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Abstract. Motivated by work of Chan, Chan, and Liu, we obtain a new general theorem which
produces Ramanujan-Sato series for 1/π. We then use it to construct explicit examples related to
non-compact arithmetic triangle groups, as classified by Takeuchi. Some of our examples are new,
and some reproduce existing examples.

1. Introduction and Statement of Results

Ramanujan [21] gave a list of infinite series identities of the form

∞
∑

k=0

(12)k(
1
d)k(

d−1
d )k

k!3
(ak + 1)(λd)

k =
δ

π
,

for d = 2, 3, 4, 6, where λd are singular values that correspond to elliptic curves with complex
multiplication, a, δ are explicit algebraic numbers, and (a)k denotes the rising factorial (a)k =
a(a + 1) · · · (a + k − 1). In fact, a similar identity was given even earlier by Bauer [2]. Proofs
of these formulas were first given by J. Borwein and P. Borwein [3] and D. Chudnovsky and G.
Chudnovsky [12], and both approaches rely on the arithmetic of elliptic integrals of the first and
second kind, including the Legendre relation at singular values. Since the 1980’s series of this
type have been at the forefront of algorithms to compute decimal approximations of π. Although
Ramanujan indicated that there were general theories behind such series, this remains not fully
understood. Deriving new series for 1/πk and the unifying theories underlying such series is an
active research area (see [30], [7] for example).

In work of Chan, Chan, and Liu [6], motivated by Sato, the authors derive a general series for
1/π that admits existing series as special cases. They give a table of explicitly computed examples,
each relating a hauptmodul and hypergeometric function connected to an index 2 subgroup pair of
triangle groups.

Here, we use the method of Chan, Chan, and Liu [6] to obtain a new general theorem which
produces series formulas for 1/π and as an application construct explicit Ramanujan-Sato type
formulas for 1/π related to other non-compact arithmetic triangle groups as classified by Takeuchi
[25, 26]. Some of our examples are new, and some reproduce existing examples.

Throughout the paper we denote the upper half plane by h = {τ = x + iy ∈ C : y > 0}. Our
main theorem is the following.
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Theorem 1.1. Let Z(τ), X(τ), U(τ) be meromorphic on h such that 1
2πi

d
dτX(τ) = U(τ)X(τ)Z(τ)

and when τ ∈ D, a domain of h, Z(τ) = X(τ)ε0(1 −X(τ))ε1
∞
∑

j=0
AjX(τ)j for ε0, ε1 ∈ R, Aj ∈ C.

Further assume there exist α, β ∈ C, N, k ∈ N, and elements γ =
(

a b
c −a

)

, δ =
(

1 a
c
(1−N)

0 1

)

∈ SL2(R)

such that for any τ ∈ h,
(

Z|kγ
)

(τ) = αZ(τ),
(

Z|kδ
)

(τ) = βZ (τ) .

Set MN (τ) := Z(τ)/Z(Nτ), and let τ0 =
a
c +

i
c
√
N
. Then it follows that if τ0 ∈ D,

ck
√
N

2π
= U(τ0)X(τ0)

ε0(1−X(τ0))
ε1
∑

jg0

(2j + aN )AjX(τ0)
j ,

where

aN = 2

(

ε0 + ε1
X(τ0)

X(τ0)− 1

)

− αik

βNk/2
X(τ0)

(

dMN

dX

)

∣

∣

∣X=X(τ0).

Alternatively if γτ0 ∈ D,

ck
√
N

2π
= X(γτ0)

ε0(1−X(γτ0))
ε1
∑

jg0

(b′N j + a′N )AjX(γτ0)
j ,

where

b′N = 2NU(γτ0),

a′N = 2NU(γτ0)

(

ε0 + ε1
X(γτ0)

X(γτ0)− 1

)

+
1

β
U(τ0)X(τ0)

(

dMN

dX

)

∣

∣

∣X=X(τ0).

The rest of the paper is organized as follows. In Section 2 we provide some relevant background
material and give a few lemmas which will be useful for proving Theorem 1.1 and for our appli-
cations. In Section 3, we prove Theorem 1.1. In Sections 4 and 5 we give several applications
by constructing explicit examples of Ramanujan-Sato series for 1/π related to certain arithmetic
triangle groups. The groups we use to construct examples are among the arithmetic triangle groups
commensurable with PSL2(Z) ∼= (2, 3,∞) coming from Takeuchi’s class I (those of non-compact
type). These have the following subgroup diagram.

(2, 6,∞) (2, 3,∞) (2, 4,∞)

(6, 6,∞) (3,∞,∞) (3, 3,∞) (2,∞,∞) (4, 4,∞)

(∞,∞,∞)
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In particular, in Section 4 we construct examples of series for 1/π arising from modular forms for the
groups Γ0(2) ∼= (2,∞,∞), Γ0(3) ∼= (3,∞,∞), and Γ0(4) ∼= (∞,∞,∞). In Section 5 we construct
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examples arising from modular forms for the groups PSL2(Z) ∼= (2, 3,∞), Γ0(2)
+ ∼= (2, 4,∞), and

Γ0(3)
+ ∼= (2, 6,∞).

2. Preliminaries

Suppose Γ is a discrete subgroup of SL2(R) having genus zero that is commensurable with a
subgroup Γ(O) of SL2(R) arising from a norm 1 group of a quaternion order O. The group Γ
acts on the upper half plane h and P1(R) by linear fractional transformations γ · τ = aτ+b

cτ+d , where

γ =
(

a b
c d

)

∈ Γ. A classical result from the theory of compact Riemann surfaces says that when Γ has
genus zero there exist finitely many elliptic or parabolic elements r1, . . . , rk that generate Γ/{±1}
with the relations r1 . . . rk = 1, reii = 1. We call (0; e1, . . . , ek) the signature of Γ/{±1}. Work of
Yang [28] has shown that the modular forms on Γ can be expressed in terms of a hauptmodul t of
Γ and solutions of the Schwarzian differential equation

2Q(t)t′(τ)2 + {t, τ} = 0,

where

{t, τ} =
t′′′(τ)
t′(τ)

− 3

2

(

t′′(τ)
t′(τ)

)2

is the Schwarzian derivative. If Γ has signature (0; e1, e2, e3), then this differential equation is
hypergeometric and one can describe the modular forms on Γ using hypergeometric functions.

Takeuchi [25,26] has classified arithmetic triangle groups, including their quaternion orders and
inclusion relations between them.

