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Abstract. Syndrome decoding (SD), and equivalently Learning Par-
ity with Noise (LPN), is a fundamental problem in cryptography, which 
states that for a field F, some compressing public matrix G ∈ Fk×n , and  
a secret sparse vector e ∈ Fn sampled from some noise distribution, Ge 
is indistinguishable from uniform. Recently, the SD has gained significant 
interest due to its use in pseudorandom correlation generators (PCGs). 

In pursuit of better efficiency, we propose a new assumption called 
Stationary Syndrome Decoding (SSD). In SSD, we consider  q correlated 
noise vectors e1, . . .  ,  eq ∈ Fn and associated instances G1e1, . . . ,  Gqeq 

where the noise vectors are restricted to having non-zeros in the same 
small subset of t positions L ⊂ [n]. That is, for all i ∈ L, ej,i is uniformly 
random, while for all other i, ej,i = 0.  

Although naively reusing the noise vector renders SD and LPN inse-
cure via simple Gaussian elimination, we observe known attacks do not 
extend to our correlated noise. We show SSD is unconditionally secure 
against so-called linear attacks, e.g., advanced information set decoding 
and representation techniques (Esser and Santini, Crypto 2024). We fur-
ther adapt the state-of-the-art nonlinear attack (Briaud and Øygarden, 
Eurocrypt 2023) to SSD and demonstrate both theoretically and exper-
imentally resistance to the attack. 

We apply SSD to PCGs to amortize the cost of noise generation pro-
tocol. For OT and VOLE generation, each instance requires O(t) com-
munication instead of O(t log n). For suggested parameters, we observe 
a 1.5× improvement in the running time or between 6 and 18× reduc-
tion in communication. For Beaver triple generation using Ring LPN, 
our techniques have the potential for substantial amortization due to 
the high concrete overhead of the Ring LPN noise generation. 

1 Introduction 

Syndrome Decoding (SD), or equivalently Learning Parity with Noise (LPN), 
are standard assumptions in code-based cryptography. SD states that for 
some public matrix G ∈ F

k×n, where  k <  n, and a secret sparse vector 
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e ∈ F
n with a Hamming weight |e| ≈  t, Ge is pseudorandom. Recently, 

SD has seen increased interest due to its applications in secure multi-party 
computation (MPC) [RS21,DILO22,ANO+22,AS22,BDSW23], zero knowl-
edge [YSWW21,WYKW21] [WYY+22,BDSW23], and post-quantum signatures 
[FJR22,CCJ23]. 

MPC enables parties that do not trust each other to compute on their private 
data without disclosing any information to the other parties. MPC has gained 
relevance in both academia and industry (e.g., for online auctions, electronic vot-
ing, privacy-preserving machine learning); its potential remains largely untapped 
due to the significantly higher costs compared to plaintext computation. 

Most efficient MPC protocols work in the preprocessing model, where parties 
first preprocess cryptographic material that is independent of both the function 
and its inputs. This preprocessing phase typically involves generating random 
instances of oblivious transfers (OTs), oblivious linear evaluations (OLE), vector 
oblivious linear evaluations (VOLE), or Beaver triples. Once the function and 
inputs are known, the parties compute the function securely using the correlated 
randomness of the preprocessed material. 

Preprocessing is often the computational bottleneck in MPC. A recent line 
of work on pseudorandom correlation generators (PCGs) shows great promise in 
significantly reducing preprocessing costs. PCGs offer sublinear communication 
and compelling computational overheads. While they have led to substantial 
improvements, PCGs are still far from matching the cost of honest majority or 
plaintext computation. In this work, one of our goals is to reduce the cost of 
MPC by minimizing the costs associated with PCGs. 

State-of-the-art PCG constructions intimately rely on the Syndrome Decod-
ing (SD) assumption. These PCGs make use of this assumption by having the 
parties interactively generate a secret sharing of the sparse vector e and then 
locally compute a sharing of Ge. This final sharing forms, in part, the prepro-
cessed materials. The computational overhead of this process has two main parts; 
generating the secret e with sublinear communication and performing the mul-
tiplication Ge. Consequently, existing works optimize PCGs either by adding 
structure to G to accelerate the multiplication or by changing the distribution 
of e to improve the efficiency of generating a sharing of it. In our work, we take 
the latter approach. We amortize the cost of computing e across q SD instances. 

To achieve this, we propose and cryptanalyze a new assumption called the 
Stationary Syndrome Decoding (SSD). Intuitively, SSD allows for reusing the 
non-zero coordinates of a noise vector e across multiple SD instances, provided 
that the noise at each coordinate is uniformly drawn for each SD instance. For 
example, consider F7, n = 12, and t = 4. The noise vectors could be: 

e1 =
(
0 1 0 3 0 0 0  0  6 3  0 0

)
, 

e2 =
(
0 0 0 1 0 0 0  0  2 4  0 0

)
, 

..., 
eq =

(
0 4 0 6 0 0 0  0  0 3  0 0

)
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We refer to this assumption as stationary because the noise positions remain 
fixed across instances, e.g. at positions L = {2, 4, 9, 10} in the example above. 
Note that the noisy values of ei are sampled uniformly from F, including zero. 
Without delving into details, the stationary nature of the noise positions enables 
us to reuse the bulk of the work required to generate a sharing of e, such as the 
OTs and the GGM tree expansion. This can indirectly speed up the time to 
multiply Ge due to better parameter selection. 

We believe the resilience of SSD to known LPN/SD attacks to be both unan-
ticipated and significant. While we are not the first to consider the hardness of 
LPN and SD with structured noise, our assumption arguably has more impli-
cations due to the noise being highly correlated. This suggests the intriguing 
possibility of LPN and SD with other highly correlated noise distributions and 
the potential impact they can have on various constructions. 

1.1 Contribution 

Our core contribution is the introduction of the Stationary Syndrome Decoding 
assumption. First, we provide supporting evidence for its hardness. We show that 
SSD is resilient against all linear attacks [Pra62,Ste89,Jab01,BKW03,Lyu05] 
[FKI07,ABG+14,BR17,ES24] and adaptations of the state-of-the-art algebraic 
attacks of [BØ23]. 

Then, we show that SSD has significant efficiency implications for pseudo-
random correlation generators (PCGs). In particular, we start with the commu-
nication and computation implications for degree-1 correlations, such as VOLE, 
OT, and binary OLE. Next, we discuss the same implications for degree-2 cor-
relations, such as general OLE and Beaver triples. We also show that SSD can 
result in much better cache/memory utilization of PCGs. 

Degree 1 Correlations. Let n be the length and t the Hamming weight of the noise 
vector e. To generate q noise vectors with the SSD assumption, our construction 
requires a single “base VOLE” of size tq and t log2(n/t) base OTs. To generate q 
noise vectors using the standard SD construction also requires the same size base 
VOLE correlation, but q times more base OTs. I.e., we can reuse all OTs across 
the q instances. As a result, our construction requires an amortized 2 log2(n/t) 
times less data to be sent when generating the sharing of e. Our  experiments  
show 6.4−7.5× reduction in communication for OT and 10.7−17.6× for VOLE, 
for a standard choice of parameters. We refer to [KPRR25] for more detail. 

Degree 2 Correlations. The setup for degree 2 correlations from Ring-LPN 
[BCG+20,BBC+24,LXYY25], e.g. Beaver triples over Fp, is significantly more 
complex and requires the generation of a weight t' := t2 noise vector (product 
of two t-sparse vectors), in contrast to the simpler degree 1 setup, which only 
requires a weight t noise vector. Moreover, the natural implementation requires 
O(nt) local  work  instead  of  O(n) in the degree 1 case. The recent implementation 
of [RR] demonstrates that the dominant cost is simply generating the noise vec-
tor using O(nt) calls to a PRG. Some works starting with [SGRR19,BCG+20]
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suggested the use of so-called batch codes, such as cuckoo hashing, to reduce 
this overhead back to O(n) at the expense of more work being performed in 
MPC, e.g. O(poly(t')). Alternatively, [BGH+25] gives a distributed multi-point 
function, which requires only O(n) calls to a PRG and O(nt) simple operations.  
However, the concrete costs of generating the distributed point function keys 
remain very high and likely require new protocol improvements. 

To reduce the high concrete cost of these protocols, we propose using SSD, 
similarly to the degree-1 case, to amortize this expensive setup across the q 
instances. In particular, the vast majority of the work performed within MPC 
can be performed once and then reused across the q instances. This brings down 
the amortized overheads from at least O(t' log(n/t) +  poly(t')) to O(t') commu-
nication and from O(nt) to  O(n) computation. We believe this is an extremely 
promising direction for future exploration. We refer to [KPRR25] for more detail. 

Cache and Memory Utilization. To achieve the desired sublinear communica-
tion overhead of PCGs, it has been necessary to generate the correlations in 
large batches, e.g. n ≈ 220 . However, SSD reduces this necessity as it is more 
communication efficient, and therefore allows for a smaller n while achieving the 
same relative communication overhead. This in turn results in non-trivial per-
formance improvements as the overall protocol can better fit into CPU cache. 
Our implementation shows that by executing q = 25 instances of size n = 215 

binary OLEs rather than a large batch of n = 220, we can reduce wall-clock time 
for degree 1 correlations by 1.5 times while achieving the same relative commu-
nication overhead. Moreover, we expect speedup for degree 2 correlation to be 
even larger due to the larger amount of local computation along with the more 
complex setup protocol. 

2 Related Work 

In Sect. 3, we review existing works on syndrome decoding (SD) and  related  
attacks. In this section, we focus on approaches aimed at improving pseudoran-
dom correlation generators (PCGs), which serve as the motivating application 
of SD in our work. The majority of PCGs use essentially the same protocols 
[BCGI18,BCG+19b,BCG+19a,BCG+20,CRR21,BCG+22,RRT23]. They gen-
erate a secret sharing of a sparse vector e times either a scalar Δ or in [BCG+20] 
by another sparse vector. This sharing is then compressed by a linear function 
G. Thus, to improve PCG performance, the focus has been to improve the gen-
eration of the shared sparse vector and the time required to multiply by G. All  
prior works have focused on improving the generation of a single SD instance. 

Thus far, the most impactful optimization for generating the secret sharing of 
e [AFS05,HOSS18,Ds17,BCGI18,SGRR19,BCG+19b,BCG+20,BCG+22] has  
been the idea of the regular noise distribution [AFS05] that replaces the 
Bernoulli/exact distributions (see Sect. 3.4). In the context of secure compu-
tation, this optimization was first used by TinyKeys [HOSS18] and  later  by  
[BCGI18] for PCGs. The regular noise distribution is so beneficial because it
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allows the generation of the sharing of Δe to consist of O(n) AES calls across 
t distributed point functions. This is in contrast with other noise distributions 
that require O(t) distributed point functions and as much as O(tn) AES calls, 
or the use of more complicated batch codes such as cuckoo hashing [SGRR19]. 

