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Abstract
While parallelism remains the main source of performance, 
architectural implementations and programming models 
change with each new hardware generation, often leading 
to costly application re-engineering. Most tools for perfor-
mance portability require manual and costly application port-
ing to yet another programming model.
We propose an alternative approach that automatically 

translates programs written in one programming model 
(CUDA), into another (CPU threads) based on Polygeist/MLIR. 
Our approach includes a representation of parallel constructs 
that allows conventional compiler transformations to ap-
ply transparently and without modification a nd enables 
parallelism-specific optimizations. We evaluate our frame-
work by transpiling and optimizing the CUDA Rodinia bench-
mark suite for a multi-core CPU and achieve a 58% geomean 
speedup over handwritten OpenMP code. Further, we show 
how CUDA kernels from PyTorch can efficiently run and 
scale on the CPU-only Supercomputer Fugaku without user 
intervention. Our PyTorch compatibility layer making use of 
transpiled CUDA PyTorch kernels outperforms the PyTorch 
CPU native backend by 2.7×.

CCS Concepts: • Software and its engineering → Com-
pilers; • Theory of computation → Parallel computing 
models.
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1 Introduction
Despite x86 CPUs and NVidia GPUs remaining primary plat-
forms for computation, customized and emerging architec-
tures play an important role in the computing landscape.
A custom version of an ARM CPU, A64FX, is even used
in one of the top supercomputers Fugaku [49] where its
high-bandwidth memory is expected to compete with that of
GPUs. However, these architectures are often overlooked by
efficiency-oriented frameworks and libraries. For example,
PyTorch [44] targeting Intel’s oneDNN [28] backend expect-
edly underperforms on ARM due to architecture differences
and even Fujitsu’s customized oneDNN [20] does not yield
competitive performance on some kernels. Such situations
call for performance portability.

Many non-library approaches for performance portability
have been proposed and include language extensions (e.g.,
OpenCL [14], OpenACC [26]), parallel programming frame-
works (e.g., Kokkos [3]), domain-specific languages (e.g., Spi-
ral [17], Halide [47] or Tensor Comprehensions [64]). All of
these approaches still require legacy applications to ported,
and sometimes entirely rewritten, due to differences in the
language, or the underlying programming model.

We explore an alternative approach based on a fully auto-
mated compiler that takes code in one programming model
(CUDA) and produces a binary targeting another one (CPU
threads). While GPU-to-CPU translation has been explored
in the past [9, 23, 58], it was rarely able to produce effi-
cient code. In fact, optimizations for CPUs and even generic
compiler transforms, such as common sub-expression elimi-
nation or loop-invariant code motion, are hindered by the
lack of analyzable representations of parallel constructs in-
side the compiler [39]. As representations of parallelism
within a mainstream compiler have only recently begun to
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be explored [10, 12, 32, 50, 55], existing transformations are
limited and tend to apply to simple CPU codes only.

We propose a compiler model for most common GPU con-
structs: multi-level parallelism, level-wide synchronization,
and level-local memory. In contrast to source and AST-level
approaches, which operate before the optimization pipeline,
and existing compiler approaches, which model synchroniza-
tion as a black-box optimization barrier, we model synchro-
nization frommemory semantics. This allows synchronization-
based code to interoperate with existing optimizations and
enables novel parallel-specific optimizations.

Ourmodel is implemented usingMLIR [34] and LLVM [33]
and leverages MLIR’s nested-module approach for GPU [21].
We extended the Polygeist [40] C/C++ frontend to support
CUDA and to produce MLIR which preserves high-level par-
allel structure. Our prototype compiler is capable of com-
piling PyTorch CUDA kernels, as well as other compute-
intensive benchmarks, to any CPU architecture supported by
LLVM. In addition to transformations accounting for the dif-
ferences in the execution model, we also exploit parallelism
on the CPU via OpenMP. Finally, our MocCUDA PyTorch
integration allows us to compile and execute CUDA kernels
in absence of a GPU while substituting unsupported calls.

We evaluate our compiler on Rodinia CUDAbenchmarks [5]
and PyTorch CUDA kernels. When targeting a commodity
CPU, our OpenMP-accelerated CUDA code yields compara-
ble performance with the reference OpenMP implementa-
tions from the Rodinia suite, as well as improved scalability.
When using our framework to run PyTorch on the CPU-only
Fugaku Supercomputer, we achieve roughly twice the im-
ages processed per second of a Resnet-50 [25] training run
compared to existing PyTorch CPU backends.

Overall, our paper makes the following contributions:

• A common high-level and platform-agnostic represen-
tation of SIMT-style parallelism backed by a semantic
definition of barrier synchronization that ensures cor-
rectness through memory semantics, and thus trans-
parent application of existing optimizations.

• Novel parallel-specific optimizations which can exploit
our high-level parallel semantics to optimize programs.

• An extension to the Polygeist C/C++ MLIR frontend
capable of directly mapping GPU and CPU parallel
constructs into our high-level parallelism primitives.

• An end-to-end transpilation1 of CUDA to CPU for a
subset of the Rodinia [5] benchmark suite and the in-
ternal CUDA kernels in PyTorch [44] necessary to run
Resnet-50 on the CPU-only Fugaku supercomputer.

1We use the term transpilation to refer to taking a program in one pro-
gramming model and emitting code for another, similar to source-to-source
CUDA-to-C transpilers though now on IR. This procedure also cross-compiles
the code. which refers to emitting non-native instructions.

2 Background
Mainstream compilers like Clang and GCC lack a unified
high-level representation of parallelism. Compiling parallel
constructs in frameworks like CUDA, OpenMP, or SYCL,
forces the body of a parallel region to exist within a separate
(closure) function which is invoked by a parallel runtime.
Concepts such as thread index or synchronization are then
represented separately, often through opaque intrinsic calls.
As the compiler historically lacked information about paral-
lelism and effects of the involved runtimes, any parallel con-
struct also inadvertently acted as a barrier to optimization.
While there have been attempts [10, 12, 32, 39, 50, 55, 61] in
recent years to improve representations for CPU parallel con-
structs, accelerator programming comes with additional chal-
lenges. The unique programming model and complex mem-
ory hierarchy have left high-level representations of GPU
parallelism within mainstream compilers under-explored.

__device__ float sum(float* data, int n) { ... }
__global__
void normalize(float *out, float* in, int n) {

int tid = blockIdx.x + blockDim.x * threadIdx.x;
// Optimization: Compute the sum once per block.
// __shared__ int val;
// if (threadIdx.x == 0) val = sum(in, n);
// __syncthreads;
float val = sum(in, n);
if (tid < n)

out[tid] = in[tid] / val;
}
void launch(int *d_out, int* d_in, int n) {
normalize<<<(n+31)/32, 32>>>(d_out, d_in, n);

}

Figure 1. A sample CUDA program normalize, which nor-
malizes a vector and the CPU function launch launching
the kernel. Each GPU threads calls sum, resulting in 𝑂 (𝑁 2)
work. Using shared memory (commented) reduces the work
to 𝑂 (𝑁 2/𝐵) at extra resource cost. Computing sum before
the kernel reduces work to 𝑂 (𝑁 ).

