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Internally diketopyrrolopyrrole-bridged
bis-anthracene macrocycle: a multifunctional
fluorescent platforms
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Kunhua Lin,*® Jonathan L. Sessler €2 * and Hongyu Wang

A covalently bridged macrocycle (5) comprising two anthracene strands connected at the lactam positions
of a diketopyrrolopyrrole (DPP) chromophore has been constructed. The crystal structure reveals that the
central DPP chromophore is wrapped with the externally twisted bis-anthracene macrocycle. The internally
bridged macrocycle architecture endows 5 with multifunctional properties. Due to shielding by the double
anthracene straps, 5a and a polymer derived from it, DPP-Cycle, display strong fluorescence emission
features in both organic media and the solid state. Moreover, the emission colors of these macrocyclic
materials can be effectively tuned through external stimuli such as mechanical and thermal treatments,
as well as solvent fuming. Compound 5a is stable in the presence of most metal cations but degrades
rapidly when it comes in contact with Cu?* in acetonitrile. This decomposition, which is thought to
involve a reaction at the central DPP via a radical-mediated mechanism, was found to be accelerated in
5a compared to the non-cyclic analogue 2a. This leads us to suggest that internally bridged
macrocycles, such as those described here, may have a role to play as fluorescent Cu?* sensors. Finally,
the high fluorescence of 5a in the solid state enables its use in the area of latent fingerprint (LFP) imaging.

Introduction

Macrocyclic molecules have played a critical role in the devel-
opment of supramolecular chemistry." Increasing efforts have
been made to create macrocyclic systems of high complexity or
endowed with special functionality. One area where this has
been proven fruitful involves the complexation of intrinsically
emissive guests.”* In the best-case scenarios, macrocyclic
encapsulation isolates the m-conjugated backbones and can
suppress aggregation-caused quenching (ACQ). Typically, this
translates into a high level of fluorescence emission in the solid
state.>® Enhanced room-temperature phosphorescence effects

“Department of Chemistry, College of Science, Center for Supramolecular Chemistry &
Catalysis, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China.
E-mail: wanghy@shu.edu.cn

*College of Material Chemistry and Chemical Engineering, Key Laboratory of
Organosilicon Chemistry and Material Technology of Ministry of Education,
Hangzhou Normal University, Hangzhou, P. R. China. E-mail: wan_junhua@hznu.
edu.cn

‘Laboratory for Microstructures, Instrumental Analysis and Research Center of
Shanghai University, Shanghai 200444, P. R. China

“Department of Chemistry, The University of Texas at Austin, 105 E. 24th Street A5300,
Austin, TX 78712, USA. E-mail: sessler@cm.utexas.edu

t Electronic supplementary information (ESI) available: Experimental methods,
synthesis protocols, NMR spectra, X-ray structural data and photophysical data.
CCDC 2233723 and 2233724. For ESI and crystallographic data in CIF or other
electronic format see DOI: https://doi.org/10.1039/d4sc06067a

910 | Chem. Sci., 2025, 16, 910-919

(e.g., increased lifetimes and greater phosphorescence quantum
efficiencies) can also result from macrocycle encapsulation.”
Although the formation of complexes containing m-conjugated
guests surrounded by insulating macrocyclic hosts is relatively
straightforward, ideally requiring only a simple mixing of the
host and guest, the resulting supramolecular constructs exist in
equilibrium with their constituent components. This can be
a limitation in certain applications.

One approach to address the issue of potential complex
instability involves covalent linkage of a m-conjugated core to
form rotaxane-like architectures, that is, internal w-conjugated
molecules are covalently bridged to the external macrocycle.****
In 2010, Takeuchi et al. pioneered the synthesis of a self-
threading polythiophene, whose conjugated backbone (ie.,
polythiophenes) was sheathed within its own encircling side
chains.* The covalently linked alkyl macrocycles could enhance
the effective conjugation length of the interior polythiophene
backbone. Subsequently, this same research group reported
ared-emitting self-threading polymer that achieved a solid-state
fluorescence quantum yield (®5) of 13%. Bronstein et al. re-
ported a series of fluorescent chromophore-based polymers
wrapped with double alkyl straps.”™® They found that the
external covalent macrocycles could effectively suppress inter-
and intramolecular aggregation, decrease energetic disorder,
and increase the backbone collinearity. The most notable of
these encapsulated polymers exhibited solid-state quantum
yields as high as 41%." In 2021, Wiirthner and collaborators