2.1. Arithmetic triangle groups and a theorem of Yang. Arithmetic triangle groups are
certain discrete subgroups of PSL2(R). Consider integers e1, e2, e3 > 1, possibly ∞, such that
1
e1

+ 1
e2

+ 1
e3

< 1. Then there exists a triangle S in h with internal angles π
e1
, π
e2

and π
e3
, where

π
∞ := 0. The group of symmetries of the tiling of h by triangles congruent to S is called a triangle
group, and can be presented in terms of generators

(e1, e2, e3) = ïr1, r2, r3 | re11 = re22 = re33 = r1r2r3 = 1ð,
where if one of ei = ∞ for i = 1, 2, 3, the relation reii = 1 is trivial. Takeuchi [25, 26] found 85
triples, up to permutation, where the corresponding group (e1, e2, e3) f PSL2(R) is arithmetic. In
this context, we define

Γ0(N) :=

{

A =

(

a b
c d

)

∈ SL2(Z) : A ≡
(

∗ ∗
0 ∗

)

(modN)

}

/{±1}.

For example, (2,∞,∞) ∼= Γ0(2) and (∞,∞,∞) ∼= Γ0(4). We direct the reader to [25, 26] for more
background on arithmetic triangle groups.

Throughout, we call an elliptic point of order ∞ a cusp. The following theorem of Yang allows
us to write modular forms on T in terms of 2F1 hypergeometric functions evaluated at specific
Hauptmoduln X(τ).

Theorem 2.1 (Yang [28, Thm. 9]). Assume that Γ has signature (0; e1, e2, e3). Let X(τ) be the
Hauptmodul of Γ with values 0, 1, and ∞ at the elliptic points of order e1, e2, and e3 (possibly ∞),
respectively. Let k g 2 be an even integer. Then a basis for the space of modular forms of weight
k on Γ is given by

X{k(1−1/e1)/2}(1−X){k(1−1/e2)/2}Xj



 2F1

[

a b

c
; X

]

+ CX1/e1
2F1

[

a′ b′

c′
; X

]





k

,
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j = 0, . . . ,D − 1, for some constant C, where for a rational number x, we let {x} denote the
fractional part of x,

a =
1

2

(

1− 1

e1
− 1

e2
− 1

e3

)

, b = a+
1

e3
, c = 1− 1

e1
,

a′ = a+
1

e1
, b′ = b+

1

e1
, c′ = c+

2

e1
,

and

D = 1− k + +k(1− 1/e1)/2,+ +k(1− 1/e2)/2,+ +k(1− 1/e3)/2,

is the dimension of the space of weight-k modular forms for Γ.

In Table 1 we catalog the relevant elliptic point data needed to use Theorem 2.1 for the groups
Γ we consider in Sections 4 and 5. In Table 1, the “Stabilizing elements” are the generators of the
isotropy subgroups of the group Γ (the stabilizer in the group Γ) that fix the corresponding elliptic
points under the group action of Γ on h ∪ P1(R). The “Orders” are the orders of the isotropy
subgroups. For example, for the group Γ0(2), there is one in-equivalent elliptic point represented
by 1+i

2 and two in-equivalent cusps, represented by 0 and i∞. The elliptic point 1+i
2 is fixed by

all elements of the subgroup ï
(

1 −1
2 −1

)

ð, the cusp 0 is fixed by all elements of ï
(

−1 0
2 −1

)

ð, and i∞ is

fixed by all elements of ï
(

1 1
0 1

)

ð.

Table 1. Elliptic point data

Group Γ Elliptic points Stabilizing elements Orders

Γ0(2) ∼= (2,∞,∞) 1+i
2 , 0, i∞

(

1 −1
2 −1

)

,
(

−1 0
2 −1

)

,
(

1 1
0 1

)

2, ∞, ∞

Γ0(3) ∼= (3,∞,∞) 3+i
√
3

6 , 0, i∞
(

−1 1
−3 2

)

,
(

−1 0
3 −1

)

,
(

1 1
0 1

)

3, ∞, ∞

Γ0(4) ∼= (∞,∞,∞) 0, 1
2 , i∞

(

1 0
4 1

)

,
(

1 −1
4 −3

)

,
(

1 1
0 1

)

∞, ∞, ∞

PSL2(Z) ∼= (2, 3,∞) i, −1+i
√
3

2 , i∞
(

0 −1
1 0

)

,
(

0 −1
1 1

)

,
(

1 1
0 1

)

2, 3, ∞

Γ0(2)
+ ∼= (2, 4,∞) i√

2
, 1+i

2 , i∞ 1√
2

(

0 −1
2 0

)

,
√
2
(

0 − 1

2

1 −1

)

,
(

1 1
0 1

)

2, 4, ∞

Γ0(3)
+ ∼= (2, 6,∞) i√

3
, 3+i

√
3

6 , i∞ 1√
3

(

0 −1
3 0

)

,
√
3
(

0 − 1

3

1 −1

)

,
(

1 1
0 1

)

2, 6, ∞

Each of the groups Γ listed in Table 1 yield a modular curve of genus 0, and thus the function
field of this modular curve is generated by a single modular function for Γ, a Hauptmodul. By the
theory of Riemann surfaces [20, Prop. 1.21] any nonconstant modular function for Γ that has a
single simple pole is a Hauptmodul for Γ.

In order to apply Theorem 2.1 to our groups Γ, we need to choose a Hauptmodul which takes
the values 0, 1, and ∞ at the elliptic points of Γ. Then assign e1, e2, e3 to be the orders of the
elliptic points yielding the values 0, 1, ∞, respectively. We list this choice of Hauptmodul X(τ)
for each group Γ, along with the values of e1, e2, e3 in Table 2, where η(τ) is the Dedekind eta

function η(τ) := eπiτ/12
∏∞

n=1(1− e2πinτ ). That these are Hauptmoduln can be checked directly or
observed in [19] and [13].
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Table 2. Choice of Hauptmoduln

Group Γ Hauptmodul e1, e2, e3

Γ0(2) ∼= (2,∞,∞) t2(τ) = −64η(2τ)24/η(τ)24 ∞, 2, ∞

Γ0(3) ∼= (3,∞,∞) t3(τ) = −27η(3τ)12/η(τ)12 ∞, 3, ∞

Γ0(4) ∼= (∞,∞,∞) t∞(τ) = 16η(τ)8η(4τ)16/η(2τ)24 ∞, ∞, ∞

PSL2(Z) ∼= (2, 3,∞) t2,3(τ) = 1728/j(τ) ∞, 2, 3

Γ0(2)
+ ∼= (2, 4,∞) t2,4(τ) = 256η(τ)24η(2τ)24/(η(τ)24 + 64η(2τ)24)2 ∞, 2, 4

Γ0(3)
+ ∼= (2, 6,∞) t2,6(τ) = 108η(τ)12η(3τ)12/(η(τ)12 + 27η(3τ)12)2 ∞, 2, 6

We note the following relationship between the j-function and t2, as defined in Table 2, which
was observed by Maier [19]1

(1) j =
64(4t2 − 1)3

t2
.

We now use Theorem 2.1 and the Hauptmoduln in Table 2 to compute generators of spaces of
modular forms for our groups Γ. For each group, we choose the least weight k that yields nontrivial
modular forms. The generators obtained are listed in Table 3. To save space, we use the notation

F [a, b; c;x] := 2F1







a b

c
; x






.