Another line of work tries to optimize the time it takes to multiply matrix 
G and e [BCGI18,BCG+19b,BCG+19a,BCG+20,CRR21,BCG+22,RRT23]. 
The original LPN assumption states that G is uniform, and therefore G · e 
requires O(n2) time. However, it is widely accepted that G can be replaced 
by the generator matrix of a code with high minimum distance, unless that 
code has strongly algebraic structure, such as the Reed-Solomon code, which 
can be efficiently decoded with the Berlekamp-Massey algorithm [Ber68]. By 
changing G to be a generator matrix, it is theoretically possible to compute 
G · v for any v in O(n) time. However, practical considerations typically result 
in time O(nc) where  c is somehow related to log n or the security parameter. 
[BCGI18,BCG+19b,BCG+19a] propose to rely on LDPC or quasi-cyclic codes 
as their security is well-studied and they offer reasonable performance. [BCG+22] 
propose using a type of turbo code that they call expand-accumulate, which not 
only significantly improves costs but also provably has high minimum distance. 
[RRT23] further improve on this code by replacing accumulation with a so-called 
convolution, which significantly increases minimum distance, and hence allows 
for more favorable parameters and performance. Our work differs from all these 
works in that we amortize PCG cost across multiple SD instances. I.e., we amor-
tize out the cost of generating the noise vectors e across q instances. 

3 Preliminaries 

3.1 Notation 

Most of our notation follows standard conventions. Specifically, matrices are 
denoted using bold, non-italic, uppercase letters, while vectors are represented 
by bold, italic, lowercase letters. E.g., G is a matrix and v is a vector. We index 
matrices and vectors with subscript and use 1-based indexing, e.g., Mi,j or vi. 
|v| represents the Hamming weight of a vector. ||v|| represents the length of a 
vector or size of a set. v||u denotes the concatenation of vectors v, u. v ʘ u and 
v · u denote the component-wise and dot product multiplications, respectively. 
[a, b] denotes the sequence of natural numbers a, . . . , b  and [n] the sequence [1, n]. 
[a, b]R denotes the inclusive range from a to b over the real numbers. κ is the 
computational security parameter. [[x]] denotes a two-out-of-two secret sharing 
of x ∈ F. A sender party holds a share [[x]]s ∈ F, while the receiver party holds 
[[x]]r ∈ F such that x = [[x]]s + [[x]]r. 

We denote variables of multivariate polynomials in bold, non-italic font, e.g., 
x, e, z. A polynomial  f ∈ F[x] is in italics. When given concrete values, we denote 
x as x. We use the graded lexicographic monomial ordering, where xα > xβ if 
and only if

∑
i αi >

∑
i βi, or

∑
i αi =

∑
i βi and the left-most non-zero entry 

of α − β is positive. fi will denote the ith smallest monomial in f . Let  LM(f) 
denote the largest monomial in f (without its coefficient) and LT(f) denote
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the largest term in f (with its coefficient). A set F ⊆  F[x] of polynomials will 
be in calligraphy font (along with distributions). M := {xα : α ∈ Nn} = 
{xα1 

1 · . . .  · xαn 
n : α ∈ Nn} denotes the set of monomials. 

3.2 Distributions and Bias 

A distribution D is associated with a set X and each x ∈ X is associated with 
a probability p(x) ∈ [0, 1]R s.t.

∑
x∈X p(x) = 1.  Let  Dist[X ] denote  the  set  of  

all probability distributions over set X . We can sample an element x from D, 
denoted as x ← D, such that Pr[x ← D] =  p(x). In places, we will also treat D 
as a random variable in the natural way. When X is a set, we use x ← X to 
denote sampling from the uniform distribution U over X , i.e., p(x) =  1/|X |. 

We will make use of the notion of bias, which measures how much a dis-
tribution D is correlated with a linear function v. Given a distribution D over 
F

n and a non-zero vector v ∈ Fn, the bias of D with respect to v, denoted as 

biasv (D), is equal to: biasv (D) :=
||
|
| E 
d←D 

[χ(v · d)]
||
|
| . where χ : F → C is a non-

trivial character of Fn, e.g., χ(x) := exp  2πiTr(x) 
p for a field with pk elements 

and field trace  Tr(x) :=  x + xp + ... + xpk−1 
. In the binary case, this simplifies 

to biasv (D) =  | Pr[v · x = 0]  − 1/2|. By  bias(D), we denote the largest bias of 
D with respect to any non-zero v: bias(D) =  max 

v /=0 
(biasv (D)) We now present 

bias for a distribution
∑

i≤t Di, obtained by taking t independent distributions 
D1, . . .  , Dt over Fn, sampling di ← Di and outputting the sum d =

∑
i∈[t] di. 

One can generalize [Shp09]’s lemma for Fn 
2 to arbitrary Fn. 

Lemma 1. For t independent distributions D1, . . .  ,  Dt over Fn, the bias of a 
distribution D :=

∑
i∈[t] Di is bounded by bias(D) ≤ ∏

i bias(Di) and that biasv ≤∏
i biasvi(Di) for non-zero vi ∈ Fn. 

Proof. 

bias(D) =  bias

(
∑

i 
Di

)

= max 
v /=0

||
|
| E 
di←Di 

[χ(v · (d1 + . . .  + dt))]
||
|
|

= max 
v /=0

|
|
|| E 
di←Di 

[χ(v · d1) · . . .  · χ(v · dt)]
|
|
|| (1) 

≤ max 
v1 /=0

|
|
|
| E 
d1←D1 

[χ(v1 · d1)]
|
|
|
| · . . .  · max 

v1 /=0

|
|
|
| E 
dt←Dt 

[χ(v · dt)]
|
|
|
| (2) 

=
∏

i 
bias(Di) 

where (1) follows from χ(x+y) =  χ(x)χ(y) and  (2) follows from the independence 
of Di and the triangle inequality. The proof of biasv (D) immediately follows. ∩∪
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3.3 Coding Theory 

Let C be a linear code that consists of a set of codewords v such that C := {v := 
xG | x ∈ Fk}, where  x is any input of length k, G ∈ Fk×n is a generator matrix 
of C, and  F is some field. A matrix H ∈ Fm×n, whose  kernel  is  C := {v | Hv := 
0m}, is called a parity check matrix. The code generated by H is called the dual 
code of C. From  G, we can construct H and vice versa. It follows that GHT = 0.  
The minimum distance d of a linear code C represents the minimum number of 
positions of some codeword v that must be modified to get another codeword 
v'. Equivalently,  d can be defined as the minimum weight non-zero codeword or 
as the minimum number of linearly dependent columns of H. A  dual distance 
of the matrix A is the largest integer d such that every subset of d rows of A 
is linearly independent. It is also the minimum distance of the dual of the code 
generated by A. 

3.4 Syndrome Decoding 

Syndrome Decoding (SD), or equivalently the dual learning parity with noise 
(LPN) formulation, states that for some field F, a public matrix G ∈ Fk×n that 
is a generator of a linear error-correcting code, and a private weight-t sparse noise 
vector e ∈ Fn sampled from some noise distribution, (G, Ge) is indistinguishable 
from (G, b), where b ← Fk is uniformly random. 

Definition 1 (Syndrome Decoding Assumption (SD)). Syndrome Decod-
ing is parameterized by an implicit computational security parameter κ, a  field  F, 
dimensions n, k ∈ N with k <  n, and distributions D ∈  Dist[Fn], G ∈  Dist[Fk×n]. 
For samples e ← D  ∈  Fn and G ← G  ∈  Fk×n, the  (n, k, F, D, G)-SD assumption 
states: 

{(G, b) | b := G · e} ≈ {(G, b) | b ← Fk} 

where ≈ denotes computational indistinguishability. 

The SD assumption is known to be false for some choices of G and D. For  
example, this is the case when G has small minimum distance, is a Reed-Solomon 
code, or e is too sparse. 

Learning Parity with Noise (LPN) is a fundamental cryptographic assumption 
introduced by [BFKL94] and is equivalent to SD. LPN states that for some field 
F, some public matrix A ∈ Fn×m, a random secret vector s ← Fm, and a random 
secret weight-t sparse noise vector e ∈ Fn, (A, As + e) is indistinguishable from 
(A, b), where b ← Fn is uniformly random. In the original formulations both 
A and s were uniformly random and each position of e was sampled from the 
Bernoulli with parameters t/n so that in expectation |e| = t. However, fruitful 
lines of research have shown that better performance can be achieved by adding 
structure to these distributions. Commonly, A is the transpose of a parity check 
matrix H of a linear error-correcting code with high minimum distance and fast 
encoding, e.g., [BCG+22,CRR21,RRT23]. Additionally, to improve performance
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of certain protocols e is often sampled from some noise distribution, e.g., regular 
[AFS05] as we will explain later. 

Definition 2 (Learning Parity with Noise Assumption (LPN)). Learning 
Parity with Noise is parameterized by an implicit computational security parame-
ter κ, a field  F, dimensions  n, m ∈ N with n > m, and distributions D ∈  Dist[Fn], 
H ∈  Dist[Fn×m]. For  samples  e ← D  ∈  Fn, A ← H  ∈  Fn×m, and  si ← Fm, the  
(n, m, F, D, H)-LPN assumption states: 

{(A, b) | b := A · s + e} ≈  {(A, b) | b ← Fn} 

where ≈ denotes computational indistinguishability. 

LPN and SD Equivalence. Recall that for a linear error-correcting code, the 
matrix A from the LPN formulation is the transpose of a parity check matrix 
H = AT, while G from the SD formulation is the generator. The key observation 
is that GHT = 0. Then, G(HT s+e) =  (GHT )s+Ge = Ge = b. Similarly, given 
a SD  sample (G, b), one can define the equivalent LPN instance by sampling a 
uniform ŝ ∈ Fm and outputting (A, ̂b) where  ̂b := Aŝ + ê and ê is an arbitrary 
solution to Gê = b̂. Correctness follows from the fact that there exists some 
s ∈ Fm s.t. As + e = Aŝ + ê. 

Noise Distributions. Three choices for the noise distribution are dominant in 
the literature: Bernoulli, exact, and regular. In secure computation applications, 
their choice greatly impacts efficiency. Let t be the desired sparsity of the error 
vector e of size n, consisting of elements from some field F: 

– Bernoulli is the classic noise distribution. Each ei ∈ F is sampled with Bert/n, 
i.e., 0 with probability 1 − t/n and otherwise uniformly from F \ {0}. 

– Exact noise distribution evolved from the Bernoulli distribution and fixes the 
Hamming weight of the noise vector |e| = t, I.e., e ← {e ∈ Fn | |e| = t}. 

– Regular is the distribution of choice for pseudorandom correlation generators 
(PCG) as the noise vector is much cheaper to implement under secure com-
putation than in the exact case (details to follow). e consists of t same-size 
blocks e1, ..., et ∈ Fn/t, where  each  ei is a uniformly random unit vector. I.e., 
ei ← {ei ∈ Fn/t | |ei| = 1}. 

Interestingly, there is not a clearly best noise distribution when it comes to 
security. [ES24] recently showed that regular noise can actually be harder for 
some parameter regimes, and vice versa. 

