
Stationary Syndrome Decoding

for Improved PCGs

Vladimir Kolesnikov1, Stanislav Peceny1(B), Srinivasan Raghuraman2,
and Peter Rindal3

1 Georgia Institute of Technology, Atlanta, GA, USA
kolesnikov@gatech.edu

2 Visa Research and MIT, Cambridge, MA, USA
3 Visa Research, Foster City, CA, USA

Abstract. Syndrome decoding (SD), and equivalently Learning Par-
ity with Noise (LPN), is a fundamental problem in cryptography, which
states that for a field F, some compressing public matrix G ∈ Fk×n , and
a secret sparse vector e ∈ Fn sampled from some noise distribution, Ge
is indistinguishable from uniform. Recently, the SD has gained significant
interest due to its use in pseudorandom correlation generators (PCGs).

In pursuit of better efficiency, we propose a new assumption called
Stationary Syndrome Decoding (SSD). In SSD, we consider q correlated
noise vectors e1, . . . , eq ∈ Fn and associated instances G1e1, . . . , Gqeq

where the noise vectors are restricted to having non-zeros in the same
small subset of t positions L ⊂ [n]. That is, for all i ∈ L, ej,i is uniformly
random, while for all other i, ej,i = 0.

Although naively reusing the noise vector renders SD and LPN inse-
cure via simple Gaussian elimination, we observe known attacks do not
extend to our correlated noise. We show SSD is unconditionally secure
against so-called linear attacks, e.g., advanced information set decoding
and representation techniques (Esser and Santini, Crypto 2024). We fur-
ther adapt the state-of-the-art nonlinear attack (Briaud and Øygarden,
Eurocrypt 2023) to SSD and demonstrate both theoretically and exper-
imentally resistance to the attack.

We apply SSD to PCGs to amortize the cost of noise generation pro-
tocol. For OT and VOLE generation, each instance requires O(t) com-
munication instead of O(t log n). For suggested parameters, we observe
a 1.5× improvement in the running time or between 6 and 18× reduc-
tion in communication. For Beaver triple generation using Ring LPN,
our techniques have the potential for substantial amortization due to
the high concrete overhead of the Ring LPN noise generation.

1 Introduction

Syndrome Decoding (SD), or equivalently Learning Parity with Noise (LPN),
are standard assumptions in code-based cryptography. SD states that for
some public matrix G ∈ F

k×n, where k < n, and a secret sparse vector

c◯ International Association for Cryptologic Research 2025
Y. Tauman Kalai and S. F. Kamara (Eds.): CRYPTO 2025, LNCS 16000, pp. 284–317, 2025.
https://doi.org/10.1007/978-3-032-01855-7_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-032-01855-7_10&domain=pdf
https://doi.org/10.1007/978-3-032-01855-7_10

Stationary Syndrome Decoding for Improved PCGs 285

e ∈ F
n with a Hamming weight |e| ≈ t, Ge is pseudorandom. Recently,

SD has seen increased interest due to its applications in secure multi-party
computation (MPC) [RS21,DILO22,ANO+22,AS22,BDSW23], zero knowl-
edge [YSWW21,WYKW21] [WYY+22,BDSW23], and post-quantum signatures
[FJR22,CCJ23].

MPC enables parties that do not trust each other to compute on their private
data without disclosing any information to the other parties. MPC has gained
relevance in both academia and industry (e.g., for online auctions, electronic vot-
ing, privacy-preserving machine learning); its potential remains largely untapped
due to the significantly higher costs compared to plaintext computation.

Most efficient MPC protocols work in the preprocessing model, where parties
first preprocess cryptographic material that is independent of both the function
and its inputs. This preprocessing phase typically involves generating random
instances of oblivious transfers (OTs), oblivious linear evaluations (OLE), vector
oblivious linear evaluations (VOLE), or Beaver triples. Once the function and
inputs are known, the parties compute the function securely using the correlated
randomness of the preprocessed material.

Preprocessing is often the computational bottleneck in MPC. A recent line
of work on pseudorandom correlation generators (PCGs) shows great promise in
significantly reducing preprocessing costs. PCGs offer sublinear communication
and compelling computational overheads. While they have led to substantial
improvements, PCGs are still far from matching the cost of honest majority or
plaintext computation. In this work, one of our goals is to reduce the cost of
MPC by minimizing the costs associated with PCGs.

State-of-the-art PCG constructions intimately rely on the Syndrome Decod-
ing (SD) assumption. These PCGs make use of this assumption by having the
parties interactively generate a secret sharing of the sparse vector e and then
locally compute a sharing of Ge. This final sharing forms, in part, the prepro-
cessed materials. The computational overhead of this process has two main parts;
generating the secret e with sublinear communication and performing the mul-
tiplication Ge. Consequently, existing works optimize PCGs either by adding
structure to G to accelerate the multiplication or by changing the distribution
of e to improve the efficiency of generating a sharing of it. In our work, we take
the latter approach. We amortize the cost of computing e across q SD instances.

To achieve this, we propose and cryptanalyze a new assumption called the
Stationary Syndrome Decoding (SSD). Intuitively, SSD allows for reusing the
non-zero coordinates of a noise vector e across multiple SD instances, provided
that the noise at each coordinate is uniformly drawn for each SD instance. For
example, consider F7, n = 12, and t = 4. The noise vectors could be:

e1 =
(
0 1 0 3 0 0 0 0 6 3 0 0

)
,

e2 =
(
0 0 0 1 0 0 0 0 2 4 0 0

)
,

...,
eq =

(
0 4 0 6 0 0 0 0 0 3 0 0

)

286 V. Kolesnikov et al.

We refer to this assumption as stationary because the noise positions remain
fixed across instances, e.g. at positions L = {2, 4, 9, 10} in the example above.
Note that the noisy values of ei are sampled uniformly from F, including zero.
Without delving into details, the stationary nature of the noise positions enables
us to reuse the bulk of the work required to generate a sharing of e, such as the
OTs and the GGM tree expansion. This can indirectly speed up the time to
multiply Ge due to better parameter selection.

We believe the resilience of SSD to known LPN/SD attacks to be both unan-
ticipated and significant. While we are not the first to consider the hardness of
LPN and SD with structured noise, our assumption arguably has more impli-
cations due to the noise being highly correlated. This suggests the intriguing
possibility of LPN and SD with other highly correlated noise distributions and
the potential impact they can have on various constructions.

1.1 Contribution

Our core contribution is the introduction of the Stationary Syndrome Decoding
assumption. First, we provide supporting evidence for its hardness. We show that
SSD is resilient against all linear attacks [Pra62,Ste89,Jab01,BKW03,Lyu05]
[FKI07,ABG+14,BR17,ES24] and adaptations of the state-of-the-art algebraic
attacks of [BØ23].

Then, we show that SSD has significant efficiency implications for pseudo-
random correlation generators (PCGs). In particular, we start with the commu-
nication and computation implications for degree-1 correlations, such as VOLE,
OT, and binary OLE. Next, we discuss the same implications for degree-2 cor-
relations, such as general OLE and Beaver triples. We also show that SSD can
result in much better cache/memory utilization of PCGs.

Degree 1 Correlations. Let n be the length and t the Hamming weight of the noise
vector e. To generate q noise vectors with the SSD assumption, our construction
requires a single “base VOLE” of size tq and t log2(n/t) base OTs. To generate q
noise vectors using the standard SD construction also requires the same size base
VOLE correlation, but q times more base OTs. I.e., we can reuse all OTs across
the q instances. As a result, our construction requires an amortized 2 log2(n/t)
times less data to be sent when generating the sharing of e. Our experiments
show 6.4−7.5× reduction in communication for OT and 10.7−17.6× for VOLE,
for a standard choice of parameters. We refer to [KPRR25] for more detail.

Degree 2 Correlations. The setup for degree 2 correlations from Ring-LPN
[BCG+20,BBC+24,LXYY25], e.g. Beaver triples over Fp, is significantly more
complex and requires the generation of a weight t' := t2 noise vector (product
of two t-sparse vectors), in contrast to the simpler degree 1 setup, which only
requires a weight t noise vector. Moreover, the natural implementation requires
O(nt) local work instead of O(n) in the degree 1 case. The recent implementation
of [RR] demonstrates that the dominant cost is simply generating the noise vec-
tor using O(nt) calls to a PRG. Some works starting with [SGRR19,BCG+20]

Stationary Syndrome Decoding for Improved PCGs 287

suggested the use of so-called batch codes, such as cuckoo hashing, to reduce
this overhead back to O(n) at the expense of more work being performed in
MPC, e.g. O(poly(t')). Alternatively, [BGH+25] gives a distributed multi-point
function, which requires only O(n) calls to a PRG and O(nt) simple operations.
However, the concrete costs of generating the distributed point function keys
remain very high and likely require new protocol improvements.

To reduce the high concrete cost of these protocols, we propose using SSD,
similarly to the degree-1 case, to amortize this expensive setup across the q
instances. In particular, the vast majority of the work performed within MPC
can be performed once and then reused across the q instances. This brings down
the amortized overheads from at least O(t' log(n/t) + poly(t')) to O(t') commu-
nication and from O(nt) to O(n) computation. We believe this is an extremely
promising direction for future exploration. We refer to [KPRR25] for more detail.

Cache and Memory Utilization. To achieve the desired sublinear communica-
tion overhead of PCGs, it has been necessary to generate the correlations in
large batches, e.g. n ≈ 220 . However, SSD reduces this necessity as it is more
communication efficient, and therefore allows for a smaller n while achieving the
same relative communication overhead. This in turn results in non-trivial per-
formance improvements as the overall protocol can better fit into CPU cache.
Our implementation shows that by executing q = 25 instances of size n = 215

binary OLEs rather than a large batch of n = 220, we can reduce wall-clock time
for degree 1 correlations by 1.5 times while achieving the same relative commu-
nication overhead. Moreover, we expect speedup for degree 2 correlation to be
even larger due to the larger amount of local computation along with the more
complex setup protocol.

2 Related Work

In Sect. 3, we review existing works on syndrome decoding (SD) and related
attacks. In this section, we focus on approaches aimed at improving pseudoran-
dom correlation generators (PCGs), which serve as the motivating application
of SD in our work. The majority of PCGs use essentially the same protocols
[BCGI18,BCG+19b,BCG+19a,BCG+20,CRR21,BCG+22,RRT23]. They gen-
erate a secret sharing of a sparse vector e times either a scalar Δ or in [BCG+20]
by another sparse vector. This sharing is then compressed by a linear function
G. Thus, to improve PCG performance, the focus has been to improve the gen-
eration of the shared sparse vector and the time required to multiply by G. All
prior works have focused on improving the generation of a single SD instance.

Thus far, the most impactful optimization for generating the secret sharing of
e [AFS05,HOSS18,Ds17,BCGI18,SGRR19,BCG+19b,BCG+20,BCG+22] has
been the idea of the regular noise distribution [AFS05] that replaces the
Bernoulli/exact distributions (see Sect. 3.4). In the context of secure compu-
tation, this optimization was first used by TinyKeys [HOSS18] and later by
[BCGI18] for PCGs. The regular noise distribution is so beneficial because it

288 V. Kolesnikov et al.

allows the generation of the sharing of Δe to consist of O(n) AES calls across
t distributed point functions. This is in contrast with other noise distributions
that require O(t) distributed point functions and as much as O(tn) AES calls,
or the use of more complicated batch codes such as cuckoo hashing [SGRR19].

Another line of work tries to optimize the time it takes to multiply matrix
G and e [BCGI18,BCG+19b,BCG+19a,BCG+20,CRR21,BCG+22,RRT23].
The original LPN assumption states that G is uniform, and therefore G · e
requires O(n2) time. However, it is widely accepted that G can be replaced
by the generator matrix of a code with high minimum distance, unless that
code has strongly algebraic structure, such as the Reed-Solomon code, which
can be efficiently decoded with the Berlekamp-Massey algorithm [Ber68]. By
changing G to be a generator matrix, it is theoretically possible to compute
G · v for any v in O(n) time. However, practical considerations typically result
in time O(nc) where c is somehow related to log n or the security parameter.
[BCGI18,BCG+19b,BCG+19a] propose to rely on LDPC or quasi-cyclic codes
as their security is well-studied and they offer reasonable performance. [BCG+22]
propose using a type of turbo code that they call expand-accumulate, which not
only significantly improves costs but also provably has high minimum distance.
[RRT23] further improve on this code by replacing accumulation with a so-called
convolution, which significantly increases minimum distance, and hence allows
for more favorable parameters and performance. Our work differs from all these
works in that we amortize PCG cost across multiple SD instances. I.e., we amor-
tize out the cost of generating the noise vectors e across q instances.