© 2025 The Author(s). Published by the Royal Society of Chemistry
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described perylene bisimide (PBI) moieties encapsulated within
cyclo[n]oligothiophenes.>"** It was suggested that the resulting
encapsulated donor-acceptor (D-A) dyads benefited from
ultrafast Forster resonance energy transfer and photoinduced
electron transfer processes. In 2023, Babu et al. reported half-
and full-oligothiophene-ring-strapped PBIs substituted at the
bay positions, and demonstrated ultrafast charge separation
and stabilization within these D-A macrocycle dyads.”*** More
recently, Wei, et al. reported a series of water-soluble double
cavity cyclophanes, consisting of central PBI or naphthalene
diimide (NDI) cores sheathed by bilateral cationic bipyridinium
straps.>®*¢ The resulting constructs displayed excellent near-
infrared photothermal effects. In spite of this progress, the
number of examples where a m-conjugated molecule benefits
from covalent encapsulation with functional macrocycles (as
opposed to simply alkyl-based macrocycles) remains limited.
Here, we report a covalently macrocycle-wrapped architecture
(5) wherein two anthracene units are connected at the lactam
positions of a DPP chromophore. A corresponding polymeric
version, DPP-Cycle, has also been prepared. As detailed below,
these systems display excellent photoluminescence features
and can act as rudimentary Cu>" sensors. Moreover, the emis-
sion colours of 5 and DPP-Cycle can be tuned effectively through
external stimuli, such as grinding, heating, and solvent fuming.
Finally, in preliminary work, DPP-Cycle was found to be effec-
tive in the area of latent fingerprint (LFP) imaging. Secondary
level LFP information could be obtained when a copper plate
was used as the substrate and the resulting image was subjected
to digital magnification. To the best of our knowledge, LFP
imaging is an application that has yet to considered in the
context of covalently wrapped chromophore systems.

DPP is one of the most widely used building blocks to
construct donor-acceptor conjugated polymers.”””*® Like most
planar conjugated molecules, DPP suffers from ACQ.** As
aresult, it exhibits a high @ in dilute solution, but a very low ®x
in the solid state. Inspired by recently reported covalently
bridged cyclic structures and our previous work on DPP,*~** we
hypothesized that the ACQ effects could be suppressed by
creating a doubly anthracene-strapped DPP 5 wherein the DPP
serves as the molecular axis of a rotaxane-type structure. This
study was undertaken in an effort to test this hypothesis.

Results and discussion
Synthesis

The synthetic route to the doubly anthracene-strapped DPP
macrocycles of this study (5a and 5b), as well as model
compounds 2a and 8, are outlined in Scheme 1. Full synthetic
procedures for 5a, 5b, and preparative intermediates are
provided in the ESLT Briefly, compounds 1a and 1b, used as
starting materials, were prepared according to previously re-
ported procedures.** They were then reacted with 2,6-dime-
thoxyaniline in the presence of 1-hydroxybenzotriazole hydrate
(HOBT), 4-(dimethylamino)pyridine (DMAP), and N,N'-diiso-
propylcarbodiimide (DIC) at room temperature for seven days to
afford the corresponding N-arylated products 2a and 2b in
yields of 21% and 16%, respectively. Subsequent treatment of

© 2025 The Author(s). Published by the Royal Society of Chemistry
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2a and 2b with BBr; in dichloromethane provided the
tetrahydro-DPP derivatives 3a and 3b, which were subjected to
a base-mediated nucleophilic reaction with propargyl bromide
to afford the tetraalkynyl-DPPs 4a and 4b in yields of 62% and
49%, respectively. Finally, a copper(i)-catalysed azido-alkyne
cycloaddition (CuAAC) reaction of 4a and 4b with 9,10-bis(azi-
domethyl)anthracene 7 produced the target doubly anthracene-
strapped DPP macrocycles 5a and 5b in yields of 9% and 4%,
respectively. ~ The  triazole-anthracene-triazole = model
compound 8 was also prepared for comparison. The structures
of all new compounds were confirmed by "H NMR and *C NMR
spectroscopy and ESI-TOF-MS (Fig. S1-5227), as well as by single
crystal X-ray diffraction analysis for 2a and 5a (see below).