3.5 Linear Attacks 

Cryptanalyzing LPN is a thriving area of research. Many attacks have been pro-
posed of which the most effective are those based on Gaussian elimination/BKW 
algorithm [BKW03,Lyu05] and information set decoding (ISD) [Pra62,Ste89].
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When introducing a new LPN variant, it would be laborious to prove secu-
rity against each possible attack. Fortunately, the majority of known attacks 
fit in the linear test framework. These include, among others, attacks based 
on Gaussian elimination and the BKW algorithm [BKW03,Lyu05], attacks 
based on covering codes and information set decoding [Pra62,Ste89], statistical 
decoding [Jab01,FKI07], and finding correlations with low degree polynomials 
[ABG+14,BR17]. In this framework, the adversary is given the matrix A, arbi-
trarily preprocesses it, and then outputs a test vector v. Now, the framework 
states that the distinguisher, who tries to distinguish the LPN sample from uni-
formly random, can be implemented by a simple linear test v · (As + e) and  by  
checking if the output is biased, e.g., equals zero more than random chance. 

One advantage of the linear test framework is that when LPN is initialized 
with a code that has high minimum distance d, then it cannot be distinguished 
from uniform except with negligible probability. Note that high minimum dis-
tance is not a necessary condition for security. It is well-known that small mini-
mum distance can result in secure LPN as long as the pseudominimum distance 
is high. Pseudominimum distance represents the weight of the smallest code-
word that is efficiently computable. In other words, small minimum distance 
codewords can exist as long as they cannot be efficiently found. We note that 
while the linear test framework covers the large majority of known attacks, there 
are some notable exceptions such as when the underlying code is strongly alge-
braic (e.g., Reed-Solomon) or the noise is structured (e.g., regular). Stationary 
syndrome decoding, which we introduce in this paper, has a highly structured 
noise, and thus requires analysis beyond the linear test framework. 

To illustrate how the linear test framework captures various attacks, we next 
review how to cast state-of-the-art ISD algorithms as linear tests. First, the SD 
problem (G, G · e) is converted into its equivalent LPN formulation (A, b := 
As + e), see above. A subset of m := n − k rows of A are selected, called 
an information set I ⊂ [n], with the hope that this set does not intersect the 
non-zeros of the noise vector e, i.e. ei = 0  for  i ∈ I. One can then use Gaussian 
elimination to solve for the noisy positions of e by considering the corresponding 
m × m submatrix A', which consists of the rows in the information set i.e. 
A' := (AI1 //...//AIm). One then solves the system A' · s = bI using Gaussian 
elimination and checks if e' := As − b is a t-sparse vector, which implies e' = e 
w.h.p. This algorithm can be implemented in the linear test framework, for 
example, by simply checking if e'

1 = 0, which is linear in the original SD problem 
since e' is linear in Ge. 

When ISD is naively implemented, each information set guess requires 
a costly Gaussian elimination step. Advanced ISD algorithms [Ste89,FS09a, 
BLP11] [MMT11,BJMM12,MO15,BM18,ES24] typically improve efficiency 
through a combination of techniques, such as reducing the overall search space, 
optimizing the process of finding the right information set, or amortizing the 
cost of Gaussian elimination by reusing partial computations across multiple 
related information sets. This avoids the need to restart the linear algebra from 
scratch for each attempt. While processing each individual set still takes at least



Stationary Syndrome Decoding for Improved PCGs 293

O(1) time, the overall approach becomes significantly more efficient. As a result, 
in the linear test framework, these attacks can be structured so that each test 
effectively runs in O(1) time as well. 

Importantly, we note that the noise parameter t suggested by the linear test 
framework tends to be highly conservative. For example, [LWYY22] shows  that  
in SD, a choice of t ≈ 60 should provide the same level of bit-security against 
linear tests as opposed to t ≈ 170 required by the linear test framework. In this 
work, we adopt a more conservative approach and choose parameters according 
to the linear test framework to ensure provable security guarantees. However, 
we are also not aware of any concrete speedup for ISD-styled algorithms when 
applied to SSD, which suggests more aggressive parameters could be considered. 

3.6 Algebraic Preliminaries 

Recent work by Briaud and Øygarden [BØ23] represents one such attack that 
does not fit within the linear test framework. The attack is based on algebraic 
geometry and leverages the regular structure of noise in LPN and SD. At  the  
highest level, the attack represents LPN/SD as a system of linear and non-linear 
polynomials and then solves for the noise vector e. [BØ23]’s work is a crucial 
prerequisite to analyze the security of our assumption against algebraic attacks. 
For that reason, we first provide an overview of the concepts necessary to under-
stand [BØ23]’s attack before reviewing their attack. For those less familiar with 
agebraic geometry we provide a self-contained introduction in [KPRR25]. 

Macaulay Matrix. The Macaulay matrix is an essential primitive for solving non-
linear systems of equations. Let M := {xα : α ∈ Nn} be the set of all monomials. 
Let coeff(f, m) represent the coefficient of a monomial m ∈ M  in a polynomial 
f ∈ A. For finite subsets F := {f1, . . .  , fp} ⊂  A  and S := {s1, . . . , sq} ⊂  M, the  
Macaulay matrix Macaulay(F , S), is defined as 

Macaulay(F , S) :=  

⎛ 

⎜ 
⎝ 

coeff(f1, s1) ... coeff(f1, sq) 
... 

. . . 
... 

coeff(fp, s1) ... coeff(fp, sq) 

⎞ 

⎟ 
⎠ 

Note that S need not have all the monomials in F . 

XL Algorithm and Gröbner Bases. Techniques based on Gröbner bases and the 
closely related XL algorithm [CKPS00] can be used to solve systems of polyno-
mial equations. Both approaches usually depend on the Macaulay matrix (see 
[KPRR25]). For the systems we consider, the XL algorithm is more performant, 
and hence our discussion focuses on XL. 

Let F := {f1, . . .  , fp} such that F ⊆  A  be a system of polynomial equations, 
i.e., f1(x) =  . . .  = fp(x) = 0. The XL algorithm can be split into two phases. 
The first phase maps the non-linear system F to a linear system. We start by 
multiplying each fi by arbitrary monomials such that the resulting polynomials 
are of degree at most d. d is carefully selected and input to the algorithm such
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that this step produces enough new equations. Note that finding the right d is 
often challenging and constitutes a significant effort for the approach. We then 
linearize the system by treating its monomials as new variables and save their 
coefficients in the Macaulay matrix. The second phase is standard. We proceed 
by solving the linear system with Gaussian elimination and obtain a polynomial 
in one variable. We solve this polynomial using some factorization algorithm 
and obtain a root, substitute, and repeat this process to solve for the remaining 
variables. The full algorithm is presented in Fig. 1. 

XL(F = {f1, .  . . , fp} ⊂ A, dwit ∈ N) :  

1. Expand the system to degree dwit by computing, I≤dwit := {mfi : m ∈ M, fi ∈ 
F , deg(mfi) ≤ dwit} = {h ∈ I  : deg(h) ≤ dwit}. 

2. Obtain the Macaulay matrix M := Macaulay(I≤dwit , M≤dwit ) ∈ F
p×q where 

M≤dwit := {m ∈ M  : deg(m) ≤ dwit} and q := |M≤dwit |. We now have a lin-
ear system M · z = 0  where  z1, . .  . ,  zq are relabelings of the M≤dwit . 

3. For i ∈ [n] :  
(a) Reorder M, z such that (z1, . .  . ,  zdwit+1) = (1, x1 

i , . . .  ,  xdwit 
i ). 

(b) Perform Wiedemann Gaussian elimination [Wie86] on M where 
(z1, . .  . ,  zdwit+1) =  (1, x1 

i , . . .  ,  xdwit 
i ) are eliminated last. Output ⊥ if the 

first row of M is not of the form (M1,1, . . . ,  M1,dwit+1, 0, . . .  0). 
(c) Solve the univariate polynomial system

∑
j∈[dwit+1] M1,jx

j−1 
i = 0 using factor-

ing algorithms. Let xi be one of the roots. 
(d) Substitute xi in for xi and simplify M. 

4. Output (x1, .  . . , xn). 

Fig. 1. The XL algorithm [CKPS00] for solving quadratic system of equations. 

As briefly discussed above, for XL to be successful we need to select d carefully 
such that we produce in the first phase enough linearly independent equations 
in relation to the number of monomials. In other words, p ≥ q in the Macaulay 
matrix so that we can apply Gaussian elimination. The threshold for large enough 
d is called the witness degree dwit and we use [ BØ23]’s definition below. 

Definition 3 (Witness Degree [BØ23]). Consider an affine system of poly-
nomials F := {f1, . . . , fp} with coefficients in F, the  ideal  I := ⟨F⟩, and  some  
d ∈ N. Now  consider:  

I≤d := {h ∈ I  : deg(h) ≤ d} 

J≤d := 

⎧ 
⎨ 

⎩ h ∈ I  : ∃gi s.t. h =
∑

i∈[p] 

gifi; ∀i ∈ [p], deg(gi) ≤ d − deg(fi) 

⎫ 
⎬ 

⎭ 

The witness degree dwit is the smallest d ∈ N for which it holds that I≤d = J≤d 
and LM(I≤d) =  LM(I), where  LM(·) (for some graded ordering) denotes the
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monomial ideal generated by the leading monomials of all polynomials in the 
input ideal. 

Intuitively, dwit guarantees that everything we need to know about the struc-
ture of an ideal can be captured by polynomials of degree at most dwit. Note  that  
the witness degree dwit is related to the degree of regularity dreg (see [KPRR25]). 
The key difference is that dreg is usually used for homogeneous systems solved 
with Gröbner bases, while dwit is suitable also for affine systems solved with XL. 

The runtime of the XL algorithm is largely determined by the cost of Gaus-
sian elimination. As the systems we consider have a single solution and are sparse, 
we can use the Wiedemann algorithm [Wie86] to perform the Gaussian elimina-
tion, and find a solution in 3 ·maxRowWeight(M) ·q2 , where 3 is a constant stan-
dard in the literature (see [BØ23]), maxRowWeight(M) :=  max({|Mi| : i ∈ [p]}) 
is the maximum number of non-zero entries across the rows of the Macaulay 
matrix M, and  q is the number of columns in the Macaulay matrix. 

3.7 Algebraic Attacks 

[BØ23]’s Attack. The attack solves for the noise vector e ∈ Fn in a polynomial 
system representing a single instance of regular-noise SD. Recall that a regular 
e = e1|| . . .  ||et can be viewed as  t vectors e1, . . .  ,  et each of size n/t and Ham-
ming weight |ei| = 1. The system consists of k linear parity check equations 
Ge − b = 0  and

(
n/t 
2

)
t quadratic equations encoding the regular structure of e, 

i.e., ei,j1 ei,j2 = 0  for  all  i ∈ [t] and  j1 < j2 ∈ [n/t]. 1 These two sets of equations 
represent the complete system of polynomial equations to solve regular syndrome 
decoding over a large field F. Over  F2, we additionally encode that the sum of 
each block equals 1, i.e.,

∑
j∈[n/t] ei,j − 1 =  0,  for  all  i ∈ [t]. We cannot do this 

over larger fields as we do not know the values of the non-zero coordinates. We 
also include field equations e2 

i,j − ei,j = 0, for all i ∈ [t] and  j ∈ [n/t]. More 
generally, we can include e||F|| 

i,j − ei,j = 0  for any  F. However, for large F, the  
degree of the field equations is much higher than dwit, and hence they have no 
contribution. 