3 Preliminaries

3.1 Notation

Most of our notation follows standard conventions. Specifically, matrices are
denoted using bold, non-italic, uppercase letters, while vectors are represented
by bold, italic, lowercase letters. E.g., G is a matrix and v is a vector. We index
matrices and vectors with subscript and use 1-based indexing, e.g., Mi,j or vi.
|v| represents the Hamming weight of a vector. ||v|| represents the length of a
vector or size of a set. v||u denotes the concatenation of vectors v, u. v ʘ u and
v · u denote the component-wise and dot product multiplications, respectively.
[a, b] denotes the sequence of natural numbers a, . . . , b and [n] the sequence [1, n].
[a, b]R denotes the inclusive range from a to b over the real numbers. κ is the
computational security parameter. [[x]] denotes a two-out-of-two secret sharing
of x ∈ F. A sender party holds a share [[x]]s ∈ F, while the receiver party holds
[[x]]r ∈ F such that x = [[x]]s + [[x]]r.

We denote variables of multivariate polynomials in bold, non-italic font, e.g.,
x, e, z. A polynomial f ∈ F[x] is in italics. When given concrete values, we denote
x as x. We use the graded lexicographic monomial ordering, where xα > xβ if
and only if

∑
i αi >

∑
i βi, or

∑
i αi =

∑
i βi and the left-most non-zero entry

of α − β is positive. fi will denote the ith smallest monomial in f . Let LM(f)
denote the largest monomial in f (without its coefficient) and LT(f) denote

Stationary Syndrome Decoding for Improved PCGs 289

the largest term in f (with its coefficient). A set F ⊆ F[x] of polynomials will
be in calligraphy font (along with distributions). M := {xα : α ∈ Nn} =
{xα1

1 · . . . · xαn
n : α ∈ Nn} denotes the set of monomials.

3.2 Distributions and Bias

A distribution D is associated with a set X and each x ∈ X is associated with
a probability p(x) ∈ [0, 1]R s.t.

∑
x∈X p(x) = 1. Let Dist[X] denote the set of

all probability distributions over set X . We can sample an element x from D,
denoted as x ← D, such that Pr[x ← D] = p(x). In places, we will also treat D
as a random variable in the natural way. When X is a set, we use x ← X to
denote sampling from the uniform distribution U over X , i.e., p(x) = 1/|X |.

We will make use of the notion of bias, which measures how much a dis-
tribution D is correlated with a linear function v. Given a distribution D over
F

n and a non-zero vector v ∈ Fn, the bias of D with respect to v, denoted as

biasv (D), is equal to: biasv (D) :=
||
|
| E
d←D

[χ(v · d)]
||
|
| . where χ : F → C is a non-

trivial character of Fn, e.g., χ(x) := exp 2πiTr(x)
p for a field with pk elements

and field trace Tr(x) := x + xp + ... + xpk−1
. In the binary case, this simplifies

to biasv (D) = | Pr[v · x = 0] − 1/2|. By bias(D), we denote the largest bias of
D with respect to any non-zero v: bias(D) = max

v /=0
(biasv (D)) We now present

bias for a distribution
∑

i≤t Di, obtained by taking t independent distributions
D1, . . . , Dt over Fn, sampling di ← Di and outputting the sum d =

∑
i∈[t] di.

One can generalize [Shp09]’s lemma for Fn
2 to arbitrary Fn.

Lemma 1. For t independent distributions D1, . . . , Dt over Fn, the bias of a
distribution D :=

∑
i∈[t] Di is bounded by bias(D) ≤ ∏

i bias(Di) and that biasv ≤∏
i biasvi(Di) for non-zero vi ∈ Fn.

Proof.

bias(D) = bias

(
∑

i
Di

)

= max
v /=0

||
|
| E
di←Di

[χ(v · (d1 + . . . + dt))]
||
|
|

= max
v /=0

|
|
|| E
di←Di

[χ(v · d1) · . . . · χ(v · dt)]
|
|
|| (1)

≤ max
v1 /=0

|
|
|
| E
d1←D1

[χ(v1 · d1)]
|
|
|
| · . . . · max

v1 /=0

|
|
|
| E
dt←Dt

[χ(v · dt)]
|
|
|
| (2)

=
∏

i
bias(Di)

where (1) follows from χ(x+y) = χ(x)χ(y) and (2) follows from the independence
of Di and the triangle inequality. The proof of biasv (D) immediately follows. ∩∪

290 V. Kolesnikov et al.

3.3 Coding Theory

Let C be a linear code that consists of a set of codewords v such that C := {v :=
xG | x ∈ Fk}, where x is any input of length k, G ∈ Fk×n is a generator matrix
of C, and F is some field. A matrix H ∈ Fm×n, whose kernel is C := {v | Hv :=
0m}, is called a parity check matrix. The code generated by H is called the dual
code of C. From G, we can construct H and vice versa. It follows that GHT = 0.
The minimum distance d of a linear code C represents the minimum number of
positions of some codeword v that must be modified to get another codeword
v'. Equivalently, d can be defined as the minimum weight non-zero codeword or
as the minimum number of linearly dependent columns of H. A dual distance
of the matrix A is the largest integer d such that every subset of d rows of A
is linearly independent. It is also the minimum distance of the dual of the code
generated by A.

3.4 Syndrome Decoding

Syndrome Decoding (SD), or equivalently the dual learning parity with noise
(LPN) formulation, states that for some field F, a public matrix G ∈ Fk×n that
is a generator of a linear error-correcting code, and a private weight-t sparse noise
vector e ∈ Fn sampled from some noise distribution, (G, Ge) is indistinguishable
from (G, b), where b ← Fk is uniformly random.

Definition 1 (Syndrome Decoding Assumption (SD)). Syndrome Decod-
ing is parameterized by an implicit computational security parameter κ, a field F,
dimensions n, k ∈ N with k < n, and distributions D ∈ Dist[Fn], G ∈ Dist[Fk×n].
For samples e ← D ∈ Fn and G ← G ∈ Fk×n, the (n, k, F, D, G)-SD assumption
states:

{(G, b) | b := G · e} ≈ {(G, b) | b ← Fk}

where ≈ denotes computational indistinguishability.

The SD assumption is known to be false for some choices of G and D. For
example, this is the case when G has small minimum distance, is a Reed-Solomon
code, or e is too sparse.

Learning Parity with Noise (LPN) is a fundamental cryptographic assumption
introduced by [BFKL94] and is equivalent to SD. LPN states that for some field
F, some public matrix A ∈ Fn×m, a random secret vector s ← Fm, and a random
secret weight-t sparse noise vector e ∈ Fn, (A, As + e) is indistinguishable from
(A, b), where b ← Fn is uniformly random. In the original formulations both
A and s were uniformly random and each position of e was sampled from the
Bernoulli with parameters t/n so that in expectation |e| = t. However, fruitful
lines of research have shown that better performance can be achieved by adding
structure to these distributions. Commonly, A is the transpose of a parity check
matrix H of a linear error-correcting code with high minimum distance and fast
encoding, e.g., [BCG+22,CRR21,RRT23]. Additionally, to improve performance

Stationary Syndrome Decoding for Improved PCGs 291

of certain protocols e is often sampled from some noise distribution, e.g., regular
[AFS05] as we will explain later.

Definition 2 (Learning Parity with Noise Assumption (LPN)). Learning
Parity with Noise is parameterized by an implicit computational security parame-
ter κ, a field F, dimensions n, m ∈ N with n > m, and distributions D ∈ Dist[Fn],
H ∈ Dist[Fn×m]. For samples e ← D ∈ Fn, A ← H ∈ Fn×m, and si ← Fm, the
(n, m, F, D, H)-LPN assumption states:

{(A, b) | b := A · s + e} ≈ {(A, b) | b ← Fn}

where ≈ denotes computational indistinguishability.

LPN and SD Equivalence. Recall that for a linear error-correcting code, the
matrix A from the LPN formulation is the transpose of a parity check matrix
H = AT, while G from the SD formulation is the generator. The key observation
is that GHT = 0. Then, G(HT s+e) = (GHT)s+Ge = Ge = b. Similarly, given
a SD sample (G, b), one can define the equivalent LPN instance by sampling a
uniform ŝ ∈ Fm and outputting (A, ̂b) where ̂b := Aŝ + ê and ê is an arbitrary
solution to Gê = b̂. Correctness follows from the fact that there exists some
s ∈ Fm s.t. As + e = Aŝ + ê.

Noise Distributions. Three choices for the noise distribution are dominant in
the literature: Bernoulli, exact, and regular. In secure computation applications,
their choice greatly impacts efficiency. Let t be the desired sparsity of the error
vector e of size n, consisting of elements from some field F:

– Bernoulli is the classic noise distribution. Each ei ∈ F is sampled with Bert/n,
i.e., 0 with probability 1 − t/n and otherwise uniformly from F \ {0}.

– Exact noise distribution evolved from the Bernoulli distribution and fixes the
Hamming weight of the noise vector |e| = t, I.e., e ← {e ∈ Fn | |e| = t}.

– Regular is the distribution of choice for pseudorandom correlation generators
(PCG) as the noise vector is much cheaper to implement under secure com-
putation than in the exact case (details to follow). e consists of t same-size
blocks e1, ..., et ∈ Fn/t, where each ei is a uniformly random unit vector. I.e.,
ei ← {ei ∈ Fn/t | |ei| = 1}.

Interestingly, there is not a clearly best noise distribution when it comes to
security. [ES24] recently showed that regular noise can actually be harder for
some parameter regimes, and vice versa.

3.5 Linear Attacks

Cryptanalyzing LPN is a thriving area of research. Many attacks have been pro-
posed of which the most effective are those based on Gaussian elimination/BKW
algorithm [BKW03,Lyu05] and information set decoding (ISD) [Pra62,Ste89].

292 V. Kolesnikov et al.

When introducing a new LPN variant, it would be laborious to prove secu-
rity against each possible attack. Fortunately, the majority of known attacks
fit in the linear test framework. These include, among others, attacks based
on Gaussian elimination and the BKW algorithm [BKW03,Lyu05], attacks
based on covering codes and information set decoding [Pra62,Ste89], statistical
decoding [Jab01,FKI07], and finding correlations with low degree polynomials
[ABG+14,BR17]. In this framework, the adversary is given the matrix A, arbi-
trarily preprocesses it, and then outputs a test vector v. Now, the framework
states that the distinguisher, who tries to distinguish the LPN sample from uni-
formly random, can be implemented by a simple linear test v · (As + e) and by
checking if the output is biased, e.g., equals zero more than random chance.

One advantage of the linear test framework is that when LPN is initialized
with a code that has high minimum distance d, then it cannot be distinguished
from uniform except with negligible probability. Note that high minimum dis-
tance is not a necessary condition for security. It is well-known that small mini-
mum distance can result in secure LPN as long as the pseudominimum distance
is high. Pseudominimum distance represents the weight of the smallest code-
word that is efficiently computable. In other words, small minimum distance
codewords can exist as long as they cannot be efficiently found. We note that
while the linear test framework covers the large majority of known attacks, there
are some notable exceptions such as when the underlying code is strongly alge-
braic (e.g., Reed-Solomon) or the noise is structured (e.g., regular). Stationary
syndrome decoding, which we introduce in this paper, has a highly structured
noise, and thus requires analysis beyond the linear test framework.

To illustrate how the linear test framework captures various attacks, we next
review how to cast state-of-the-art ISD algorithms as linear tests. First, the SD
problem (G, G · e) is converted into its equivalent LPN formulation (A, b :=
As + e), see above. A subset of m := n − k rows of A are selected, called
an information set I ⊂ [n], with the hope that this set does not intersect the
non-zeros of the noise vector e, i.e. ei = 0 for i ∈ I. One can then use Gaussian
elimination to solve for the noisy positions of e by considering the corresponding
m × m submatrix A', which consists of the rows in the information set i.e.
A' := (AI1 //...//AIm). One then solves the system A' · s = bI using Gaussian
elimination and checks if e' := As − b is a t-sparse vector, which implies e' = e
w.h.p. This algorithm can be implemented in the linear test framework, for
example, by simply checking if e'

1 = 0, which is linear in the original SD problem
since e' is linear in Ge.

When ISD is naively implemented, each information set guess requires
a costly Gaussian elimination step. Advanced ISD algorithms [Ste89,FS09a,
BLP11] [MMT11,BJMM12,MO15,BM18,ES24] typically improve efficiency
through a combination of techniques, such as reducing the overall search space,
optimizing the process of finding the right information set, or amortizing the
cost of Gaussian elimination by reusing partial computations across multiple
related information sets. This avoids the need to restart the linear algebra from
scratch for each attempt. While processing each individual set still takes at least

Stationary Syndrome Decoding for Improved PCGs 293

O(1) time, the overall approach becomes significantly more efficient. As a result,
in the linear test framework, these attacks can be structured so that each test
effectively runs in O(1) time as well.

