
parameters. In Secs. 3 and 4, we delve into the planar transformation
and present a unified synthesis equation for all dyads types using the
transformation matrix. In Sec. 5, we introduce the singular value
decomposition and outline a two-step process for solving the synth-
esis equations. Finally, in Sec. 6, we illustrate the application of our
method through a variety of example problems.

2 Planar Four-Bar Mechanisms and Geometric

Constraints

A planar four-bar mechanism is the simplest closed-loop single-
DOF mechanism. Formed by two dyads, the motion of the coupler
of a planar four-bar mechanism has to satisfy the geometric con-
straints of both the dyads. There are four different types of dyads:
revolute-revolute (RR), prismatic-revolute (PR), revolute-prismatic
(RP), and prismatic-prismatic (PP), each consisting of two planar kine-
matic joints; see Fig. 2. For example, an RRRR mechanism shown in

Fig. 1 Two examples of planar four-bar mechanisms with their constituent dyads: (a) RR+RR
and (b) slider-crank (RR+PR), where R and P stand for revolute and prismatic joints, respectively

2www.motiongen.io
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Fig. 1 is composed of two RR dyads. The revolute joints B and E

rotate around fixed revolute joints A and D, respectively. The
coupler △BCE is constrained by both dyads AB and DE, which
makes the trajectory of point C complex (a degree-six algebraic
curve), but predictable. In the motion synthesis problem, the goal is
to find the parameters of dyads that lead the coupler to pass through
the given task poses.3 Likewise, the RRRP mechanism shown in
Fig. 1(b) is formed by an RR dyad and a PR dyad. In the rest of
this section, we present the geometric constraints of all four types of
dyads using homogeneous coordinates. The choice of homogeneous
coordinates is made to handle degenerate cases gracefully and simplify
computation. Moreover, they also enable us to leverage the principle
of projective duality to find similar design equations for different
types of dyads. We also give the velocity and acceleration constraints
equations by differentiating geometric constraints with respect to time.

2.1 Geometric Constraints of Revolute-Revolute and
Prismatic-Revolute Dyads. In RR dyads, the motion of the
moving pivot is constrained along a circular path, as depicted in
Fig. 2(a), where pivot B undergoes rotation around the fixed pivot
A. Similarly, on link BC, the joint C also follows a circular trajec-
tory centered around the pivot B. In this context, a+ (a1,
a2, a3, a0) represents the homogeneous coordinates of the fixed
pivot A, where the term a3 is a function of the radius r of the RR
dyad. The affine coordinates of the fixed pivot A are given by
(a1/a0, a2/a0). Similarly, X + (X1, X2, X3); X3 ≠ 0 denotes the
homogeneous coordinates of the moving pivot B with the affine
coordinates as (X1/X3, X2/X3).
As the moving pivot traces a circular trajectory around the fixed

pivot, the constraint equation for an RR dyad expressed in affine
coordinates is given by

X1

X3

−
a1

a0

( )2

+
X2

X3

−
a2

a0

( )2

= r2 (1)

which simplifies to

a1X1 + a2X2 + a3X3 = a0
X2
1 + X2

2

2X3

( )

(2)

where a newly introduced parameter a3 and radius r are related by

r2 =
a21 + a22 + 2a0a3

a20
(3)

When a0 + 0, the radius r approaches ∞, degenerating the circle
into a line. For the PR dyad shown in Fig. 2(b), the slider A slides on
a fixed line, where the moving joint B is constrained to move along a
line parallel to the fixed line. Thus, a PR dyad can be considered as a
special case of an RR dyad.
Equation (1) can be differentiated to obtain constraints on veloc-

ity and acceleration as

Ẋ1

X1

X3

−
a1

a0

( )

+ Ẋ2

X2

X3

−
a2

a0

( )

+ 0 (4)

and

Ẍ1

X1

X3

−
a1

a0

( )

+ Ẍ2

X2

X3

−
a2

a0

( )

+
Ẋ
2

1

X3

+
Ẋ
2

2

X3

+ 0 (5)

2.2 Geometric Constraints of Revolute-Prismatic and
Prismatic-Prismatic Dyads. In an RP dyad shown in Fig. 2(c),
the geometric constraint is that a line BC stays tangent to a circle.
Let the radius of the circle be r. When r + 0, the tangent line
swings about joint A, which is the typical configuration of a
linear actuator or a swinging block rotating about a fixed point.
Let L+ (L1, L2, L3); L3 ≠ 0 denotes the homogeneous coordi-
nates of a line in the fixed-frame F, with the affine coordinates
(L1/L3, L2/L3). The line geometric constraint is given by

a1L1 + a2L2 + a0L3 = ±a0r

���������

L21 + L22

√

(6)

Distinct from the other three dyads, the movement of the PP
dyads, shown in Fig. 2(d ), is characterized by a rectilinear
motion, which also makes them less useful in typical motion synth-
esis applications where a change in orientation is required. Accord-
ing to Ref. [19], the motion of a PP dyad is constrained such that the
angle between a line L+ (L1, L2, L3) and another line
(2a1, 2a2, a3) in F is fixed and thus the constraint is given by

a1L1 + a2L2 = 0.5k (7)

where k is a constant that corresponds to the angle between the two
lines. Thus, Eq. (7) can be considered as a special case of Eq. (6).