Table 3. Hypergeometric Modular Form Generators

Group Γ Weight k Generator(s) of weight k modular forms for Γ

Γ0(2) ∼= (2,∞,∞) 2 (1− t2)
1

2F [14 ,
1
4 ; 1; t2]

2

Γ0(3) ∼= (3,∞,∞) 2 (1− t3)
2

3F [13 ,
1
3 ; 1; t3]

2

Γ0(4) ∼= (∞,∞,∞) 2 F [12 ,
1
2 ; 1; t∞]2, t∞F [12 ,

1
2 ; 1; t∞]2

PSL2(Z) ∼= (2, 3,∞) 4 F [ 112 ,
5
12 ; 1; t2,3]

4

Γ0(2)
+ ∼= (2, 4,∞) 4 F [18 ,

3
8 ; 1; t2,4]

4

Γ0(3)
+ ∼= (2, 6,∞) 4 F [16 ,

1
3 ; 1; t2,6]

4

2.2. Connection to known modular forms and their properties. In our examples, we will
use some known modular forms. For even k g 4, the Eisenstein series of weight k is a modular
form (of weight k) for PSL2(Z) defined [15] as

(2) Ek(τ) :=
1

2ζ(k)

∑

(m,n)∈Z2−(0,0)

1

(mτ + n)k
= 1− 2k

Bk

∑

ng1

σk−1(n)e
2πinτ ,

1The t2 in [19] is equal to a constant multiple of −26 from our t2
5



where ζ(s) is the Riemann zeta function, Bk is the kth Bernoulli number, and σk−1(n) is the
arithmetic function

σk−1(n) =
∑

d|n
dk−1.

The latter equality in (2) follows since Ek(τ) converges absolutely for k g 4.
When k = 2, we define

E2(τ) = 1− 24
∑

ng1

σ1(n)e
2πinτ .

For any positive number N ,

(3) E2,N := E2(τ)−NE2(Nτ)

is a modular form of weight 2 for Γ0(N) [15, Exercise 1.2.8].
The Jacobi θ-functions are defined as

θ2(τ) :=
∑

n∈Z
eπi(n+1/2)2τ , θ3(τ) :=

∑

n∈Z
eπin

2τ , θ4(τ) :=
∑

n∈Z
(−1)neπin

2τ .

They can be expressed as eta quotients via [5, p.29]

(4) θ2(τ) = 2
η(2τ)2

η(τ)
, θ3(τ) =

η(τ)5

η(τ/2)2η(2τ)2
, θ4(τ) =

η(τ/2)2

η(τ)
,

and satisfy the Jacobi identity [5, p.28]

(5) θ42 + θ44 = θ43.

Moreover, the modular λ-function is given by

(6) λ =

(

θ2
θ3

)4

, 1− λ =

(

θ4
θ3

)4

,

and satisfies the transformation formula [9, p.109]

(7) λ

(−1

τ

)

= 1− λ(τ).

The function λ(τ) is a Hauptmodul for the group Γ(2), which has cusps 0, 1, i∞ at which the
values of λ are 1, ∞, 0 respectively [9, Chapter VII, §7-8]. Moreover, the function λ(2τ) is a
Hauptmodul for Γ0(4), and one can check λ(2τ) equals the choice of Hauptmodul t∞ for Γ0(4)
given in Table 2. Furthermore, each θi(2τ) is a modular form of weight 1/2 for Γ0(4) [5, p.28].

We also note the following classical results,

(8) θ43(2τ) =
4E2(4τ)− E2(τ)

3
, θ43(2τ) + θ42(2τ) =

1

2

(

θ43(τ) + θ44(τ)
)

= −E2,2(τ),

(9) (θ3(2τ)θ3(6τ) + θ2(2τ)θ2(6τ))
2 =

1

2
E2,3(τ) = −(3η(3τ)3 + η(τ/3)3)2

η2(τ)
,

(10) 2F1







1
2

1
2

1
; λ(2τ)







2

= θ3(2τ)
4, (1− λ(τ)) 2F1







1
2

1
2

1
; λ(2τ)







2

= θ4(2τ)
4.

Identities such as those above can be checked using Sturm-type bound arguments, which we
employ throughout the article. A theorem of Choi and Kim [11] gives a Sturm-type bound for
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computationally determining when modular forms on genus 0 groups Γ0(N)+ are equal. Since
their bound is less than Sturm’s bound [23] for Γ0(N), we give special cases of these results as
follows.

Given a formal sum f =
∑

nk−∞ c(n)qn, define

ordi∞f := inf{n ∈ Z | c(n) ̸= 0}.

Theorem 2.2 (Sturm [23] and Choi, Kim [11]). Let N ∈ N such that Γ0(N)+ has genus 0. Suppose
f is a meromorphic modular form of weight k for Γ ∈ {Γ0(N),Γ0(N)+} having poles only at the
cusp i∞. If f has integer Fourier coefficients and

{

ordi∞f > k
12 [SL2(Z) : Γ0(N)] when Γ = Γ0(N),

ordi∞f > k
24 [SL2(Z) : Γ0(N)] when Γ = Γ0(N)+,

then f = 0.

2.3. Some useful results. The following formula due to Clausen [1] states that

(11) 2F1







a b

a+ b+ 1
2

; z







2

= 3F2







2a 2b a+ b

2a+ 2b a+ b+ 1
2

; z






.

We next give two useful lemmas. The first we use in the proof of Theorem 1.1.

Lemma 2.3. Suppose f(τ) is a meromorphic function on h. If there exists A =
(

a b
c d

)

∈ SL2(R),
k ∈ N, and β ∈ C such that for all τ ∈ h,

(f |kA)(τ) = βf(τ),

then for any τ ∈ h that is not a pole of f ,

1

β(cτ + d)2
df

dτ
(Aτ) = (cτ + d)k

df

dτ
(τ) + kc(cτ + d)k−1f(τ).

Proof. By hypothesis,

f(Aτ) = β(cτ + d)kf(τ).

The proof follows immediately from taking d
dτ of both sides of this equation. □

The next lemma is used in our construction of explicit examples in Section 5.

Lemma 2.4. Let Z(τ) be a modular form for Γ of even weight k. If γs =
1√
s

(

0 −1
s 0

)

∈ Γ for some

real s > 0, then for any real r > 0, we have

Z

(

i√
rs

)

= (−r)k/2Z

(

i

√

r

s

)

.

□

Proof. By the modularity of Z(τ), for any τ ∈ h,

Z(−1/sτ) = (
√
sτ)kZ(τ).

Setting τ = i
√

r
s , gives the desired result. □

Remark 2.5. We note that PSL2(Z) ∼= (2, 3,∞) contains γ1, Γ0(2)
+ ∼= (2, 4,∞) contains γ2, and

Γ0(3)
+ ∼= (2, 6,∞) contains γ3, with γs as described in Lemma 2.4.
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3. Proof of Theorem 1.1

For convenience we use the notation f ′(τ) := 1
2πi

df
dτ (τ) throughout this section.