Importantly, we note that the noise parameter t suggested by the linear test
framework tends to be highly conservative. For example, [LWYY22] shows that
in SD, a choice of t ≈ 60 should provide the same level of bit-security against
linear tests as opposed to t ≈ 170 required by the linear test framework. In this
work, we adopt a more conservative approach and choose parameters according
to the linear test framework to ensure provable security guarantees. However,
we are also not aware of any concrete speedup for ISD-styled algorithms when
applied to SSD, which suggests more aggressive parameters could be considered.

3.6 Algebraic Preliminaries

Recent work by Briaud and Øygarden [BØ23] represents one such attack that
does not fit within the linear test framework. The attack is based on algebraic
geometry and leverages the regular structure of noise in LPN and SD. At the
highest level, the attack represents LPN/SD as a system of linear and non-linear
polynomials and then solves for the noise vector e. [BØ23]’s work is a crucial
prerequisite to analyze the security of our assumption against algebraic attacks.
For that reason, we first provide an overview of the concepts necessary to under-
stand [BØ23]’s attack before reviewing their attack. For those less familiar with
agebraic geometry we provide a self-contained introduction in [KPRR25].

Macaulay Matrix. The Macaulay matrix is an essential primitive for solving non-
linear systems of equations. Let M := {xα : α ∈ Nn} be the set of all monomials.
Let coeff(f, m) represent the coefficient of a monomial m ∈ M in a polynomial
f ∈ A. For finite subsets F := {f1, . . . , fp} ⊂ A and S := {s1, . . . , sq} ⊂ M, the
Macaulay matrix Macaulay(F , S), is defined as

Macaulay(F , S) :=

⎛

⎜
⎝

coeff(f1, s1) ... coeff(f1, sq)
...

. . .
...

coeff(fp, s1) ... coeff(fp, sq)

⎞

⎟
⎠

Note that S need not have all the monomials in F .

XL Algorithm and Gröbner Bases. Techniques based on Gröbner bases and the
closely related XL algorithm [CKPS00] can be used to solve systems of polyno-
mial equations. Both approaches usually depend on the Macaulay matrix (see
[KPRR25]). For the systems we consider, the XL algorithm is more performant,
and hence our discussion focuses on XL.

Let F := {f1, . . . , fp} such that F ⊆ A be a system of polynomial equations,
i.e., f1(x) = . . . = fp(x) = 0. The XL algorithm can be split into two phases.
The first phase maps the non-linear system F to a linear system. We start by
multiplying each fi by arbitrary monomials such that the resulting polynomials
are of degree at most d. d is carefully selected and input to the algorithm such

294 V. Kolesnikov et al.

that this step produces enough new equations. Note that finding the right d is
often challenging and constitutes a significant effort for the approach. We then
linearize the system by treating its monomials as new variables and save their
coefficients in the Macaulay matrix. The second phase is standard. We proceed
by solving the linear system with Gaussian elimination and obtain a polynomial
in one variable. We solve this polynomial using some factorization algorithm
and obtain a root, substitute, and repeat this process to solve for the remaining
variables. The full algorithm is presented in Fig. 1.

XL(F = {f1, . . . , fp} ⊂ A, dwit ∈ N) :

1. Expand the system to degree dwit by computing, I≤dwit := {mfi : m ∈ M, fi ∈
F , deg(mfi) ≤ dwit} = {h ∈ I : deg(h) ≤ dwit}.

2. Obtain the Macaulay matrix M := Macaulay(I≤dwit , M≤dwit) ∈ F
p×q where

M≤dwit := {m ∈ M : deg(m) ≤ dwit} and q := |M≤dwit |. We now have a lin-
ear system M · z = 0 where z1, . . . , zq are relabelings of the M≤dwit .

3. For i ∈ [n] :
(a) Reorder M, z such that (z1, . . . , zdwit+1) = (1, x1

i , . . . , xdwit
i).

(b) Perform Wiedemann Gaussian elimination [Wie86] on M where
(z1, . . . , zdwit+1) = (1, x1

i , . . . , xdwit
i) are eliminated last. Output ⊥ if the

first row of M is not of the form (M1,1, . . . , M1,dwit+1, 0, . . . 0).
(c) Solve the univariate polynomial system

∑
j∈[dwit+1] M1,jx

j−1
i = 0 using factor-

ing algorithms. Let xi be one of the roots.
(d) Substitute xi in for xi and simplify M.

4. Output (x1, . . . , xn).

Fig. 1. The XL algorithm [CKPS00] for solving quadratic system of equations.

As briefly discussed above, for XL to be successful we need to select d carefully
such that we produce in the first phase enough linearly independent equations
in relation to the number of monomials. In other words, p ≥ q in the Macaulay
matrix so that we can apply Gaussian elimination. The threshold for large enough
d is called the witness degree dwit and we use [BØ23]’s definition below.

Definition 3 (Witness Degree [BØ23]). Consider an affine system of poly-
nomials F := {f1, . . . , fp} with coefficients in F, the ideal I := ⟨F⟩, and some
d ∈ N. Now consider:

I≤d := {h ∈ I : deg(h) ≤ d}

J≤d :=

⎧
⎨

⎩ h ∈ I : ∃gi s.t. h =
∑

i∈[p]

gifi; ∀i ∈ [p], deg(gi) ≤ d − deg(fi)

⎫
⎬

⎭

The witness degree dwit is the smallest d ∈ N for which it holds that I≤d = J≤d
and LM(I≤d) = LM(I), where LM(·) (for some graded ordering) denotes the

Stationary Syndrome Decoding for Improved PCGs 295

monomial ideal generated by the leading monomials of all polynomials in the
input ideal.

Intuitively, dwit guarantees that everything we need to know about the struc-
ture of an ideal can be captured by polynomials of degree at most dwit. Note that
the witness degree dwit is related to the degree of regularity dreg (see [KPRR25]).
The key difference is that dreg is usually used for homogeneous systems solved
with Gröbner bases, while dwit is suitable also for affine systems solved with XL.

The runtime of the XL algorithm is largely determined by the cost of Gaus-
sian elimination. As the systems we consider have a single solution and are sparse,
we can use the Wiedemann algorithm [Wie86] to perform the Gaussian elimina-
tion, and find a solution in 3 ·maxRowWeight(M) ·q2 , where 3 is a constant stan-
dard in the literature (see [BØ23]), maxRowWeight(M) := max({|Mi| : i ∈ [p]})
is the maximum number of non-zero entries across the rows of the Macaulay
matrix M, and q is the number of columns in the Macaulay matrix.

3.7 Algebraic Attacks

[BØ23]’s Attack. The attack solves for the noise vector e ∈ Fn in a polynomial
system representing a single instance of regular-noise SD. Recall that a regular
e = e1|| . . . ||et can be viewed as t vectors e1, . . . , et each of size n/t and Ham-
ming weight |ei| = 1. The system consists of k linear parity check equations
Ge − b = 0 and

(
n/t
2

)
t quadratic equations encoding the regular structure of e,

i.e., ei,j1 ei,j2 = 0 for all i ∈ [t] and j1 < j2 ∈ [n/t]. 1 These two sets of equations
represent the complete system of polynomial equations to solve regular syndrome
decoding over a large field F. Over F2, we additionally encode that the sum of
each block equals 1, i.e.,

∑
j∈[n/t] ei,j − 1 = 0, for all i ∈ [t]. We cannot do this

over larger fields as we do not know the values of the non-zero coordinates. We
also include field equations e2

i,j − ei,j = 0, for all i ∈ [t] and j ∈ [n/t]. More
generally, we can include e||F||

i,j − ei,j = 0 for any F. However, for large F, the
degree of the field equations is much higher than dwit, and hence they have no
contribution.

We note that the main contribution to the polynomial system comes from the
k parity check equations. Hence, the attack is more effective for instances with a
non-constant rate such as in primal LPN. The presented system is for the dual
setting. To attack the primal setting, we simply convert the primal instance into
an equivalent dual instance and then solve for the presented polynomial system.
We now present the polynomial systems for large F and F2 formally.

Modeling 1 (Polynomial System over a Large Field F). Let (G, b) be a
regular syndrome decoding instance over a large F. Let F := R ∪ S be a set of
polynomials such that:

– R is the set of k linear parity check equations Ge − b = 0.
1 ei,j represents jth element of ith block ei of e.

296 V. Kolesnikov et al.

– S is the set of t
(
n/t
2

)
quadratic equations that encode the regularity of the

noise vector e, i.e., ei,j1 ei,j2 = 0 for all i ∈ [t] and j1 < j2 ∈ [n/t].

Modeling 2 (Polynomial System over F2). Let (G, b) be a regular syn-
drome decoding instance over F2. Let F := R∪S ∪V ∪W be a set of polynomials
such that:

– R and S are the same sets as in Modeling 1.
– V is the set of n field equations e2

i,j − ei,j = 0 for all i ∈ [t] and j ∈ [n/t].
– W is the set of t linear equations

∑
j∈[n/t] ei,j − 1 = 0, for all i ∈ [t]. They

express that each of the t blocks has Hamming weight 1.

[BØ23] solve these polynomial systems with XL Wiedemann. To apply XL
Wiedemann, [BØ23] estimate the witness degree dwit at which the polynomial
system is solved. This is [BØ23]’s key contribution. It also determines the cost
of XL Wiedemann as dwit determines the size of the Macaulay matrix.

The dwit estimate is the index of the first ≤ 0 coefficient in the Hilbert series
HSA/I(z), where I := ⟨F (h)⟩ in Modeling 1 and Modeling 2 respectively. Thus,
dwit can be simply retrieved if we know the Hilbert series. Recall that unfortu-
nately Hilbert series are often difficult to compute. By using the assumption that
the relevant Macaulay matrices have maximal rank and using the knowledge of
regular and semi-regular sequences, [BØ23] arrive at the following Hilbert series.

Theorem 1 (Hilbert Series for Modeling 1). Assuming the Macaulay
matrix has maximum rank, the Hilbert series of the homogeneous ideal I :=
⟨F (h)⟩, where F is the Modeling 1 polynomial system, is

HSA/I(z) := (1 − z)k ·
(

1 + n
t

· z
1 − z

)t
,

truncated after the first ≤ 0 coefficient.

Theorem 2 (Hilbert Series for Modeling 2). Assuming the Macaulay
matrix has maximum rank, the Hilbert series of the homogeneous ideal I :=
⟨F (h)⟩, where F is the Modeling 2 polynomial system, is

HSA/I(z) := (1 + (n/t − 1)z)t

(1 + z)k ,

truncated after the first ≤ 0 coefficient.

As presented, the complexity of the algorithm that solves Modeling 1 and
Modeling 2 is too high to be competitive with more established attacks. In other
words, the witness degree is too high and needs to be reduced to potentially
decrease the complexity of the overall algorithm. With that in mind, [BØ23]
present a hybrid approach, which consists of repeatedly guessing a few noise-
free elements of e and invoking XL Wiedemann until successfully computing e.

Stationary Syndrome Decoding for Improved PCGs 297

More specifically, parameterized by f ∈ [t] and μ ∈ [n/t], the hybrid approach
guesses μ noise-free positions in the first f blocks of e (i.e., add new equations for
each guessed noise-free ei,j = 0 to F). Let p be the probability that the guessed
positions are all noise-free. We then expect to repeat the XL Wiedemann O(p−1)
times. The hope is that the loss from rerunning XL Wiedemann is superseded
by the decreased degree at which the system is solved. As before, the degree dwit
is derived from the Hilbert series, which for Modeling 1 changes to

HSA/I(z) :=

[

(1 − z)k ·
(

1 +
(n

t
− μ

)
· z
1 − z

)f

·
(

1 + n
t

· z
1 − z

)t−f
]

,

truncated after the first ≤ 0 coefficient. For Modeling 2, it changes to

HSA/I(z) :=

[
(1 + (n/t − 1 − μ)z)f · (1 + (n/t − 1)z)t−f

(1 + z)k

]

,

also truncated after the first ≤ 0 coefficient.

4 Overview

In this work, we introduce a new assumption that we call the stationary syn-
drome decoding (SSD), analyze its security, and present its implications for dif-
ferent applications. The high-level idea of SSD is straightforward. We consider
q instances of syndrome decoding (SD). SSD states that it is secure to reuse
the noisy positions of the noise vector e across all q instances as long as their
corresponding values are sampled uniformly for each instance. More formally:

Definition 4 (Stationary Syndrome Decoding (SSD)). Stationary Syn-
drome Decoding is parameterized by an implicit computational security param-
eter κ, a field F, dimensions n, k, q ∈ N with k < n, and distributions
L ∈ Dist[{0, 1}n], G ∈ Dist[Fk×n]. For sample L ← L and for i ∈ [q], sam-
ple ei ← L ʘ F

n, Gi ← G ∈ Fk×n. The (n, k, q, F, L, G)-SSD assumption states:

{(Gi, bi) | bi := Gi · ei}i∈[q] ≈ {(Gi, bi) | bi ← Fk}i∈[q]

where ≈ denotes computational indistinguishability.