Fig. 2 Planar dyads: (a) RR, (b) PR, (c) RP, and (d) PP with point and line coordinates shown
using homogeneous coordinates where a0, X3, and L3 are homogenizing factors

3In this paper, we use the words pose and positions interchangeably, which describe

translation and rotation of a moving frame.
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Using the principle of duality, the point constraint given by Eq. (2)
and line constraint by Eq. (6) are dual to each other [30,31].
By differentiating Eq. (6) with time t, we obtain velocity and

acceleration constraints of RP and PP dyads as

a1L̇1 + a2L̇2 + a0L̇3 = ±a0r
L1L̇1 + L2L̇2

���������

L21 + L22

√ (8)

and

a1L̈1 + a2L̈2 + a0L̈3

= ±a0r
L̇
2

1 + L̇
2

2 + L1L̈1 + L2L̈2
���������

L21 + L22

√ −
(L1L̇1 + L2L̇2)

2

������������

(L21 + L22)
3

√

⎛

⎜

⎝

⎞

⎟

⎠
(9)

3 Kinematic Representation Using Homogeneous

Matrix

In the context of motion synthesis problems, a series of poses is
often defined based on their locations and orientations relative to the
reference frame F. In Fig. 1, it is essential for the coupler to attain
specific target poses. These target poses are attached with moving
coordinate systems denoted as Mi. Notably, the moving joint B
maintains its position relative to each of these Mi coordinate
systems throughout the motion. This inherent characteristic
proves to be pivotal in resolving motion synthesis challenges. We
establish the requisite design equations by transferring the coordi-
nates of the moving joint fromMi to the reference frame F and sub-
sequently solving for them. The following section elaborates on the
transformation process of the moving pivot’s coordinates and their
derivatives using homogeneous matrices.
Let x+ (x1, x2, x3) represent the coordinates of the moving joint

within Mi, and correspondingly, let X + (X1, X2, X3) denote the
coordinates of this joint within the reference frame F. The relation-
ship between X and x is established through a homogeneous matrix
transformation given by

X
T = [T]xT (10)

where

[T] =

cosϕ − sinϕ d1
sinϕ cosϕ d2
0 0 1

⎡

⎣

⎤

⎦ (11)

In this transform, d + (d1, d2) and ϕ denote the origin of the
moving frame and its orientation in F, respectively, as shown in
Fig. 3.
Differentiating Eq. (10) with respect to time t, the velocity

and acceleration transformation between F and M are given by
Eqs. (12) and (14) with the linear velocity u+ (ḋ1, ḋ2) + (v, w).

Ẋ
T
= [Ṫ]xT (12)

where

[Ṫ] =

−ϕ̇ sinϕ −ϕ̇ cosϕ v

ϕ̇ cosϕ −ϕ̇ sinϕ w

0 0 0

⎡

⎣

⎤

⎦ (13)

and

Ẍ
T
= [T̈]xT (14)

where

[T̈] =
−ϕ̈ sinϕ− ϕ̇

2
cosϕ −ϕ̈ cosϕ+ ϕ̇

2
sinϕ v̇

ϕ̈ cosϕ− ϕ̇
2
sinϕ −ϕ̈ sinϕ− ϕ̇

2
cosϕ ẇ

0 0 0

⎡

⎢

⎣

⎤

⎥

⎦
(15)

Similarly, let L+ (L1, L2, L3) and l + (l1, l2, l3) represent the
homogeneous coordinates of a line in F and M, respectively, then
using the principle of projective duality [31], Eq. (16) gives the
line transformation from the M to F.

L
T = [H]lT (16)

where [H] is the transpose of the inverse of matrix [T]. Equations
(17) and (18) express the velocity and acceleration transformation
of a line between F and M as following:

L̇
T
= [Ḣ]lT (17)

and

L̈
T
= [Ḧ]lT (18)

4 A Unified Design Equation

With the geometric constraint and their first- and second-order
derivative equations and transformations given in the last two sec-
tions, we can now derive design equations for each type of dyads
and unify them.

4.1 Design Equations for Revolute-Revolute and Prismatic-
Revolute Dyads. The design equations for RR and PR dyads can
be obtained by substituting X from Eq. (10) in Eq. (2) as

− a0x
2
1 − a0x

2
2 + (−d21 − d22)a0x

2
3 + 2d1a1x

2
3 + 2d2a2x

2
3

+ 2a3x
2
3 + (−2cd1 − 2sd2)a0x1x3 + 2ca1x1x3 + 2sa2x1x3

+ (2sd1 − 2cd2)a0x2x3 − 2sa1x2x3 + 2ca2x2x3 = 0 (19)

where s refers to sinϕ and c refers to cosϕ. In Eq. (19), the terms s,
c, and d + (d1, d2) are completely known from the given task
poses. There are five unknown terms in this equation which are
a1, a2, a3, x1, and x2 (a0 and x3 are homogenizing factors). For n
task poses, we obtain n such equations. It is challenging to find a
direct solution for cubic equations, such as above with five vari-
ables. However, this equation can be decomposed into a bi-linear
equation by introducing appropriate intermediate variables. After
combining like terms, Eq. (19) can be written as

A1P1 + A2P2 + · · · + A8P8 = 0 (20)

Fig. 3 Planar displacement
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where

P1 = a0x3, P2 = 2a0x1, P3 = 2a0x2,

P4 = 2a1x3, P5 = 2a2x3, P6 = 2a2x1 − 2a1x2,

P7 = 2a1x1 = 2a2x2, P8 = (−a0x
2
1 − a0x

2
2 + 2a3x

2
3)/x3

(21)

and

A1 = (−d21 − d22), A2 = −cd1 − sd2,

A3 = sd1 − cd2, A4 = d1, A5 = d2,

A6 = s, A7 = c, A8 = 1 (22)

This way, Eq. (20) becomes a linear equation in terms of
unknowns Pi for given pose parameters (d1, d2, ϕ).
Substituting X and Ẋ from Eqs. (10) and (12) in Eq. (4) provides

the velocity constraint equation for RR and PR dyads, which is in
the same form as Eq. (20). The velocity equation has the same set
of unknown Pi as given in Eq. (21), but has different Ai as