We note that the main contribution to the polynomial system comes from the 
k parity check equations. Hence, the attack is more effective for instances with a 
non-constant rate such as in primal LPN. The presented system is for the dual 
setting. To attack the primal setting, we simply convert the primal instance into 
an equivalent dual instance and then solve for the presented polynomial system. 
We now present the polynomial systems for large F and F2 formally. 

Modeling 1 (Polynomial System over a Large Field F). Let (G, b) be a 
regular syndrome decoding instance over a large F. Let  F := R ∪ S  be a set of 
polynomials such that: 

– R is the set of k linear parity check equations Ge − b = 0.
1 ei,j represents jth element of ith block ei of e. 
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– S is the set of t
(
n/t 
2

)
quadratic equations that encode the regularity of the 

noise vector e, i.e., ei,j1 ei,j2 = 0  for all i ∈ [t] and j1 < j2 ∈ [n/t]. 

Modeling 2 (Polynomial System over F2). Let (G, b) be a regular syn-
drome decoding instance over F2. Let  F := R∪S  ∪V  ∪W  be a set of polynomials 
such that: 

– R and S are the same sets as in Modeling 1. 
– V is the set of n field equations e2 

i,j − ei,j = 0  for all i ∈ [t] and j ∈ [n/t]. 
– W is the set of t linear equations

∑
j∈[n/t] ei,j − 1 =  0, for all i ∈ [t]. They  

express that each of the t blocks has Hamming weight 1. 

[BØ23] solve these polynomial systems with XL Wiedemann. To apply XL 
Wiedemann, [BØ23] estimate the witness degree dwit at which the polynomial 
system is solved. This is [BØ23]’s key contribution. It also determines the cost 
of XL Wiedemann as dwit determines the size of the Macaulay matrix. 

The dwit estimate is the index of the first ≤ 0 coefficient in the Hilbert series 
HSA/I(z), where I := ⟨F (h)⟩ in Modeling 1 and Modeling 2 respectively. Thus, 
dwit can be simply retrieved if we know the Hilbert series. Recall that unfortu-
nately Hilbert series are often difficult to compute. By using the assumption that 
the relevant Macaulay matrices have maximal rank and using the knowledge of 
regular and semi-regular sequences, [BØ23] arrive at the following Hilbert series. 

Theorem 1 (Hilbert Series for Modeling 1). Assuming the Macaulay 
matrix has maximum rank, the Hilbert series of the homogeneous ideal I :=
⟨F (h)⟩, where  F is the Modeling 1 polynomial system, is 

HSA/I(z) :=  (1  − z)k ·
(

1 +  n 
t 

· z 
1 − z

)t 
, 

truncated after the first ≤ 0 coefficient. 

Theorem 2 (Hilbert Series for Modeling 2). Assuming the Macaulay 
matrix has maximum rank, the Hilbert series of the homogeneous ideal I :=
⟨F (h)⟩, where  F is the Modeling 2 polynomial system, is 

HSA/I(z) :=  (1 + (n/t − 1)z)t 

(1 + z)k , 

truncated after the first ≤ 0 coefficient. 

As presented, the complexity of the algorithm that solves Modeling 1 and 
Modeling 2 is too high to be competitive with more established attacks. In other 
words, the witness degree is too high and needs to be reduced to potentially 
decrease the complexity of the overall algorithm. With that in mind, [BØ23] 
present a hybrid approach, which consists of repeatedly guessing a few noise-
free elements of e and invoking XL Wiedemann until successfully computing e.
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More specifically, parameterized by f ∈ [t] and  μ ∈ [n/t], the hybrid approach 
guesses μ noise-free positions in the first f blocks of e (i.e., add new equations for 
each guessed noise-free ei,j = 0  to  F). Let p be the probability that the guessed 
positions are all noise-free. We then expect to repeat the XL Wiedemann O(p−1) 
times. The hope is that the loss from rerunning XL Wiedemann is superseded 
by the decreased degree at which the system is solved. As before, the degree dwit 
is derived from the Hilbert series, which for Modeling 1 changes to 

HSA/I(z) :=

[

(1 − z)k ·
(

1 +
(n 

t 
− μ

)
· z 
1 − z

)f 

·
(

1 +  n 
t 

· z 
1 − z

)t−f
]

, 

truncated after the first ≤ 0 coefficient. For Modeling 2, it changes to 

HSA/I(z) :=

[
(1 + (n/t − 1 − μ)z)f · (1 + (n/t − 1)z)t−f 

(1 + z)k

]

, 

also truncated after the first ≤ 0 coefficient.  

4 Overview  

In this work, we introduce a new assumption that we call the stationary syn-
drome decoding (SSD), analyze its security, and present its implications for dif-
ferent applications. The high-level idea of SSD is straightforward. We consider 
q instances of syndrome decoding (SD). SSD states that it is secure to reuse 
the noisy positions of the noise vector e across all q instances as long as their 
corresponding values are sampled uniformly for each instance. More formally: 

Definition 4 (Stationary Syndrome Decoding (SSD)). Stationary Syn-
drome Decoding is parameterized by an implicit computational security param-
eter κ, a field F, dimensions  n, k, q ∈ N with k <  n, and distributions 
L ∈  Dist[{0, 1}n], G ∈  Dist[Fk×n]. For  sample  L ← L  and for i ∈ [q], sam-
ple ei ← L ʘ F

n, Gi ← G  ∈  Fk×n. The  (n, k, q, F, L, G)-SSD assumption states: 

{(Gi, bi) | bi := Gi · ei}i∈[q] ≈ {(Gi, bi) | bi ← Fk}i∈[q] 

where ≈ denotes computational indistinguishability. 

The applications we consider will restrict L to being a subset containing sparse 
vectors, typically with O(κ) ones. It is not hard to show that this definition is 
equivalent to the following LPN-styled definition. 

Like SD (Sect. 3.4), the SSD assumption is false for some choices of G and L. 
This definition serves as template that we make concrete in Sect. 5 and 6. We  
give concrete parameters in Sect. 7 for when we believe that SSD holds. 

Definition 5 (Stationary Learning Parity with Noise (SLPN)). Station-
ary Learning Parity with Noise is parameterized by an implicit computational
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security parameter κ, a  field  F, dimensions  n, m, q ∈ N with n > m, and  distri-
butions L ∈  Dist[{0, 1}n], H ∈  Dist[Fn×m]. For  sample  L ← L  and for i ∈ [q], 
sample ei ← LʘF

n, Ai ← H  ∈  Fn×m and si ← Fm. The  (n, m, q, F, L, H)-SLPN 
assumption states: 

{(Ai, bi) | bi := Ai · si + ei}i∈[q] ≈ {(Ai, bi) | bi ← Fn}i∈[q] 

where ≈ denotes computational indistinguishability. 

In particular, the equivalence holds when Gi is the generator matrix for the 
parity check matrix AT 

i , see Sect. 3.4. Note that the more standard definitions 
of regular LPN and SD can be obtained simply by restricting q to be one and 
requiring non-zero noise. Conversely, Definition 6 shows that one can similarly 
reframe SSD, SLPN in terms of the standard LPN formulation (G, G·e) ≈ (G, $) 
with specially structured noise e and matrices G. 

In the rest of this section, we justify at a high level SSD’s security (Sect. 4.1) 
and discuss SSD’s implications for the performance of pseudorandom correlation 
generators (Sect. 4.2). 

4.1 The Security of SSD 

The majority of known attacks on SD and LPN fall into two categories: linear and 
non-linear. For the parameter regime that PCGs commonly use, linear attacks 
are typically more efficient. Interestingly, SSD enjoys provable immunity to all 
of these attacks. As discussed in Sect. 3.5, these attacks can be shown to be 
equivalent to sampling the generator matrices G1, . . .  ,  Gq ∈ Fk×n and invoking 
an adversary A(G) which outputs a test vector v ∈ Fkq. The distinguisher is 
then implemented as v · (b1|| . . .  ||bq). I.e., if the output is correlated with the 
linear function v = (v1|| . . .  ||vq), then the adversary A wins. We provably show 
no A exists that has noticeable advantage. The core idea is that any such attacker 
has to essentially come up with a codeword vi of Gi that does not intersect the 
noise. 2 However, from the distribution of the noise, this is unlikely, even if the 
noise is correlated. SSD is particularly interesting because it targets a weakness 
of linear attacks such as information set decoding (ISD). At a high level, linear 
attacks come down to guessing a noise-free set of positions in e, which are the 
non-zeros of vi, and then checking for linear correlations. However, this does not 
allow an attacker to take advantage of the new information that SSD provides. 
For a linear attacker, all vi must be codewords, and therefore the new instances 
are no easier to attack than the first. 

The situation with respect to non-linear attacks is more complicated. State-
of-the-art techniques encode the problem statement into a system of non-linear 
equations and use algebraic techniques for solving the system, e.g., Gröbner 
bases. [BØ23] recently proved bounds on the running time of the XL [CKPS00] 
algorithm (see Sect. 3.6 and Fig. 1), when applied to the SD problem with regular
2 Here we abuse notation and redefine vi ∈ Fn as a codeword of Gi that corresponds 

to a test vector Givi in the SD setting. See Sect. 5 for formal detail. 
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noise. They show that when G ∈ Fk×n has non-constant rate, e.g., k = (1− ϵ)n, 
then the XL algorithm can outperform linear attacks. 

Given that our system can be seen as an even more structured version of 
regular noise SD, it is imperative that we understand how such attacks scale when 
adapted to use the additional structure. To achieve this, we define a system of 
equations that encodes the structure of the SSD problem and then prove bounds 
on the required running time to solve such systems using the XL algorithm. We 
show that XL is not noticeably better at solving SSD compared to SD. 

4.2 Pseudorandom Correlation Generator (PCG) from SSD 

We now explain at a high level how SSD improves the performance of PCGs and 
defer the full details to [KPRR25]. Typically, the end goal is to generate a secret 
sharing of a random vector v times a scalar Δ, i.e., [[vΔ]]. We will first compute 
a secret sharing of a t-sparse vector e times Δ, i.e., [[eΔ]]. The final result is 
obtained by computing [[vΔ]] = G[[eΔ]], i.e., v = Ge. e, v will be known to the 
receiver while Δ is known to the sender. Many useful degree 1 PCGs, e.g., for 
OT, binary OLE, and VOLE, are directly obtained from [[vΔ]]. 

In more detail, let n' := n/t. The receiver samples t subvectors e1, . . .  ,  et ∈ 
F

n'
of Hamming weight 1 and defines e := e1|| . . .  ||et ∈ Fn. The secret sharing 

[[eΔ]] is generated by evaluating t so-called punctured PRFs [GGM84,BCG+19a] 
(PPRF) or a distributed point function (DPF), where the input to the ith PPRF 
is the index of the non-zero in ei from the receiver and Δ from the sender. The 
output is [[eiΔ]] and we obtain [[eΔ]] := [[e1Δ]]|| . . .  ||[[etΔ]]. A single instance of 
such PPRF protocol requires log2 n

' oblivious transfers (OTs). 
Without going into detail, the PPRF protocol generates a GGM tree with n'

leaves. A version of the GGM tree will be held by both parties and is generated 
by applying a PRG to the value of each parent node and assigning the result to its 
children. In total, 2n' PRG calls are made to evaluate the full tree. Additionally, 
the parties perform an OT for each level of the GGM tree, which allows the 
receiver to know all but one of the seeds at each level. These missing seeds all lie 
on the path from the root to the leaf node that corresponds to the non-zero of ei. 
The expansion of the GGM tree is largely independent of the value assigned to 
the leaf, in this case a sharing of Δ. SSD can be used to optimize this process by 
only expanding the tree once and then repeatedly derandomizing the leaf value 
for each instance, a 2× reduction in the number of PRG calls and requiring no 
additional OTs. See [KPRR25] for a more detailed description. 