The applications we consider will restrict L to being a subset containing sparse
vectors, typically with O(κ) ones. It is not hard to show that this definition is
equivalent to the following LPN-styled definition.

Like SD (Sect. 3.4), the SSD assumption is false for some choices of G and L.
This definition serves as template that we make concrete in Sect. 5 and 6. We
give concrete parameters in Sect. 7 for when we believe that SSD holds.

Definition 5 (Stationary Learning Parity with Noise (SLPN)). Station-
ary Learning Parity with Noise is parameterized by an implicit computational

298 V. Kolesnikov et al.

security parameter κ, a field F, dimensions n, m, q ∈ N with n > m, and distri-
butions L ∈ Dist[{0, 1}n], H ∈ Dist[Fn×m]. For sample L ← L and for i ∈ [q],
sample ei ← LʘF

n, Ai ← H ∈ Fn×m and si ← Fm. The (n, m, q, F, L, H)-SLPN
assumption states:

{(Ai, bi) | bi := Ai · si + ei}i∈[q] ≈ {(Ai, bi) | bi ← Fn}i∈[q]

where ≈ denotes computational indistinguishability.

In particular, the equivalence holds when Gi is the generator matrix for the
parity check matrix AT

i , see Sect. 3.4. Note that the more standard definitions
of regular LPN and SD can be obtained simply by restricting q to be one and
requiring non-zero noise. Conversely, Definition 6 shows that one can similarly
reframe SSD, SLPN in terms of the standard LPN formulation (G, G·e) ≈ (G, $)
with specially structured noise e and matrices G.

In the rest of this section, we justify at a high level SSD’s security (Sect. 4.1)
and discuss SSD’s implications for the performance of pseudorandom correlation
generators (Sect. 4.2).

4.1 The Security of SSD

The majority of known attacks on SD and LPN fall into two categories: linear and
non-linear. For the parameter regime that PCGs commonly use, linear attacks
are typically more efficient. Interestingly, SSD enjoys provable immunity to all
of these attacks. As discussed in Sect. 3.5, these attacks can be shown to be
equivalent to sampling the generator matrices G1, . . . , Gq ∈ Fk×n and invoking
an adversary A(G) which outputs a test vector v ∈ Fkq. The distinguisher is
then implemented as v · (b1|| . . . ||bq). I.e., if the output is correlated with the
linear function v = (v1|| . . . ||vq), then the adversary A wins. We provably show
no A exists that has noticeable advantage. The core idea is that any such attacker
has to essentially come up with a codeword vi of Gi that does not intersect the
noise. 2 However, from the distribution of the noise, this is unlikely, even if the
noise is correlated. SSD is particularly interesting because it targets a weakness
of linear attacks such as information set decoding (ISD). At a high level, linear
attacks come down to guessing a noise-free set of positions in e, which are the
non-zeros of vi, and then checking for linear correlations. However, this does not
allow an attacker to take advantage of the new information that SSD provides.
For a linear attacker, all vi must be codewords, and therefore the new instances
are no easier to attack than the first.

The situation with respect to non-linear attacks is more complicated. State-
of-the-art techniques encode the problem statement into a system of non-linear
equations and use algebraic techniques for solving the system, e.g., Gröbner
bases. [BØ23] recently proved bounds on the running time of the XL [CKPS00]
algorithm (see Sect. 3.6 and Fig. 1), when applied to the SD problem with regular
2 Here we abuse notation and redefine vi ∈ Fn as a codeword of Gi that corresponds

to a test vector Givi in the SD setting. See Sect. 5 for formal detail.

Stationary Syndrome Decoding for Improved PCGs 299

noise. They show that when G ∈ Fk×n has non-constant rate, e.g., k = (1− ϵ)n,
then the XL algorithm can outperform linear attacks.

Given that our system can be seen as an even more structured version of
regular noise SD, it is imperative that we understand how such attacks scale when
adapted to use the additional structure. To achieve this, we define a system of
equations that encodes the structure of the SSD problem and then prove bounds
on the required running time to solve such systems using the XL algorithm. We
show that XL is not noticeably better at solving SSD compared to SD.

4.2 Pseudorandom Correlation Generator (PCG) from SSD

We now explain at a high level how SSD improves the performance of PCGs and
defer the full details to [KPRR25]. Typically, the end goal is to generate a secret
sharing of a random vector v times a scalar Δ, i.e., [[vΔ]]. We will first compute
a secret sharing of a t-sparse vector e times Δ, i.e., [[eΔ]]. The final result is
obtained by computing [[vΔ]] = G[[eΔ]], i.e., v = Ge. e, v will be known to the
receiver while Δ is known to the sender. Many useful degree 1 PCGs, e.g., for
OT, binary OLE, and VOLE, are directly obtained from [[vΔ]].

In more detail, let n' := n/t. The receiver samples t subvectors e1, . . . , et ∈
F

n'
of Hamming weight 1 and defines e := e1|| . . . ||et ∈ Fn. The secret sharing

[[eΔ]] is generated by evaluating t so-called punctured PRFs [GGM84,BCG+19a]
(PPRF) or a distributed point function (DPF), where the input to the ith PPRF
is the index of the non-zero in ei from the receiver and Δ from the sender. The
output is [[eiΔ]] and we obtain [[eΔ]] := [[e1Δ]]|| . . . ||[[etΔ]]. A single instance of
such PPRF protocol requires log2 n

' oblivious transfers (OTs).
Without going into detail, the PPRF protocol generates a GGM tree with n'

leaves. A version of the GGM tree will be held by both parties and is generated
by applying a PRG to the value of each parent node and assigning the result to its
children. In total, 2n' PRG calls are made to evaluate the full tree. Additionally,
the parties perform an OT for each level of the GGM tree, which allows the
receiver to know all but one of the seeds at each level. These missing seeds all lie
on the path from the root to the leaf node that corresponds to the non-zero of ei.
The expansion of the GGM tree is largely independent of the value assigned to
the leaf, in this case a sharing of Δ. SSD can be used to optimize this process by
only expanding the tree once and then repeatedly derandomizing the leaf value
for each instance, a 2× reduction in the number of PRG calls and requiring no
additional OTs. See [KPRR25] for a more detailed description.

Many applications require billions of correlations. However, due to memory
constraints, it is often inefficient to have n > 224 and as such it is common to
have q PCG instances each of fixed size n, e.g., n = 220. This comes at the cost
of requiring qt log2 n/t OTs and communication. The SSD assumption allows us
to reduce the overhead back down to t log2 n/t OTs in total and an amortized t
communication per instance (i.e., log2 n/t times less than SD). This is because
the bulk of the work in the PPRF protocol is dependent on the locations of the
non-zeros in e but not their values. As such, because SSD states that the location
does not need to change, we obtain significant savings. We additionally obtain a

300 V. Kolesnikov et al.

much more cache-friendly construction that results in significant computational
savings. This is because the ability to reuse the bulk of the setup makes it more
attractive to use smaller values of n, which improves the cache efficiency.

We also obtain significant improvements for degree 2 PCGs such as non-
binary OLEs and Beaver triples that rely on the Ring LPN assumption. This
setting requires a very expensive setup to compute a sharing of two sparse poly-
nomials e · e'. If we apply the SSD assumption to this setting, the vast majority
of the setup can be reused, dramatically decreasing the overhead.

5 Linear Attacks

We now demonstrate that our assumption is resilient to linear attacks. We focus
on the restricted case of regular noise for efficiency. Our argument lies in showing
that the linear test framework adversary gains no significant advantage from
SLPN/SSD. It will be convenient to recast SSD in terms of standard SD with
structured noise and structured G.

Definition 6 (Canonical Representation). We say (n', m', F, D, H')-LPN
is the Canonical Representation of (n, m, q, F, L, H)-SLPN if n' = nq, m' =
mq, D = {e1||...||eq : d ← L, ei ← d ʘ F

n}, H' = {diag(A1, ..., Aq) : Ai ← H}
where diag denotes the function that places A1, ..., Aq along the diagonal of a
n' × m' matrix.

Similarly, we say (n', k', F, L, G')-SD is the Canonical Representation of (n, k,
q, F, D, G)-SSD if n' = nq, k' = kq, D = {e1||...||eq : d ← L, ei ← d ʘ F

n}, G' =
{diag(G1, ..., Gq) : Gi ← G}.
It is not hard to show that the canonical representation is equivalent.

Definition 7 (Security against Linear Tests). Security against Linear
Tests is parameterized by an implicit security parameter κ, a finite field F, dimen-
sions n, m ∈ N with n > m, and subsets D ⊂ Fn, H ⊆ Fn×m. We say that the
(n, m, F, D, H)-LPN assumption is secure against linear attacks

Pr[bias(DA) > ϵ : A ← H] ≤ δ

where ϵ, δ are negligible and DA is the distribution induced by s ← Fm , e ← D
and outputting the LPN sample As + e.

We note that one can also consider a computational version of linear test by
restricting D to being efficient. This will then correspond to using the pseudo-
minimum distance in the following.

Theorem 3 (Security of SLPN against Linear Tests with Regular
Noise). Let F be a finite field, H ⊆ Fn×m be a set of matrices with dual distance
at least d with probability at least δ, D ∈ {0, 1}n be the set of regular weight t
vectors, then (n, m, q, F, D, H)-SLPN is secure against attacks in the (ϵ, δ)-linear
test framework of Definition 7 (in canonical representation) where

ϵ = (1 − d/n)t

Stationary Syndrome Decoding for Improved PCGs 301

Proof. To prove SLPN secure against linear attacks, we split our proof into two
cases and prove them separately. First, we consider the number of LPN instances
q = 1 and only then q > 1.

Non-stationary Noise, q = 1. Let d ∈ [n] be the minimum number of linearly
dependent rows in A. We show that there does not exist a v such that v·(As + e)
is distinguishable from uniform. We consider two cases.

Non-codeword v. Let us define the code C = {c ∈ Fn : cA = 0} = {mG :
m ∈ Fk}. This implies that all c ∈ C are mapped to zero when multiplied from
the right by A, that is cT A = 0m. Conversely, for v /∈ C it holds that vT A /= 0m.
Therefore, vT As = uT s = r where u ∈ Fm is some non-zero vector. Since s is
uniform, it follows that so is r, and therefore max

v /∈C
(biasv (As + e)) = 0.

Codeword v. As just described, when v is a codeword the randomness con-
tributed by s vanishes. That is, vT(As + e) = vT e. To prove that the construc-
tion is secure against linear attacks we must show that v · e has negligible bias.
Let ei and vi denote the ith regular block of e, v, respectively, and let Di denote
the distribution of ei. Lemma 1 states that the overall biasv (D) is bounded as

biasv (D) ≤ ∏
i∈[t] biasvi(Di). We have biasvi(Di) =

|
|
|| E
ei←Di

[χ(vi · ei)]
|
|
||. Let di

denote the Hamming weight of vi. Recall that we have one noisy location in
ei (possibly with value zero), and therefore the probability the noisy location
intersects vi is di/(n/t). Conditioned on intersecting, vi · ei is uniform over F,
and therefore the bias is 0. Otherwise, vi · ei = 0 and χ(vi · ei) = 1. It follows
that biasvi(Di) = 1 − di/(n/t) and

max
v∈C

(biasv(D)) ≤
∏

i
1 − di/(n/t) ≤

(
1 −

d
n

)t

Note that this differs from the traditional regular noise bias for q = 1 as we
allow the noise value to be 0. For F2 and non-zero noise, Pr[vi ·e1 = 1] = di/(n/t)
and χ(vi · e1) = −1. It follows that E[χ(vi · ei)] = −di/(n/t) + (1 − di/(n/t)) =
1 − 2di/(n/t) and overall biasv (D) ≤ (1 − 2d/n)t .

Stationary Noise, q > 1. As in the q = 1 case, it is clear that v · (As + e) is
uniform when v is not a concatenation of q codewords. This is because v does
not map s to zero. Now let v1, ..., vq denote the codewords of v, i.e. viAi = 0m

and v = (v1||...||vq). As in the q = 1 case, if v intersects e, then the result
is uniformly random, and therefore has zero bias. Since (a) v is non-zero, and
hence at least one vi is non-zero, and (b) the bias of each block with non-zero vi

is at most
(
1 − d

n

)t
, then the overall bias is at most this as well. Note that while

the noisy locations between blocks do not change, their values in each block are
uniformly random, and the overall bias is bounded as the maximum over the
bias of each non-zero block. ∩∪
Note that given Theorem 3 and the equivalence of SLPN and SSD (see Sect. 4),
the security of SSD against linear tests with regular noise is straightforward.