Crystal structures

Diffraction grade crystals of the DPP reference compound 2a
were obtained via the slow diffusion of methanol vapor into
a chloroform solution of 2a (Fig. 1, S23 and Table S17). The
resulting structure confirmed the presence of four phenyl
groups. The two flanking phenyl groups are rotated by 35.6°
with respect to the central DPP core. The other two phenyl
groups, linked at the lactams, are nearly perpendicular to the
DPP core with identical dihedral angles of 71.8°. The net result
is a twisted conformation that is expected to provide partially
shielding of the DPP core. Specifically, the built-in steric
hindrance provided by the phenyl substituents was expected to
prevent intermolecular - stacking. As expected, no close -1
stacking involving the DPP cores is observed in the crystal
packing diagram. On the other hand, two types of hydrogen
bonds between the neighbouring molecules were observed
(Fig. 1c and d). One set of interactions (with H---O distances of
2.42 A) is between the phenyl hydrogen atoms and carbonyl
oxygen atoms. The other interactions are between the hydrogen
atoms of the phenyl groups and the methoxy oxygen atoms and
are characterized by H---O distances of 2.53 A. The net result is
a staggered arrangement as previously reported for PBI deriva-
tives bearing bulky substituents at the imide positions.**?*”

An X-ray crystallographic analysis of a single crystal of 5a,
obtained via the slow diffusion of methanol vapor into an
acetonitrile solution of 5a, confirmed the expected doubly
anthracene-strapped macrocyclic structure (Fig. 2, S24 and
Table S17). A twisted Z-shaped conformation is observed, with
both anthracene-strapped macrocycles adopting a geometry
that appears to minimize distortion with respect to the central
DPP plane. This effect is manifested at the carbon atoms adja-
cent to the triazole rings with torsional angles of 112.1° and
118.8° associated with atoms C17-C18-0O1 and C26-C25-02,
respectively. The central DPP core is almost planar, and the
dihedral angles between the DPP core and its adjacent phenyl
units are 38.1°, a value that is almost identical to that of the
non-cyclic reference system 2a.*® The packing diagram reveals
that 5a exists in the form of slipped stacks characterized by an
interplanar distance of about 3.47 A and inferred intermolec-
ular C-H---7t interactions (2.79 A) (Fig. 2c). Perhaps reflecting
steric shielding by the macrocycles, the minimum distances
between the centroids of the DPP cores are approximately 11.1 A

Chem. Sci., 2025, 16, 910-919 | 91
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Scheme 1 Synthesis of doubly anthracene-strapped diketopyrrolopyrrole 5 and model compound 8.

and 18.2 A. A high degree of spatial separation in thus enforced
in the solid state. This stands in contrast to what has been seen
in alkyl-substituted DPPs.

Photophysical properties

Spectroscopic studies of macrocycle 5a and model compounds
2a and 8, as dilute solutions (10> M), were carried out in
chloroform (Fig. 3 and Table 1). Macrocycle 5a displays char-
acteristic absorptions of both the anthracene and DPP moieties,
as highlighted by comparisons with model compounds 2a and 8
(Fig. 3a). In fact, 5a, containing two anthracene subunits and
one DPP moiety, gives rise to a spectrum that is close to a linear
superposition of the high energy anthracene absorption
observed below 400 nm with three well-resolved vibronic
progressions and a low energy broad absorption from the DPP
moiety. Nevertheless, compared to what would be expected for
this linear superposition, a slight decrease in the absorption
intensity of 5a can be discerned; presumably this reflects the
conformational restriction imposed by the macrocycle. On the
basis of these studies, we conclude that there is little, if any,

912 | Chem. Sci,, 2025, 16, 910-919

ground state electronic interaction between the anthracene
subunits and the DPP core.

Due to its wrapped structure, 5a was expected to benefit from
intramolecular energy/electron transfer between anthracene
(donor) and DPP (acceptor) moieties. To test this proposition,
the emission spectra of macrocycle 5a were recorded upon
selective excitation of the anthracene and DPP absorption
spectral regions. Upon selective excitation of the anthracene
moieties at 375 nm, little emission is seen that can be ascribed
to anthracene fluorescence. In contrast, under these conditions,
the fluorescence intensity of the DPP moiety is increased by
about 10-fold compared to model compound 2a excited under
otherwise identical conditions (Fig. 3b). This is taken as
evidence of efficient intramolecular energy transfer from the
bilateral anthracene donors to the central DPP acceptor. It is
important to note that the emission spectrum of anthracene
overlaps with the absorption spectrum of DPP (Fig. S25%). The
relative ratio of the peaks corresponding to the anthracene
donor, normalized to the peaks corresponding to the DPP
acceptor, was used to estimate the energy transfer efficiency.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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(a)

(c)

Fig.1 ORTEP drawing of compound 2a with the thermal ellipsoids set
at the 50% probability level. Atom color codes: C, grey; N, blue; O, red:
(a) front view, (b) side view, (c) and (d) intermolecular interactions
between adjacent molecules. The purple dashed line represents
inferred hydrogen bond interactions between adjacent molecules.
Solvent molecules and hydrogen atoms with partial occupancy are
omitted for clarity.