2.1 GPU Compilation
Consider the CUDA program in Fig. 1, which normalizes
a vector. When compiled using Clang, the GPU program
is a separate compilation unit. This prevents any optimiza-
tion between the GPU kernel and the CPU calling code. In
the case of Fig. 1, the total work of the program in a tradi-
tional compiler is 𝑂 (𝑁 2), due to the 𝑂 (𝑁 ) call to sum being
performed for each thread. However, if the call to sum is per-
formed only once prior to the kernel call, e.g., by performing
loop-invariant code motion (LICM), the work would reduce
to 𝑂 (𝑁 ). A less effective variant of this optimization could
reduce the work to 𝑂 ( 𝑁 2

𝐵
) through the use of shared mem-

ory. MLIR provides a nested-module representation for GPU
programs that supports host/device code motion [21], but
parallel code motion has not been implemented. In GPU to
CPU code motion, LICM out of a parallel loop is always legal
as any former device memory is also available on the host.
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// Kernel launch is available within the calling
// function, enabling optimizations across the
// GPU/CPU boundary.
func @launch(%h_out : memref<?xf32>,

%h_in : memref<?xf32>, %n : i64) {
// Parallel for across all blocks in a grid.
parallel.for (%gx, %gy, %gz) = (0, 0, 0)

to (grid.x, grid.y, grid.z) {
// Shared memory = stack allocation in a block.
%shared_val = memref.alloca : memref<f32>
// Parallel for across all threads in a block.
parallel.for (%tx, %ty, %tz) = (0, 0, 0)

to (blk.x, blk.y, blk.z) {
// Control-flow is directly preserved.
if %tx == 0 {
%sum = func.call @sum(%d_in, %n)
memref.store %sum, %shared_val[] : memref<f32>

}
// Syncronization via explicit operation.
polygeist.barrier(%tx, %ty, %tz)
%tid = %gx + grid.x * %tx
if %tid < %n {
%res = ...
store %res, %d_out[%tid] : memref<?xf32>

}
}

}
}

Figure 2. Polygeist/MLIR equivalent of launch/normalize
code from Fig. 1. The kernel call is available directly in the
host code which calls it. The parallelism is explicit with par-
allel for loops across the blocks and threads. Shared memory
is placed within the block parallel for, allowing access from
any thread in the same block, but not a different block.

2.2 MLIR Infrastructure
MLIR is a recent compiler infrastructure designed for reuse
and extensibility [34]. Rather than providing a predefined
set of instructions and types, MLIR operates on collections
of dialects containing interoperable user-defined operations,
attributes and types. Operations are a generalization of IR
instructions that can be arbitrarily complex, in particular,
contain regions with more IR thus creating a nested repre-
sentation. Operations define and use values that obey single
static assignment (SSA) [7]. For example, MLIR dialects may
model entire instruction sets such as NVVM (virtual IR for
NVidia GPUs), other IRs such as LLVM IR [33], control flow
such as loops, parallel programmingmodels such as OpenMP
and OpenACC, machine learning graphs, etc.
MLIR supports GPU thanks to the eponymous dialect,

which defines the high-level SIMT programming model,
host/device communication, and a set of platform-specific di-
alects: NVVM (CUDA), ROCDL (ROCm) and SPIR-V. MLIR’s
approach to GPU programming benefits from a unified code
representation. Since an MLIR module may contain other
modules, the “host” translation unit may embed the “device”
translation unit as IR rather than file reference or binary
blob. This approach provides host/device optimization op-
portunities unavailable to other compilers, in particular to
move code between host and device [21].

__global__ f() {
codeA();
barrier();
codeB();

}

__global__ f() { // 0<=t.x< blockDim.x
A[threadIdx.x] = ...; // W A[i]: i==t.x
barrier(); // RW A[i]: i!=t.x
... = A[threadIdx.x]; // R A[i]: i==t.x

}

Figure 3. Left: A program containing a barrier between two
arbitrary instructions. Right: Barrier semantics can be re-
fined memory addresses accessed by operations above/below
it in all threads except the current one.

2.3 Polygeist
Polygeist is a C/ C++ frontend for MLIR based on Clang [40].
It is capable of translating a broad range of C++ programs
into a mix of MLIR dialects that preserve elements of the
high-level structure of the program. Specifically, Polygeist
preserves structured control flow (loops and conditionals)
as MLIR SCF dialect operations and simplifies analyses by
preserving multi-dimensional array constructs whenever
possible by relying on the MLIR’s multi-dimensional mem-
ory reference (memref) type. Finally, Poylgeist is able to
identify parts of the program suitable for polyhedral opti-
mization [16] and represent them using the Affine dialect.

3 Approach
We extended the Polygeist compiler [40] to directly emit par-
allel MLIR from CUDA. This leverages the unified CPU/GPU
representation to allow the optimizer to understand host/dev-
ice execution, and to enable optimization across kernel bound-
ary. The use of existing MLIR’s first-class parallel constructs
(scf.parallel, affine.parallel) enables us to target ex-
isting CPU and GPU backends. Finally, MLIR’s extensible
operation set allows us to define custom instructions, with
relevant properties and custom optimizations.
We define the representation of a GPU kernel launch as

follows (illustrated in Fig. 2):

• A 3D parallel for-loop over all blocks in the grid.
• A stack allocation for any shared memory, scoped to
be unique per block.

• A 3D parallel for-loop over all threads in a block.
• A custom Polygeist barrier operation that provides
equivalent semantics to a CUDA synchronization.

This procedure enables us to represent any GPU program
in a form that preserves the desired semantics. It is fully
understood by the compiler and is thus amenable to com-
piler optimization. Moreover, by representing GPU programs
with general parallelism, allocation, and synchronization
constructs, we are not only able to optimize the original
program, but also retarget it for a different architecture.

3.1 Barrier Semantics
ACUDA __syncthreads function guarantees that all threads
in a block have finished executing all instructions prior to
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the function call, before any threads executes any instruc-
tion after the call. Traditionally, compilers represent such
functions as opaque optimization barriers that could touch
all memory, and forbid any transformation involving them.

In our system, we chose to represent thread-level synchro-
nization through a new polygeist.barrier operation. Un-
like other approaches, polygeist.barrier (hence referred
to as simply barrier) aims to only prevent transformations
that would change externally visible behavior. Rather than
disallowing any code motion across a barrier, we can suc-
cessfully achieve the desired semantics by defining barrier
to have specific memory properties, represented as a collec-
tion of memory locations (including unknown), and memory
effect type (read, write, allocate, free), as is standard within
MLIR. Consider the simple program in Fig. 3(left). The impact
of the synchronization can only be observed if codeA and
codeB access the same memory. Moreover, if both only read
the same memory location, the synchronization is also un-
necessary. We can enumerate the remaining cases: (1) codeA
writes, codeB loads; (2) codeA loads, codeB writes; (3) codeA
writes, codeB writes.

The barrier having the write behavior of codeA would
ensure correctness of (1): the load in codeB could not be
hoisted above the barrier, as it would appear to read a dif-
ferent value. Symmetrically, the barrier having the write
behavior of codeB ensures the correctness of (2). Thus, the
union of the writing behaviors of codeA and codeB is suffi-
cient to prevent illegal movement of loads across the barrier.

However, this does not prevent writes from being moved.
For example, codeB could be duplicated above the barrier in
(3), and it would appear to have the same final memory state
since the extraneous write before the barrier would never
be read. Thus, we also define the barrier to have the reading
behavior of codeA and codeB.
This model can be extended to include memory effects

of all operations in the parallel loop which may have been
executed before, or after, a given barrier. On a control flow
graph with explicit branches, this requires exploring the
operations within predecessors or successors, respectively.
However, operating on MLIR’s structured control flow level,
with explicit operations for loops and conditionals, simplifies
the analysis. Furthermore, if more than one barrier is present
in the same block, it is unnecessary to look past it.