A1 = d1v = d2w, A2 =
1

2
(cv+ sw− sd1ϕ̇+ cd2ϕ̇),

A3 =
1

2
(cw− sv− cd1ϕ̇− sd2ϕ̇), A4 = −

1

2
v,

A5 = −
1

2
w, A6 = −

1

2
cϕ̇, A7 =

1

2
sϕ̇, A8 = 0 (23)

Similarly, the acceleration constraint equation is obtained by sub-
stituting X, Ẋ, and Ẍ from Eq. (14) in Eq. (5). With the same
parameter Pi, the Ai parameters for the acceleration are given by

A1= v2+w2+d1v̇+d2ẇ,

A2=
1

2
[c(−d1ϕ̇

2
+d2ϕ̈+2ϕ̇w+ v̇)+s(−d2ϕ̇

2
−d1ϕ̈−2ϕ̇v+ ẇ)],

A3=
1

2
[c(−d2ϕ̇

2
−d1ϕ̈−2ϕ̇v+ ẇ)+s(d1ϕ̇

2
−d2ϕ̈−2ϕ̇w− v̇)],

A4=−
1

2
v̇, A5=−

1

2
ẇ, A6=

1

2
(−ϕ̈c+ ϕ̇

2
s),

A7=
1

2
(ϕ̈s+ ϕ̇

2
c), A8=0 (24)

Since there are only five independent parameters of a dyad, Pi

should satisfy two constraints, which turn out to be quadratic

2P1P6 − P2P5 + P3P4 = 0

2P1P7 − P2P4 − P3P5 = 0
(25)

For PR dyads, since a0 + 0, we get P1 + P2 + P3 + 0. Thus, the
quadratic constraints in Eq. (25) are satisfied automatically. In this
case, since we have only four independent parameters to determine,
at most four constraints can be satisfied exactly. If synthesis reveals
this particular pattern or zeros in the Pi, then we can conclude that
we have found a PR dyad.
Once the intermediate variable Pi are found, the parameters ai

and xi can be solved using inverse kinematic equations from
Eq. (21) as

x1 : x2 : x3 = (P5P6 + P4P7) : (−P4P6 + P5P7) : (P2
4 + P2

5)

(26)

and

a0 : a1 : a2 : a3 = 2P1 : P4 : P5 : P8 +
P1(P

2
6 + P2

7)

P2
4 + P2

5

( )

(27)

4.2 Design Equations for Revolute-Prismatic and Prismatic-
Prismatic Dyads. The design equations of RP and PP dyads can be
derived by substituting L from Eq. (16) into Eq. (6). Again, the
design equations of RP and PP are in the same form as Eq.(20)

and have the same parameters Ai as in Eq.(22). However, the param-
eters Pi are given by

P1 = 0, P2 = a0l1, P3 = a0l2,

P4 = 0, P5 = 0, P6 = a2l1 − a1l2,

P7 = a1l1 = a2l2, P8 = a0l3 ∓ a0r (28)

The inverse computation for Cartesian parameters of the dyads
are given by

l1 : l2 : l3 = P2 : P3 : 2P8 (29)

and

a0 : a1 : a2 = (P2
2 + P2

3) : (P2P7 − P3P6) : (P2P6 + P3P7) (30)

The intermediate Pi terms for PP dyad are

P1 = 0, P2 = 0, P3 = 0,

P4 = 0, P5 = 0, P6 = a2l1 − a1l2,

P7 = a1l1 + a2l2, P8 = −0.5k (31)

For Pi of both RP and PP dyads, Eq. (25) is satisfied automati-
cally. For RP dyads, we have P1 = P4 = P5 = 0, which automati-
cally satisfies two quadratic conditions. Therefore, the maximum
number of the given constraints for exact synthesis tasks for RP
dyads is four. Similarly, the fundamental constraint equations for
PP dyads are P1 = P2 = P3 = P4 = P5 = 0. In this paper, we are
not concerned with the PP dyads since their geometric constraints
do not permit a change in orientation of the moving object.
Considering Eq. (20) as the unified design equation, synthesis of

different dyad types can be performed in conjunction with quadratic
constraints in Eq. (25). The pattern of zeros in the parameters Pi

indicates the type of dyad, viz., RR, RP, and PR. For example, P1 =

P2 = P3 = 0 encodes a PR dyad, P1 = P4 = P5 = 0 encodes an
RP dyad, and P1 = P2 = P3 = P4 = P5 = 0 encodes a PP dyad.
In all other cases, it is an RR dyad. Therefore, Eq. (20) is a
unified design equation, that is capable of representing both type
and dimensions of planar dyads.
Substituting L̇ from Eq. (17) in Eq. (8) provides the velocity con-

straint equation for RP and PP dyads. The velocity equation has the
same Pi as in Eq. (28), but has different Ai as following:

A1 = 0, A2 = −c(d2ϕ̇ = v) = s(d1ϕ̇− w),

A3 = c(d1ϕ̇− w) = s(d2ϕ̇ = v), A4 = 0,

A5 = 0, A6 = cϕ̇, A7 = −sϕ̇, A8 = 0 (32)

The acceleration constraint equation is obtained by substituting
L, L̇, and L̈ from Eq. (18) in Eq. (9). With the same parameters
Pi as in Eq. (28), the Ai parameters for the acceleration are given by