Fig.2 ORTEP drawing of compound 5a with the thermal ellipsoids set
at the 50% probability level. Atom color codes: C, grey; N, blue; O, red.
(a) Front view, (b) side view, and (c) molecular packing diagram. The red
solid lines represent the distance between adjacent DPP cores, and the
purple dashed line represents the interplanar distance between the
adjacent anthracenes. Hydrogen atoms and solvent molecules are
omitted for clarity.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 (a) UV-vis absorption spectra of 2a, 5a and 8 in chloroform (10

uM). Fluorescence spectra of 2a, 5a and 8 in chloroform (1 puM)
recorded upon excitation of the anthracene chromophore at 375 nm
(b) and excitation of the DPP chromophore at 465 nm (c). (d)
Normalized UV-vis absorption spectra and emission spectra of 2a and
5a in chloroform solution (solid line) and as thin films (dashed line).

According to this method, the energy transfer from anthracene
moieties to the DPP moiety is estimated to be approximate 90%
(Fig. S267). When subjected to photoexcitation at 465 nm (DPP
spectral region), both 5a and 2a show almost the same char-
acteristic vibronic fine structures with the emission maximum
at 519 nm and a shoulder at about 556 nm (Fig. 3¢).*** The
emission intensity of 5a is, however, slightly smaller than that of
2a, a finding that may reflect the smaller absorption at 465 nm
by the DPP moiety in 5a as compared to 2a.

Next, the optical properties of 2a and 5a were studied in thin
films. To a first approximation, the solution phase features were
retained in the thin films, although with redshifts of approxi-
mately 9 and 17 nm, respectively (Fig. 3d). Additionally, the
absorption spectrum of 5a shows a steeper onset in the thin film
compared to 2a, a finding interpreted as indicating that 5a
possesses a lower level of conformational disorder in the
ground state.

As expected, 2a and 5a displayed high fluorescence quantum
yields in dilute chloroform solution, with the @ for 5a being
close to unity. In contrast, in the solid state, 2a exhibits the
effect of presumed ACQ fluorescence quenching as indicated by
a @p value of only 4.6%. A larger quantum yield (@ = 10.1%)
was seen in the case of 5a. This contrast in values is consistent
with the design expectation that the introduction of an external
macrocycle can prevent aggregation between fluorescent chro-
mophores and partially suppress ACQ effects.>™"®

Metal ion sensing

Given the presence of two geometrically defined cavities and the
abundance of likely metal coordination sites, macrocycle 5a in
acetonitrile (107> M) was treated with a variety of common
metal ions and the resulting fluorescence response, if any, was
recorded. As shown in Fig. 4a, as well as S27 and $28,t addition

Chem. Sci., 2025, 16, 910-919 | 913



Open Access Atrticle. Published on 03 December 2024. Downloaded on 9/3/2025 7:54:51 PM.

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

View Article Online

Chemical Science Edge Article

Table 1 Absorption and fluorescence properties of model compound 2a, macrocycle 5a, and the corresponding polymers

Sample Aabs (nM) Aem,max (NM) D (%) 7 (ns)
2a in CHCl; 471 523 88.8 £ 1.8 5.517
5.71°¢
2a film 494 532 46+12 7, = 0.55 (57.4%)
T, = 1.96 (42.6%)
5a in CHCl, 356, 374, 395, 483 520 98.4 + 1.6 6.46”
6.65°
5a film 360, 380, 401, 486 537 10.1 + 0.2 7, = 0.73 (79.0%)
T, = 4.27 (21.0%)
DPP-C8C12 in TCB 407, 519 597 44.7 + 0.52 2.567
DPP-C8C12 film 407, 525 663 7.7 £ 0.6 7, = 1.28 (22.8%)
1, = 5.01 (77.2%)
DPP-Cycle in TCB 378, 399, 518 596 43.8 £0.24 2.23%
DPP-Cycle film 402, 475, 518 622 15.7 £ 1.4 7, = 0.86 (66.2%)

7, = 2.30 (33.8%)

“ Measured using an integrating sphere. The solution phase studies were carrled out in chloroform or 1,2,4-trichlorobenzene (TCB) as dilute
solutions, whereas thin films were spin-coated from chlorobenzene solution. © Excitation at 375 nm. ¢ Excitation at 465 nm.
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Fig. 4 (a) Relative fluorescence intensities of 5a (10> M, in CH3CN) as seen in the presence of various metal ions including trifluorosulfonate
salts of Na*, K*, Ca®*, Mg?*, Zn?*, Fe?*, Ni?*, Ag*, and Cu?* and perchlorate salt of Cd®*. Except for Cu?*, which was added at 5.0 equiv., other
metal ions were added at the 100 equiv. level. Time dependent changes in the fluorescence intensity (b) and UV-vis absorbance features (c) of 5a
(107> M) recorded after the addition of 5 equiv. of Cu?* in acetonitrile. (d) Comparison of the color changes induced when acetonitrile solutions
of 2a and 5a were treated with 5 equiv. of Cu?*. (e) Changes in the 'H NMR spectrum of 5a seen before and after the addition of Cu?* in
deuterated acetonitrile (containing 25% CDCls). (f) EPR spectra of Cu®* (10 mM) and 5a (5 x 10™* M) with or without 5 equiv. of Cu®*

acetonitrile at room temperature. Inset: proposed decomposition mechanism via a radical cation process. See the main text for discussion.