Proof of Theorem 1.1. By hypothesis, we have for τ ∈ h that

(12) Z(γτ) = α(cτ − a)kZ(τ).

Thus by Lemma 2.3,

Z ′(γτ) = α(cτ − a)k+2Z ′(τ) +
αck

2πi
(cτ − a)k+1Z(τ).

Plugging in τ0 =
a
c +

i
c
√
N

yields

ck
√
N

2π
· Z(τ0) = Z ′(τ0) + α−1i−kN

k+2

2 Z ′(γτ0).

Dividing by Z(τ0) and using (12), we obtain

(13)
ck
√
N

2π
=

Z ′(τ0)
Z(τ0)

+N
Z ′(γτ0)
Z(γτ0)

.

On the other hand, changing the variable τ 7→ Nτ , we also have by hypothesis that

Z(δ ·Nτ) = βZ(Nτ),

so applying Lemma 2.3 with c = 0 yields that

Z ′ (δ ·Nτ) = βZ ′ (Nτ) .

Therefore, given MN (τ) = Z(τ)
Z(Nτ) , we obtain

(14)
M ′

N (τ)

MN (τ)
=

Z ′(τ)
Z(τ)

−N
Z ′(Nτ)

Z(Nτ)
=

Z ′(τ)
Z(τ)

−N
Z ′ (δ ·Nτ)

Z (δ ·Nτ)
.

Note that γ · τ0 = δ ·Nτ0 so from (12) we obtain

βZ(Nτ0) = Z(δ ·Nτ0) = Z(γ · τ0) = α
ik

Nk/2
Z(τ0),

and therefore MN (τ0) =
βNk/2

αik
. So (14) at τ0 becomes

(15)
αik

βNk/2
M ′

N (τ0) =
Z ′(τ0)
Z(τ0)

−N
Z ′(γτ0)
Z(γτ0)

.

Using (15) we can rewrite (13) as both

ck
√
N

2π
= 2

Z ′(τ0)
Z(τ0)

− αik

βNk/2
M ′

N (τ0),(16)

ck
√
N

2π
= 2N

Z ′(γτ0)
Z(γτ0)

+
αik

βNk/2
M ′

N (τ0).(17)

From our hypotheses, we have that X ′(τ) = U(τ)X(τ)Z(τ) for τ ∈ h and Z(τ) = X(τ)ε0(1 −
X(τ))ε1

∑

jg0AjX(τ)j for τ ∈ D. Using the fact that

X(τ)

X ′(τ)
· 1

2πi

d

dτ
X(τ)ε0(1−X(τ))ε1 = X(τ)ε0(1−X(τ))ε1

(

ε0 + ε1
X(τ)

X(τ)− 1

)

,

8



it follows that for τ ∈ D,

(18)
Z ′(τ)
Z(τ)

= U(τ)X(τ)ε0(1−X(τ))ε1
∑

jg0

(

j + ε0 + ε1
X(τ)

X(τ)− 1

)

AjX(τ)j .

On the other hand for τ ∈ D, MN (τ) can be expressed as a function of X(τ) and X(Nτ), so

(19)
1

2πi

dMN

dτ
(τ) =

dMN

dX
(τ) · U(τ)X(τ)Z(τ).

Thus for τ ∈ D,

(20)
1

2πi

dMN

dτ
(τ) = U(τ)X(τ)ε0+1(1−X(τ))ε1

dMN

dX
(τ)
∑

jg0

AjX(τ)j .

Hence when τ0 ∈ D we can rewrite (16) using (18) and (20) to obtain

ck
√
N

2π
= 2U(τ0)X(τ0)

ε0(1−X(τ0))
ε1
∑

jg0

(

j + ε0 + ε1
X(τ0)

X(τ0)− 1

)

AjX(τ0)
j

− αik

βNk/2
U(τ0)X(τ0)

ε0+1(1−X(τ0))
ε1

(

dMN

dX

)

|X=X(τ0)

∑

jg0

AjX(τ0)
j ,

which yields our first identity. Similarly when γτ0 ∈ D we rewrite (17) using (18) and (19) to
obtain

ck
√
N

2π
= 2NU(γτ0)X(γτ0)

ε0(1−X(γτ0))
ε1
∑

jg0

(

j + ε0 + ε1
X(γτ0)

X(γτ0)− 1

)

AjX(γτ0)
j

+
αik

βNk/2

(

dMN

dX

)

|X=X(τ0) ·U(τ0)X(τ0)Z(τ0).

Since by (12) we have Z(τ0) =
Nk/2

αik
Z(γτ0), this becomes

ck
√
N

2π
= 2NU(γτ0)X(γτ0)

ε0(1−X(γτ0))
ε1
∑

jg0

(

j + ε0 + ε1
X(γτ0)

X(γτ0)− 1

)

AjX(γτ0)
j

+
1

β
U(τ0)X(τ0)

(

dMN

dX

)

|X=X(τ0) X(γτ0)
ε0(1−X(γτ0))

ε1
∑

jg0

AjX(γτ0)
j ,

which yields our second identity. □

We conclude this section with a lemma that will be useful when we compute examples in the
following sections.

Lemma 3.1. Suppose X(τ), Z(τ), U(τ) satisfy the conditions in Theorem 1.1. Then, writing X :=
X(τ) and Y := X(Nτ) gives

MN = N
dX

dY
· Y
X

· U(Nτ)

U(τ)
.

Proof. Since MN is a function of X and Y ,

dY

dX
=

dY

dτ
· dτ

dX
= N

dX

dτ
(Nτ) · dτ

dX
= N

dX
dτ (Nτ)

dX
dτ

= N
Y U(Nτ)Z(Nτ)

XU(τ)Z(τ)
=

N

MN

Y

X

U(Nτ)

U(τ)
,

which gives the result. □
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4. Examples of Theorem 1.1 of first type

In this section we obtain six different Ramanujan-Sato series for 1/π as examples of Theorem
1.1. One is already available in the literature and the others are new according to our knowledge.

To construct the examples in this section we use the following corollary for modular forms on
certain groups where the cusp i∞ has width 1, which follows immediately from Theorem 1.1 with
h = 1 and β = 1.

Corollary 4.1. Let Γ be a discrete subgroup of SL2(R) commensurable with SL2(Z) such that
(

1 1
0 1

)

∈ Γ (i.e. the cusp i∞ of Γ has width 1), and let X(τ) be a Hauptmodul of Γ. Let Z(τ) be a

weight-k modular form for Γ such that 1
2πi

dX
dτ = U(τ)X(τ)Z(τ) and when τ ∈ D, a domain of h,

Z(τ) = X(τ)ε0(1−X(τ))ε1
∞
∑

j=0
AjX(τ)j for ε0, ε1 ∈ R, Aj ∈ C. Further assume there exist α ∈ C

and γ =
(

a b
c −a

)

∈ SL2(R) such that
(

Z|kγ
)

(τ) = αZ(τ).