Given a sufficiently expressive side effect model, the mem-
ory semantics of the barrier can be further expanded. While
barriers enforce ordering reads/writes to the same location
from different threads, the natural execution order is suffi-
cient within one thread. Therefore, barriers need not capture
the memory effects of operations where the address is an
injective function of the thread identifier. We implement the
refinement for affine forms of access expressions leveraging
the polyhedral framework in MLIR/Polygiest. For each mem-
ory access, we define an integer relation between a set of pos-
sible thread id values and the set of accessed array subscripts,

parallel %i = 0 to 10 {
%x = load data[%i]
%y = load data[2 * %i]
%a = fmul %x, %x
%b = fmul %y, %y
%c = fsub %x, y
barrier
call @use(%a, %b, %c)
...

}

%x_cache = memref<10xf32>
%y_cache = memref<10xf32>
parallel %i = 0 to 10 {

%x = load data[%i]
%y = load data[2 * %i]
store %x, %x_cache[%i]
store %y, %y_cache[%i]

}
parallel %i = 0 to 10 {
%x = load %x_cache[%i]
%y = load %y_cache[%i]
%a = fmul %x, %y
%b = fsub %y, %z
call @use(%a, %b)
...

}

Figure 4. Parallel loop splitting around a barrier: the code
above the barrier is placed in a separate parallel “for” loop
from the code following the barrier. This transformation
eliminates the barrier, while preserving the semantics. The
min-cut algorithm stores %x and %y, which are then used to
recompute %a, %b, and %c in the second loop.

R : 𝑇 → 𝐴. We then compose direct and inverse relations
for relevant operations to obtain a relation between thread
indices accessing the same subscript, D = R−1 ◦R : 𝑇 → 𝑇 ′.
Finally, we subtract the identity relation D \ I : 𝑇 → 𝑇 ′. If
non-empty, D ≠ ∅, different threads may access the same
address and the barrier is required. Given a non-affine access
or non-static control flow, we conservatively assume an ac-
cess of the entire array dimension. In practice, this is rarely
necessary on GPU code, whose loops typically have para-
metric/static bounds. Aliasing guarantees must be checked
when more than one base address is involved.

Consider the code in Fig. 3(right). Since the sets of accessed
addresses do not overlap, A𝑜 ∩A𝑏 = ∅, code motion across
the barrier is allowed. In contrast, if the load or store to A
were offset by 1, the barrier would be necessary as the data
loaded after the barrier would be stored by a different thread.

3.2 Barrier Lowering
To enable GPU programs to run on a CPU, wemust efficiently
emulate the synchronization behavior of GPU programs.
Whereas the memory semantics in Section 3.1 enable us to
preserve the correctness of barriers during optimization, this
section discusses how to implement the barrier on a CPU.
CPU architectures have no notion of thread blocks, nor

the barrier instruction which waits on this conceptual group-
ing of threads. Instead, we use regular CPU threads and
work sharing to distribute the thread-block loop iterations
across them. Conceptually, this differs from the GPU exe-
cution model in which threads execute one iteration each.
Work sharing requires each thread to execute multiple iter-
ations sequentially, making it impossible to synchronize in
the middle of iterations, but only at the end of the loop.
To address this, we developed a new barrier elimination

technique for our MLIR representation. Our approach is
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parallel for %id=0 to N {
for %j = 5 to 0 {
if (%id < 2^%j)

A[%id] += \
A[%id + 2^%j]

barrier
}

}

for %j = 5 to 0 {
parallel for %id=0 to N {
if (%id < 2^%j)

A[%id]+=A[%id + 2^%j]
barrier

}
}

Figure 5. Left: A shared memory addition, which consists
of a kernel call which contains for loop with a barrier inside.
Right: Same but with the barrier directly in the parallel loop
after a parallel/serial loop interchange.

parallel for %i=0 to N {
do {

run(%i)
barrier

} while(condition())
}

%helper = alloca memref<i1>
scf.do {

parallel for %i=0 to N {
run(%i)
barrier
%c = condition()
if %i == 0 {

store %c, %helper[]
}

}
%c = load %helper[]

} while(%c)

Figure 6. Parallel interchange around a while loop. As the
condition() function call must be executed on each thread
to preserve correctness, a helper variable is used which holds
the value of the call on the first thread.

an extension of loop fission (see Section 7) combining two
transformations: parallel loop splitting and interchange.

3.2.1 Parallel Loop Splitting. Suppose a barrier has the
kernel function (or, in our representation, parallel for loop)
as its direct parent. It can be eliminated by splitting the loop
around the barrier into two parallel for loops that run the
code before and after the barrier, respectively. If the code
before the barrier created SSA values that were used after
it, these must be either stored or recomputed in the second
parallel loop. We use the technique similar to one in [41]
to determine the minimum amount of data that needs to be
stored. Specifically, we create a graph of all SSA values. We
then mark each value definition that cannot be recomputed
(e.g. loads from overwritten memory) before the barrier
as source, and values used after the barrier as sinks. We
derive the minimum amount of data needing to be stored by
performing a minimum branch cut on this graph.

3.2.2 Parallel Loop Interchange. Not all barrier opera-
tions have a parallel for as their immediate parent, some
may be nested in other control flow operations. We created
a model that specifies what instructions may run in parallel.
With the sole exception of barrier, our representation does
not require any specific ordering or concurrency to the pro-
gram. Therefore it is legal (though potentially a reduction
in parallelism) to add additional barriers. We can use this
property to implement barrier lowering for control flow.

__global__ void bpnn_layerforward(...) {
__shared__ float node[HEIGHT];
__shared__ float weights[HEIGHT][WIDTH];
if ( tx == 0 ) node[ty] = input[index_in] ;
// Unnecessary Barrier #1
__syncthreads();
// Unnecessary Store #1
weights[ty][tx] = hidden[index];
__syncthreads();

// Unnecessary Load #1
weights[ty][tx] = weights[ty][tx] * node[ty];
__syncthreads();

for ( int i = 1 ; i <= log2(HEIGHT) ; i++){
if( ty % pow(2, i) == 0 )
weights[ty][tx] += weights[ty+pow(2, i-1)][tx];

__syncthreads();
}

hidden[index] = weights[ty][tx];
// Unnecessary Barrier #2
__syncthreads();

if ( tx == 0 ) out[by * hid + ty] = weights[tx][ty];
}

Figure 7. An example CUDA kernel from the Rodinia back-
prop test that contains unnecessary synchronization and
unnecessary use of shared memory.

Consider a control-flow construct C containing a barrier
and nested in a parallel for. Adding barriers immediately
around C will result in parallel loop splitting directly above
and below C. As a result, the operations above and below C
will be separated into their own parallel for and Cwill be the
sole operation in the middle loop. We can then apply one of
the following techniques to interchange C with the parallel
for, thus making the barrier’s parent a parallel for.

Consider the case of a serial for loop containing a barrier,
Fig. 5. This pattern is common in GPU code, e.g., to imple-
ment a reduction across threads [24]. As barrier must wait
for all threads, each thread must execute the same number of
barriers. Therefore, the number of iterations of the inner
loop is the same for all threads, allowing for loop interchange.

While an if statement can be considered a loop with zero
or one iteration, directly interchanging it with the surround-
ing parallel for when necessary is more efficient.