of 100 equivalents of Na*, K*, Ca**, Mg”*, Zn*>*, Fe**, Ni**, Cd** completely the fluorescence of 5a (Fig. 4b). No bathochromic
and Ag" (trifluorosulfonate salts, except for Cd**, which was shift of the emission bands or new emission bands were
used in the form of its perchlorate salt) had a negligible effect observed. Furthermore, the UV-vis absorption spectra of 5a,
on either the UV-vis absorption or fluorescence spectra of 5a. In  recorded upon the addition of Cu®" revealed that stepwise
contrast, only 5 equivalents of Cu®" was found to quench almost ~ addition of Cu”" leads to a gradual decrease in the intensity of

914 | Chem. Sci,, 2025, 16, 910-919 © 2025 The Author(s). Published by the Royal Society of Chemistry
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the DPP moiety absorption (420-520 nm) before it finally
disappears. In contrast, no significant change in the anthracene
absorption features (330-410 nm) was observed (Fig. 4c). These
results are taken as evidence, that the Cu®* interacts directly
with the DPP core, but not with the anthracene subunits. In
a comparison study carried out under otherwise identical
conditions, a solution of 2a was titrated with Cu®". In this case,
only partial quenching of the fluorescence emission of 2a was
seen after 10 min (Fig. S29 and S307). These changes could also
be observed visually (Fig. 4d). After adding Cu®", the initial light-
yellow colour of the solution of 5a became colourless within
4 min. The initial strong green luminescence of solutions of 5a
was also found to fade gradually to the point of being unob-
servable under a 365 nm UV lamp. The colour of the corre-
sponding solution of 2a was found to fade much more slowly
compared to 5a, with fluorescence still being readily observable
after 10 min.

The effects of Cu®>* on the fluorescence features of 5a led us
to explore its possible use as a divalent copper sensor. Forma-
tion of Cu**-ligand complexes is arguably the most common
mechanism for Cu®" sensing.***? Although often benefiting
from high specificity, Cu**-ligand complexes typically used for
sensing are often labile and can be dissociated by treating with
molecules displaying stronger affinities for Cu®*, such as
ethylene diamine tetraacetic acid (EDTA).** When EDTA was
added to premixed solutions of 2a and Cu®" or 5a and Cu*", the
Cu**-induced alterations in the absorption and fluorescence
features of the DPP moiety were not recovered (Fig. S31-S347).
On this basis, we conclude that the spectral changes discussed
above do not reflect the formation of 2a-Cu®" and 5a-Cu*"
complexes.

To gain insights into the events associated with treating 2a
and 5a with Cu®", the "H NMR spectra were recorded before and
after the addition of Cu®" (Fig. 4e and S357). It was found that
the characteristic aromatic peaks of 5a decreased in intensity
and disappeared roughly 5 min after adding 5 equivalents of
Cu*". In the case of 2a, exposure to 5 equivalents of Cu** caused
a decrease in the aromatic peaks, which then became difficult to
discern clearly after 10 min. The MS spectrum of 5a is charac-
terized by the presence of two peaks at m/z = 1233.23 and
1256.24 corresponding to [5a + H|" and [5a + Na]", respectively
(Fig. S137). Neither peak was observed following the addition of
Cu”* (Fig. $367). This leads us to suggest that interaction with
Cu”" in acetonitrile results in decomposition of the DPP core in
both 2a and 5a, with the macrocyclic nature of the latter system
apparently serving to accelerate the decomposition process.