Many applications require billions of correlations. However, due to memory 
constraints, it is often inefficient to have n >  224 and as such it  is  common to  
have q PCG instances each of fixed size n, e.g., n = 220. This comes at the cost 
of requiring qt log2 n/t OTs and communication. The SSD assumption allows us 
to reduce the overhead back down to t log2 n/t OTs in total and an amortized t 
communication per instance (i.e., log2 n/t times less than  SD). This is because 
the bulk of the work in the PPRF protocol is dependent on the locations of the 
non-zeros in e but not their values. As such, because SSD states that the location 
does not need to change, we obtain significant savings. We additionally obtain a
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much more cache-friendly construction that results in significant computational 
savings. This is because the ability to reuse the bulk of the setup makes it more 
attractive to use smaller values of n, which improves the cache efficiency. 

We also obtain significant improvements for degree 2 PCGs such as non-
binary OLEs and Beaver triples that rely on the Ring LPN assumption. This 
setting requires a very expensive setup to compute a sharing of two sparse poly-
nomials e · e'. If we apply the SSD assumption to this setting, the vast majority 
of the setup can be reused, dramatically decreasing the overhead. 

5 Linear Attacks 

We now demonstrate that our assumption is resilient to linear attacks. We focus 
on the restricted case of regular noise for efficiency. Our argument lies in showing 
that the linear test framework adversary gains no significant advantage from 
SLPN/SSD. It will be convenient to recast SSD in terms of standard SD with 
structured noise and structured G. 

Definition 6 (Canonical Representation). We say (n', m', F, D, H')-LPN 
is the Canonical Representation of (n, m, q, F, L, H)-SLPN if n' = nq, m' = 
mq, D = {e1||...||eq : d ← L, ei ← d ʘ F

n}, H' = {diag(A1, ..., Aq) :  Ai ← H}  
where diag denotes the function that places A1, ..., Aq along the diagonal of a 
n' × m' matrix. 

Similarly, we say (n', k', F, L, G')-SD is the Canonical Representation of (n, k, 
q, F, D, G)-SSD if n' = nq, k' = kq, D = {e1||...||eq : d ← L, ei ← d ʘ F

n}, G' = 
{diag(G1, ..., Gq) :  Gi ← G}. 
It is not hard to show that the canonical representation is equivalent. 

Definition 7 (Security against Linear Tests). Security against Linear 
Tests is parameterized by an implicit security parameter κ, a finite field F, dimen-
sions n, m ∈ N with n > m, and subsets D ⊂  Fn, H ⊆  Fn×m. We say that the 
(n, m, F, D, H)-LPN assumption is secure against linear attacks 

Pr[bias(DA ) > ϵ : A ← H] ≤ δ 

where ϵ, δ are negligible and DA is the distribution induced by s ← Fm , e ← D  
and outputting the LPN sample As + e. 

We note that one can also consider a computational version of linear test by 
restricting D to being efficient. This will then correspond to using the pseudo-
minimum distance in the following. 

Theorem 3 (Security of SLPN against Linear Tests with Regular 
Noise). Let F be a finite field, H ⊆  Fn×m be a set of matrices with dual distance 
at least d with probability at least δ, D ∈  {0, 1}n be the set of regular weight t 
vectors, then (n, m, q, F, D, H)-SLPN is secure against attacks in the (ϵ, δ)-linear 
test framework of Definition 7 (in canonical representation) where

ϵ = (1  − d/n)t
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Proof. To prove SLPN secure against linear attacks, we split our proof into two 
cases and prove them separately. First, we consider the number of LPN instances 
q = 1 and only then q >  1. 

Non-stationary Noise, q = 1. Let d ∈ [n] be the minimum number of linearly 
dependent rows in A. We show that there does not exist a v such that v·(As + e) 
is distinguishable from uniform. We consider two cases. 

Non-codeword v. Let us define the code C = {c ∈ Fn : cA = 0} = {mG : 
m ∈ Fk}. This implies that all c ∈ C  are  mapped to zero  when multiplied from  
the right by A, that  is  cT A = 0m. Conversely,  for  v /∈ C  it holds that vT A /= 0m. 
Therefore, vT As = uT s = r where u ∈ Fm is some non-zero vector. Since s is 
uniform, it follows that so is r, and therefore max 

v /∈C 
(biasv (As + e)) = 0. 

Codeword v. As just described, when v is a codeword the randomness con-
tributed by s vanishes. That is, vT(As + e) =  vT e. To prove that the construc-
tion is secure against linear attacks we must show that v · e has negligible bias. 
Let ei and vi denote the ith regular block of e, v, respectively, and let Di denote 
the distribution of ei. Lemma 1 states that the overall biasv (D) is bounded as 

biasv (D) ≤ ∏
i∈[t] biasvi(Di). We have biasvi(Di) =

|
|
|| E 
ei←Di 

[χ(vi · ei)]
|
|
||. Let  di 

denote the Hamming weight of vi. Recall that we have one noisy location in 
ei (possibly with value zero), and therefore the probability the noisy location 
intersects vi is di/(n/t). Conditioned on intersecting, vi · ei is uniform over F, 
and therefore the bias is 0. Otherwise, vi · ei = 0  and  χ(vi · ei) = 1. It follows 
that biasvi(Di) =  1  − di/(n/t) and  

max 
v∈C 

(biasv(D)) ≤
∏

i 
1 − di/(n/t) ≤

(
1 − 

d 
n

)t 

Note that this differs from the traditional regular noise bias for q = 1  as  we  
allow the noise value to be 0. For F2 and non-zero noise, Pr[vi ·e1 = 1]  =  di/(n/t) 
and χ(vi · e1) =  −1. It follows that E[χ(vi · ei)] = −di/(n/t) +  (1  − di/(n/t)) = 
1 − 2di/(n/t) and  overall  biasv (D) ≤ (1 − 2d/n)t . 

Stationary Noise, q >  1. As in the q = 1 case, it is clear that v · (As + e) is  
uniform when v is not a concatenation of q codewords. This is because v does 
not map s to zero. Now let v1, ..., vq denote the codewords of v, i.e. viAi = 0m 

and v = (v1||...||vq). As in the q = 1  case,  if  v intersects e, then the result 
is uniformly random, and therefore has zero bias. Since (a) v is non-zero, and 
hence at least one vi is non-zero, and (b) the bias of each block with non-zero vi 

is at most
(
1 − d 

n

)t 
, then the overall bias is at most this as well. Note that while 

the noisy locations between blocks do not change, their values in each block are 
uniformly random, and the overall bias is bounded as the maximum over the 
bias of each non-zero block. ∩∪
Note that given Theorem 3 and the equivalence of SLPN and SSD (see Sect. 4), 
the security of SSD against linear tests with regular noise is straightforward.
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5.1 Other Linear Attacks 

Given that our assumption introduces additional structure it is worth considering 
the existence of other attacks that could be considered linear while not fit into the 
linear test framework. Consider the SSD problem and the q outputs b1, ..., bq, 
i.e. bi = GiAisi + Giei for generator Gi of parity check Ai. There  exists  a  
hidden subset G'

1, ..., G'
q of G1, ..., Gq where G'

i :=
(
Gi,∗,L1 , . . .  Gi,∗,Lt

) ∈ Fm×t 

and Gi,∗,Lj is the jth “noisy column” of Gi. We then have  bi = G'
i · ci where 

ci ∈ Ft are the t noisy values in ei, i.e. ci,j = ei,Lj . Similarly, we can write this 
as one large linear equation b = G' · c. with G' = diag(G'

1, ..., G'
t). Given that 

|b| > |c|, the pseudorandomness of b clearly depends on G' being hidden. We 
consider a special case where pseudorandomness breaks down. 

Consider instantiating the SSD assumption where the space of generator 
matrices is the singleton set G = {G}. Therefore G1, ..., Gq above are all the 
same. This additionally means that G' can be  expressed as an  m × t matrix 
as opposed to a qm × qt matrix. In particular, consider C = (c1, ..., cq), B = 
(b1, ..., bq) and observe that B = G' · C. Although the subset corresponding 
to G' is not known, G' is now fixed and does not grow with q. Therefore, 
when q = t, we can assume that span(B) =  span(G'). This also means that 
bt+1 ∈ span(b1, ..., bt), i.e. bt+1 can be distinguished. Because m < t, one would 
not expect this to happen for random bi. 

Although this attack is clearly in some sense linear, it is not possible to 
perform it in the linear attack framework. Determining the coefficients v ∈ Ft 

such that bt+1 = ⟨(b1, ..., bt, v)⟩ is a function of the output, which the linear test 
adversary does not have. Linear test adversaries must first fix v before seeing b. 
This exemplifies that although the linear test framework captures the majority of 
traditional attacks on LPN and SD, new attacks become possible when additional 
structure is added. To prevent this relatively trivial attack, it is critical that the 
family of codes be large and relatively uncorrelated. 

Consider G = Fm×n, i.e. the uniform distribution. Then clearly the linear 
attack A(b1, ..., bt+1) described above is impossible. Each new bi is the sum 
of an independent and uniformly random subset G'

i. Any adversary breaking 
security must crucially rely on the fact that the G'

i matrices are correlated via 
the secret L and public parameters G1, ..., Gq. 

More generally, existing codes used for PGCs [BCG+19a,BCG+22,RRT23] 
all sample their codes from an extremely large sample space. In particular, many 
more random bits are used to sample Gi than are present in bi. This suggests 
that it is extremely unlike that linear correlations would exist. Given that each 
is constructed using a randomly sampled seed, e.g. Gi = CodeGen(H(i)) for a 
random oracle H, then such linear attacks in the output should not be feasible. 

6 Algebraic Attacks 

In this section, we show that SSD is resilient against the recent algebraic attack 
of [BØ23]. We first modify [BØ23]’s attack so that it takes advantage of the sta-
tionary noise across instances. We then show that the structured stationary noise
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provides negligible advantage. More specifically, we start by presenting our mod-
ified system in Sect. 6.1. We continue by computing our system’s Hilbert series 
in Sect. 6.2, use it to estimate the witness degree in Sect. 6.3, repeat the same 
procedure for the hybrid approach in Sect. 6.4, and then evaluate the attack’s 
impact on SSD’s security in Sect. 6.5. 

6.1 Formulating Our Polynomial System 

Recall that we restrict the noise to be at locations L ∈ L  such that the locations 
are regular. Consider arbitrary matrices Gi ∈ Fk×n sampled from G and error 
vectors ei ∈ Fn, where  each  ei ← L ʘ F

n is a vector with at most t non-zeros. 
That is, ei = ei,1|| . . .  ||ei,t where ||ei,j || = n/t and |ei,j | ≤  1. We are given 

(G1, . . . ,  Gq, b1, . . .  ,  bq), 

where bi = Gi · ei. 
We now formulate a system of polynomial equations to solve for ei for i ∈ [q], 

i.e., the system has qn unknowns. We first consider in Modeling 3 the case where 
SSD is parameterized over a large field F, and then in Modeling 4 the case where 
it is parameterized over F2. 