A1=0,

A2=
1

2
[c(d1ϕ̇

2
−d2ϕ̈−2ϕ̇w− v̇)+s(d2ϕ̇

2
+d1ϕ̈+2ϕ̇v− ẇ)],

A3=
1

2
[c(d2ϕ̇

2
+d1ϕ̈+2ϕ̇v− ẇ)+s(−d1ϕ̇

2
+d2ϕ̈+2ϕ̇w+ v̇)],

A4=0, A5=0, A6= ϕ̈c− ϕ̇
2
s,

A7=−ϕ̇
2
c− ϕ̈s, A8=0 (33)

In summary, Eq. (20) represents the unified design equation,
which represents pose-, velocity-, and acceleration constraints
on all types of dyads. Moreover, we have derived this equation
directly in terms of Cartesian parameters, which are readily
interpretable.
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4.3 Other Geometric Constraints. In most practical scenar-
ios, mechanisms need to satisfy additional geometric constraints,
such as limitations on the location of moving or fixed joints or
sliding direction. In this subsection, we show how such constraints
can also be represented using a linear equation in unknown param-
eters Pi, which can be combined with the aforementioned
constraints to expand the design space. For example, designers may
want to constrain fixed joints to lie on a given line. Additionally, a
line constraint on moving joints has the ability to restrict the cou-
pler’s shape [32]. While we restrict ourselves to linear constraints
only in this paper, it is worth mentioning that quadratic and other
more complex constraints on joint locations can also be valuable,
but more challenging in terms of computational complexity [20].

4.3.1 Geometric Constraints on Fixed and Moving Pivots. Let
(X f ,Y f ) be one of the specified fixed pivot locations of an RR dyad.
A line constraint for the fixed pivots requires the center point
(Xf , Yf ) of an RR dyad to lie on a line given by
K1Xf + K2Yf + K3 = 0. From inverse kinematic relations in Eqs.
(26) and (27), we know that Xf = a1/a0 = P4/2P1, and
Yf = a2/a0 = P5/2P1. Thus, the line constraint on the fixed pivot
can be given by

K1P4 + K2P5 + 2K3P1 = 0 (34)

where Ki are known. Alternatively, one can also specify the exact
location of the fixed pivot by the following two linear equations

Xf = P4/2P1 ⇒ 2P1Xf − P4 = 0

Yf = P5/2P1 ⇒ 2P1Yf − P5 = 0
(35)

A similar linear constraint equation for the moving pivot (xm,ym)
constrained to lie on a line k1xm + k2ym + k3 = 0 in the moving
frame is given by

k1P2 + k2P3 + 2k3P1 = 0 (36)

If the location of a moving pivot is exactly given, then we obtain
linear constraint equations similar to Eq. (35)

xm = P2/2P1 ⇒ 2P1xm − P2 = 0

ym = P3/2P1 ⇒ 2P1ym − P3 = 0
(37)

4.3.2 Geometric Constraints on Fixed and Moving Line. For
an RP dyad, specifying the moving line by k1l1 + k2l2 + k3 = 0

in the moving frame yields the following constraint equation:

k1P2 + k2P3 + 2k3P8 = 0 (38)

The above follows readily from the inverse kinematic relations in
Eq. (29) where l1 = P2/2P8, l2 = P3/2P8.
For a PR dyad, specifying the fixed sliding line by K1Xf +

K2Yf + K3 = 0 produces another similar linear constraint given by

K1P4 + K2P5 = 0 (39)

which is obtained by substituting the coordinates of the fixed pivots
of an RR dyad in the equation of a line given by K1Xf + K2Yf +

K3 = 0 and simplifying it in the limit when a0 = 0.

5 Solving System of Equations Using Null Space

Analysis

In this section, we present a simple two-step algorithm for satis-
fying five constraints in the form of Eq. (20) to obtain independent
parameters of dyads. These constraints can be on a combination of
pose (d1, d2, ϕ), velocity (v, w, ϕ̇), acceleration (v̇, ẇ, ϕ̈), or
other geometric conditions as presented in the previous section.
These constraints can be assembled to formulate a system of
linear equations represented as [A]P = 0, where the matrix [A] is
written as follows:

[A] =

A11 A12 · · · A18

A21 A22 · · · A28

.

.

.
.
.
.

.
.

.
.
.
.

A51 A52 · · · A58

⎡

⎢

⎢

⎣

⎤

⎥

⎥

⎦

(40)

Fig. 5 Five chosen ankle poses in Example 6.1

Table 1 Five chosen ankle poses in Example 6.1

No. Translation Rotation

1 (2.757, −3.043) −12.79 deg
2 (1.339, −3.118) −15.12 deg
3 (−0.814, −2.364) −27.75 deg
4 (−0.037, −1.574) −52.98 deg
5 (1.434, −2.447) −48.33 deg

Fig. 4 Human ankle poses during a typical walking gait from
Tsuge et al. [33]
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where Aij refers to the ith task and jth Cartesian parameter in
Eq. (20). In the exact synthesis problem, the system of linear equa-
tions [A]P is fully constrained. This paper uses a method called
SVD to find the solution of [A]P = 0. The SVD decomposes the 5 ×
8 matrix [A] into

[A] = [U][S][V]T (41)

where [U] is a 5 × 5 unitary matrix, whose columns are the eigen-

vectors of [A][A]T , is also called the left singular vectors of [A]. [S]
is a 5 × 8 non-negative real diagonal matrix whose elements are

square roots of the eigenvalues of [A][A]T (or, [A]T [A]). The

matrix [V]T is a 8 × 8 unitary matrix, whose columns, called right

singular vectors, are eigenvectors of [A]T [A].
The solution to [A]P = 0 corresponds to the right singular vectors

of the matrix [A], which constitute an orthonormal basis for the null
space of [A]. Consequently, the number of zero eigenvalues is
decided by the rank of [A] as (8− rank).
While rank = 5, the eigenvectors corresponding to the three zero

eigenvalues are e1, e2, and e3, the null space can be represented by
a candidate solution vector P as

P = b1e1 + b2e2 + b3e3 (42)

where bi are the undetermined parameters. Without any loss of gen-
erality, b3 can be set to 1 because P is given by homogeneous coor-
dinates. The vector P needs to satisfy the two quadratic constraints
given by Eq. (25), which would lead to a degree four polynomial in
a single variable. Its solution when substituted back in Eq. (42) will
provide up to four solutions representing mechanical dyads.