Aromatic amines have been reported to easily form radicals
in acetonitrile in the presence of Cu®".*#** Recently, Liang et al.
reported that the decomposition of an N-alkyl disubstituted
DPP could be triggered by Cu®" in acetonitrile through a sug-
gested radical mechanism.*® We thus propose that the N-aryl
disubstituted DPP in 2a and 5a could also promote the forma-
tion of radicals in acetonitrile in the presence of Cu**. Forma-
tion of a DPP radical would then be a key step leading ultimately
to the decomposition of the DPP core. This decomposition
would then be evident through readily discernible changes in
the optical properties.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Electron paramagnetic resonance (EPR) spectroscopy is
a time-honored technique used to detect free radicals in chem-
ical and biological systems. It was thus used to monitor putative
radical processes associated with presumed DPP decomposition.
In these studies, the focus was on 5a over 2a due to solubility
considerations and the more dramatic nature of the Cu*'-
induced effect in acetonitrile. As shown in Fig. 4f, a horizontal
line can be observed in the EPR spectrum of pure 5a solution (5
x 10~* M, in CH;CN), indicating the absence of radical species.
As expected, a broad EPR peak is seen for pure Cu®>* (10 mM, in
CH;CN) reflecting its paramagnetic nature. Upon the addition of
5 equivalents of Cu®" to a solution of 5a, a new, weak EPR signal
appeared at 3500 G, which was attributed to the formation of the
DPP radical concurrent with the reduction of Cu** to Cu’. This
new signal was concordant with the DPP radical EPR spectrum
reported previously by Liang et al.*® We thus suggest that the DPP
unit of 5a decomposes when it comes in contact with Cu®>" in
acetonitrile via a radical mechanism. We also suggest that the
macrocyclic nature of 5a serves to enhance this effect relative to
the non-cyclic analogue, 2a.

Poly-bicyclic polymers

With monomer 5b in hand, a poly-bicyclic polymer DPP-Cycle
was synthesized by means of a palladium-catalyzed Sonoga-
shira-Hagihara cross-coupling copolymerization using 1,4-
bis(dodecyloxy)-2,5-diethynylbenzene 9 as the co-monomer. The
non-cyclic analogue, DPP-C8C12, a compound bearing
branched 2-octyldodecyl substituents, was synthesized for
comparison (Scheme 2). Both polymers feature the same back-
bone, but different sidechains attached at the DPP monomers.
The polymers were purified by successive Soxhlet extraction
with methanol, acetone, hexanes, and chloroform in sequence.
The resulting leachates were collected and the volatiles were
removed under reduced pressure to afford the corresponding
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Scheme 2 Synthesis of DPP-C8C12 and DPP-Cycle through the
Sonogashira cross-coupling reaction.
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polymers. These polymers exhibited moderate solubility in
solvents such as chlorobenzene (CB) and 1,2,4-trichlorobenzene
(TCB). The number average molecular weights (M,,) and weight
average molecular weights (M,,) were 25.5 and 37.1 kg mol ™" for
DPP-Cycle, and 17.7 and 35.7 kg mol ' for DPP-C8C12,
respectively, as determined by gel permeation chromatography
(GPC) using 1,2,4-trichlorobenzene (TCB) as the eluent at 150 °C
(Table S2t). Thermogravimetric analyses (TGA) of both poly-
mers under an N, atmosphere revealed high thermal stability
for both systems with decomposition temperatures (Ty, corre-
sponding to 5% weight loss) greater than 330 °C (Fig. S377).

The solution and thin film absorption and emission spectra
of both polymers are shown in Fig. 5a. The absorption spectral
profiles in dilute solution and in the thin films were essentially
identical for both DPP-C8C12 and DPP-Cycle; only a modest
6 nm and 1 nm redshift was seen for these two polymers,
respectively, upon transitioning from solution to the thin film
state. Both DPP-C8C12 and DPP-Cycle exhibited almost identical
fluorescence spectra in solution with a Aem max of about 596 nm
and a shoulder at 620 nm. Moreover, similar quantum yields of
approximately 44% and 7 values of 2.5 ns were observed for both
polymers. We take this as evidence that the observed fluores-
cence emission originates from the isolated polymer mainchains
in solution, rather than from polymer-polymer interactions,
which would be expected to vary as a function of structure. A
different behavior was observed in the thin films. For instance,
the Aem,max Of DPP-C8C12 red-shifts from 597 to 663 nm upon
transitioning from solution into a thin film. A smaller red-shift in
the Aem,max (by only about 26 nm, i.e., from Aem max = 596 nm to
622 nm) is observed for DPP-Cycle when studied as a film. The
thin film @ values for DPP-C8C12 and DPP-Cycle were 7.7% and
15.7%, respectively. This finding is easily rationalized in terms of
macrocyclic shielding (as in DPP-Cycle), which serves to suppress
the aggregation of the polymer mainchains more effectively than
the branched long alkyl chains present in DPP-C8C12. This
conclusion corroborates previous findings involving encapsu-
lated conjugated materials.