302 V. Kolesnikov et al.

5.1 Other Linear Attacks

Given that our assumption introduces additional structure it is worth considering
the existence of other attacks that could be considered linear while not fit into the
linear test framework. Consider the SSD problem and the q outputs b1, ..., bq,
i.e. bi = GiAisi + Giei for generator Gi of parity check Ai. There exists a
hidden subset G'

1, ..., G'
q of G1, ..., Gq where G'

i :=
(
Gi,∗,L1 , . . . Gi,∗,Lt

) ∈ Fm×t

and Gi,∗,Lj is the jth “noisy column” of Gi. We then have bi = G'
i · ci where

ci ∈ Ft are the t noisy values in ei, i.e. ci,j = ei,Lj . Similarly, we can write this
as one large linear equation b = G' · c. with G' = diag(G'

1, ..., G'
t). Given that

|b| > |c|, the pseudorandomness of b clearly depends on G' being hidden. We
consider a special case where pseudorandomness breaks down.

Consider instantiating the SSD assumption where the space of generator
matrices is the singleton set G = {G}. Therefore G1, ..., Gq above are all the
same. This additionally means that G' can be expressed as an m × t matrix
as opposed to a qm × qt matrix. In particular, consider C = (c1, ..., cq), B =
(b1, ..., bq) and observe that B = G' · C. Although the subset corresponding
to G' is not known, G' is now fixed and does not grow with q. Therefore,
when q = t, we can assume that span(B) = span(G'). This also means that
bt+1 ∈ span(b1, ..., bt), i.e. bt+1 can be distinguished. Because m < t, one would
not expect this to happen for random bi.

Although this attack is clearly in some sense linear, it is not possible to
perform it in the linear attack framework. Determining the coefficients v ∈ Ft

such that bt+1 = ⟨(b1, ..., bt, v)⟩ is a function of the output, which the linear test
adversary does not have. Linear test adversaries must first fix v before seeing b.
This exemplifies that although the linear test framework captures the majority of
traditional attacks on LPN and SD, new attacks become possible when additional
structure is added. To prevent this relatively trivial attack, it is critical that the
family of codes be large and relatively uncorrelated.

Consider G = Fm×n, i.e. the uniform distribution. Then clearly the linear
attack A(b1, ..., bt+1) described above is impossible. Each new bi is the sum
of an independent and uniformly random subset G'

i. Any adversary breaking
security must crucially rely on the fact that the G'

i matrices are correlated via
the secret L and public parameters G1, ..., Gq.

More generally, existing codes used for PGCs [BCG+19a,BCG+22,RRT23]
all sample their codes from an extremely large sample space. In particular, many
more random bits are used to sample Gi than are present in bi. This suggests
that it is extremely unlike that linear correlations would exist. Given that each
is constructed using a randomly sampled seed, e.g. Gi = CodeGen(H(i)) for a
random oracle H, then such linear attacks in the output should not be feasible.

6 Algebraic Attacks

In this section, we show that SSD is resilient against the recent algebraic attack
of [BØ23]. We first modify [BØ23]’s attack so that it takes advantage of the sta-
tionary noise across instances. We then show that the structured stationary noise

Stationary Syndrome Decoding for Improved PCGs 303

provides negligible advantage. More specifically, we start by presenting our mod-
ified system in Sect. 6.1. We continue by computing our system’s Hilbert series
in Sect. 6.2, use it to estimate the witness degree in Sect. 6.3, repeat the same
procedure for the hybrid approach in Sect. 6.4, and then evaluate the attack’s
impact on SSD’s security in Sect. 6.5.

6.1 Formulating Our Polynomial System

Recall that we restrict the noise to be at locations L ∈ L such that the locations
are regular. Consider arbitrary matrices Gi ∈ Fk×n sampled from G and error
vectors ei ∈ Fn, where each ei ← L ʘ F

n is a vector with at most t non-zeros.
That is, ei = ei,1|| . . . ||ei,t where ||ei,j || = n/t and |ei,j | ≤ 1. We are given

(G1, . . . , Gq, b1, . . . , bq),

where bi = Gi · ei.
We now formulate a system of polynomial equations to solve for ei for i ∈ [q],

i.e., the system has qn unknowns. We first consider in Modeling 3 the case where
SSD is parameterized over a large field F, and then in Modeling 4 the case where
it is parameterized over F2.

Modeling 3 (SSD over a Large Field F). Let (G1, . . . , Gq, b1, . . . , bq) be an
SSD instance with regular noise locations L over a large F. Let F := R ∪ S be a
set of polynomials such that:

– R is the linear equations ⟨Gi,j , ei⟩ − bi,j = 0, for all i ∈ [q] and j ∈ [k].
– S is the set of q2 t

(
n/t
2

)
= q2 n2 /2t−q2 n/2 quadratic equations ei,v,jei',v,j' =

0, for all i, i' ∈ [q], v ∈ [t], and j < j' ∈ [n/t], implied by the structured noise
constraint L.

Modeling 4 optimizes the system for F2 by including the field equations
e2 i,v,j −ei,v,j = 0, for all i ∈ [q], v ∈ [t], and j ∈ [n/t]. This ensures that the ideal
⟨F⟩ generated by Modeling 4 is zero-dimensional. However, for large F, as noted
prior, these equations will have no contribution.

Modeling 4 (SSD over F2). Let (G1, . . . , Gq, b1, . . . , bq) be a SSD instance
with regular noise over F2. Let F := R∪S ∪V be a set of polynomials such that:

– R and S are the same sets as in Modeling 3.
– V is the field equations e2 i,v,j −ei,v,j = 0 for all i ∈ [q], v ∈ [t], and j ∈ [n/t].

Compared to the prior work modeling for binary fields (Modeling 2), we
observe that SSD appears slightly harder because we no longer restrict e to
being regular with exact weight t (i.e. the noisy positions are sampled uniformly,
and thus can be zero). This eliminates t linear equations that prior attacks
[ES24,BØ23] were able to use.

304 V. Kolesnikov et al.

6.2 Computing Hilbert Series

We now compute the Hilbert series (Sect. 3.6) of the homogeneous ideals associ-
ated with Modeling 3 and Modeling 4. Our computation uses a template similar
to [BØ23] that estimates the Hilbert series of the ideals associated with Model-
ing 1 and Modeling 2. Note that F , neither in the case of a large F nor F2, is a
regular or semi-regular system (Sect. 3.6). To see why, consider f1 := e1,1,1e1,1,2

and f2 := e1,1,2e1,1,3 that come from the structured noise constraint S. Recall
that the regularity and semi-regularity of F is independent of the order in which
we consider the polynomials in the system. Now, e1,1,1f2 = 0 in A/⟨f1⟩, but
e1,1,1 /= 0 in A/⟨f1⟩, and hence F is not a regular system. If F were to be a
semi-regular system, then its degree of regularity can be no more than 3 using
the aforementioned examples of f1, f2. However, e1,1,1e1,2,1e1,3,1 /∈ ⟨F⟩ (with
high probability). Thus, as long as t ≥ 3 (or even q ≥ 3, etc.), the system is not
semi-regular either. As a result, we cannot use the Hilbert series from Sect. 3.6
and require a more sophisticated analysis.

Hilbert Series for Modeling 3. Recall Modeling 3’s polynomial system F :=
R∪S. We first compute by monomial counting the Hilbert series HSA/⟨S⟩(z) of
the quotient ring A/⟨S⟩ resulting from the structured noise equations S. After
we compute the Hilbert series corresponding to S, we need to incorporate the
linear parity-check equations R to get the final Hilbert series. To do that, we
follow [BØ23]’s approach. We formalize as Assumption 1 an assumption that
the parity-check equations R behave well in the quotient ring A/⟨S⟩ formed
by the structured noise equations S. Note its similarity with the definition of
semi-regularity over large F.

Assumption 1. Let F := R ∪ S be an instance of Modeling 3 and dreg be the
degree of regularity of the zero-dimensional ideal ⟨F⟩. Let R(h) := {r1, . . . , rqk}
be the set of homogenized parity check equations. Our assumption states that for
i ∈ [qk]; if gri = 0 in A/⟨S, r1, . . . , ri−1⟩ with deg(gri) < dreg, then g = 0 in
A/⟨S, r1, . . . , ri−1⟩.
We now state and derive the final Hilbert series.

Theorem 4. For F associated with Modeling 3, the Hilbert series of the homo-
geneous ideal ⟨F (h)⟩ under Assumption 1 is

HSA/⟨F(h)⟩(z) = (1 − z)qk ·
(

1 + n
t

(
1

(1 − z)q − 1
))t

,

truncated after the first ≤ 0 coefficient. We call (1 − z)qk ·
(
1 + n

t

(
1

(1−z)q − 1
))t

the generating series of ⟨F (h)⟩.
Theorem 4 immediately follows from the proofs of Lemma 2 and Lemma 3.

Stationary Syndrome Decoding for Improved PCGs 305

Lemma 2. For the set S associated with the structural equations of Modeling
3, the Hilbert series of the homogeneous ideal ⟨S(h)⟩ is

HSA/⟨S(h)⟩(z) =
(

1 + n
t

(
1

(1 − z)q − 1
))t

.

Proof. Note that S is already homogenized, i.e., S = S(h). Recall that HS(z) =∑
d HF(d) · zd and the HF(d) = dim(Ad/⟨S(h)⟩d) is the size of the vector space

basis Bd ⊂ {[xα] : α ∈ Nn} s.t. span(Bd) = Ad/⟨S(h)⟩d.
Let us first restrict our attention to a specific block v ∈ [t] and let Sv be the

subset of S that only considers block v. Because Sv = {ei,v,jei',v,j' : i, i' ∈ [q], j <
j' ∈ [n/t]}, the quotient A/⟨S(h)

v ⟩ cannot contain any monomials with ei,v,jei',v,j'

as a factor. That is, for a fixed v no monomial contains more than one j index.
If we then consider a specific degree d and all of the q instances, the admissible
monomials are Bd,v :=

{∏
i∈[q] e

αi

i,v,j : j ∈ [n/t], α ∈ (N ∪ {0})q , d =
∑

i∈[q] αi

}
.

Let us count the number of such monomials for a specific v ∈ [t], j ∈ [n/t], d > 0.
We will use a balls in bins argument to count |{α ∈ (N ∪ {0})q : d =

∑
k αk}|.

One can view this as counting the ways to assign d balls into q bins, i.e., bins
α1, . . . , αq. The number of ways to do this is

(
q+d−1

d

)
and hence the number of

monomials of the form
∏

i∈[q] e
αi

i,v,j for a fixed v, j is
(
q+d−1

d

)
. Therefore, if we

consider all j ∈ [n/t] for the fixed block v, we have |Bd,v| = n
t ·

(
q+d−1

d

)
. Thus,

the Hilbert series “for one block,” say v, is

HSA/⟨S(h)
v ⟩(z) = 1 + n

t
·

∞∑

d=1

(
q + d − 1

d

)
zd

where the one is from the constant monomial. We can find a closed form expres-
sion for the infinite sum inductively as follows. Consider q = 1. After substituting
q = 1 into the infinite sum in HSA/⟨S(h)⟩,v, we get η1 =

∑∞
d=1

(
1+d−1

d

)
zd = z

1−z .
We claim that for arbitrary q, ηq = 1

(1−z)q − 1, which clearly holds for q = 1.
Now, in pursuit of the inductive step, consider

z + ηq = z +
∞∑

d=1

(
q + d − 1

d

)
zd

= z + qz +
(

q + 1
2

)
z2 + . . .

=
(

(q + 1)z +
(

q + 2
2

)
z2 + . . .

)
−

(
(q + 1)z2 +

(
q + 2

2

)
z3 + . . .

)
(3)

=
∞∑

d=1

(
q + d

d

)
zd −

∞∑

d=1

(
q + d

d

)
zd+1

= (1 − z)
∞∑

d=1

(
q + d

d

)
zd

= (1 − z)ηq+1

306 V. Kolesnikov et al.

where (3) follows from
(
q+d

d

) − (
q+d−1

d−1

)
=

(
q+d−1

d

)
. Therefore, ηq+1 = z+ηq

1−z =
1

(1−z)q+1 −1. Hence,HSA/⟨S(h)
v ⟩(z) = 1+ n

t

(
1

(1−z)q − 1
)

. Finally, a general mono-
mial of degree d is a product of monomials for distinct blocks with the sum of
their degrees equal to d. Relying on the same symbolic argument as in [FS09b],
which gives the generating series of a Cartesian product, we have

HSA/⟨S(h)⟩(z) =
(

1 + n
t

(
1

(1 − z)q − 1
))t

∩∪
Lemma 3. For F associated with Modeling 3, the Hilbert series of the homoge-
neous ideal ⟨F (h)⟩ under Assumption 1 is

HSA/⟨F(h)⟩(z) = (1 − z)qk · HSA/⟨S(h)⟩(z),

truncated after the first ≤ 0 coefficient.