6 Examples

In this section, we present several examples to illustrate the effec-
tiveness of the proposed methodology. The first four examples are
of designing a walk assist rehabilitation mechanism to enable dis-
abled users to perform natural walking movements. In each of

these examples, we present different sets of design constraints.
Finally, we show an example with three task positions and two
specified velocities and compare our results with Robson and
McCarthy [27].

6.1 Five-Pose Motion Synthesis. In this example, we seek to
design a rehabilitation mechanism that can generate the essential
motion of a human’s typical gait pattern during walking. A set of
poses are collected from human ankle motion during walking
from the simulation of the six-bar mechanism designed by Tsuge
et al. [33]. While Tsuge et al. designed a six-bar mechanism for
ankle path generation, we are solving a motion synthesis
problem, where we want to achieve specific orientations along the
path. Figure 4 shows 60 prescribed poses generated along a gait
cycle. For this example, five poses are chosen and shown in
Fig. 5 and presented in Table 1. These five poses were selected to
capture the extreme positions of the gait cycle. Nevertheless,
there was some trial and error involved in selecting these poses
for a better demonstration. The method discussed in this paper is
only suitable for exact motion synthesis. According to Refs.
[19,34], approximate synthesis is necessary for more than five
poses.
Substituting the pose parameters into Eqs. (20) and (22), we get a

5 × 8 matrix [A] as

[A] =

−16.861 −3.362 2.357 2.757 −3.043 −0.221 −0.975 1

−11.515 −2.106 2.661 1.339 −3.118 −0.261 −0.965 1

−6.251 −0.380 2.471 −0.814 −2.364 −0.466 0.885 1

−2.479 −1.234 0.977 −0.037 −1.574 −0.798 −0.602 1

−8.044 −2.781 0.556 1.434 −2.447 −0.747 0.665 1

⎡

⎢

⎢

⎢

⎢

⎣

⎤

⎥

⎥

⎥

⎥

⎦

(43)

After applying the SVD to [A], eigenvalues are obtained and
listed in Table 2. From the results, the last three eigenvalues can
be considered zero. The eigenvectors corresponding to these eigen-
values are listed in Table 3.
Substituting eigenvectors in Eq. (42), and solving for b1 and b2

from Eq. (25) using NSolve function in the WOLFRAM MATHEMATICA,

we get four real solutions listed in Table 4 and four sets of Pi are
obtained and listed in Table 5.
By observing the second row of Table 5, we see that the values

of P1, P4, and P5 are closer to zero than any other values. This
implies the second result is closer to a RP dyad than an RR
dyad. By choosing two dyads at a time, we can form six

Table 2 Eigenvalues for five-pose synthesis problem in Example 6.1

612.336 9.920 4.478 0.258 0.118 5.952 × 10−14 −3.000 × 10−15 1.481 × 10−16

Table 3 Eigenvectors for five-pose synthesis problem in Example 6.1

p1 p2 p3 p4 p5 p6 p7 p8

e1 −0.0025 −0.3539 0.1995 −0.2787 0.0220 0.1187 −0.8618 0
e2 0.0282 −0.4728 0.0135 −0.3397 0.1491 0.6879 0.4057 0
e3 −0.0093 0.2810 −0.1823 0.1681 −0.0560 0.3867 −0.1601 0.8252

Table 4 Four solutions of the five-pose synthesis problem in
Example 6.1

b1 b2

1 −0.5941 0.2507
2 0.1868 0.3340
3 0.5618 −0.2670
4 0.0355 0.4187
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four-bar mechanisms. Solving for the Cartesian parameters of
each RR dyad from Eqs. (26) and (27) (RP dyad from Eqs.
(29) and (30)), the final solution set is shown in Table 6. An
RRPR mechanism formed by the second and third solutions is
illustrated in Figs. 6 and 7. Mechanism figures shown below
are drawn in MOTIONGEN [21,22] available.4 The result for RP

dyad has a small error because P1, P4, and P5 are close to zero,
but not exactly zero. This also explains why even though an
RP dyad can go through only four poses exactly, a reinterpreta-
tion of an RR dyad as an RP dyad gives rise to an approximate
synthesis only. The RR dyads only have numerical calculation
errors as an exact motion synthesis problem. While it may be
hard to select the best choice among all six mechanisms merely
on the basis of interpolating all the five poses, in practice, one
would choose the final kinematic design that avoids assembly

Table 5 Parameters Pi for the five-pose synthesis problem in Example 6.1

P1 P2 P3 P4 P5 P6 P7 P8

1 −0.003 −0.040 −0.051 −0.069 −0.005 0.529 −0.479 0.694
2 0.0001 0.049 −0.131 0.0007 0.0005 0.601 −0.169 0.768
3 −0.015 0.177 −0.063 0.087 −0.071 0.229 −0.639 0.701
4 0.002 0.065 −0.156 0.015 0.007 0.626 −0.019 0.761

Table 6 Four groups of design parameters for the five-pose synthesis problem in Example 6.1