Set MN (τ) := Z(τ)/Z(Nτ) for N ∈ N satisfying a
c (1 − N) ∈ Z, and let τ0 = a

c + i
c
√
N
. Then if

γτ0 =
a
c +

i
√
N
c ∈ D, we have

ck
√
N

2π
= X(γτ0)

ε0(1−X(γτ0))
ε1
∑

jg0

(bN j + aN )AjX(γτ0)
j ,

where

bN = 2NU(γτ0),

aN = 2NU(γτ0)

(

ε0 + ε1
X(γτ0)

X(γτ0)− 1

)

+ U(τ0)X(τ0)

(

dMN

dX

)

∣

∣

∣X=X(τ0).

Note that the arithmetic triangle groups (m,∞,∞) ∼= Γ0(m) for m ∈ {2, 3} and (∞,∞,∞) ∼=
Γ0(4) contain the element

(

1 1
0 1

)

. In this section we construct examples of Corollary 4.1 for these
groups. We choose the Hauptmodul tm for Γ0(m) with m ∈ {2, 3} and t∞ for Γ0(4) given in
Table 2. Furthermore, from Table 3 we have that the space of modular forms of weight 2 for Γ0(m)
for m = 2, 3, 4 is generated by Z2, Z3 and Z∞, respectively; these are given by

(21) Zm(τ) = (1− tm)1−
1

m 2F1







1
2 − 1

2m
1
2 − 1

2m

1
; tm(τ)







2

,

and

(22) Z∞(τ) = 2F1







1
2

1
2

1
; t∞(τ)







2

.

Write f ′ := 1
2πi

df
dτ . We next compute each Um for tm with m ∈ {2, 3} so that

(23) t′m = tmZmUm.

From Table 2, the Hauptmodul tm for m ∈ {2, 3} can be written as

(24) tm(τ) = −α
η (mτ)km

η(τ)km
,

10



where α = m
km
4 and km = 24

m−1 . Using the property η′/η = 1
24E2, we get that

t′m
tm

(τ) = km

(

m
η′(mτ)

η(mτ)
− η′(τ)

η(τ)

)

=

( −1

m− 1

)

E2,m.

Moreover, since E2,m is a modular form of weight 2 for Γ0(m) by (3), and Zm generates the space

of weight 2 modular forms for Γ0(m) as seen in Table 3, Theorem 2.2 gives Zm(τ) =
(

1
1−m

)

E2,m.

Therefore for m = 2, 3,

(25) t′m = tmZm, and Um = 1.

In order to apply Corollary 4.1 in these cases we need dMN
dX whereX(τ) = tm(τ) and Y (τ) = tm(Nτ).

Observe from Lemma 3.1 that when U = 1, we have

MN = N
dX

dY
· Y
X

.

Thus taking the derivative with respect to X yields

(26)
dMN

dX
= N







d
(

dX
dY

)

dX
· Y
X

+
1

X
− dX

dY
· Y

X2






,

which will be useful in subsequent subsections.
The computation of U and dMN

dX for the group Γ0(4) is given in §4.3 where we obtain an example
for this group.

4.1. Γ0(2) ∼= (2,∞,∞). As in Table 2 we choose the Hauptmodul X(τ) = t2(τ) = −64η(2τ)24

η(τ)24
,

and for the corresponding domain D we choose the intersection of {τ ∈ h : |X(τ)| < 1} and the
following fundamental domain FD of Γ0(2):

FD = {τ ∈ h : |Re(τ)| f 1/2, |τ − 1/2| > 1/2, |τ + 1/2| > 1/2}.
Recall that Z = Z2 from (21). It follows from (11) that

(27) Z(τ) = (1−X(τ))
1

2 2F1







1
4

1
4

1
; X(τ)







2

= (1−X(τ))
1

2 3F2







1
2

1
2

1
2

1 1
; X(τ)






.

Thus,

(28) Z(τ) = (1−X(τ))
1

2

∞
∑

j=0

(

1
2

)

j

(

1
2

)

j

(

1
2

)

j

(j!)3
Xj(τ).

For Examples 4.2 and 4.3 below, we use γ = w2 =
1√
2

(

0 −1
2 0

)

. To find the transformation property

of Z with respect to w2, we first note that Theorem 2.2 implies

Z(τ) =
1

2
(θ3(τ)

4 + θ4(τ)
4).

Also, using the transformation formula η(−1/τ) =
√
−iτη(τ) [15, p.20] and (4), we have

θ43

(−1

2τ

)

= −4τ2θ43(2τ),

θ44

(−1

2τ

)

= −4τ2 · 16η
8(4τ)

η4(2τ)
= −4τ2θ42(2τ).

11



Using the last two equalities in (8), we thus obtain the following transformation property

(29) (Z|w2)(τ) = −Z(τ), i.e., Z(−1/2τ) = −2τ2Z(τ).

We see that Z and X above satisfy the conditions in Corollary 4.1 with U = 1, γ = w2, k = 2,
ε0 = 0, ε1 =

1
2 , α = −1, and any N ∈ N.

For Examples 4.4 and 4.5 below, we consider γ =
(

1 −1
2 −1

)

. Since Z = Z2 is a weight 2 modular

form on Γ0(2), we have the following transformation property

(30) (Z|γ)(τ) = Z(τ), i.e., Z

(

τ − 1

2τ − 1

)

= (2τ − 1)2Z(τ).

We see that Z and X above satisfy conditions in Corollary 4.1 with U = 1, γ =
(

1 −1
2 −1

)

, k = 2,

ε0 = 0, ε1 =
1
2 , and α = 1. Note that, for this choice of γ, we need to choose N such that 1−N

2 ∈ Z.
We now proceed with examples for the group Γ0(2) ∼= (2,∞,∞).

Example 4.2. Let N = 3, γ = w2 above, and τ0 = i/
√
6. Using the values of η(i/

√
6), η(i

√
6),

η(i
√

2/3) and η(i
√

3/2) from Table 5 we get

X(i/
√
6) = −17− 12

√
2,

Y (i/
√
6) = X(i

√

3/2) = −17 + 12
√
2.

Using (26) and the polynomial relationship Φ3(X,Y ) = 0 between X(τ) = t2(τ) and Y (τ) = t2(γτ)
given in Lemma 6.2, we obtain

(

dM3

dX

)

∣

∣

∣X=X(i/
√
6) = 12− 17√

2
.

From Corollary 4.1 and (28) we then have

√
6

π
= (1−X(i

√

3/2))1/2
∑

jg0

(6j + a3)

(

1
2

)

j

(

1
2

)

j

(

1
2

)

j

(j!)3
X(i

√

3/2)j ,

where

a3 = 3











X

(

i
√

3
2

)

X

(

i
√

3
2

)

− 1











+X(i/
√
6)

(

dM3

dX

)

∣

∣

∣X=X(i/
√
6) =

3

2
− 1√

2
.