Whereas for loops in MLIR have a fixed trip count, while
loops support dynamic exit conditions, like in Fig. 6. Since
correctness requires executing condition() in every thread,
a direct interchange would not be legal. However, GPU syn-
chronization semantics require the trip count to be the same
in all threads. Therefore, one can still perform an interchange
using a helper variable to store the result of the condition.
This illustrates one of the advantages of building off of

MLIR/Polygeist. By preserving high level program structures,
we can use more efficient patterns to remove barriers.

4 Parallel Optimization
The high-level representation of both parallelism and GPU
programs provided by Polygeist/MLIR enables a variety of op-
timizations. These include general optimizations that would
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apply to any parallel program as well as specific optimiza-
tions in the context of GPU to CPU conversion.

4.1 Barrier Elimination & Motion
As GPU-style barriers have to be specially transformed to
support CPU architectures, eliminating or simplifying any
barriers can have dramatic effects. Moreover, even when
running GPU code on the GPU, barrier elimination is highly
useful as any synchronization reduces parallelism. Much
of the infrastructure for barrier elimination/simplification
comes directly from its memory behavior defined in Sec-
tion 3.1. Let𝑀↑

𝐵
(𝑀↓

𝐵
) be the union of memory effects before

(after) a barrier B until the edge of the parallel region. Let
𝑀

•†
𝐵

be the subset of 𝑀•
𝐵
with effects until the first barrier

rather than region edge. Given a barrier B, if there are no
memory effects to the same location across the barrier other
than a read-after-read (RAR), i.e. 𝑀↑†

𝐵
∩ 𝑀

↓
𝐵
= ∅, B has its

behavior subsumed by the previous barrier. Symmetrically
𝑀

↑
𝐵
∩𝑀

↓†
𝐵

= ∅ means the barrier is subsumed by the follow-
ing one. A specific case of a removable barrier is one that
has no memory effects at all.
For example, consider the code in Fig. 7, which comes

from the backprop Rodinia benchmark [5]. The first and
last __syncthreads instructions are unnecessary. This can
be proven from our memory-based barrier elimination algo-
rithm above as follows. For the first barrier, 𝑀↑ (going all
the way to the start) contains only a write to node and a
read from input.𝑀↓† (going to the second __syncthreads)
contains a write to weights and a read from hidden. None
of these conflict if, given the calling context, the pointers are
known not to alias. Thus, it is safe to eliminate the barrier.

The same memory analysis can also be applied to perform
barrier motion. One simply needs to place a fictitious barrier
at the intended location and check if the previous memory
analysis would deduce that the current barrier is unnecessary,
thereby permitting barrier motion.

4.2 Memory-to-register promotion across barriers
One of the goals of defining barrier’s semantics from its
memory behavior is to enable memory optimizations to op-
erate correctly and effectively in code that contains barriers.
As described in Section 3.1, barriers have the memory be-
havior of the code above and below them with the notable
exception of an access from the current thread. This hole
is important as it enables memory-to-register promotion
(mem2reg) to operate on thread-local memory such as local
variables. This optimization can replace slow memory reads
with fast registers. For example, consider again the code in
Fig. 7. Consider the load and store to weights[ty][tx] la-
beled “Unnecessary Store #1” and “Unnecessary Load #1”,
and the sync in between the two. The only value that can be
loaded at that point is the same value which was stored ear-
lier, a register containing the value loaded from hidden. As

omp.parallel {
omp.wsloop %i= 1 to 10 {
codeA(%i)

}
}
omp.parallel {

omp.wsloop %i= 1 to 10 {
codeA(%i)

}
}

omp.parallel {
omp.wsloop %i=1 to 10 {

codeA(%i)
}
omp.barrier
omp.wsloop %i=1 to 10 {

codeA(%i)
}

}

Figure 8. Example of OpenMP parallel region fusion. Fuse
two adjacent OpenMP parallel regions by inserting a barrier
to allow the threads to be initialized once instead of twice.

that same location is overwritten before anyone else could
read from weights, the first store also can be safely elimi-
nated once the load is removed. During mem2reg, Polygeist
can derive this forwarding property, since the hole in the
memory properties described in Section 3.1 allows it to de-
duce that the barrier operation does not overwrite the store
for the current thread. As a result, traditional load and store
forwarding correctly operates on the barrier code.

4.3 Parallel loop-invariant code motion
The traditional loop-invariant code motion optimization
aims to move an instruction I outside serial "for" loops, re-
ducing the number of times I is executed. If I may access
memory, or has other side effects, in addition to checking
that the operands of I are themselves loop invariant, the
compiler must check that no other code within the "for" loop
conflicts with the memory access performed by I.
On present compilers, while it is possible to apply loop-

invariant code motion to serial for loops within GPU kernels,
it is not possible to apply loop-invariant code motion to
hoist instructions outside of a kernel call. This is in part due
to the fact that GPU kernels are kept in a separate module
from the CPU code which calls them, as well as a lack of
understanding of parallelism (see Fig. 1).

Counter-intuitively, with the right semantics we can apply
loop-invariant code motion to parallel for loops even if we
would not be able to apply it to an equivalent serial loop. We
will rely on the fact that semantics of our program permits
us to arbitrarily interleave iterations of a parallel "for" loop
as long as we maintain the orderings required by barriers.
As such, it is legal, though not necessarily fast, to run the
program in lock-step. In other words, if a parallel for loop
had 10 instructions, each thread can execute instruction 1
before any thread executed instruction 2, and so on. As a
consequence, it is now legal to hoist an instruction so long
as its operands are invariant and no prior instruction in the
parallel for loop conflicts with I.

4.4 Block Parallelism Optimizations
OpenMP is our primary target for parallel execution on the
CPU. It implements parallel "for" loops as two constructs.
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for (i=0; i<N; i++) {
#pragma omp parallel for
for (j=0; j<10; j++) {

body(i, j);
}

}

#pragma omp parallel
for (i=0; i<N; i++) {

#pragma omp for
for (j=0; j<10; j++) {

body(i, j);
}
#pragma omp barrier

}

Figure 9. Example of OpenMP parallel region hoisting. This
can be seen as an extension of parallel region fusion across
“regions” corresponding to each iteration of the outer loop.

First, the loop is outlined into a function which is called
once per thread, representing OpenMP’s "parallel" construct.
Then, within the outlined function, the iteration space is dis-
tributed across threads, representing OpenMP’s "workshar-
ing loop" construct. OpenMP also has a "barrier" construct,
but with semantics different than that of a GPU barrier.
When multiple parallel loops are executed in a row, e.g.,

following the barrier lowering from Section 3.2, the overhead
of thread management can be reduced by fusing adjacent
OpenMP "parallel" constructs [11] without fusing the work-
sharing loops (see Fig. 8), thus not undoing the barrier low-
ering. This can be extended to moving the OpenMP parallel
region outside the surrounding “for” in Fig. 9, initializing
threads once rather than 𝑁 times. Applying these to con-
trol flow constructs enables all of the “for” loops generated
by performing parallel loop fission on a block to have their
OpenMP “parallel” (but not work sharing loops) fused.

As GPU programs tend to be written with high parallelism
in mind, the parallelism provided by the different blocks may
already saturate the number of available cores alone. If there
is no use of shared memory, the block and thread parallelism
can be collapsed into a single OpenMP parallel for, which
will evenly divide the total iteration space in a single parallel
region. However, if there is shared memory, our tool will gen-
erate nested parallel regions to represent the shared memory
allocation. In this case, the additional overhead from the
nested OpenMP parallel regions may outweigh the potential
added parallelism. In addition, parallelizing the inner loops
may lead to adverse memory effects such as false sharing,
further penalizing performance [63, 65]. As such, we also
support an optimization for serializing any nested OpenMP
parallel regions. Performing such serialization may leverage
memory locality to improve performance.