Type {x1, l1} {x2, l2} {x3, l3} a0 a1 a2 a3

RR 6.366 8.045 1.00 1.00 11.020 0.736 −57.420
RP 0.032 −0.085 1.00 0.00 3.615 2.641 —

RR −5.713 2.022 1.00 1.00 −2.801 2.285 −4.252
RR 14.875 −35.757 1.00 1.00 3.371 1.525 923.974

Fig. 6 RRPR mechanism from MATHEMATICA in Example 6.1 Fig. 7 RRPR mechanism from MOTIONGEN in Example 6.1

Table 7 Eigenvalues for four-pose and one-fixed joint constraint synthesis problem in Example 6.2

575.333 14.871 5.682 0.894 0.0040 3.310 × 10−14 −9.813 × 10−15 −1.239 × 10−15

Table 8 Parameters Pi of the four-pose and one-fixed joint synthesis problem in Example 6.2

P1 P2 P3 P4 P5 P6 P7 P8

1 −0.017 0.114 −0.150 0.005 −0.121 0.388 −0.556 0.700
2 0 0.049 −0.131 0 0 0.602 −0.164 0.769
3 −0.002 0.0383 −0.124 −0.013 −0.011 0.587 −0.243 0.761
4 −0.004 −0.032 −0.077 −0.072 −0.023 0.543 −0.457 0.695

4See Note 2.
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mode defect, branching, and order defects with acceptable trans-
mission angle, among others.

6.2 Four-Pose Motion Synthesis With an Extra
Constraint. With the same example as above, one extra constraint
on fixed joints may be desired to be located at the height of the thigh
as a lower limb rehabilitation device. To add this extra constraint,
the fifth pose is removed and a new constraint is added for the
fixed joints to lie on a horizontal line −0.1217a1 − a2 + 7.1732 =

0 located at the height of the thigh.
We substitute the four task poses into Eqs. (20) and (22) and the

extra constraint in Eq. (44) to form a 5 × 8 matrix [A].

−0.1217P4 − P5 + 7.1732P1 = 0 (44)

After applying the SVD to [A], eigenvalues are obtained and
listed in Table 7. Once again, the last three eigenvalues are close
to zero.
Following the same procedure as in the previous example, four

solutions are obtained and listed in Tables 8 and 9. Among the
four solutions, the second solution is close to an RP dyad and the
rest are all RR dyads. The first and third solutions are chosen to
form an RRRR mechanism as shown in Fig. 8. Both the fixed
joints are on a given constraint line; however, the mechanism
suffers from a poor link ratio. Incidentally, the RRRR mechanism
with first and fourth dyad has assembly mode defects, which
remains an outstanding problem [35].

Table 9 Four groups of design parameters for the four-pose and one-fixed joint synthesis problem in Example 6.2

Type {x1, l1} {x2, l2} {x3, l3} a0 a1 a2 a3

RR −3.389 4.467 1.00 1.00 −0.144 3.604 −5.147
RP 0.032 −0.085 1.00 1.00 3.606 2.603 —

RR −10.778 34.899 1.00 1.00 3.771 3.128 452.707
RR 3.538 8.662 1.00 1.00 8.073 2.604 −33.938

Fig. 8 RRRR mechanism from MATHEMATICA (left) and MOTIONGEN

(right) in Example 6.2

Table 10 Three chosen poses and two velocities in Example 6.3

No. Translation Rotation Linear velocity Angular velocity

1 (2.757, −3.043) −12.79 deg (−0.155, 0.033) −0.007 rad/s
2 (−0.814, −2.364) −27.75 deg (−, −) —

3 (−0.037, −1.574) −52.98 deg (0.209, −0.024) 0.014 rad/s

Table 11 Parameters Pi of the three-pose with two-velocity synthesis problem in Example 6.3

P1 P2 P3 P4 P5 P6 P7 P8

1 −0.006 −0.020 −0.010 0.019 0.311 0.535 0.220 0.753
2 −0.003 0.024 −0.063 −0.022 −0.071 0.450 −0.576 0.675
3 −0.003 0.067 −0.043 0.022 −0.053 0.402 −0.579 0.703
4 −0.004 −0.029 −0.077 −0.069 −0.025 0.541 −0.460 0.696

Table 12 Four groups of design parameters for the three-pose with two-velocity synthesis problem in Example 6.3

Type {x1, l1} {x2, l2} {x3, l3} a0 a1 a2 a3

RR 1.674 0.807 1.00 1.00 1.523 −25.406 −59.817
RR −3.479 9.160 1.00 1.00 3.22 10.418 −50.728
RR −10.317 6.620 1.00 1.00 −3.390 8.162 −33.016
RR 3.350 9.039 1.00 1.00 8.106 2.958 −35.080
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Fig. 9 RRRR mechanism from MATHEMATICA (the line segments of
poses indicate velocity) in Example 6.3

Fig. 10 RRRR mechanism drawn in MOTIONGEN with velocity
vectors shown along the path

Table 13 Three chosen poses with velocity and acceleration in Example 6.4

No. Translation Rotation Velocity(/, /, rad/s) Acceleration(/, /, rad/s2)

1 (2.757, −3.043) −12.79 deg (–, –, –) (–, –, –)
2 (−0.814, −2.364) −27.75 deg (–, –, –) (–, –, –)
3 (−0.037, −1.574) −52.98 deg (2.09, −0.24, 0.14) (0.38, −0.21, 0.02)

Table 14 Parameters Pi of the three-pose with velocity and acceleration synthesis problem in Example 6.4

P1 P2 P3 P4 P5 P6 P7 P8

1 0.028 −0.253 0.078 −0.125 0.058 −0.089 0.649 −0.694
2 −0.025 −0.033 −0.185 −0.150 −0.134 0.469 −0.593 0.594
3 0.002 0.020 −0.017 0.008 0.073 0.520 −0.338 0.780
4 −0.008 −0.050 −0.099 −0.010 −0.018 0.567 −0.423 0.691