Proof. Our proof is a straightforward modification and expansion of [BØ23]. Let
R(h) := {r1, . . . , rqk} be the set of homogenized parity check equations. Let I(0)
denote the ideal ⟨S(h)⟩ and I(j), j ∈ [qk], denote the ideal ⟨S(h) , r1, . . . , rj⟩. We
will show Assumption 1 implies that for j ∈ [qk], d < dreg, there exists a short
exact sequence

0 → Ad−1/I(j − 1)d−1
α→ Ad/I(j − 1)d

β → Ad/I(j)d → 0.

We prove this as follows. Let α : Ad−1/I(j − 1)d−1 → Ad/I(j − 1)d be the map

α([f]) := [rjf].

Firstly, α is well-defined as if f1 ∈ [f], then f1 = f + g for some g ∈ I(j − 1)d−1.
Then, rjf1 = rjf + rjg. By definition, rjg ∈ I(j − 1)d since rj is homogenous
and linear. Therefore, [rjf1] = [rjf]. Secondly, α is injective. Suppose α([f]) =
α([f ']), i.e., [rjf] = [rjf

']. This implies that rjf − rjf
' ∈ I(j − 1)d, which in

turn from Assumption 1 implies that f − f ' ∈ I(j − 1)d−1, i.e., [f] = [f '].
Let β : Ad/I(j − 1)d → Ad/I(j)d be the map defined as

β([f]) := [f].

Again, β is well-defined as if f1 ∈ [f], then f1 − f ∈ I(j − 1)d. Since I(j − 1)d ⊆
I(j)d, f1 − f ∈ I(j)d and hence [f1] = [f]. Also, β is trivially surjective as [f] is
mapped to [f].

Finally, we claim that ker(β) = im(α). To this end, we prove two statements.
First, im(α) ⊆ ker(β). This is because if [h] ∈ im(α), there exists an f such that
[h] = [rjf]. Now, β([h]) = β([rjf]) = [0] as rj ∈ I(j). Next, ker(β) ⊆ im(α).
Suppose [h] ∈ ker(β). Then, β([h]) = [h] = [0], i.e., h ∈ I(j)d. This implies that
there exist g ∈ S(h) and f1, . . . , fj such that h = f1r1+. . .+fjrj+g. Let g' denote

Stationary Syndrome Decoding for Improved PCGs 307

the homogenous degree-d part of g and f '
1, . . . , f

'
j denote the homogenous degree-

(d−1) parts of f1, . . . , fj . Then, h = f '
1r1+. . .+f '

jrj +g, i.e., h−f '
jrj ∈ I(j−1)d.

Therefore, [h] = [rjf
'
j] and hence α([f '

j]) = [h], i.e., [h] ∈ im(α).
Therefore, 0 → Ad−1/I(j − 1)d−1

α→ Ad/I(j − 1)d
β → Ad/I(j)d → 0 is

indeed a short exact sequence. By the Hilbert function property for short exact
sequences (Sect. 3.6), we have

HFA/I(j−1)(d − 1) − HFA/I(j−1)(d) + HFA/I(j)(d) = 0.

Let hd,j := HFA/I(j)(d) = dim(Ad/I(j)d). Then, hd,j := hd,j−1 − hd−1,j−1.
Let Gj be the generating series for hd,j, i.e., let Gj(z) =

∑∞
d=0 hd,jzd . Note that

Gj = HSA/I(j). We have

Gj(z) =
∞∑

d=0

hd,jzd

=
∞∑

d=0

(hd,j−1 − hd−1,j−1)zd

=
∞∑

d=0

hd,j−1zd −
∞∑

d=1

hd−1,j−1zd

=
∞∑

d=0

hd,j−1zd − z ·
∞∑

d=0

hd,j−1zd

= (1 − z) · Gj−1(z).

Therefore, we get HSA/I(qk)(z) = (1 − z)qk · HSA/⟨S(h)⟩(z). Note that by defini-
tion I(qk) = ⟨S(h) , r1, . . . , rqk⟩ = ⟨F (h)⟩. Hence, the lemma follows. ∩∪

Hilbert Series for Modeling 4. We defer the presentation of Modeling 4 to
[KPRR25] and note that it follows a similar methodology.

6.3 Estimating Witness Degree

As described earlier, following [BØ23], we will use the witness degree dwit of
the input polynomial system to estimate the cost of the XL Wiedemann app-
roach. The systems F in Modeling 3 and Modeling 4 admit unique solutions for
the range of parameters of interest. If (a1, . . . , an) is a unique solution of the
polynomial system, it has the reduced Gröbner basis {x1 − a1, . . . , xn − an}. 3
If I := ⟨F⟩, we have LM(I≤1) = LM(I) and dim(I≤d) = dim(A≤d) − 1. In par-
ticular, we can say that dwit is the smallest degree such that the rank of the
Macaulay matrix is equal to the number of columns minus one.
3 In the case of Modeling 4, the field equations ensure that the ideal is radical, and

the claim from Hilbert’s Nullstellensatz. In the case of Modeling 3, we assume that
the system is sufficiently overdetermined to ensure this.

308 V. Kolesnikov et al.

As in [BØ23], our Assumption 1 and [KPRR25]’s Assumption 2 associated
with Modeling 4 imply that the relevant Macaulay matrix has maximal rank.
Now, consider the Hilbert series from Theorem 4 and 5 (see [KPRR25]) prior to
truncation. The coefficient in a term of degree d < dreg is the number of columns
that cannot be reduced in the Macaulay matrix of degree d. When d ≥ dreg,
the coefficient measures the number of “excess” rows after full reduction. We
therefore estimate the witness degree dwit as

dwit = min

⎧
⎨

⎩ d ∈ N :
∑

j∈[d+1]

[zj−1](HS(z)) ≤ 0

⎫
⎬

⎭

where [zj−1](HS(z)) denotes the coefficient of zj−1 in the Hilbert series from
Theorem 4 and 5 (see [KPRR25]) prior to truncation. We have experimentally
verified these estimates as we discuss in Sect. 6.5.

6.4 Hybrid Approach

Following [BØ23], we also present a hybrid approach, which consists of repeat-
edly guessing a few noise-free positions of L (and therefore e) and invoking
XL Wiedemann until successfully computing e. Parameterized by f ∈ [t] and
μ ∈ [n

t], the hybrid approach guesses μ noise-free positions in the first f blocks
of e and adds the equations ei,v,j = 0 for those f blocks v and μ positions j in
every instance i to F . Let us determine a bound pf,μ on the probability that the
guessed positions are all noise-free. There are at least n

t −1 noise-free positions in
each block. Therefore, the probability that the μ positions guessed in any given
block are noise-free is at least (

n
t

−1
µ)

(n
t
µ)

= 1 − μt
n . This means that the probability

that all the positions guessed are noise-free is at least pf,μ =
(
1 − μt

n

)f
. We then

expect to repeat the XL Wiedemann O(p−1
f,μ) times.

We now need to derive the Hilbert series of this modified system. We discuss
this hybrid approach for Modeling 3 and note that the case of Modeling 4 is
similar. Consider the impact of our guessing on Lemma 2. For a fixed block
v, the number of j that are not fixed by our guess is now n

t − μ and not n
t

in the first f blocks and still n
t in the last t − f . To make Lemma 3 work,

we augment Assumption 1 as in [BØ23] with Assumption 2. This ensures that
fixing variables does not introduce unexpected cancelations at higher degrees
among the parity-check equations in R. For any invertible matrix P, f ∈ [t],
and μ ∈ [n

t], let P
−1
f,μ denote the map that applies P−1 and then fixes the initial

μ variables to 0 in the last f blocks of e.

Assumption 2. Let R be the set of parity-check equations from Modeling 3.
For every permutation matrix P which stabilizes each block of e, f ∈ [t], and
μ ∈ [n

t], we assume R(h) ◦ P−1
f,μ satisfies Assumption 1 in the ring A ◦ P−1

f,μ.

Stationary Syndrome Decoding for Improved PCGs 309

Under Assumption 2, the Hilbert series for Modeling 3 now becomes

HSA/⟨F(h)⟩,hyb,f,μ(z) = (1 − z)qk ·
(

1 +
(n

t
− μ

) (
1

(1 − z)q − 1
))f

·
(

1 + n
t

(
1

(1 − z)q − 1
))t−f

,

truncated after the first ≤ 0 coefficient. As before, the degree dwit is derived from
the Hilbert series. We refer to [BØ23] for further details.

6.5 Attack’s Evaluation

We now evaluate our algebraic attack. We write scripts in the Magma Com-
putational Algebra System V2.28-13 [BCP97] to (1) experimentally verify our
Hilbert series and (2) compute the time complexity of the attack. We plan to
open-source our Magma scripts along with our PCG code (see Sect. 8). In all our
experiments, we use the free online Magma calculator, and hence our computa-
tion is restricted to ≤ 2 minutes. Thus, we were able to run our scripts only on
smaller parameters.

We first experimentally verify our Hilbert series from Sect. 6.4 is correct. We
compare the output with the output of Magma’s HilbertSeries(·). We verify
the hybrid version of our Hilbert series over F101 and for the same systems as
[BØ23] in Table 7 (we can similarly verify over F2). The key difference is that we
also add a parameter q ≥ 1 (q = 1 for [BØ23]) to our system, which represents
the number of SD instances. The largest q we test for is 4 as for larger q the
HilbertSeries(·) function exceeds our computational resources. For F101, we
confirm our Hilbert series is the same for all the tested systems (q, n, k, t, f, μ),
and hence Assumption 1 holds:

(4, 30, 15, 5, 0, 0), (4, 30, 20, 5, 0, 0), (3, 40, 20, 5, 0, 0),

(4, 40, 30, 5, 0, 0), (3, 49, 30, 7, 0, 0), (3, 48, 30, 8, 0, 0),

(2, 40, 25, 10, 0, 0), (1, 84, 50, 12, 3, 2), (3, 56, 30, 7, 2, 3),

(2, 56, 30, 7, 6, 3), (3, 70, 40, 10, 5, 2), (4, 70, 40, 10, 5, 3)

We next focus on the efficiency of the algebraic attack. We run 2 experiments.
For both, we consider F2128 and F2 and the XL hybrid approach of Sect. 6.4. In
each, we find the (f, μ) that results in the most efficient attack. We pick syndrome
decoding parameters n, k = n/2 given our computational restrictions.

In the first experiment (Fig. 2), we show how the witness degree dwit and
the complexity of the XL Hybrid algorithm changes with increasing q. We fix
n = 216, k = 215, fix t = 69 such that we get XL complexity of 128 with q = 1,
and then vary q = {1, 2, 24 , 27 , 210}. Our results show that in fact the complexity
of the XL algorithm increases with larger q. This implies that the attack is not
able to take advantage of the additional information and becomes slower because

310 V. Kolesnikov et al.

the system of equations gets larger with increasing q, and hence more expensive
for XL to solve. Another interesting aspect is that for all runs the best f = t.
I.e., we should guess noise-free positions in all blocks. It is not surprising that
this holds in the constant rate SD setting, where the amount of noise t is smaller
than in the non-constant rate LPN setting that [BØ23] emphasize. Overall, note
that to get 128-bit security we require t = 69, which is substantially less than
what is suggested by the linear test (Sect. 8). This implies that the algebraic
attack may not be the ideal choice for our setting.

F2128 (t = 69) F2 (t = 69)
q dwit (f, μ) XL Hybrid dwit (f, μ) XL Hybrid
1 2 (69,410) 128 2 (69,410) 128
2 2 (69,410) 132 2 (69,410) 132
24 2 (69,410) 144 2 (69,410) 144
27 2 (69,410) 156 2 (69,410) 156
210 2 (69,410) 168 2 (69,410) 168

Fig. 2. This experiment shows how the witness degree dwit and the complexity of the
XL algorithm changes with increasing q. We set our parameters n, k following standard
choices in SD. I.e., we fix n = 216 , k = 215 , fix t = 69 such that we get XL complexity
of 128 with q = 1, and then vary q = {1, 2, 24 , 27 , 210}. We consider F2128 and F2,
hybrid evaluation, and search all (f, μ) for the most efficient attack for each q. Note
the results for F2128 and F2 are identical.

The first experiment showed that we get the best attack by attacking a single
SD instance. In the second experiment (see Fig. 3), we thus show the amount of
noise t necessary to get 128 bits of security for different n, k, and q fixed to 1.
We then repeat the same runs for q = 210 to show how t changes.

F2128 F2

q = 1 q = 210 q = 1 q = 210

n k dwit (f, μ) XL t (f, μ) XL t (f, μ) XL t (f, μ) XL t
210 29 2 (101, 4) 128 107 (58,7) 127 58 (101, 4) 128 107 (58,7) 127 58
212 211 2 (89, 20) 127 90 (46,37) 128 46 (89, 20) 127 90 (46,37) 128 46
214 213 2 (74, 192) 128 74 (34,191) 128 34 (79, 91) 128 79 (34,191) 128 34
216 215 2 (69, 410) 128 69 (24,1364) 128 24 (69, 410) 128 69 (24,1364) 128 24

Fig. 3. This experiment picks standard SD’s n, k parameters used for PCGs (i.e. k =
n/2) and computes how much noise t is necessary to get XL complexity of ≈ 128 for
q = 1 and q = 210 . We consider F2128 and F2, XL hybrid evaluation, and search all
(f, μ) for the most efficient attack for each parameter setting.