5 MocCUDA: Integration into PyTorch
One of our goals is to support execution of originally GPU
codes on a CPU-only supercomputer such as Fugaku [49].
We focus on PyTorch [44] that has not been ported to the
A64FX architecture and therefore uses naive fallback CPU
kernels. Observing that CPUs with high-bandwidth mem-
ory are likely to benefit from GPU-style optimization, we
implement MocCUDA, a mock GPU backend for PyTorch
that redirects the calls to CUDA runtime and libraries to our

Figure 10. PolygeistInnerPar performs similarly to MCUDA;
PolygeistInnerSer outperforms MCUDA. PolygeistInnerSer
disables inner loop parallelization similaly to MCUDA,
whereas PolygeistInnerPar keeps both the blocks and threads
parallel. Left: Average runtime as a function of thread count
(averaging over matrix sizes). Right: Average runtime as a
function of matrix size (averaging over thread counts).

implementations or A64FX-specific math libraries [20]. We
collect statistics of library calls and may optionally substitute
them with CPU versions transpiled by Polygeist.

6 Evaluation
We demonstrate the advantages and applicability of our ap-
proach on two well-known GPU benchmark suites: a subset
of the GPU Rodinia benchmark suite [5] and a PyTorch imple-
mentation of a Resnet-50 neural network. These benchmarks
were chosen to 1) provide a rough performance comparison
of our GPU to CPU compilation on a benchmark suite (Ro-
dinia) that has hand-coded CPU versions and 2) demonstrate
a successful end-to-end integration of our system into a use-
ful and real application (PyTorch Resnet-50) on Supercom-
puter Fugaku, which does not have any GPUs. Additionally,
we compare the performance of our approach to the existing
MCUDA [58] tool on a CUDA matrix multiplication.
For Rodinia, we compare our translated CUDA to CPU

code against OpenMP versions of the benchmarks, where
they exist, as well as a run on a GPU. For the PyTorch Resnet-
50, we compare against the “native” and oneDNN backends.
Polygeist2 was compiled using LLVM 15 (git 00a1258).

For the PyTorch Resnet-50, we compile Pytorch v1.4.0 using
NVidia’s CUDA 11.6 SDK for Arm3, LLVM 13, and Fujitsu’s
SSL2 v1.2.34 library. For the baseline PyTorch measuremets,
we use Fujitsu’s pre-installed PyTorch (v1.5.0).

We evaluate the Rodinia andmatrix multiplication tests on
an AWS c6i.metal instance (dual-socket Intel Xeon Platinum
8375C CPU at 2.9 GHz with 32 cores each and 256 GB RAM)
running Ubuntu 20.04. Measurements were performed on the
first socket, with hyperthreading and turbo boost disabled.
Each number is the median of at least 5 repetitions.

2MocCUDA and Polygeist are available at https://gitlab.com/domke/
MocCUDA and https://github.com/llvm/Polygeist.
3Even though we will run PyTorch on a GPU-less system, we must compile
PyTorch on a CUDA-enabled system to ensure the correct code is emitted.
We also prevented inlining of three Pytorch functions.
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Figure 11. Left: Relative speedup (higher is better) applying parallel optimizations, proposed in Section 4, over our flow
without optimization. Right: Speedup of transpiled CUDA-to-OpenMP compared against native OpenMP code (when available)
running with 32 threads. Asterisks denote barriers within the benchmark.

6.1 Comparison to MCUDA
First, we compare with the previous work in MCUDA [58].
MCUDA is an AST-level tool which produces new CPU
C/C++ as an output and uses loop fission to handle synchro-
nization. As a source-to-source tool, MCUDA only handles a
fraction of the input language, making it unable to run on
Rodinia programs. Instead, we compare the runtimes of a
matrix multiplication kernel across a range of threads (1–24)
and matrix sizes (128×128 – 2048×2048) in Fig. 10. Polygeist
with all optimization excluding serialization of the inner loop
(PolygeistInnerPar) produces codewithin 1.3% ofMCUDAon
average. PolygeistInnerPar has a 1.5% slowdown on 1 thread,
and 3.2% speedup on 32 threads. This behavior is caused by
OpenMP overhead in handling nested parallel constructs. In
fact, MCUDA only parallelizes the outermost loop. When
Polygeist also serializes the inner loops (PolygeistInnerSer),
it achieves an overall 14.9% speedup over MCUDA, with a
4.5% speedup on 1 thread and 21.7% speedup on 32 threads.

6.2 Use case 1: Rodinia Benchmarks
We benchmarked the 14 benchmarks that are currently sup-
ported by Polygeist, and had a nontrivial runtime.4 We veri-
fied correctness by comparing the program outputs produced
by compiling with nvcc and executed on a GPU, and com-
piled by our flow and executed on a CPU. We also employed
the use of CPU-based parallel and undefined behavior analy-
sis tools, which via our tool, allowed us to successfully diag-
nose and repair one race bug and several undefined memory
bugs in the original CUDA code. We inserted timing mea-
surements across kernels and/or computational portions of
the code that include kernels, in some cases multiple per

4The hybridsort, kmeans, leukocyte, mummergpu huffman and
heartwall use unsupported C++ or CUDA features within Polygeist
(virtual functions and texture memory). The lavaMD and dwt2d bench-
marks use ill-formed C++ with undefined behavior due to reading from
uninitialized memory. The nn and gaussian tests ran in ≤ 0.005 seconds.

benchmark. Where possible, we time equivalent portions of
the OpenMP versions of the same benchmarks.

We compare the Rodinia CUDA benchmarks compiled for
the CPU with the Rodinia OpenMP verions of the bench-
mark in Fig. 11(right). While there is some variation from
benchmark to benchmark, overall our approach is on par
with the hand-coded versions of the benchmarks, and even
nets a 58% geomean performance improvement, when the
inner serialization optimization is enabled. Without inner
serialization, we still see a geomean speedup of 34%. The
speedup for myocte is largely due to fewer instruction and
data cache misses on the transcompiled code, which comes
from optimizations which specialize the (parallel) to ker-
nel call context, as well as the CUDA version employing
fewer branches. The speedup for backprop is partially due
to parallel optimizations (see Fig. 11(left)) and partially due
to the CUDA code being implemented with a linear array,
as required by CUDA, instead of the double-pointer used in
the OpenMP code. The srad_v1 benchmark benefits from a
shared memory reduction in addition to parallel optimiza-
tions which eliminate most barriers and shared memory. In
contrast, hotspot and pathfinder see a slowdown com-
pared against native OpenMP code, due to duplicated com-
putation in order to reduce synchronization and make better
use of plentiful GPU parallelism. The slowdown for the tran-
spiled CUDA version of lud is due to being written with a
transposed loop ordering in contrast to the OpenMP code.