X-ray diffraction (XRD) analyses were performed to determine
the crystallinity of the polymer thin films on a glass substrate
(Fig. 5b). It was found that DPP-Cycle is essentially amorphous as
inferred from the absence of prominent reflection peaks. In
contrast, DPP-C8C12 as a thin film exhibited several moderate
reflection peaks, respectively, consistent with the formation of

(b)
Abs.| PL ~21°
DPP-Cycle Solution

—— DPP-Cycle Film

O

——glass substrate

~———DPP-C8C12
|\ —opp-cycle

—— DPP-C8C12 Solution
—— DPP-C8C12 Film

Normalized Absorbance
Normalized Emission
Intensity

e

350 400 450 500 550 600 650 700 750 800 5 10 15 20 25 30 35 40
Wavelength (nm) 20()

Fig. 5 (a) UV-vis absorption and fluorescence spectra of DPP-C8C12
and DPP-Cycle in dilute trichlorobenzene solution and in thin films. (b)
XRD patterns of DPP-C8C12 and DPP-Cycle thin films measured on
a glass substrate.
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a well-ordered structure.”*® The peak centred at 4.24°, corre-
sponding to a d;,.-spacing value of 20.8 A, is thought to reflect
the intermolecular spacing between a pair of main chains sepa-
rated by long branched side chains. A broad and fuzzy diffraction
peak centred at about 20°, overlapping with the scattering from
the glass substrate, is also seen. This feature is thought to reflect
the face-to-face packing distance within the polymer main chain.
Although not analysed in detail the feature at 12.11° is thought to
reflect the presence of higher order structures.

Mechanoluminescence

The solid-state optical and electronic properties of organic
chromophores are often related directly to the degree of
aggregation and the morphologies of the resulting ensembles.
Macrocycles that protect internal molecules can reduce the
extent of interactions in the solid state, thus leading to
enhanced emission-related features. These effects are expected
to depend on the specifics of the molecular arrangements in the
solid state. This offers the appealing opportunity to tune the
molecular aggregation behavior by application of various
stimuli, such as mechanical force.**** The mechanoresponsive
luminescence behavior of 2a, 5a and DPP-Cycle was thus
studied. The results are summarized in Fig. 6 and Table 2.

By concentrating dichloromethane solutions using a rotary
evaporator, crystalline powders of 2a and 5a were obtained. The
resulting solid species display bright green-yellow fluorescence
with emission peaks at 553 and 557 nm, respectively. When
pristine 2a crystalline powder was thoroughly ground in an
agate mortar, a slight red-shift was observed in its emission (~6
nm), along with a decrease in the &y from 23.2% to 8.0%.
Similar phenomena were observed for 5a. In this latter case,
grinding led to a red-shift in the emission spectral maximum
from Aem,max = 557 nM (@ = 20.5%) t0 Aemy,max = 575 nm (Pr =
4.8%). These spectral changes correspond well with the varia-
tions in emission color observed by the naked eye.

Powder X-ray diffraction (PXRD) analyses of pristine crys-
talline powders of 2a and 5a revealed sharp and intense peaks,
as would be expected for microcrystalline samples. These sharp
features disappeared upon grinding, presumably as the result of
forming an amorphous state (Fig. 6d and e). On the other hand,
solution phase 'H NMR spectra of the ground samples of 2a and
5a matched well with those recorded prior to grinding (Fig. S38
and S3971). We thus suggest that the grinding process has little
effect on the chemical structure.

The color changes could be reversed to regenerate the pris-
tine, i.e., prior-to-grinding state by solvent fuming and heat-
annealing (Fig. S401). In the case of 2a, samples obtained
after grinding completely recovered their fluorescence features,
including color, upon exposure to dichloromethane vapor for
20 min. The crystalline state was regenerated as inferred from
the fluorescence spectrum and PXRD analyses after fuming
(Fig. 6d). Subjecting a ground sample of 5a to fuming with
dichloromethane vapor under identical conditions led to
significant recovery of the luminescence color. However,
a slightly broader emission was observed compared to the
pristine powder. Partial recovery of crystallinity was observed

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 The fluorescence spectra of solid powders of 2a (a), 5a (b) and DPP-Cycle (c) studied in different solid state forms. Top: Corresponding
fluorescence images recorded under a 365 nm ultraviolet lamp. The corresponding PXRD patterns of 2a (d), 5a (e) and DPP-Cycle (f) recorded in

different solid state forms.

Table 2 Maximum emission wavelength (), absolute fluorescence
quantum yields (@f) and lifetimes (t) of pristine and ground powder
samples

Sample State Aem,max (NM) P (%) 7 (ns)
2a Pristine 553 232 +13 13 =2.42(35.1%)
7, = 6.03 (64.9%)
Ground 559 8.0+ 0.8 1, =1.98(61.9%)
7, = 4.72 (38.1%)
5a Pristine 557 20.5 +£1.8 13 =0.96 (33.8%)
7, = 2.54 (66.1%)
Ground 575 48407 1, =0.93 (44.3%)
7, = 2.98 (55.7%)
DPP-Cycle Pristine 635 20401 1, =0.68 (62.1%)
7, = 2.79 (37.9%)
Ground 642 0.5+ 0.1 73 =0.42 (69.1%)
7, = 3.28 (30.9%)

after subjecting a ground sample of 5a to dichloromethane
fuming, as inferred from PXRD analysis (Fig. 6d).