7 Parameter Selection

We use our findings in Sect. 5 on SSD security against linear tests to choose the
appropriate amount of noise t for Fig. 4 and 5. To get 128 bits of security, we

Stationary Syndrome Decoding for Improved PCGs 311

need t = 176 for OT generated with the SD assumption and t = 400 otherwise.
Importantly, note from Theorem 3 that q does not impact the choice of t. We also
note that the parameters from the linear test framework tend to be conservative.
E.g., [LWYY22]’s work suggests t ≈ 60 gives 128 bits of security against known
linear attacks, while our algebraic attacks in Sect. 6.5 suggest t ≈ 60 depending
on n. Moreover, the best attack strategy is to simply attack a single instance.

The main difference between SD and SSD parameters arises in small fields,
e.g. F2. In this case, since our noise is sampled uniformly instead of set to 1, one
must increase the noise to compensate. This difference vanishes over large fields,
and fixed parameters for SD and SSD appear to give the same security level.

This suggests that one can instantiate SSD using the same parameters as
SD for large fields, or increase the noise by the statistical security parameter for
small fields so that each instance is expected to have at least as many non-zeros
as in SD. However, for the time being, we opt for being conservative and choosing
parameters based on the linear test framework.

8 Experimental Evaluation

Implementation & Setting. We present a detailed description of how to adapt
existing PCG protocols in [KPRR25]. The crux for degree 1 PCG protocols is
(1) generating a sharing of Δe and (2) compressing it by the generator matrix
G. SSD optimizes the generation of [[Δe]] across q PCG instances. Thus, we
implement our SSD-based [[Δe]] generation. Our implementation extends the
libOTe framework [RR]. We use libOTe’s implementation of OT from [Roy22]’s
SoftSpokenOT and VOLE from [RRT23]’s work on expand-convolute codes for
the base correlations (OT, subfield VOLE for F2, and VOLE for F2128).

We conduct our experiments on an HP Victus machine running Windows 11,
equipped with a 12th Gen Intel(R) Core(TM) i7-12650H CPU at 2.30GHz and
15.6GB of usable RAM. The parties execute sequentially on the same thread and
on the same laptop. The wall-clock time reflects the combined runtime of both
parties. We also report the total communication summed across both parties.
Each data point is sampled over 10 runs, and we present their arithmetic mean.

Communication. We now express our communication costs analytically. Both
protocols require the same constant number of rounds. The exact number
depends on the instantiation but can be as small as 2.

We denote the depth of the GGM tree d = [log2(n/t)]. For OT with SSD,
we generate dt base OTs for the GGM tree, send 256dt additional bits for the
GGM tree, and generate subfield VOLE of size qt. As we are working over F2,
we implement the subfield VOLE via qt base OTs. We also communicate 128tq
bits during the expansion to get [[Δe]]. In total, we need (d + q)t base OTs
and 256dt + 128qt bits. In contrast, OT with SD requires qdt base OTs and
256qt(d + 1) additional bits, but with a mildly smaller t. For VOLE with SSD,
we also generate dt base OTs for the GGM tree, send 256dt additional bits for
the GGM tree, and communicate 128tq bits during the expansion. However, we

312 V. Kolesnikov et al.

Time (ns/o) Comm. (b/o)
Protocol q Assumption #OTs #VOLE Setup Expand Mult. Setup Expand

OT
e ∈ Fn

2

Δ ∈ F2128

24 SSD, t = 400 4400 6400 0.09 11.36 52.63 0.18 0.46
SD, t = 176 33792 0 0.20 17.24 52.63 0.52 2.24

28 SSD, t = 400 4400 102400 0.04 11.88 52.75 0.10 0.21
SD, t = 176 540672 0 0.19 16.91 52.75 0.52 2.24

212 SSD, t = 400 4400 1638400 0.04 12.11 52.73 0.10 0.20
SD, t = 176 8650752 0 0.19 16.74 52.73 0.52 2.24

VOLE
e ∈ Fn

2128

Δ ∈ F2128

24 SSD, t = 400 4400 6400 0.53 11.55 52.63 1.18 0.46
SD, t = 400 70400 6400 0.89 17.63 54.58 2.19 4.70

28 SSD, t = 400 4400 102400 0.19 11.91 52.75 0.08 0.21
SD, t = 400 1126400 102400 0.59 17.29 54.61 1.15 4.70

212 SSD, t = 400 4400 1638400 0.26 12.20 52.73 0.01 0.20
SD, t = 400 18022400 1638400 0.66 17.15 54.65 1.08 4.70

Fig. 4. This experiment compares the runtime and communication costs of generating
OT and VOLE with SSD vs. SD. It fixes n = 219 , k = 218 and varies the number of
batches q ∈ {24 , 28 , 212}. The cost is split into base correlations (OT, (subfield) VOLE),
expanding the seeds to get a sharing of Δe, and multiplying the result by G. The time
(nanoseconds) and communication (bits) are expressed per output, i.e. divided by qk.
t is selected such that we get 128 bits of security.

Time (ns/o) Comm. (b/o)
Protocol k Assumption #OTs #VOLE Setup Expand Mult. Setup Expand

OT
e ∈ Fn

2

Δ ∈ F2128

214 SSD, t = 400 2800 409600 0.58 11.90 33.48 1.58 3.17
SD, t = 176 1441792 0 2.04 32.17 33.48 5.50 24.84

216 SSD, t = 400 3600 102400 0.15 11.95 49.61 0.41 0.84
SD, t = 176 450560 0 0.64 20.59 49.61 1.72 7.58

218 SSD, t = 400 4400 25600 0.05 11.80 52.80 0.12 0.26
SD, t = 176 135168 0 0.19 17.81 52.80 0.52 2.24

VOLE
e ∈ Fn

2128

Δ ∈ F2128

214 SSD, t = 400 2800 409600 3.22 11.93 33.48 0.32 3.17
SD, t = 400 2867200 409600 7.25 32.55 37.30 11.24 50.20

216 SSD, t = 400 3600 102400 0.79 11.88 49.61 0.31 0.84
SD, t = 400 921600 102400 2.07 21.30 52.05 3.81 15.67

218 SSD, t = 400 4400 25600 0.26 11.62 52.80 0.31 0.26
SD, t = 400 281600 25600 0.64 18.32 54.49 1.36 4.70

Fig. 5. This experiment compares the runtime and communication costs of generating
OT and VOLE with SSD vs. SD. It fixes qk = 224 , and varies q, k such that (q, k) ∈
{(210 , 214), (28 , 216), (26 , 218)}. The cost is split into base correlations (OT, (subfield)
VOLE), expanding the seeds to get a sharing of Δe, and multiplying the result by G.
The time (nanoseconds per output) and communication (bits per output), i.e. total
divided by qk. t is selected such that we get 128 bits of security.

also consume qt base VOLE correlations, which cannot be implemented with
base OTs as we are not working over F2. Thus, in total we need dt base OTs, qt
VOLE correlations, and 256dt + 128qt bits. In contrast, VOLE with SD requires
qdt base OTs, qt VOLE correlations, and 256qt(d + 1) bits of communication.

Stationary Syndrome Decoding for Improved PCGs 313

Experiments. We consider two experiments. The first (Fig. 4) fixes a batch size of
n = 219 , k = 218 and varies the number of batches q ∈ {24 , 28 , 212}. We compare
our new SSD-based OT and VOLE protocols to the traditional SD protocols. We
report the number of base correlations required, i.e. OTs and (subfield) VOLE.
We break down the time required to compute base correlations, expand the seeds
to compute [[Δe]], and compress the error vector using expand-convolute codes
[RRT23]. We report time as the number of nanoseconds per output element.
We also report the communication overhead as bits per output element. The
second experiment (Fig. 5) reports the same quantities but for varied batch size
k ∈ {214 , 216 , 218} and a fixed qk = 224.

Discussion. First, we discuss observations that apply to both experiments. Note
that for OT from SD we need no base VOLEs as the noisy elements of e are
always 1 (recall this is not the case for OT from SSD). For all other settings, we
need qt base VOLEs. Furthermore, note that for SSD and a fixed k, n, the number
of base OTs stays the same for different q as all can be reused. Next, note that
the setup for SSD is cheaper for OTs than for VOLEs as for OTs we generate
the base VOLEs also with OTs. For VOLE, the multiplication by G is slightly
more expensive for SD than for SSD as we cannot run the multiplication for SD
over F2. Lastly, the parameter t differs for SD and SSD when generating OTs.
We select t using our equations in Sect. 5 to get 128 bits of security assuming
G has a relative pseudominimum distance of 0.2. We now discuss observations
specific to each experiment.

– Experiment 1. We reduce the total communication ≈ 4.3−9.4× for OT and
≈ 4.2 − 28.6× for VOLE. To compute [[Δe]] (Setup+Expand in Fig. 4), we
reduce runtime ≈ 1.4 − 1.5×. For the parameters in this experiment, multi-
plying [[Δe]] by G is the runtime bottleneck, and thus we reduce total runtime
≈ 1.1× for both OT and VOLE. Our improvement can be significantly larger
for different parameters (see Experiment 2).

– Experiment 2. We reduce communication ≈ 6.4 − 7.5× for OT and ≈
10.7 − 17.6× for VOLE. To compute [[Δe]], we reduce runtime ≈ 1.5 − 2.7×.
Notably, the runtime improvement increases for higher q and smaller k. This
implies that for fixed qk, it is preferable to create more smaller instances (i.e.
large q and small k) rather than fewer large ones. This is further exacerbated
by the fact that for small instances, multiplying by G is also cheaper (33
nanoseconds per output (ns/o) for k = 214 vs. 52 ns/o for k = 218).
To generate 224 OTs, the fastest (q, k) configuration with respect to runtime
results in about 5 b/o and a total of 45 ns/o for SSD and 68 ns/o for SD
resulting in 1.5× improvement in throughput. For VOLE, we similarly get
≈ 1.5× throughput improvement.

Acknowledgments. This work is supported in part by a Visa research award and
NSF awards CNS-2246354, and CCF-2217070.

314 V. Kolesnikov et al.

References

ABG+14. Akavia, A., Bogdanov, A., Guo, S., Kamath, A., Rosen, A.: Candidate
weak pseudorandom functions in ac0 ◯ mod2. In: Proceedings of the 5th
Conference on Innovations in Theoretical Computer Science, ITCS ’14, pp.
251–260, New York, NY, USA (2014). Association for Computing Machin-
ery

AFS05. Augot, D., Finiasz, M., Sendrier, N.: A family of fast syndrome based
cryptographic hash functions. In: Mycrypt (2005)

ANO+22. Abram, D., Nof, A., Orlandi, C., Scholl, P., Shlomovits, O.: Low-bandwidth
threshold ECDSA via pseudorandom correlation generators. In: 2022 IEEE
Symposium on Security and Privacy, pp. 2554–2572. IEEE Computer Soci-
ety Press (2022)

AS22. Abram, D., Scholl, P.: Low-communication multiparty triple generation
for SPDZ from ring-LPN. In: Hanaoka, G., Shikata, J., Watanabe, Y.
(eds.) PKC 2022. Part I, volume 13177 of LNCS, pp. 221–251. Springer,
Heidelberg (2022)

BBC+24. Bombar, M., Bui, D., Couteau, G., Couvreur, A., Ducros, C., Schreiber,
S.S.: FOLEAGE: F4OLE-based multi-party computation for boolean cir-
cuits. In: LNCS, pp. 69–101 (2024)

BCG+19a. Boyle, E., et al.: Efficient two-round OT extension and silent non-
interactive secure computation. In: Cavallaro, L., Kinder, J., Wang, X.,
Katz, J., (eds.) ACM CCS 2019, pp. 291–308. ACM Press (2019)

BCG+19b. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Effi-
cient pseudorandom correlation generators: silent OT extension and more.
In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. Part III, volume
11694 of LNCS, pp. 489–518. Springer, Heidelberg (2019)

BCG+20. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Efficient
pseudorandom correlation generators from ring-LPN. In: Micciancio, D.,
Ristenpart, T. (eds.) CRYPTO 2020. Part II, volume 12171 of LNCS, pp.
387–416. Springer, Heidelberg (2020)

BCG+22. Boyle, E., et al.: Correlated pseudorandomness from expand-accumulate
codes. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022. Part II, volume
13508 of LNCS, pp. 603–633. Springer, Heidelberg (2022)

BCGI18. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y.: Compressing vector OLE.
In: Lie, D., Mannan, M., Backes, M., Wang, X., (eds.), ACM CCS 2018,
pp. 896–912. ACM Press (2018)