We test the scaling properties of our approach by compar-
ing transpiled CUDA with native OpenMP kernels in Fig. 12.
Transpiled CUDA codes generally scale much better than the
native OpenMP versions. As most CUDA programs are writ-
ten with thousands of threads in mind, this indicates that our
framework was able to preserve that parallelism as the GPU-
specific constructs were being rewritten for CPU-compatible
equivalents. On 32 threads without inner serialization, tran-
spiled CUDA codes had a geomean speedup of 16.1× across
all tests. As OpenMP versions of benchmarks do not exist
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Figure 12. Scaling behavior behavior of CUDA Rodinia ker-
nels, when run on the CPU with OpenMP, and OpenMP
Rodinia kernels (where available), using 32 threads. Not all
Rodinia CUDA kernels have OpenMP versions.

for all tests, if we consider only CUDA codes for which there
exists an OpenMP version, we find a geomean speedup of
14.0×, whereas OpenMP has only a speedup of 7.1×. Serializ-
ing the inner loop slightly reduces scalability, but still results
in improved scalability over OpenMP, finding a geomean
speedup of 14.9× over all tests with inner serialization en-
abled, and a 12.5× speedup on codes with OpenMP versions.
That is, most of the speedup is due to transpliation and bar-
rier optimization as illustrated in Fig. 14(right). Inner lop
serialization was observed to be beneficial in presence of
multiple outer loops for which the OpenMP model triggers
barrier synchronization repeatedly after the inner loop.

We perform an ablation analysis to show how individual
optimizations impact performance. The “mincut” series in
Fig. 11(left) shows performance with the optimization out-
lined in Section 3.2.1. This is only relevant for benchmarks
containing barriers (marked by an asterisk in the Figure).
When applicable, mincut provides a 5.8% geomean speedup.
The “openmpopt” series in Fig. 11(left) demonstrates the im-
pact of OpenMP region merging and similar optimizations
and results in a 10.5% geomean speedup. The “affine” series
in Fig. 11(left) shows the result of raising control flow to
their affine variants and enabling simple serial and parallel
loop optimizations (such as loop unrolling and re-indexing).
While this produces a geomean speedup of 5.4% across the
board, it results in a 2.4× speedup for the backprop layerfor-
ward test as it results in a loop containing synchronization
being fully unrolled and reduced to if statements.

6.3 Use case 2: Pytorch/Resnet50 Test
To evaluate the PyTorch Resnet-50, we execute a full node-
parallel training run on one TofuD unit of the Fugaku FX1000
supercomputer, comparing against the native PyTorch CPU
backend and the optimized oneDNN backend, as available.

Figure 13. ResNet50 training on Fugaku node. Left: heatmap
of relative throughput increase of “MocCUDA+Polygeist”
over Fujitsu-tuned oneDNN, higher is better. Right: geomean
throughput across batch sizes; “MocCUDA+Expert” uses an
expert-written OpenMP kernel; “MocCUDA+Polygeist” uses
the generated kernel, and PytorchCPU is Pytorch’s native
OpenMP backend.

We replaced the functions related to computing log-likelihood
with Polygeist-transpiled functions as their CUDA kernels
use barriers and their CPU versions contain naive implemen-
tations, and dispatched other calls to relevant libraries.

We ran multiple forward and back propagation passes of
Resnet-50 on 224×224 ImageNet in a data-parallel fashion.
We employ Horovod’s synthetic benchmarking script [52].
We build Horovod v0.19.5 with CUDA, LLVM, and Fujitsu’s
MPI library to enable multi-node, distributed deep learning
on top of Pytorch. We assign one MPI rank per A64FX core
memory group (CMG), emulating up to 4 GPUs per node, and
scale the test from one node (2 ranks) to 12 nodes (48 ranks)
in one TofuD unit (smallest 2×3×2 torus) while keeping the
number of OpenMP threads fixed at 12 to accommodate one
thread per core. We use Pytorch v1.4.0 for our approach,
while the other backends depend on Pytorch v1.5.0.

Performance was measured in GFLOP/s by using perf, and
Benchmarker [13], which sets up the neural network and
test data and executes the layer. We run with batch sizes
1–228 on 1–64 threads, averaging across epochs, and we
compare the different backends for batch sizes 1–12 where
all backends ran successfully.
Peak performance for MocCUDA was achieved at batch

size 168 with 42 threads at 943 GFLOP/s, which amounts to
14% of the theoretical peak of the A64FX processor [19]. Moc-
CUDA systematically outperforms Fujitsu’s tuned oneDNN
across batch sizes and thread counts, yielding up to 4.5×
throughput increase (geomean 2.7×, min 1.2×) as shown in
Fig. 13. MocCUDA with expert-written kernels is compara-
ble to MocCUDA with Polygeist-generated kernels. Further-
more, the throughput of MocCUDA keeps increasing with
the number of threads provided a sufficiently large batch
size as shown in Fig. 14(left). For batch size 24, it plateaus at
24 threads while for batch size 168, it peaks at 42 threads.
The improvement can be explained by a combination of

the PyTorch CPU design and performance characteristics
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Figure 14. Left: ResNet throughput continues to scale for
large batch sizes; large batches time out with few threads.
Right: inner loop serialization contributes up to 30% speedup
while most comes from barrier optimizations.

of oneDNN. As Intel’s oneDNN [28] does not account for
HBM available on A64FX, it uses cache-friendly direct con-
volutions instead of GEMM-based convolutions, less effi-
cient in presence of HBM for Arm CPUs. While the custom
fork of oneDNN tuned by Fujitsu [20], improves upon Intel
oneDNN’s performance (though by a geomean of 6%), it still
leaves room for performance improvements.
This demonstrates that our approach is capable of auto-

matically deriving efficient versions of deep learning kernels
(and potentially other applications) from their CUDA ver-
sions, thus addressing the limitations of missing or inefficient
kernels for CPUs with high-bandwidth memory without the
need for reverse or re-engineering the application.

7 Related Work
7.1 GPU to CPU Synchronization
One of the first tools for emulating GPUs on a CPU was
provided directly by NVidia for debugging purposes and
emulated each thread on the GPU with a distinct CPU thread.
While functional, the large gap in the number of available
threads makes the emulation inefficient.
MCUDA [58] (2008) performs an AST transformation of

C GPU code to generate new C CPU code that calls a thread-
independent parallel for routine. MCUDA pioneered the use
of “deep fission” to handle synchronization, which splits par-
allel loops and other constructs at synchronization points in
order to eliminate them. This fission technique is also applied
in other tools: Ocelot [9] (2010), a binary-translation tool that
parses PTX assembly into LLVM and just-in-time compiles
kernel functions; POCL [29] (2015), a Clang/LLVM compiler
pass for OpenCL; COX [23] (2021), another LLVM transfor-
mation pass for translation of CUDA that uses fission, and
handles warp-level primitives; and even this work. While
the intuition behind the fission approach is similar to that
used here, we apply fission inside of a high-level compiler,
rather than either source or a low-level IR. As demonstrated
in Section 3.1, performing fission on structured programs
enables more efficient code transformations. While apply-
ing fission at a source-level misses the opportunity to run
optimizations before fission (like barrier elimination) and

applying fission at a low-level requires attempting to recon-
struct the high-level structure, operating within MLIR allows
us to both apply optimization and preserve high-level struc-
ture. Moreover, source-level tools tend to be quite fragile as
they must re-implement parsing and semantics or the target
language (e.g. C++), and as a result only operate on a limited
subset of the input language, requiring re-engineering effort
to replace unsupported constructs (like pointer arithmetic).
Another approach uses continuation-passing to handle

synchronization by creating state machine of all synchroniza-
tion points (e.g. “microthreading”) [57] (2010). Karrenberg
and Hack [30] (2012) propose a continuation-passing ap-
proach in LLVM that includes an algorithm for detecting and
reducing divergence in the control-flow-graph. Follow-up
work minimizes live values to reduce memory traffic [37].