Finally we have

2

π
= (

√
2− 1)

∑

jg0

(

12j + 3−
√
2
)

(

1
2

)

j

(

1
2

)

j

(

1
2

)

j

(j!)3

(

12
√
2− 17

)j
.

Example 4.3. Let N = 5, γ = w2, and τ0 = i/
√
10. Using the values of j(i/

√
10) and j

(

i
√

5
2

)

from Table 4 and the relationship j = 64(4X−1)3

X from (1), we get the values

X(i/
√
10) = −161− 72

√
5,

X

(

i

√

5

2

)

= −161 + 72
√
5.

12



Using the polynomial relationship Φ5(X,Y ) = 0 between X(τ) = t2(τ) and Y (τ) = t2(γτ) from
Lemma 6.2, we obtain

dM5

dX
|X=X(i/

√
10) =

1440− 644
√
5

9
.

From Corollary 4.1 and (28) we then have

√
10

π
=



1−X

(

i

√

5

2

)





1/2
∑

jg0

(10j + a5)

(

1
2

)

j

(

1
2

)

j

(

1
2

)

j

(j!)3
X

(

i

√

5

2

)j

,

where

a5 = 5











X

(

i
√

5
2

)

X

(

i
√

5
2

)

− 1











+X(i/
√
10)

(

dM5

dX

)

∣

∣

∣X=X(i/
√
10) =

5

2
− 2

√
5

3
.

So, finally we have

2
√
5

π
= (

√
5− 2)

∑

jg0

(

60j + 15− 4
√
5
)

(

1
2

)

j

(

1
2

)

j

(

1
2

)

j

(j!)3

(

72
√
5− 161

)j
.

Example 4.4. Let N = 3, γ =
(

1 −1
2 −1

)

, and τ0 = 1+i
√
3

2 . Using the values η
(

−1+i
√
3

2

)

, η(i
√
3)

from Table 5, and the transformation formula η(γτ)24 = (cτ + d)12η(τ)24 [15, p. 20], we have

X(τ0) = X(γτ0) =
1

4
.

Using the polynomial relationship Φ3(X,Y ) = 0 between X(τ) = t2(τ) and Y (τ) = t2(γτ) from
Lemma 6.2 and (26) we obtain

(31)

(

dM3

dX

)

∣

∣

∣X=X(τ0) = 8.

Corollary 4.1 and (28) yield the series

2
√
3

π
= (1−X(γτ0))

1

2

∑

jg0

(6j + a3)

(

1
2

)

j

(

1
2

)

j

(

1
2

)

j

(j!)3
X(γτ0)

j ,

where

a3 = 3

(

X(γτ0)

X(γτ0)− 1

)

+X(τ0)

(

dM3

dX

)

∣

∣

∣X=X(τ0) = 1.

Hence, we obtain

4

π
=

∞
∑

j=0

(1 + 6j)

(

1
2

)

j

(

1
2

)

j

(

1
2

)

j

(j!)3
(1/4)j .

This series is one of the well-known Ramanujan series in [21] for 1/π, which also arises from Chan,
Chan, and Liu [6, (1.1)]).
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Example 4.5. Let N = 5, γ =
(

1 −1
2 −1

)

, and τ0 =
1+i

√
5

2 . Then, by using the values of j(τ0), j(γτ0)

from Table 4 and the relationship j = 64(4X−1)3

X from (1), we get

X(τ0) = X(γτ0) = 9− 4
√
5.

Next, using the polynomial relationship Φ5(X,Y ) = 0 between X(τ) = t2(τ) and Y (τ) = t2(γτ)
from Lemma 6.2, we obtain

(

dM5

dX

)

∣

∣

∣X=X(τ0) = 15 +
27
√
5

4
.

Then, from Corollary 4.1 and (28), the series is of the form

2
√
5

π
= (1−X(γτ0))

1

2

∑

jg0

(10j + a5)

(

1
2

)

j

(

1
2

)

j

(

1
2

)

j

(j!)3
X(γτ0)

j ,

where

a5 = 5

(

X(γτ0)

X(γτ0)− 1

)

+X(τ0)

(

dM5

dX

)

∣

∣

∣X=X(τ0) =
5−

√
5

2
.

So, we finally obtain

2
√
5

π
= (

√
5− 2)1/2

∑

jg0

(

20j + 5−
√
5
)

(

1
2

)

j

(

1
2

)

j

(

1
2

)

j

(j!)3
(9− 4

√
5)j .

4.2. Γ0(3) ∼= (3,∞,∞). As in Table 2 we choose the Hauptmodul

X(τ) = t3(τ) = −27
η(3τ)12

η(τ)12
,

and for the corresponding domain D we choose the intersection of {τ ∈ h : |X(τ)| < 1} and the
following fundamental domain FD of Γ0(3)

FD = {τ ∈ h : |Re(τ)| f 1/2, |τ − 1/3| > 1/3, |τ + 1/3| > 1/3}.

Recall Z = Z3 as given in (21). From the hypergeometric product formula [16, Theorem 2.3], we
get that

Z(τ) =

∞
∑

j=0

AjX(τ)j ,

where

(32) Aj =

(

1
3

)2

j

j!2

j
∑

k=0

(−j)2k

(

1
3

)2

k

k!2
(

2
3 − j

)2

k

.

Recalling (25), we see that Z and X above satisfy the conditions in Corollary 4.1 with U = 1,
k = 2, ε0 = 0, ε1 =

2
3 , and α = 1.
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Example 4.6. Consider N = 2, γ = w3 = 1√
3

(

0 −1
3 0

)

, and τ0 = i√
6
. Using the values η

(

i
√

3/2
)

,

η
(

i/
√
6
)

, η
(

i
√
6
)

and η
(

i
√

2/3
)

from Table 5, we have

t3

(

i√
6

)

= −3− 2
√
2,

t3

(

i

√

2

3

)

= −3 + 2
√
2.

Using the polynomial relationship Φ2(X,Y ) = 0 between X(τ) = t3(τ) and Y (τ) = t3(γτ) from
Lemma 6.3 we get

(

dM2

dX

)

∣

∣

∣X=X(τ0) =
4− 3

√
2

3
.

Then, from Corollary 4.1 and (28), we get the following series
√
6

π
= (1−X(γτ0))

2/3
∑

jg0

(4j + a2)AjX(γτ0)
j ,

where Aj is given in (32) and

a2 = 4

(

2

3

X(γτ0)

X(γτ0)− 1

)

+X(τ0)

(

dM2

dX

)

∣

∣

∣X=X(τ0) =
4−

√
2

3
.

Then, finally we obtain

3
√
6

π
= (4− 2

√
2)2/3

∑

jg0

(12j + 4−
√
2)Aj(2

√
2− 3)j ,

where Aj is given in (32).