Modeling 3 (SSD over a Large Field F). Let (G1, . . . ,  Gq, b1, . . . ,  bq) be an 
SSD instance with regular noise locations L over a large F. Let  F := R ∪ S  be a 
set of polynomials such that: 

– R is the linear equations ⟨Gi,j , ei⟩ −  bi,j = 0, for all i ∈ [q] and j ∈ [k]. 
– S is the set of q2 t

(
n/t 
2

)
= q2 n2 /2t−q2 n/2 quadratic equations ei,v,jei',v,j' = 

0, for all i, i' ∈ [q], v  ∈ [t], and  j <  j' ∈ [n/t], implied by the structured noise 
constraint L. 

Modeling 4 optimizes the system for F2 by including the field equations 
e2 i,v,j −ei,v,j = 0, for all i ∈ [q], v ∈ [t], and j ∈ [n/t]. This ensures that the ideal
⟨F⟩ generated by Modeling 4 is zero-dimensional. However, for large F, as  noted  
prior, these equations will have no contribution. 

Modeling 4 (SSD over F2). Let (G1, . . . ,  Gq, b1, . . . ,  bq) be a SSD instance 
with regular noise over F2. Let  F := R∪S  ∪V  be a set of polynomials such that: 

– R and S are the same sets as in Modeling 3. 
– V is the field equations e2 i,v,j −ei,v,j = 0  for all i ∈ [q], v ∈ [t], and  j ∈ [n/t]. 

Compared to the prior work modeling for binary fields (Modeling 2), we 
observe that SSD appears slightly harder because we no longer restrict e to 
being regular with exact weight t (i.e. the noisy positions are sampled uniformly, 
and thus can be zero). This eliminates t linear equations that prior attacks 
[ES24,BØ23] were  able to  use.
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6.2 Computing Hilbert Series 

We now compute the Hilbert series (Sect. 3.6) of the homogeneous ideals associ-
ated with Modeling 3 and Modeling 4. Our computation uses a template similar 
to [BØ23] that estimates the Hilbert series of the ideals associated with Model-
ing 1 and Modeling 2. Note that  F , neither in the case of a large F nor F2, is a  
regular or semi-regular system (Sect. 3.6). To see why, consider f1 := e1,1,1e1,1,2 

and f2 := e1,1,2e1,1,3 that come from the structured noise constraint S. Recall 
that the regularity and semi-regularity of F is independent of the order in which 
we consider the polynomials in the system. Now, e1,1,1f2 = 0  in  A/⟨f1⟩, but 
e1,1,1 /= 0 in  A/⟨f1⟩, and hence F is not a regular system. If F were to be a 
semi-regular system, then its degree of regularity can be no more than 3 using 
the aforementioned examples of f1, f2. However, e1,1,1e1,2,1e1,3,1 /∈ ⟨F⟩ (with 
high probability). Thus, as long as t ≥ 3 (or even q ≥ 3, etc.), the system is not 
semi-regular either. As a result, we cannot use the Hilbert series from Sect. 3.6 
and require a more sophisticated analysis. 

Hilbert Series for Modeling 3. Recall Modeling 3’s polynomial system F := 
R∪S. We first compute by monomial counting the Hilbert series HSA/⟨S⟩(z) of  
the quotient ring A/⟨S⟩ resulting from the structured noise equations S. After  
we compute the Hilbert series corresponding to S, we need to incorporate the 
linear parity-check equations R to get the final Hilbert series. To do that, we 
follow [BØ23]’s approach. We formalize as Assumption 1 an assumption that 
the parity-check equations R behave well in the quotient ring A/⟨S⟩ formed 
by the structured noise equations S. Note its similarity with the definition of 
semi-regularity over large F. 

Assumption 1. Let F := R ∪ S  be an instance of Modeling 3 and dreg be the 
degree of regularity of the zero-dimensional ideal ⟨F⟩. Let  R(h) := {r1, . . . , rqk} 
be the set of homogenized parity check equations. Our assumption states that for 
i ∈ [qk]; if  gri = 0  in A/⟨S, r1, . . . , ri−1⟩ with deg(gri) < dreg, then  g = 0  in 
A/⟨S, r1, . . .  , ri−1⟩. 
We now state and derive the final Hilbert series. 

Theorem 4. For F associated with Modeling 3, the Hilbert series of the homo-
geneous ideal ⟨F (h)⟩ under Assumption 1 is 

HSA/⟨F(h)⟩(z) =  (1  − z)qk ·
(

1 +  n 
t

(
1 

(1 − z)q − 1
))t 

, 

truncated after the first ≤ 0 coefficient. We call (1 − z)qk ·
(
1 +  n 

t

(
1 

(1−z)q − 1
))t 

the generating series of ⟨F (h)⟩. 
Theorem 4 immediately follows from the proofs of Lemma 2 and Lemma 3.
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Lemma 2. For the set S associated with the structural equations of Modeling 
3, the Hilbert series of the homogeneous ideal ⟨S(h)⟩ is 

HSA/⟨S(h)⟩(z) =
(

1 +  n 
t

(
1 

(1 − z)q − 1
))t 

. 

Proof. Note that S is already homogenized, i.e., S = S(h). Recall that HS(z) =∑
d HF(d) · zd and the HF(d) =  dim(Ad/⟨S(h)⟩d) is the size of the vector space 

basis Bd ⊂ {[xα ] :  α ∈ Nn} s.t. span(Bd) =  Ad/⟨S(h)⟩d. 
Let us first restrict our attention to a specific block v ∈ [t] and  let  Sv be the 

subset of S that only considers block v. Because Sv = {ei,v,jei',v,j' : i, i' ∈ [q], j  <  
j' ∈ [n/t]}, the  quotient  A/⟨S(h) 

v ⟩ cannot contain any monomials with ei,v,jei',v,j'

as a factor. That is, for a fixed v no monomial contains more than one j index. 
If we then consider a specific degree d and all of the q instances, the admissible 
monomials are Bd,v :=

{∏
i∈[q] e

αi 

i,v,j : j ∈ [n/t], α ∈ (N ∪ {0})q , d  =
∑

i∈[q] αi

}
. 

Let us count the number of such monomials for a specific v ∈ [t], j  ∈ [n/t], d  >  0. 
We will use a balls in bins argument to count |{α ∈ (N ∪ {0})q : d =

∑
k αk}|. 

One can view this as counting the ways to assign d balls into q bins, i.e., bins 
α1, . . .  , αq. The number of ways to do this is

(
q+d−1 

d

)
and hence the number of 

monomials of the form
∏

i∈[q] e
αi 

i,v,j for a fixed  v, j is
(
q+d−1 

d

)
. Therefore, if we 

consider all j ∈ [n/t] for  the  fixed  block  v, we  have  |Bd,v| = n 
t ·

(
q+d−1 

d

)
. Thus,  

the Hilbert series “for one block,” say v, is  

HSA/⟨S(h) 
v ⟩(z) =  1  +  n 

t 
· 

∞∑

d=1

(
q + d − 1 

d

)
zd 

where the one is from the constant monomial. We can find a closed form expres-
sion for the infinite sum inductively as follows. Consider q = 1. After substituting 
q = 1 into the infinite sum in HSA/⟨S(h)⟩,v, we  get  η1 =

∑∞ 
d=1

(
1+d−1 

d

)
zd = z 

1−z . 
We claim that for arbitrary q, ηq = 1 

(1−z)q − 1, which clearly holds for q = 1.  
Now, in pursuit of the inductive step, consider 

z + ηq = z + 
∞∑

d=1

(
q + d − 1 

d

)
zd 

= z + qz +
(

q + 1  
2

)
z2 + . . .  

=
(

(q + 1)z +
(

q + 2  
2

)
z2 + . . .

)
−

(
(q + 1)z2 +

(
q + 2  

2

)
z3 + . . .

)
(3) 

= 
∞∑

d=1

(
q + d 

d

)
zd − 

∞∑

d=1

(
q + d 

d

)
zd+1 

= (1  − z) 
∞∑

d=1

(
q + d 

d

)
zd 

= (1  − z)ηq+1
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where (3) follows from
(
q+d 

d

) − (
q+d−1 

d−1

)
=

(
q+d−1 

d

)
. Therefore, ηq+1 = z+ηq 

1−z = 
1 

(1−z)q+1 −1. Hence,HSA/⟨S(h) 
v ⟩(z) = 1+  n 

t

(
1 

(1−z)q − 1
)

. Finally, a general mono-
mial of degree d is a product of monomials for distinct blocks with the sum of 
their degrees equal to d. Relying on the same symbolic argument as in [FS09b], 
which gives the generating series of a Cartesian product, we have 

HSA/⟨S(h)⟩(z) =
(

1 +  n 
t

(
1 

(1 − z)q − 1
))t

∩∪
Lemma 3. For F associated with Modeling 3, the Hilbert series of the homoge-
neous ideal ⟨F (h)⟩ under Assumption 1 is 

HSA/⟨F(h)⟩(z) = (1  − z)qk · HSA/⟨S(h)⟩(z), 

truncated after the first ≤ 0 coefficient. 

Proof. Our proof is a straightforward modification and expansion of [BØ23]. Let 
R(h) := {r1, . . .  , rqk} be the set of homogenized parity check equations. Let I(0) 
denote the ideal ⟨S(h)⟩ and I(j), j ∈ [qk], denote the ideal ⟨S(h) , r1, . . .  , rj⟩. We  
will show Assumption 1 implies that for j ∈ [qk], d < dreg, there exists a short 
exact sequence 

0 → Ad−1/I(j − 1)d−1 
α→ Ad/I(j − 1)d 

β → Ad/I(j)d → 0. 

We prove this as follows. Let α : Ad−1/I(j − 1)d−1 → Ad/I(j − 1)d be the map 

α([f ]) := [rjf ]. 

Firstly, α is well-defined as if f1 ∈ [f ], then f1 = f + g for some g ∈ I(j − 1)d−1. 
Then, rjf1 = rjf + rjg. By definition, rjg ∈ I(j − 1)d since rj is homogenous 
and linear. Therefore, [rjf1] =  [rjf ]. Secondly, α is injective. Suppose α([f ]) = 
α([f ']), i.e., [rjf ] =  [rjf

']. This implies that rjf − rjf
' ∈ I(j − 1)d, which  in  

turn from Assumption 1 implies that f − f ' ∈ I(j − 1)d−1, i.e., [f ] =  [f ']. 
Let β : Ad/I(j − 1)d → Ad/I(j)d be the map defined as 

β([f ]) := [f ]. 

Again, β is well-defined as if f1 ∈ [f ], then f1 − f ∈ I(j − 1)d. Since  I(j − 1)d ⊆ 
I(j)d, f1 − f ∈ I(j)d and hence [f1] =  [f ]. Also, β is trivially surjective as [f ] is  
mapped to [f ]. 