BCP97. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The
user language. J. Symbolic Comput. 24(3-4), 235–265 (1997). Computa-
tional algebra and number theory (London (1993)

BDSW23. Baum, C., Dittmer, S., Scholl, P., Wang, X.: Sok: vector ole-based zero-
knowledge protocols. Des. Codes Crypt. 91(8), 3527–3561 (2023)

Ber68. Berlekamp, E.R.: Algebraic Coding Theory. McGraw-Hill Series in Systems
Science. McGraw-Hill (1968)

BFKL94. Blum, A., Furst, M.L., Kearns, M.J., Lipton, R.J.: Cryptographic
primitives based on hard learning problems. In: Stinson, D.R. (ed.)
CRYPTO’93. LNCS, vol. 773, pp. 278–291. Springer, Heidelberg (1994)

BGH+25. Boyle, E., Gilboa, N., Hamilis, M., Ishai, Y., Tu, Y.: Improved construc-
tions for distributed multi-point functions . In: 2025 IEEE Symposium on
Security and Privacy (SP), pp. 2414–2432, Los Alamitos, CA, USA (2025).
IEEE Computer Society

Stationary Syndrome Decoding for Improved PCGs 315

BJMM12. Becker, A., Joux, A., May, A., Meurer, A.: Decoding random binary lin-
ear codes in 2n/20 : How 1 + 1 = 0 improves information set decoding.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol.
7237, pp. 520–536. Springer, Heidelberg (2012)

BKW03. Blum, A., Kalai, A., Wasserman, H.: Noise-tolerant learning, the parity
problem, and the statistical query model. In: Journal of the ACM (2003)

BLP11. Daniel, J.: Bernstein, Tanja Lange, and Christiane Peters. smaller decoding
exponents: ball-collision decoding. In: Rogaway, P. (ed.) CRYPTO 2011.
LNCS, vol. 6841, pp. 743–760. Springer, Heidelberg (2011)

BM18. Both, L., May, A.: Decoding linear codes with high error rate and its
impact for LPN security. In: Lange, T., Steinwandt, R. (eds.) PQCrypto
2018. LNCS, vol. 10786, pp. 25–46. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-79063-3 2

BØ23. Briaud, P., Øygarden, M.: A new algebraic approach to the regular syn-
drome decoding problem and implications for PCG constructions. In:
Hazay, C., Stam, M. (eds.) EUROCRYPT 2023. Part V, volume 14008
of LNCS, pp. 391–422. Springer, Heidelberg (2023)

BR17. Bogdanov, A., Rosen, A.: Pseudorandom Functions: Three Decades Later,
pp. 79–158. Springer International Publishing, Cham (2017)

CCJ23. Carozza, E., Couteau, G., Joux, A.: Short signatures from regular syn-
drome decoding in the head. In Carmit Hazay and Martijn Stam, editors,
Advances in Cryptology - EUROCRYPT 2023, 532–563 (2023)

CKPS00. Courtois, N., Klimov, A., Patarin, J., Shamir, A.: Efficient algorithms for
solving overdefined systems of multivariate polynomial equations. In: Pre-
neel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 392–407. Springer,
Heidelberg (2000)

CRR21. Couteau, G., Rindal, P., Raghuraman, S.: Silver: silent VOLE and oblivi-
ous transfer from hardness of decoding structured LDPC codes. In: Malkin,
T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12827, pp. 502–534.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84252-9 17

DILO22. Dittmer, S., Ishai, Y., Steve, L., Ostrovsky, R.: Authenticated garbling
from simple correlations. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO
2022. Part IV, volume 13510 of LNCS, pp. 57–87. Springer, Heidelberg
(2022)

Ds17. Doerner, J., shelat, A..: Scaling ORAM for secure computation. In: Thu-
raisingham, B.M., Evans, D., Malkin, T., Xu, D., (eds.). ACM CCS 2017,
pp. 523–535. ACM Press (2017)

ES24. Esser, A., Santini, P.: Not just regular decoding: asymptotics and improve-
ments of regular syndrome decoding attacks. In Leonid Reyzin and Douglas
Stebila, editors, Advances in Cryptology - CRYPTO 2024, 183–217 (2024)

FJR22. Feneuil, T., Joux, A., Rivain, M.: Syndrome decoding in the head: shorter
signatures from zero-knowledge proofs. In: Dodis, Y., Shrimpton, T. (eds.)
CRYPTO 2022. Part II, volume 13508 of LNCS, pp. 541–572. Springer,
Heidelberg (2022)

FKI07. Fossorier, M.P.C., Kobara, K., Imai, H.: Modeling bit flipping decoding
based on nonorthogonal check sums with application to iterative decoding
attack of mceliece cryptosystem. IEEE Trans. Info. Theory 53(1), 402–411
(2007)

FS09a. Finiasz, M., Sendrier, N.: Security bounds for the design of code-based
cryptosystems. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912,
pp. 88–105. Springer, Heidelberg (2009)

https://doi.org/10.1007/978-3-319-79063-3_2
https://doi.org/10.1007/978-3-319-79063-3_2
https://doi.org/10.1007/978-3-319-79063-3_2
https://doi.org/10.1007/978-3-319-79063-3_2
https://doi.org/10.1007/978-3-319-79063-3_2
https://doi.org/10.1007/978-3-319-79063-3_2
https://doi.org/10.1007/978-3-319-79063-3_2
https://doi.org/10.1007/978-3-319-79063-3_2
https://doi.org/10.1007/978-3-319-79063-3_2
https://doi.org/10.1007/978-3-319-79063-3_2
https://doi.org/10.1007/978-3-030-84252-9_17
https://doi.org/10.1007/978-3-030-84252-9_17
https://doi.org/10.1007/978-3-030-84252-9_17
https://doi.org/10.1007/978-3-030-84252-9_17
https://doi.org/10.1007/978-3-030-84252-9_17
https://doi.org/10.1007/978-3-030-84252-9_17
https://doi.org/10.1007/978-3-030-84252-9_17
https://doi.org/10.1007/978-3-030-84252-9_17
https://doi.org/10.1007/978-3-030-84252-9_17
https://doi.org/10.1007/978-3-030-84252-9_17

316 V. Kolesnikov et al.

FS09b. Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University
Press (2009)

GGM84. Goldreich, O., Goldwasser, S., Micali, S..: How to construct random func-
tions (extended abstract). In: 25th FOCS, pp. 464–479. IEEE Computer
Society Press (1984)

HOSS18. Hazay, C., Orsini, E., Scholl, P., Soria-Vazquez, E.: TinyKeys: a new app-
roach to efficient multi-party computation. In: Shacham, H., Boldyreva, A.
(eds.) CRYPTO 2018. Part III, volume 10993 of LNCS, pp. 3–33. Springer,
Heidelberg (2018)

Jab01. Jabri, A.A.: A statistical decoding algorithm for general linear block codes.
In: Honary, B., (ed.), Cryptography and Coding, pp. 1–8, Berlin, Heidelberg
(2001). Springer Berlin Heidelberg

KPRR25. Kolesnikov, V., Peceny, S., Raghuraman, S., Rindal, P.: Stationary syn-
drome decoding for improved PCGs. Cryptology ePrint Archive, Paper
2025/295 (2025)

LWYY22. Liu, H., Wang, X., Yang, K., Yu, Y.: The hardness of LPN over any integer
ring and field for PCG applications. Cryptology ePrint Archive, Report
2022/712 (2022). https://eprint.iacr.org/2022/712

LXYY25. Li, Z., Xing, C., Yao, Y., Yuan, C.: Efficient pseudorandom correlation
generators for any finite field. In: Annual International Conference on
the Theory and Applications of Cryptographic Techniques, pp. 145–175.
Springer (2025)

Lyu05. Lyubashevsky, V.: The parity problem in the presence of noise, decod-
ing random linear codes, and the subset sum problem. In: Chekuri, C.,
Jansen, K., Rolim, J.D.P., Trevisan, L., (eds.) Approximation, Random-
ization and Combinatorial Optimization. Algorithms and Techniques, pp.
378–389 (2005)

MMT11. May, A., Meurer, A., Thomae, E.: Decoding random linear codes in
Õ(20.054n). In: Lee, D.H., Wang, X., (eds.), ASIACRYPT 2011, vol. 7073
of LNCS, pp. 107–124. Springer, Heidelberg (2011)

MO15. May, A., Ozerov, I.: On computing nearest neighbors with applications
to decoding of binary linear codes. In: Oswald, E., Fischlin, M. (eds.)
EUROCRYPT 2015. Part I, volume 9056 of LNCS, pp. 203–228. Springer,
Heidelberg (2015)

Pra62. Prange, E.: The use of information sets in decoding cyclic codes. In: IRE
Transactions on Information Theory (1962)

Roy22. Roy, L.: SoftSpokenOT: quieter OT extension from small-field silent VOLE
in the minicrypt model. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022.
Part I, volume 13507 of LNCS, pp. 657–687. Springer, Heidelberg (2022)

RR. Rindal, P., Roy, L.: libOTe: an efficient, portable, and easy to use Oblivious
Transfer Library. https://github.com/osu-crypto/libOTe

RRT23. Raghuraman, S., Rindal, P., Tanguy, T.: Expand-convolute codes for pseu-
dorandom correlation generators from LPN. In: Handschuh, H., Lysyan-
skaya, A. (eds.) CRYPTO 2023. Part IV, volume 14084 of LNCS, pp.
602–632. Springer, Heidelberg (2023)

RS21. Rindal, P., Schoppmann, P.: VOLE-PSI: fast OPRF and circuit-PSI from
vector-OLE. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021.
Part II, volume 12697 of LNCS, pp. 901–930. Springer, Heidelberg (2021)

SGRR19. Schoppmann, P., Gascón, A., Reichert, L., Raykova, M.: Distributed
vector-OLE: Improved constructions and implementation. In: Cavallaro,

https://eprint.iacr.org/2022/712
https://eprint.iacr.org/2022/712
https://eprint.iacr.org/2022/712
https://eprint.iacr.org/2022/712
https://eprint.iacr.org/2022/712
https://eprint.iacr.org/2022/712
https://github.com/osu-crypto/libOTe
https://github.com/osu-crypto/libOTe
https://github.com/osu-crypto/libOTe
https://github.com/osu-crypto/libOTe
https://github.com/osu-crypto/libOTe
https://github.com/osu-crypto/libOTe

Stationary Syndrome Decoding for Improved PCGs 317

L., Kinder, J., Wang, X., Katz, J., (eds.) ACM CCS 2019, pp. 1055–1072.
ACM Press (2019)

Shp09. Shpilka, A.: Constructions of low-degree and error-correcting ϵ-biased gen-
erators. In: computational complexity (2009)

Ste89. Stern, J.: A method for finding codewords of small weight. In: Cohen, G.,
Wolfmann, J., (eds.) Coding Theory and Applications, pp. 106–113, Berlin,
Heidelberg (1989). Springer Berlin Heidelberg

Wie86. Wiedemann, D.: Solving sparse linear equations over finite fields. In: IEEE
Transac- tions on Information Theory (1986)

WYKW21. Weng, C., Yang, K., Katz, J., Wang, X.: Wolverine: fast, scalable, and
communication-efficient zero-knowledge proofs for Boolean and arithmetic
circuits. In: 42nd IEEE Symposium on Security and Privacy, SP 2021, San
Francisco, CA, USA, 24-27 May 2021, pp. 1074–1091. IEEE (2021)

WYY+22. Weng, C., Yang, K., Yang, Z., Xie, X., Wang, X.: AntMan: interactive zero-
knowledge proofs with sublinear communication. In: Yin, H., Stavrou, A.,
Cremers, C., Shi, E.,(eds.) ACM CCS 2022, pp. 2901–2914. ACM Press
(2022)

YSWW21. Yang, K., Sarkar, P., Weng, C., Wang, X.: QuickSilver: efficient and afford-
able zero-knowledge proofs for circuits and polynomials over any field. In:
Vigna, G., Shi, E., (eds.) ACM CCS 2021, pp. 2986–3001. ACM Press
(2021)

	Stationary Syndrome Decoding for Improved PCGs
	1 Introduction
	1.1 Contribution

	2 Related Work
	3 Preliminaries
	3.1 Notation
	3.2 Distributions and Bias
	3.3 Coding Theory
	3.4 Syndrome Decoding
	3.5 Linear Attacks
	3.6 Algebraic Preliminaries
	3.7 Algebraic Attacks

	4 Overview
	4.1 The Security of SSD
	4.2 Pseudorandom Correlation Generator (PCG) from SSD

	5 Linear Attacks
	5.1 Other Linear Attacks

	6 Algebraic Attacks
	6.1 Formulating Our Polynomial System
	6.2 Computing Hilbert Series
	6.3 Estimating Witness Degree
	6.4 Hybrid Approach
	6.5 Attack's Evaluation

	7 Parameter Selection
	8 Experimental Evaluation
	References