Table 15 Four groups of design parameters for the three-pose with velocity and acceleration synthesis problem in Example 6.4

Type {x1, l1} {x2, l2} {x3, l3} a0 a1 a2 a3

RR −4.540 1.393 1.00 1.00 −2.247 1.043 −1.192
RR 0.655 3.699 1.00 1.00 3.00 2.665 −4.783
RR 6.520 −5.330 1.00 1.00 2.562 23.458 285.2
RR 3.148 6.239 1.00 1.00 6.297 1.107 −19.260

Fig. 11 RRRR mechanism from MATHEMATICA (the line segment of
pose indicates velocity) in Example 6.4

Fig. 12 RRRR mechanism from MOTIONGEN with velocity and
acceleration constraints in Example 6.4
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6.3 Motion Synthesis With Velocity Constraints. In the
application of rehabilitation mechanisms, achieving velocity and
acceleration similar to natural walking motion is desirable. To
address this, we first introduce two-velocity constraints to the first
and fourth poses in Example 6.1, while omitting the second and
fifth poses. The configurations with three poses and two-velocity
constraints are shown in Table 10.
The only deviation from pure pose synthesis lies in the incorpo-

ration of extra velocity constraints into Eq. (20), utilizing the Ai

parameters from Eq. (23) (or Eq. (32) for RP and PP dyads). We
present the resultant parameter Pi and the final four solutions
directly in Tables 11 and 12. The RRRR mechanism formed by
the second and third solutions is illustrated in Figs. 9 and 10.

6.4 Motion Synthesis With Velocity and Acceleration
Constraints. Now we add velocity and acceleration constraints
to the previous example. With the same three chosen poses in
Sec. 6.3, the third pose is constrained by additional velocity and
acceleration, as shown in Table 13.
While the other design equations encode the information about

poses and velocity, the design equation for acceleration includes
Ai parameters derived from the acceleration constraint in Eq. (24).

Table 16 Three chosen poses and velocities from Robson and McCarthy [27]

No. Translation Rotation Linear Velocity Angular Velocity

1 (3, 1) 0 deg (0.3, 1) 1 rad/s
2 (1, 4) 45 deg (–, –) —

3 (−1, 3) 90 deg (−0.3, 1 ) −0.5 rad/s

Fig. 13 An RRRR mechanism from Robson and McCarthy (the
line segment of pose indicates velocity)

Table 17 Four groups of design parameters for comparison in Example 6.5

Type {x1, l1} {x2, l2} {x3, l3} a0 a1 a2 a3

RR −3.739 −1.100 1.00 1.00 0.347 0.456 0.580
RR −2.528 0.347 1.00 1.00 −0.664 1.382 −0.529
RR −2.033 −2.279 1.00 1.00 1.401 −0.194 −0.319
RR 11.637 −0.614 1.00 1.00 1.282 1.352 87.896

Fig. 14 Six RRRR mechanisms from our algorithm
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The solving process follows the same steps as in previous examples.
For brevity, we only provide the solution of parameter Pi and the
final four solutions in Tables 14 and 15. The second and fourth
solutions exemplify one of the RRRR mechanisms, as illustrated
in Figs. 11 and 12.

6.5 Motion Synthesis With Velocity Constraints: A
Comparison With Robson and McCarthy. Robson and McCar-
thy presented a motion synthesis method of four-bar mechanisms
with three task positions and two specified velocities [27]. To val-
idate our method, we input their data into our equations and
perform a comparative analysis. The corresponding data are pro-
vided in Table 16. While they obtained only one four-bar mecha-
nism (two RR dyads), we identified a total of six four-bar
mechanisms from four dyads. The first two dyad solutions
shown in Table 17 are common to both our methods. The third
and fourth are the two extra solutions obtained by our method.
Figure 13 shows an RRRR mechanism from Robson and McCar-
thy and Fig. 14 shows all six possible RRRR mechanisms from
our algorithm. It is worth mentioning that the generated mecha-
nism can satisfy all the exact pose and velocity constraints.
However, the mechanism might only satisfy those constraints
within different branches. This is a limitation of our method,
which does not attempt to rectify circuit, branch, or order defects.

7 Conclusions

This paper has explored the simultaneous type and dimensional
synthesis of planar four-bar linkages, considering a range of practi-
cal geometric and kinematic constraints, including position,
velocity, acceleration, and pivot placements. Unlike conventional
methods that follow a sequential approach to mechanism design,
our approach introduces a matrix-based methodology that concur-
rently determines both type and dimensional attributes from pro-
vided data, emphasizing a holistic data-driven paradigm. The
novel matrix-based approach presented in this paper has introduced
two key contributions: the development of a unified design equation
capable of handling a wide array of constraint types within planar
dyads, and the introduction of an integrated algorithm for motion
synthesis problems, thereby enabling the identification of all poten-
tial planar four-bar linkage mechanisms.
There are some limitations in this work that are expected to be

addressed in future research. First, this work focuses only on
exact synthesis with five constraints. Extending this approach to
approximate problems to include more constraints is an equally
important problem. Second, this work does not resolve issues
related to circuit, branch, order, and other potential defects and
extension to higher-order mechanisms is also a future research
problem. Nonetheless, this research provides a unified and
efficient approach for practical implementation that promises to
simplify and enhance the synthesis process, making it more
accessible and practical for a wide range of applications.

Data Availability Statement

The datasets generated and supporting the findings of this article are
obtainable from the corresponding author upon reasonable request.
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Springer, Dordrecht, Netherlands, pp. 41–48.

[18] Luu, T. J., and Hayes, M. J. D., 2012, Integrated Type And Dimensional Synthesis

of Planar Four-Bar Mechanisms (Latest Advances in Robot Kinematics),

Springer, New York.