Finally, we claim that ker(β) =  im(α). To this end, we prove two statements. 
First, im(α) ⊆ ker(β). This is because if [h] ∈ im(α), there exists an f such that 
[h] =  [rjf ]. Now, β([h]) = β([rjf ]) = [0] as rj ∈ I(j). Next, ker(β) ⊆ im(α). 
Suppose [h] ∈ ker(β). Then, β([h]) = [h] = [0], i.e., h ∈ I(j)d.  This implies that  
there exist g ∈ S(h) and f1, . . . , fj such that h = f1r1+. . .+fjrj+g. Let  g' denote
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the homogenous degree-d part of g and f '
1, . . . , f

'
j denote the homogenous degree-

(d−1) parts of f1, . . .  , fj . Then, h = f '
1r1+. . .+f '

jrj +g, i.e., h−f '
jrj ∈ I(j−1)d. 

Therefore, [h] =  [rjf
'
j ] and hence α([f '

j ]) = [h], i.e., [h] ∈ im(α). 
Therefore, 0 → Ad−1/I(j − 1)d−1 

α→ Ad/I(j − 1)d 
β → Ad/I(j)d → 0 is  

indeed a short exact sequence. By the Hilbert function property for short exact 
sequences (Sect. 3.6), we have 

HFA/I(j−1)(d − 1) − HFA/I(j−1)(d) +  HFA/I(j)(d) = 0. 

Let hd,j := HFA/I(j)(d) =  dim(Ad/I(j)d). Then, hd,j := hd,j−1 − hd−1,j−1. 
Let Gj be the generating series for hd,j, i.e., let Gj(z) =

∑∞ 
d=0 hd,jzd . Note that 

Gj = HSA/I(j). We have  

Gj(z) =  
∞∑

d=0 

hd,jzd 

= 
∞∑

d=0 

(hd,j−1 − hd−1,j−1)zd 

= 
∞∑

d=0 

hd,j−1zd − 
∞∑

d=1 

hd−1,j−1zd 

= 
∞∑

d=0 

hd,j−1zd − z · 
∞∑

d=0 

hd,j−1zd 

= (1  − z) · Gj−1(z). 

Therefore, we get HSA/I(qk)(z) = (1 − z)qk · HSA/⟨S(h)⟩(z). Note that by defini-
tion I(qk) = ⟨S(h) , r1, . . .  , rqk⟩ = ⟨F (h)⟩. Hence, the lemma follows. ∩∪

Hilbert Series for Modeling 4. We defer the presentation of Modeling 4 to 
[KPRR25] and note that it follows a similar methodology. 

6.3 Estimating Witness Degree 

As described earlier, following [BØ23], we will use the witness degree dwit of 
the input polynomial system to estimate the cost of the XL Wiedemann app-
roach. The systems F in Modeling 3 and Modeling 4 admit unique solutions for 
the range of parameters of interest. If (a1, . . . , an) is a unique solution of the 
polynomial system, it has the reduced Gröbner basis {x1 − a1, . . . ,  xn − an}. 3
If I := ⟨F⟩, we  have  LM(I≤1) =  LM(I) and  dim(I≤d) =  dim(A≤d) − 1. In par-
ticular, we can say that dwit is the smallest degree such that the rank of the 
Macaulay matrix is equal to the number of columns minus one.
3 In  the case of  Modeling  4, the field equations ensure that the ideal is radical, and 

the claim from Hilbert’s Nullstellensatz. In the case of Modeling 3, we assume that 
the system is sufficiently overdetermined to ensure this. 
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As in [BØ23], our Assumption 1 and [KPRR25]’s Assumption 2 associated 
with Modeling 4 imply that the relevant Macaulay matrix has maximal rank. 
Now, consider the Hilbert series from Theorem 4 and 5 (see [KPRR25]) prior to 
truncation. The coefficient in a term of degree d <  dreg is the number of columns 
that cannot be reduced in the Macaulay matrix of degree d. When  d ≥ dreg, 
the coefficient measures the number of “excess” rows after full reduction. We 
therefore estimate the witness degree dwit as 

dwit = min  

⎧ 
⎨ 

⎩ d ∈ N :
∑

j∈[d+1] 

[zj−1](HS(z)) ≤ 0 

⎫ 
⎬ 

⎭ 

where [zj−1](HS(z)) denotes the coefficient of zj−1 in the Hilbert series from 
Theorem 4 and 5 (see [KPRR25]) prior to truncation. We have experimentally 
verified these estimates as we discuss in Sect. 6.5. 

6.4 Hybrid Approach 

Following [BØ23], we also present a hybrid approach, which consists of repeat-
edly guessing a few noise-free positions of L (and therefore e) and invoking 
XL Wiedemann until successfully computing e. Parameterized by f ∈ [t] and  
μ ∈ [n 

t ], the hybrid approach guesses μ noise-free positions in the first f blocks 
of e and adds the equations ei,v,j = 0  for  those  f blocks v and μ positions j in 
every instance i to F . Let us determine a bound pf,μ on the probability that the 
guessed positions are all noise-free. There are at least n 

t −1 noise-free positions in 
each block. Therefore, the probability that the μ positions guessed in any given 
block are noise-free is at least ( 

n 
t 

−1 
µ ) 

(n 
t 
µ ) 

= 1  − μt 
n . This means that the probability 

that all the positions guessed are noise-free is at least pf,μ =
(
1 − μt 

n

)f 
. We then  

expect to repeat the XL Wiedemann O(p−1 
f,μ) times.  

We now need to derive the Hilbert series of this modified system. We discuss 
this hybrid approach for Modeling 3 and note that the case of Modeling 4 is 
similar. Consider the impact of our guessing on Lemma 2. For  a  fixed block  
v, the  number  of  j that are not fixed by our guess is now n 

t − μ and not n 
t 

in the first f blocks and still n 
t in the last t − f . To make Lemma 3 work, 

we augment Assumption 1 as in [BØ23] with Assumption 2. This ensures that 
fixing variables does not introduce unexpected cancelations at higher degrees 
among the parity-check equations in R. For any invertible matrix P, f ∈ [t], 
and μ ∈ [n 

t ], let P
−1 
f,μ denote the map that applies P−1 and then fixes the initial 

μ variables to 0 in the last f blocks of e. 

Assumption 2. Let R be the set of parity-check equations from Modeling 3. 
For every permutation matrix P which stabilizes each block of e, f ∈ [t], and  
μ ∈ [n 

t ], we assume  R(h) ◦ P−1 
f,μ satisfies Assumption 1 in the ring A ◦  P−1 

f,μ.
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Under Assumption 2, the Hilbert series for Modeling 3 now becomes 

HSA/⟨F(h)⟩,hyb,f,μ(z) =  (1  − z)qk ·
(

1 +
(n 

t 
− μ

) (
1 

(1 − z)q − 1
))f 

·
(

1 +  n 
t

(
1 

(1 − z)q − 1
))t−f 

, 

truncated after the first ≤ 0 coefficient. As before, the degree dwit is derived from 
the Hilbert series. We refer to [BØ23] for further details. 

6.5 Attack’s Evaluation 

We now evaluate our algebraic attack. We write scripts in the Magma Com-
putational Algebra System V2.28-13 [BCP97] to (1) experimentally verify our 
Hilbert series and (2) compute the time complexity of the attack. We plan to 
open-source our Magma scripts along with our PCG code (see Sect. 8). In all our 
experiments, we use the free online Magma calculator, and hence our computa-
tion is restricted to ≤ 2 minutes. Thus, we were able to run our scripts only on 
smaller parameters. 

We first experimentally verify our Hilbert series from Sect. 6.4 is correct. We 
compare the output with the output of Magma’s HilbertSeries(·). We  verify  
the hybrid version of our Hilbert series over F101 and for the same systems as 
[BØ23] in Table 7 (we can similarly verify over F2). The key difference is that we 
also add a parameter q ≥ 1 (q = 1  for  [BØ23]) to our system, which represents 
the number of SD instances. The largest q we test for is 4 as for larger q the 
HilbertSeries(·) function exceeds our computational resources. For F101, we  
confirm our Hilbert series is the same for all the tested systems (q, n, k, t, f, μ), 
and hence Assumption 1 holds: 

(4, 30, 15, 5, 0, 0), (4, 30, 20, 5, 0, 0), (3, 40, 20, 5, 0, 0), 

(4, 40, 30, 5, 0, 0), (3, 49, 30, 7, 0, 0), (3, 48, 30, 8, 0, 0), 

(2, 40, 25, 10, 0, 0), (1, 84, 50, 12, 3, 2), (3, 56, 30, 7, 2, 3), 

(2, 56, 30, 7, 6, 3), (3, 70, 40, 10, 5, 2), (4, 70, 40, 10, 5, 3) 

We next focus on the efficiency of the algebraic attack. We run 2 experiments. 
For both, we consider F2128 and F2 and the XL hybrid approach of Sect. 6.4. In  
each, we find the (f, μ) that results in the most efficient attack. We pick syndrome 
decoding parameters n, k = n/2 given our computational restrictions. 

In the first experiment (Fig. 2), we show how the witness degree dwit and 
the complexity of the XL Hybrid algorithm changes with increasing q. We  fix  
n = 216, k = 215, fix  t = 69 such that we get XL complexity of 128 with q = 1,  
and then vary  q = {1, 2, 24 , 27 , 210}. Our results show that in fact the complexity 
of the XL algorithm increases with larger q. This implies that the attack is not 
able to take advantage of the additional information and becomes slower because
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the system of equations gets larger with increasing q, and hence more expensive 
for XL to solve. Another interesting aspect is that for all runs the best f = t. 
I.e., we should guess noise-free positions in all blocks. It is not surprising that 
this holds in the constant rate SD setting, where the amount of noise t is smaller 
than in the non-constant rate LPN setting that [BØ23] emphasize. Overall, note 
that to get 128-bit security we require t = 69, which is substantially less than 
what is suggested by the linear test (Sect. 8). This implies that the algebraic 
attack may not be the ideal choice for our setting. 

F2128 (t = 69) F2 (t = 69) 
q dwit (f, μ) XL Hybrid dwit (f, μ) XL Hybrid 
1 2 (69,410) 128 2 (69,410) 128 
2 2 (69,410) 132 2 (69,410) 132 
24 2 (69,410) 144 2 (69,410) 144 
27 2 (69,410) 156 2 (69,410) 156 
210 2 (69,410) 168 2 (69,410) 168 

Fig. 2. This experiment shows how the witness degree dwit and the complexity of the 
XL algorithm changes with increasing q. We set our parameters n, k following standard 
choices in SD. I.e., we fix n = 216 , k = 215 , fix  t = 69 such that we get XL complexity 
of 128 with q = 1,  and  then  vary  q = {1, 2, 24 , 27 , 210}. We  consider  F2128 and F2, 
hybrid evaluation, and search all (f, μ) for the most efficient attack for each q. Note  
the results for F2128 and F2 are identical. 

The first experiment showed that we get the best attack by attacking a single 
SD instance. In the second experiment (see Fig. 3), we thus show the amount of 
noise t necessary to get 128 bits of security for different n, k, and  q fixed to 1. 
We then repeat the same runs for q = 210 to show how t changes. 