4.3. Γ0(4) ∼= (∞,∞,∞). By Table 2, we choose the Hauptmodul

(33) X(τ) = t∞(τ) = 16η(τ)8η(4τ)16/η(2τ)24,

which can also be written λ(2τ), where λ(τ) is the modular lambda function introduced in (6). For
the corresponding fundamental domain, we use

{τ ∈ h : |Re(τ)| f 1, |τ − 1/4| > 1/4, |τ − 3/4| > 1/4}.
Then using (22) and (10), Z is a weight 2 modular form for Γ0(4) given by

Z(τ) = 2F1







1
2

1
2

1
; X(τ)







2

= θ3(2τ)
4.

Using the hypergeometric product formula [16, Theorem 2.3],

Z(τ) =

∞
∑

j=0

AjX(τ)j ,

where

(34) Aj =

(

1
2

)2

j

j!2

j
∑

k=0

(j)2k

(

1
2

)2

k

k!2
(

1
2 − j

)2

k

.
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As before, we write f ′ := 1
2πi

df
dτ . We next compute U so that

(35) X ′ = XZU.

Differentiating X(τ) = 16η(τ)8η(4τ)16/η(2τ)24 and using the classical fact that η′ = 1
24ηE2, we

compute that

X ′ = (1−X)XZ.

Here we needed to use the identity E2,2(τ) = −(θ2(2τ)
4 + θ3(2τ)

4) from (8). Thus

U = 1−X.

From Lemma 3.1, we obtain the following by differentiating MN with respect to X

dMN

dX
= N

Y

X

1− Y

1−X







d
(

dX
dY

)

dX
+

dX

dY

X
(

dY
dX

)

− Y

XY
+

dX

dY

(1−X)
(

− dY
dX

)

+ (1− Y )

(1− Y )(1−X)






.

We choose γ =
(

0 −1/2
2 0

)

. Using transformation properties of theta functions we can show for γ

that

Z(−1/4τ) = θ3(−1/2τ)4 = −4τ2 · θ3(2τ)4 = −4τ2Z(τ).

Thus Z and X above satisfy the conditions in Corollary 4.1 with U = 1−X, γ =
(

0 −1/2
2 0

)

, k = 2,

ε0 = 0, ε1 = 0, and α = −1.

Example 4.7. Let N = 2, γ =
(

0 −1/2
2 0

)

, τ0 = i/2
√
2. Using the value λ(

√
2i) = (

√
2 − 1)2 [3,

(4.6.10)], we obtain

X(i/
√
2) = 3− 2

√
2,

U(i/
√
2) = 2(

√
2− 1).

Moreover, the transformation property of λ (7) yields that

X(i/2
√
2) = λ(i/

√
2) = 1− (

√
2− 1)2 = 2(

√
2− 1),

U(i/2
√
2) = 3− 2

√
2.

Next, using the polynomial relationship Φ2(X,Y ) = 0 satisfied by X(τ) = t∞(τ) and Y (τ) =
t∞(γτ) from Lemma 6.4 we get

dM2

dX
|X=X(i/2

√
2)=

√
2 + 2.

Thus applying Corollary 4.1 yields that
√
2

π
=
∑

jg0

(4(
√
2− 1)j − 4 + 3

√
2)Aj(3− 2

√
2)j ,

where Aj is given in (34).

5. Examples of Theorem 1.1 of second type

In this section we obtain five additional Ramanujan-Sato series for 1/π as examples of Theorem
1.1. To construct the examples we use the following corollary for modular forms on certain groups
where the cusp i∞ has general width h, which follows immediately from Theorem 1.1 with γ = γs,
δ = I, α = 1, β = 1, and N ∈ N is arbitrary.
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Corollary 5.1. Let Γ be a discrete subgroup of SL2(R) commensurable with SL2(Z) such that
γs =

1√
s

(

0 −1
s 0

)

∈ Γ for some real s > 0, and let h be the width of the cusp i∞ of Γ. Let X(τ) be a

Hauptmodul of Γ and Z(τ) a weight-k modular form for Γ such that h
2πi

dX
dτ = U(τ)X(τ)Z(τ) and

when τ ∈ D, a domain of h, Z(τ) = X(τ)ε0(1 −X(τ))ε1
∞
∑

j=0
AjX(τ)j for ε0, ε1 ∈ R, Aj ∈ C. Set

MN (τ) := Z(τ)/Z(Nτ) for N ∈ N and let τ0 =
i√
sN

. Then if τ0 ∈ D,

kh
√
sN

2π
= U(i/

√
sN)X(i/

√
sN)ε0

(

1−X(i/
√
sN)

)ε1∑

jg0

(2j + aN )AjX
(

i/
√
sN
)j

,

where

aN = 2

(

ε0 + ε1
X(i/

√
sN)

X(i/
√
sN)− 1

)

− ik

Nk/2
X(i/

√
sN)

(

dMN

dX

)

∣

∣

∣X=X(i/
√
sN).

Alternatively if γτ0 ∈ D,

kh
√
sN

2π
= X(i

√
N/

√
s)ε0(1−X(i

√
N/

√
s))ε1

∑

jg0

(b′N j + a′N )AjX(i
√
N/

√
s)j ,

where

b′N = 2NU(i
√
N/

√
s),

a′N = 2NU(i
√
N/

√
s)

(

ε0 + ε1
X(i

√
N/

√
s)

X(i
√
N/

√
s)− 1

)

+ U(i/
√
sN)X(i/

√
sN)

(

dMN

dX

)

∣

∣

∣X=X(i/
√
sN).

From Remark 2.5, we know that the arithmetic triangle groups (2,m,∞) form ∈ {3, 4, 6} contain
the element γs for s = +m2 ,, respectively. In this section we construct examples of Corollary 5.1 for
these groups.

Fix m ∈ {3, 4, 6} and let Γm = (2,m,∞). Then the width of the cusp i∞ of Γm is h = 1, and
we have seen in Tables 2 and 3 that t2,m is a Hauptmodul for Γm and that the space of modular
forms of weight 4 for Γm is generated by Zm(τ). Using Clausen’s formula (11),

Zm(τ) := 2F1







1
4 − 1

2m
1
4 + 1

2m

1
; t2,m(τ)







4

= 3F2







1
2

1
2 − 1

m
1
2 + 1

m

1 1
; t2,m(τ)







2

.

Thus we see that

(36) Zm(τ) =
∞
∑

j=0

Am,jt2,m(τ)j ,

where by the hypergeometric product formula [16, Theorem 2.3], we have2

(37) Am,j =

(

1
2

)

j

(

1
2 − 1

m

)

j

(

1
2 + 1

m

)

j

j!3

j
∑

n=0

(−j)3n(
1
2)n(

1
2 − 1

m)n(
1
2 + 1

m)n

(12 − j)n(
1
2 + 1

m − j)n(
1
2 − 1

m − j)nn!3
.

Thus for each m ∈ {3, 4, 6}, Zm meets the conditions for Corollary 5.1 with ε0 = ε1 = 0.