[19] Ge, Q., Purwar, A., Zhao, P., and Deshpande, S., 2017, “A Task-Driven Approach

to Unified Synthesis of Planar Four-Bar Linkages Using Algebraic Fitting of a

Pencil of G-Manifolds,” ASME J. Comput. Inf. Sci. Eng., 17(3), p. 031011.

[20] Deshpande, S., and Purwar, A., 2017, “A Task-Driven Approach to Optimal

Synthesis of Planar Four-Bar Linkages for Extended Burmester Problem,”

ASME J. Mech. Rob., 9(6), p. 061005.

[21] Purwar, A., Deshpande, S., and Ge, Q. J., 2017, “MotionGen: Interactive Design

and Editing of Planar Four-Bar Motions Via a Unified Framework for Generating

Pose- and Geometric-Constraints,” ASME J. Mech. Rob., 9(2), p. 024504.

[22] Lyu, Z., Purwar, A., and Liao, W., 2024, “A Unified Real-Time Motion

Generation Algorithm for Approximate Position Analysis of Planar N-Bar

Mechanisms,” ASME J. Mech. Des., 146(6), p. 063302.

[23] Zhao, P., Li, X., Purwar, A., and Ge, Q. J., 2016, “A Task-Driven Unified

Synthesis of Planar Four-Bar and Six-Bar Linkages With R- and P-Joints for

Five-Position Realization,” ASME J. Mech. Rob., 8(6), p. 061003.

[24] Schaefer, R. S., and Kramer, S. N., 1979, “Selective Precision Synthesis of Planar

Mechanisms Satisfying Position and Velocity Constraints,”Mech. Mach. Theory,

14(3), pp. 161–170.

[25] Holte, J.E., 1996, “Two Precision Position Synthesis of Planar Mechanisms with

Approximate Position and Velocity Constraints,” Ph.D dissertation, University of

St. Thomas, Minneapolis, MN.

[26] Holte, J. E., Chase, T. R., and Erdman, A. G., 2001, “Approximate Velocities in

Mixed Exact-Approximate Position Synthesis of Planar Mechanisms,” ASME

J. Mech. Des., 123(3), pp. 388–394.

[27] Robson, N. P., and McCarthy, J. M., 2005, “The Synthesis of Planar 4R Linkages

With Three Task Positions and Two Specified Velocities,” ASME 2005

International Design Engineering Technical Conferences and Computers and

Information in Engineering Conference, Volume 7: 29th Mechanisms and

Robotics Conference, Parts A and B, Long Beach, CA, Sept. 24–28, pp. 425–432.

[28] Robson, N. P., McCarthy, J. M., and Tumer, I. Y., 2008, “The Algebraic

Synthesis of a Spatial TS Chain for a Prescribed Acceleration Task,” Mech.

Mach. Theory, 43(10), pp. 1268–1280.

[29] Robson, N., and McCarthy, J., 2009, Applications of the Geometric Design of

Mechanical Linkages With Task Acceleration Specifications. Vol. 7. 10.1115/

DETC2009-87415.

[30] Coxeter, H., 1974, Projective Geometry, 2nd ed., Springer-Verlag, New York.

[31] Stolfi, J., 1991, Oriented Projective Geometry, Academic Press Professional Inc.,

Boston, MA.

[32] Sharma, S., and Purwar, A., 2020, “Unified Motion Synthesis of Spatial

Seven-Bar Platform Mechanisms and Planar-Four Bar Mechanisms,” ASME

2020 International Design Engineering Technical Conferences and Computers

and Information in Engineering Conference, Virtual Online, Aug. 17–19.

[33] Tsuge, B. Y., Plecnik, M. M., and Michael McCarthy, J., 2016, “Homotopy

Directed Optimization to Design a Six-Bar Linkage for a Lower Limb With a

Natural Ankle Trajectory,” ASME J. Mech. Rob., 8(6), p. 061009.

[34] Tsuge, B. Y., and Michael McCarthy, J., 2016, “An Adjustable Single

Degree-of-Freedom System to Guide Natural Walking Movement for

Rehabilitation,” ASME J. Med. Devices, 10(4), p. 044501.

[35] Chase, T. R., and Mirth, J. A., 1993, “Circuits and Branches of Single-Degree-

of-Freedom Planar Linkages,” ASME J. Mech. Des., 115(2), pp. 223–230.

121003-12 / Vol. 24, DECEMBER 2024 Transactions of the ASME


	1  Introduction
	2  Planar Four-Bar Mechanisms and Geometric Constraints
	2.1  Geometric Constraints of Revolute-Revolute and Prismatic-Revolute Dyads
	2.2  Geometric Constraints of Revolute-Prismatic and Prismatic-Prismatic Dyads

	3  Kinematic Representation Using Homogeneous Matrix
	4  A Unified Design Equation
	4.1  Design Equations for Revolute-Revolute and Prismatic-Revolute Dyads
	4.2  Design Equations for Revolute-Prismatic and Prismatic-Prismatic Dyads
	4.3  Other Geometric Constraints
	4.3.1  Geometric Constraints on Fixed and Moving Pivots
	4.3.2  Geometric Constraints on Fixed and Moving Line


	5  Solving System of Equations Using Null Space Analysis
	6  Examples
	6.1  Five-Pose Motion Synthesis
	6.2  Four-Pose Motion Synthesis With an Extra Constraint
	6.3  Motion Synthesis With Velocity Constraints
	6.4  Motion Synthesis With Velocity and Acceleration Constraints
	6.5  Motion Synthesis With Velocity Constraints: A Comparison With Robson and McCarthy

	7  Conclusions
	 Data Availability Statement
	 References