VGPU [45] (2021) is similar to NVidia’s virtual GPU, except
using C++ thread and fence. Shared memory, implemented
as a single global, is expanded by the number of blocks.

Prior work that operates at the low-level LLVM IR extends
significant effort to reconstruct high-level constructs, such
as loops and kernel configurations, required for either effi-
cient fission or continuation passing. For example, POCL [29]
runs canonicalizations and loop transformations to rewrite
the control flow graph and attempt to recognize it as a spe-
cific form that can be handled. Prior work that operates
at source/AST level (e.g. MCUDA), beyond still needing to
recognize GPU-level concepts, cannot benefit from optimiza-
tions that simplify the code resulting in easier control flow.
In contrast, by operating on MLIR’s mix-of-abstractions,

we are able to simultaneously preserve source-level structure
and perform program transformations such as loop unrolling
or LICM that can, e.g., remove nested synchronization.

7.2 Parallel Portablity/IR, & OpenMP Optimizations
Several tools define new abstractions in the host language
that are amenable to CPU or GPU execution. Examples in-
clude ISPC [46], RAJA [2], Kokkos [15], or MapCG [27] (lim-
ited to map-reduce code) in C++, Loo.py [31] in Python, and
KernelAbstractions.jl [6] in Julia. These approaches provide
performance portability for any new code written with them.
However, existing code must be rewritten in said framework
and may not compose with other frameworks/languages.
Several pieces of prior art discuss parallel intermediate

representations, such as Tapir [50] for representing Cilk [18]
in LLVM; OpenMPIR [56] for representing OpenMP in LLVM,
PPIR [51] for pattern trees, and the MLIR OpenMP Dialect;
as well as SDf3 [59] for visually representing concurrency
as a control-flow graph. These works primarily focus on the
representation for their particular style of parallelism (e.g.
OpenMP tasks in OpenMPIR), which does not include GPU-
style barriers, rather than on parallel transformations (such as
barrier elimination) or optimizations, with the exception of
consistency/race checks or automatic parallelization [38, 42].
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The use of OpenMP parallel region expansion is known
to be beneficial [11]. Clang/LLVM optionally supports the
transformation in a weaker form [36].

7.3 Barriers
Several pieces of prior work explored the semantics of bar-
rier or synchronization instructions, including in relation to
GPUs. Work has been done to verify the correctness of barri-
ers [1]. [54] experimentally evaluates the forward progress,
fairness models of various GPU vendors. [53] implements
a GPU barrier that applies across work-groups, as opposed
to just within a work group. [60] add Java memory barriers
to programs to ensure weak and sequential consistency se-
mantics. They find that without synchronization and delay
set analysis, introducing consistency semantics has an av-
erage 26.5× slowdown, whereas when using these analyses
to insert fewer synchronizations can achieve a 10% and 26%
slowdown for weak and sequential consistency, respectively.
Barrier elimination was implemented in the SUIF com-

piler for SPMD with shared memory [62] and for software-
distributed memory [22]. This relies on a purpose-built com-
munication analysis across the barrier whereas our method
leverages the memory effects of the barrier itself. On the
other hand, it supports synchronization minimization, such
as replacing a barrier with nearest-neighbor communication,
which our flow currently does not. Several pieces of work
have proposed code generation techniques or code transfor-
mations aimed at minimizing the amount of synchronization
within SPMD programs [8] or imperfect loops [43]. These
approaches are applied to a sequential program, or one with-
out synchronization at all, while our approach is applied
parallel CUDA programs.
Synchronization minimization was explored within the

polyhedral framework [35]. PolyAST supported analysis and
transformation of programs with OpenMP directives [4].
While our flow may benefit from the polyhedral representa-
tion, it may operate without it and supports a significantly
larger set of input programs. Razanajato et.al. leveraged the
framework to generate different OpenMP parallelism con-
structs [48], which is complementary to our code generation.

8 Conclusion
By extending Polygeist/MLIR, we developed an end-to-end
system capable of representing, optimizing, and transpiling
CPU and GPU parallel programs. A key component of our
framework is the development of a high-level barrier opera-
tion, key to representing GPU programs, whose semantics
can be fully defined by its memory behavior. Unlike prior
representations of parallel barriers, our semantics enable di-
rect integration of barriers within optimization. As efficacy
validation, we demonstrated GPU to CPU transpilation of a
subset of the Rodinia benchmark suite on a commodity CPU
and transpile Resnet-50 from the PyTorch CUDA source to

run on A64FX CPU. The Rodinia benchmarks achieve a 58%
geomean speedup of the transpiled GPU code over handwrit-
ten OpenMP versions. Similarly, we observe a ≈ 2× speedup
of transpiled kernels over the native PyTorch CPU backend.

Currently, the transpiled GPU code keeps the same sched-
ule when run on the CPU, except for the innermost loop
serialization that improves performance. A fruitful avenue
of future work may perform advanced rescheduling the code
to better take advantage of CPU-style memory hierarchies.
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A Artifact
The evaluation of our results consists of three parts:

• A performance comparison of a CUDAmatrix multiply
code on CPU, as transpiled by our pipeline (Polygeist)
and an existing tool (MCuda).

• An evaluation of CUDA benchmarks from the Rodinia
suite on CPU, as transpiled by our pipeline (Polygeist),
and a comparison to the native CPU versions of the
same benchmarks when available.

• An evaluation of the GPU kernels within PyTorch be-
ing replaced with CPU versions of the kernels.

Obtaining the code. A meta repository containing dock-
erfiles and source for our set up is available at https://github.
com/wsmoses/PolygeistGPU-Docker with DOI 10.5281/zen-
odo.7508499. The remainder of this section will describe the
individual components of our system.
Code for our tool is available at https://github.com/llvm/

Polygeist, commit 4a232df859 and is obtained as follows:
$ cd $HOME && git clone https://github.com/llvm/Polygeist
$ cd Polygeist
$ git checkout 4a232df859
$ git submodule update --init --recursive

This repository contains submodules for a correspond-
ing version of LLVM/MLIR/Clang, which is automatically
checked out by the previous command.
A fork of the Rodinia benchmark suite with scripts for

timing as well as the matrix multiplication tests are found at
https://github.com/ivanradanov/rodinia at commit 025fa7dc.
$ cd $HOME && git clone https://github.com/ivanradanov/rodinia
$ cd rodinia
$ git checkout 025fa7dc

The Cpucuda runtime dependency of the matrix multipli-
cation comparison found at https://github.com/ivanradanov/
cpucuda_runtime at commit 265fe49:
$ cd $HOME
$ git clone https://github.com/ivanradanov/cpucuda_runtime
$ cd cpucuda_runtime
$ git checkout 265fe49

TheMocCUDA layer for PyTorch integration can be found
at https://gitlab.com/domke/MocCUDA at commit 5a3955d:
$ cd $HOME && git clone https://gitlab.com/domke/MocCUDA
$ cd MocCUDA
$ git checkout 5a3955d

To evaluate the artifact, we offer three options.
1. The first option is an AMI or Amazon Machine Image

under image ID ami-016572c3eb2ab565a. You may
then launch the instance and then skip the rest of
this section that involves downloading or building the
experiments.