F2128 F2 

q = 1 q = 210 q = 1 q = 210 

n k dwit (f, μ) XL t (f, μ) XL t (f, μ) XL t (f, μ) XL t 
210 29 2 (101, 4) 128 107 (58,7) 127 58 (101, 4) 128 107 (58,7) 127 58 
212 211 2 (89, 20) 127 90 (46,37) 128 46 (89, 20) 127 90 (46,37) 128 46 
214 213 2 (74, 192) 128 74 (34,191) 128 34 (79, 91) 128 79 (34,191) 128 34 
216 215 2 (69, 410) 128 69 (24,1364) 128 24 (69, 410) 128 69 (24,1364) 128 24 

Fig. 3. This experiment picks standard SD’s n, k parameters used for PCGs (i.e. k = 
n/2) and computes how much noise t is necessary to get XL complexity of ≈ 128 for 
q = 1  and  q = 210 . We consider  F2128 and F2, XL hybrid evaluation, and search all 
(f, μ) for the most efficient attack for each parameter setting. 

7 Parameter Selection 

We use our findings in Sect. 5 on SSD security against linear tests to choose the 
appropriate amount of noise t for Fig. 4 and 5. To get 128 bits of security, we
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need t = 176 for OT generated with the SD assumption and t = 400 otherwise. 
Importantly, note from Theorem 3 that q does not impact the choice of t. We also  
note that the parameters from the linear test framework tend to be conservative. 
E.g., [LWYY22]’s work suggests t ≈ 60 gives 128 bits of security against known 
linear attacks, while our algebraic attacks in Sect. 6.5 suggest t ≈ 60 depending 
on n. Moreover, the best attack strategy is to simply attack a single instance. 

The main difference between SD and SSD parameters arises in small fields, 
e.g. F2. In this case, since our noise is sampled uniformly instead of set to 1, one 
must increase the noise to compensate. This difference vanishes over large fields, 
and fixed parameters for SD and SSD appear to give the same security level. 

This suggests that one can instantiate SSD using the same parameters as 
SD for large fields, or increase the noise by the statistical security parameter for 
small fields so that each instance is expected to have at least as many non-zeros 
as in SD. However, for the time being, we opt for being conservative and choosing 
parameters based on the linear test framework. 

8 Experimental Evaluation 

Implementation & Setting. We present a detailed description of how to adapt 
existing PCG protocols in [KPRR25]. The crux for degree 1 PCG protocols is 
(1) generating a sharing of Δe and (2) compressing it by the generator matrix 
G. SSD optimizes the generation of [[Δe]] across q PCG instances. Thus, we 
implement our SSD-based [[Δe]] generation. Our implementation extends the 
libOTe framework [RR]. We use libOTe’s implementation of OT from [Roy22]’s 
SoftSpokenOT and VOLE from [RRT23]’s work on expand-convolute codes for 
the base correlations (OT, subfield VOLE for F2, and  VOLE  for  F2128). 

We conduct our experiments on an HP Victus machine running Windows 11, 
equipped with a 12th Gen Intel(R) Core(TM) i7-12650H CPU at 2.30GHz and 
15.6GB of usable RAM. The parties execute sequentially on the same thread and 
on the same laptop. The wall-clock time reflects the combined runtime of both 
parties. We also report the total communication summed across both parties. 
Each data point is sampled over 10 runs, and we present their arithmetic mean. 

Communication. We now express our communication costs analytically. Both 
protocols require the same constant number of rounds. The exact number 
depends on the instantiation but can be as small as 2. 

We denote the depth of the GGM tree d = [log2(n/t)]. For  OT  with  SSD, 
we generate dt base OTs for the GGM tree, send 256dt additional bits for the 
GGM tree, and generate subfield VOLE of size qt. As we are working over F2, 
we implement the subfield VOLE via qt base OTs. We also communicate 128tq 
bits during the expansion to get [[Δe]]. In total, we need (d + q)t base OTs 
and 256dt + 128qt bits. In contrast, OT with SD requires qdt base OTs and 
256qt(d + 1) additional bits, but with a mildly smaller t. For  VOLE  with  SSD, 
we also generate dt base OTs for the GGM tree, send 256dt additional bits for 
the GGM tree, and communicate 128tq bits during the expansion. However, we



312 V. Kolesnikov et al.

Time (ns/o) Comm. (b/o) 
Protocol q Assumption #OTs #VOLE Setup Expand Mult. Setup Expand 

OT 
e ∈ Fn 

2 

Δ ∈ F2128 

24 SSD, t  = 400 4400 6400 0.09 11.36 52.63 0.18 0.46 
SD, t  = 176 33792 0 0.20 17.24 52.63 0.52 2.24 

28 SSD, t  = 400 4400 102400 0.04 11.88 52.75 0.10 0.21 
SD, t  = 176 540672 0 0.19 16.91 52.75 0.52 2.24 

212 SSD, t  = 400 4400 1638400 0.04 12.11 52.73 0.10 0.20 
SD, t  = 176 8650752 0 0.19 16.74 52.73 0.52 2.24 

VOLE 
e ∈ Fn 

2128 

Δ ∈ F2128 

24 SSD, t  = 400 4400 6400 0.53 11.55 52.63 1.18 0.46 
SD, t  = 400 70400 6400 0.89 17.63 54.58 2.19 4.70 

28 SSD, t  = 400 4400 102400 0.19 11.91 52.75 0.08 0.21 
SD, t  = 400 1126400 102400 0.59 17.29 54.61 1.15 4.70 

212 SSD, t  = 400 4400 1638400 0.26 12.20 52.73 0.01 0.20 
SD, t  = 400 18022400 1638400 0.66 17.15 54.65 1.08 4.70 

Fig. 4. This experiment compares the runtime and communication costs of generating 
OT and VOLE with SSD vs. SD. It  fixes  n = 219 , k = 218 and varies the number of 
batches q ∈ {24 , 28 , 212}. The cost is split into base correlations (OT, (subfield) VOLE), 
expanding the seeds to get a sharing of Δe, and multiplying the result by G. The  time  
(nanoseconds) and communication (bits) are expressed per output, i.e. divided by qk. 
t is selected such that we get 128 bits of security. 

Time (ns/o) Comm. (b/o) 
Protocol k Assumption #OTs #VOLE Setup Expand Mult. Setup Expand 

OT 
e ∈ Fn 

2 

Δ ∈ F2128 

214 SSD, t  = 400 2800 409600 0.58 11.90 33.48 1.58 3.17 
SD, t  = 176 1441792 0 2.04 32.17 33.48 5.50 24.84 

216 SSD, t  = 400 3600 102400 0.15 11.95 49.61 0.41 0.84 
SD, t  = 176 450560 0 0.64 20.59 49.61 1.72 7.58 

218 SSD, t  = 400 4400 25600 0.05 11.80 52.80 0.12 0.26 
SD, t  = 176 135168 0 0.19 17.81 52.80 0.52 2.24 

VOLE 
e ∈ Fn 

2128 

Δ ∈ F2128 

214 SSD, t  = 400 2800 409600 3.22 11.93 33.48 0.32 3.17 
SD, t  = 400 2867200 409600 7.25 32.55 37.30 11.24 50.20 

216 SSD, t  = 400 3600 102400 0.79 11.88 49.61 0.31 0.84 
SD, t  = 400 921600 102400 2.07 21.30 52.05 3.81 15.67 

218 SSD, t  = 400 4400 25600 0.26 11.62 52.80 0.31 0.26 
SD, t  = 400 281600 25600 0.64 18.32 54.49 1.36 4.70 

Fig. 5. This experiment compares the runtime and communication costs of generating 
OT and VOLE with SSD vs. SD. It  fixes  qk = 224 , and  varies  q, k such that (q, k) ∈ 
{(210 , 214 ), (28 , 216 ), (26 , 218 )}. The cost is split into base correlations (OT, (subfield) 
VOLE), expanding the seeds to get a sharing of Δe, and multiplying the result by G. 
The time (nanoseconds per output) and communication (bits per output), i.e. total 
divided by qk. t is selected such that we get 128 bits of security. 

also consume qt base VOLE correlations, which cannot be implemented with 
base OTs as we are not working over F2. Thus, in total we need dt base OTs, qt 
VOLE correlations, and 256dt + 128qt bits. In contrast, VOLE with SD requires 
qdt base OTs, qt VOLE correlations, and 256qt(d + 1) bits of communication. 
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Experiments. We consider two experiments. The first (Fig. 4) fixes  a  batch  size  of  
n = 219 , k  = 218 and varies the number of batches q ∈ {24 , 28 , 212}. We  compare  
our new SSD-based OT and VOLE protocols to the traditional SD protocols. We 
report the number of base correlations required, i.e. OTs and (subfield) VOLE. 
We break down the time required to compute base correlations, expand the seeds 
to compute [[Δe]], and compress the error vector using expand-convolute codes 
[RRT23]. We report time as the number of nanoseconds per output element. 
We also report the communication overhead as bits per output element. The 
second experiment (Fig. 5) reports the same quantities but for varied batch size 
k ∈ {214 , 216 , 218} and a fixed qk = 224. 

Discussion. First, we discuss observations that apply to both experiments. Note 
that for OT from SD we need no base VOLEs as the noisy elements of e are 
always 1 (recall this is not the case for OT from SSD). For all other settings, we 
need qt base VOLEs. Furthermore, note that for SSD and a fixed k, n, the  number  
of base OTs stays the same for different q as all can be reused. Next, note that 
the setup for SSD is cheaper for OTs than for VOLEs as for OTs we generate 
the base VOLEs also with OTs. For VOLE, the multiplication by G is slightly 
more expensive for SD than for SSD as we cannot run the multiplication for SD 
over F2. Lastly, the parameter t differs for SD and SSD when generating OTs. 
We select t using our equations in Sect. 5 to get 128 bits of security assuming 
G has a relative pseudominimum distance of 0.2. We now discuss observations 
specific to each experiment. 

– Experiment 1. We reduce the total communication ≈ 4.3−9.4× for OT and 
≈ 4.2 − 28.6× for VOLE. To compute [[Δe]] (Setup+Expand in Fig. 4), we 
reduce runtime ≈ 1.4 − 1.5×. For the parameters in this experiment, multi-
plying [[Δe]] by G is the runtime bottleneck, and thus we reduce total runtime 
≈ 1.1× for both OT and VOLE. Our improvement can be significantly larger 
for different parameters (see Experiment 2). 

– Experiment 2. We reduce communication ≈ 6.4 − 7.5× for OT and ≈ 
10.7 − 17.6× for VOLE. To compute [[Δe]], we reduce runtime ≈ 1.5 − 2.7×. 
Notably, the runtime improvement increases for higher q and smaller k. This  
implies that for fixed qk, it is preferable to create more smaller instances (i.e. 
large q and small k) rather than fewer large ones. This is further exacerbated 
by the fact that for small instances, multiplying by G is also cheaper (33 
nanoseconds per output (ns/o) for k = 214 vs. 52 ns/o for k = 218). 
To generate 224 OTs, the fastest (q, k) configuration with respect to runtime 
results  in about  5 b/o  and a total  of 45 ns/o for  SSD and 68 ns/o for  SD 
resulting in 1.5× improvement in throughput. For VOLE, we similarly get 
≈ 1.5× throughput improvement. 
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