The non-cyclic polymer, DPP-C8C12, did not show appre-
ciable mechanoresponsive luminescence behavior. However,
the bicyclic polymer, DPP-Cycle, exhibited similar stimuli-
response luminescence as seen in the case of the monomeric
macrocycle 5a. Specifically, grinding results in a slight red-shift
in the emission and an obvious decrease in the & value.
Likewise, solvent fuming and heat-annealing were found to
restore largely the photophysical properties to those of the

© 2025 The Author(s). Published by the Royal Society of Chemistry

unground form.*** In this case, PXRD analyses indicated that
these changes correlated with an amorphous-to-amorphous
conversion (Fig. 6f). While not definitive proof, this is consis-
tent with conversions between several thermodynamically
(meta)stable states.

Latent fingerprint (LFP) imaging

LFPs are imprints left by human fingers on surfaces or
substrates. Typically, LFPs contain moisture and grease, as well
as absorbed dust. An ability to read LFPs can play a critical role
in forensics.>** In light of its high fluorescence in the solid
state, we sought to explore whether 5a could be used for LFP
imaging. To test this possibility, a sample of 5a was doped into
silica gel (300-400 mesh, 0.1 wt% doping ratio) to enhance its
adhesion to LFPs. The resulting powder (5a@silica) was char-
acterized by a strong green fluorescence and demonstrated
good stability when dispersed onto silica gel (Fig. S41%). It was
thus tested for its ability to facilitate LFP visualization under
conditions of powder dusting.

Generally, LFP imaging involves a simple three-step process:
fingerprint deposition, powder dusting, and fluorescence
imaging. To obtain a suitable fingerprint for testing, the finger-
tips of one coauthor were pressed onto various surfaces,
including glass slides, copper plates, zinc plates, leather, trans-
parent plastic bags, and even wooden planks. Subsequently, the
5a@silica powder was carefully sprinkled on the fingerprinted
surfaces, and the excess powder was gently blown away using air.

Chem. Sci., 2025, 16, 910-919 | 917
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Fig. 7 (a) Fluorescent images of LFPs developed using 5a@silica on
different substrate surfaces. (b) Secondary level information visible
when a copper plate was used as the substrate with the LFP subjected
to digital magnification.

The small residual amount of 5a@silica powder adhered to the
sebaceous of LFPs was found to emit a strong green fluorescence
upon excitation with a UV lamp (365 nm). Excellent contrast
between the fluorescent ridges and non-fluorescent furrows was
seen under these conditions (Fig. 7a) and was readily apparent to
the naked eye. More importantly, the fingerprint details on the
surfaces of a glass slide, copper plate and zinc plate can be well
resolved at higher magnification. The magnified images exhibit
well-defined secondary level fingerprint characteristics, i.e., core,
island, ridge ending and bifurcation (Fig. 7b).>* It is worth noting
that these experiments were carried out using a smartphone and
a UV-lamp. Since these devices are portable and easily available,
this method may allow for instant outdoor imaging of LFPs on
immovable substrates.

Conclusions

In summary, we have designed and synthesized a multifunc-
tional bridged macrocycle molecule comprising a central DPP
core covalently wrapped with two anthracene-containing
strands. The external macrocycle provides effective shielding
of the central DPP luminescent core, resulting in dual-state
emission features in the covalently bridged molecule 5a and
its corresponding bicyclic polymer DPP-Cycle. These emission
features are partly attributed to steric protection from the
environment, as well as efficient photoinduced energy transfer
from the bilateral anthracene subunits to the emissive central
DPP core upon photoexcitation in the anthracene spectral
region. It was found that in acetonitrile solution, Cu®>" degrades
the DPP chromophore present in 5a through a presumed radical
mechanism. The macrocycle 5a was found to degrade faster
than the non-cyclic control 2a. Both 5a and its polymeric
analogue, DPP-Cycle, displayed stimuli-responsive lumines-
cence in the solid state, which could be influenced by
mechanical treatment and solvent fuming. Finally, in prelimi-
nary studies, 5a enabled latent fingerprint imaging on various
substrate surfaces. On the basis of the results presented here,
we suggest that covalently linked macrocycle systems will
provide new opportunities in the area of optical and optoelec-
tronic materials.
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