2. The second option is to build the tools and experiments
from source and is outlined below.

3. The third option is to use a Docker container. The
docker container contains pre-built versions of the rel-
evant binaries, a collection of all the benchmarks, and
so on. As such any benchmark downloading or build-
ing of Polygeist/LLVM described here can be skipped,

however the instructions on how to run the scripts are
the same. The source for the Docker images is available
at https://github.com/wsmoses/PolygeistGPU-Docker
and can be run by executing the following command:
# Rodinia and MCUDA
$ docker run -i -t ivanradanov/polygeistgpu /bin/bash
# MocCUDA on x86_64
$ docker run -i -t ivanradanov/moccuda /bin/bash

We begin by installing build dependencies (C++ compiler,
cmake, ninja). This can be done on Ubuntu 20.04 with the
following command:
$ sudo apt-get install -y cmake \

gcc g++ ninja-build

llvm-project. We now need to build the LLVM compiler
toolchain. To install LLVM, please follow the following steps:
$ cd $HOME/Polygeist
$ mkdir mlir-build && cd mlir-build
$ cmake ../llvm-project/llvm -GNinja \
-DCMAKE_BUILD_TYPE=Release \
-DLLVM_ENABLE_PROJECTS="mlir;clang;openmp" \
-DLLVM_TARGETS_TO_BUILD="X86"
# This may take a while
$ ninja

Polygeist. We now must build Polygeist based off of the
LLVM version we just built.
$ cd $HOME/Polygeist
$ export MLIR_BUILD=`pwd`/mlir-build
$ mkdir build
$ cd build
$ cmake .. -GNinja \
-DCMAKE_BUILD_TYPE=Release \
-DMLIR_DIR=$MLIR_BUILD/lib/cmake/mlir \
-DClang_DIR=$MLIR_BUILD/lib/cmake/clang
$ ninja
# cgeist will now be available at
# $HOME/Polygeist/build/bin/mlir-clang

Cpucuda runtime. To build and install this dependency
one can follow these steps:
$ cd $HOME/cpucuda_runtime
$ mkdir build
$ cd build
$ cmake .. -DCUDA_PATH=/usr/local/cuda \
-DCMAKE_CXX_COMPILER=clang++ \
-DCMAKE_C_COMPILER=clang
$ make
$ cp src/libcpucudart.a $HOME/rodinia/mcuda-test/mcuda/libcpucuda.a

Disabling/Enabling Hyperthreading. We recommend
disabling hyperthreading, and provide two scripts for this
purpose, assuming a dual-socket 32-core machine.
$ cd $HOME/rodinia/scripts
$ ./disable.sh

Benchmark Configuration. The Rodinia and MCUDA
benchmarks use configuration files in rodinia/common/ to
specify Polygeist, Clang/LLVM, and other installations. The
config files for the machine we used are ubuntu.polygeist.
host.make.config for the CUDA versions of benchmarks
and ubuntu.polygeist-clang.openmp.host.make.config
for openmp versions. The structure of the filename must be
kept the same, with the ubuntu substring representing the
machine’s hostname. One must set five variables for the
first file and two for the second. POLYGEIST_DIR should de-
note the build directory of Polygeist. POLYGEIST_LLVM_DIR
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should denote the build directory of LLVM. CUDA_PATH should
denote a valid CUDA path. CPUCUDA_BUILD_DIR should de-
note the build directory of the cpucuda_runtime built above.
CUDA_SAMPLES_PATH should denote the directory of CUDA
samples in a CUDA installation. Note that even when run-
ning on a machine without a GPU, one still needs the header
files from a functioning CUDA installation as Rodinia uses
several of the helper functions defined within. On the AMI
and docker containers, we have provided such a CUDA instal-
lation. If building from source on a machine without a GPU,
a CUDA installation can be copied from another system.
POLYGEIST_DIR=${HOME}/Polygeist/build/
POLYGEIST_LLVM_DIR=${HOME}/Polygeist/mlir-build/
CPUCUDA_BUILD_DIR = ${HOME}/src/cpucuda_runtime/build/
CUDA_PATH = /usr/local/cuda/
CUDA_SAMPLES_PATH = /usr/local/cuda/samples

To conclude configuration, symlink the configuration files:
$ cd $HOME/rodinia/common
$ ln -s ubuntu.polygeist.host.make.config host.make.config
$ ln -s ubuntu.polygeist-clang.openmp.host.make.config \

openmp.host.make.config

To configure the benchmark run, one should edit the file
rodinia/scripts/run_all_benches.sh. The HOST variable
should be set to the hostname of the machine (ubuntu above).
The NRUNS and NRUNS_SCALING variables should denote the
number of runs of the ablation analysis and scaling anal-
ysis benchmarks, respectively. The variables THREAD_NUMS
and THREAD_NUMS_OPENMP should contain a list of the num-
ber of threads to run the CUDA and OpenMP scaling tests,
respectively.

Rodinia. The Rodinia benchmarks can be compiled and
executed by running the following script. Note that the script
assumes a specific machine size, but can be edited.
$ cd $HOME/rodinia
$ ./scripts/run_all_benches.sh
# The timing results are now at $HOME/rodinia_results/

The correctness of the generated code can be validated as
follows. Note that this requires access to a GPU machine to
run the GPU-versions of the programs.

On a GPU machine with relevant configuration set up (see
rodinia/common/ kiev0.nvcc.host.make.config for an
example):
$ cd $HOME/rodinia
$ make MY_VERIFICATION_DISABLE=0 cuda
$ ./scripts/dump_cuda_correctness_info.sh
# Now ./verification_data contains the data

Ensure that the verification data is available on the ma-
chine used to test GPU to CPU. If this is the samemachine, no
action is required. Otherwise, one can copy the verification
folder. Restore the configuration for Polygeist as outlined
above in the configuration section, and execute the follow-
ing:
$ cd $HOME/rodinia
$ make MY_VERIFICATION_DISABLE=0 cuda
$ ./scripts/check_cuda_correctness.sh

Verification is successful if no FAIL can be seen in the
output of the final script.

Matrix Multiplication (MCUDA). The following com-
mands will compile and execute the matrix multiplication
tests for both Polygeist and MCUDA. The arguments to the
script are a list of matrix sizes, a list of thread numbers,
and the number of runs. The timing data will be output in
mm_results.py.
$ cd $HOME/rodinia/mcuda-test
$ make
$ ./run-scaling.sh "128 256 512 1024 2048" \

"1 2 4 8 16 24" 10 > mm_results.py

MocCUDA. This section describes how to build the Moc-
CUDA layer for Fugaku. To build MocCUDA for another
system, one can edit the files in ./scripts/ to reflect the
environment of their system. MocCUDA dependencies, in-
cluding PyTorch and benchmarker can be built as follows.
$ cd $HOME/MocCUDA
$ for NR in $(seq -w 00 06); do
$ bash ./scripts/${NR}_*.sh
$ done

MocCUDA itself is built with the following script:
$ bash ./scripts/07_*.sh

And only required on Fugaku, the following will set up
Fujitsu’s custom pytorch:
$ bash ./scripts/08_*.sh

The following script will submit benchmark jobs to Fugaku
and populate the MocCUDA/log directory with the results.
$ bash ./bench/submit_fugaku.sh

Alternatively, one can use a Fugaku-styleMocCUDAdocker
container for X86 which we have created. The following com-
mand will training a single-node resnet50 in docker. Options
for the BACKEND variable include moccuda, moccuda-no-polygeist,
native, or dnnl. Results will be output in the MocCUDA/log
directory.
$ cd $HOME/MocCUDA/
$ BACKEND=<backend> ./bench/02_benchmarker_train.sh
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