2Note that the 6F5 series arising from the formula in [16] naturally truncates at j.
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We use Theorem 2.2 to recognize Zm in terms of common modular forms. In each case the weight
is k = 4, so it suffices to check the Fourier coefficients up to the q1 term. We obtain that

Z3(τ) = E4(τ),(38)

Z4(τ) = E2,2(τ)
2,(39)

Z6(τ) =
1

4
E2,3(τ)

2.(40)

Write f ′ := q df
dq = 1

2πi
df
dτ . We next compute each Um so that

(41) t′2,m = t2,mZmUm.

When m = 3, we have t2,3 = 1728/j. Thus,

t′2,3 =

(−j′

j

)

t2,3,

and using Theorem 2.2 with k = 6 it is easy to check that

−j′E4 = jE6,

so from (38) we obtain that

(42) U3(τ) =
E6(τ)

E4(τ)2
.

For m = 4, 6 we first observe that

t2,m =
4αfg

(f + αg)2
,

where f(τ) = η(τ)km , g(τ) = η(mτ/2)km , km = 48/(m − 2), and α = (m/2)12/(m−2). Using the
fact that η′ = 1

24ηE2, differentiating and simplifying yields

t′2,m =
4α[−fg(f ′ + αg′ + (f2g′ + αf ′g2)]

(f + αg)3

= t2,m
(f − αg)

(f + αg)

[

g′

g
− f ′

f

]

= t2,m
(f − αg)

(f + αg)

(−km
24

)

E2,m
2

= t2,mZm
(2−m)

2E2,m
2

(f − αg)

(f + αg)
.

Thus we have that

U4(τ) =
−1

E2,2(τ)
· (∆(τ)− 64∆(2τ))

(∆(τ) + 64∆(2τ))
,(43)

U6(τ) =
−2

E2,3(τ)
· (η(τ)

12 − 27η(3τ)12)

(η(τ)12 + 27η(3τ)12)
.(44)

Note that in each case we can see by Theorem 2.2 that

(45) U2
m(τ) =

1− t2,m(τ)

Zm(τ)
.

Moreover, we have that 1/U(τ) is a meromorphic modular form of weight 2 on SL2(Z) so

(46) Um(−1/sτ) = (
√
sτ)−2Um(τ).

18



For each m ∈ {3, 4, 6}, let X = t2,m, Y = X(Nτ), and U = Um. In order to compute examples via

Corollary 5.1 we need to know the derivative dMN
dX . By Lemma 3.1 we have that

(47) MN (τ) = N
dX

dY

Y

X
(τ)

U(Nτ)

U(τ)
,

so

(48) MN (τ)2 = N2

(

dX

dY

Y

X
(τ)

)2 U(Nτ)2

U(τ)2
.

From (45) we have

(49)
U(Nτ)2

U(τ)2
=

(

1− Y (τ)

Zm(Nτ)
· Zm(τ)

1−X(τ)

)

=
1− Y

1−X
MN (τ).

Therefore

MN (τ)2 = N2

(

dX

dY

Y

X

)2 1− Y

1−X
MN (τ),

and so

(50) MN = N2

(

dX

dY

Y

X

)2 1− Y

1−X
.

Differentiating with respect to X we get

(51)
dMN

dX
= 2N2

(

dX

dY

Y

X

)(

1− Y

1−X

)







d
(

dX
dY

)

dX

Y

X
+

dX

dY

X
(

dY
dX

)

− Y

X2






+

N2

(

dX

dY

Y

X

)2 (1−X)
(

− dY
dX

)

+ (1− Y )

(1−X)2
.

For each m ∈ {3, 4, 6} we construct specific examples of Corollary 1.4 for some choices of N .
For each example we need to compute the special values of X,Y , and Um, and find an explicit
polynomial relationship between X(τ) := t2,m(τ) and Y (τ) := X(Nτ) in order to compute the

special value of dMN
dX .

5.1. PSL2(Z) ∼= (2, 3,∞). For Examples 5.2 and 5.3 we consider m = 3, s = 1, and γ =
(

0 −1
1 0

)

.
As in Tables 2 and 3, we define

X(τ) := t2,3(τ) =
1728

j(τ)
,

and for the corresponding domain D we choose the standard fundamental domain

{τ ∈ h : |Re(τ)| f 1/2, |τ | > 1}.
Let

Z(τ) := Z3(τ) =

∞
∑

j=0

AjX
j(τ) = E4(τ),

where by (37),

(52) Aj =
(16)j(

5
6)j(

1
2)j

j!3
·

j
∑

n=0

(−j)n(
1
6)n(

5
6)n(

1
2)n

(56 − j)n(
1
6 − j)n(

1
2 − j)nn!3

.

Furthermore, define Y (τ) := X(Nτ) and U(τ) := U3(τ).
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Example 5.2. Let N = 2 and τ0 = i√
2
. We need to determine X(i/

√
2) and Y (i/

√
2) = X(i

√
2).

From the values of j(i/
√
2) and j(i

√
2) in Table 4 we have

X(i/
√
2) = Y (i/

√
2) =

27

125
.

Using the polynomial relationship Φ2(X,Y ) = 0 from Lemma 6.1 and (51) we find dM2

dX

∣

∣

∣X(τ0) = −500
63 .

Letting τ =
√
2i in (46) gives that

(53) U(i
√
2) =

1

2
U(i/

√
2),

Using (45), we can determine U(i
√
2) using the value ofX(i

√
2) from above and Z3(i

√
2) = E4(i

√
2)

from Table 6 to determine that

U(
√
2i) = π3 2

5 · 7
52

Γ

(

1

8

)−2

Γ

(

3

8

)−2

,

and thus from (46)

U(i/
√
2) = −π3 2

4 · 7
52

Γ

(

1

8

)−2

Γ

(

3

8

)−2

.

Since τ0 =
i√
2
̸∈ D but γτ0 ∈ D, Corollary 5.1 implies that

2
√
2

π
=

∞
∑

j=0

(a2 + b2j)AjX
j(
√
2i),

where

aN = U(i/
√
2)X(i/

√
2)

dMN

dX

∣

∣

∣

∣

X=X(i/
√
2)

=
π3 · 3 · 26

52
Γ

(

1

8

)−2

Γ

(

3

8

)−2

,

bN = 4U(
√
2i) =

π3 · 27 · 7
52

Γ

(

1

8

)−2

Γ

(

3

8

)−2

.

This can be written as

52

π4
= 29/2Γ

(

1

8

)−2

Γ

(

3

8

)−2 ∞
∑

j=0

(3 + 14j)Aj

(

27

125

)j

,

where Aj is as in (52).

Example 5.3. Consider N = 3 so τ0 =
i√
3
. Using the values j(i/

√
3) and j(i

√
3) from Table 4 we

get

X(i/
√
3) = Y (i/

√
3) =

4

125
.

Using the polynomial relationship Φ3(X,Y ) = 0 from Lemma 6.1 and (51) we find dM3

dX

∣

∣

∣X=X(i/
√
3) = −1125

11 .

Furthermore, using (45), the value X(i
√
3) above, and the value of E4(i

√
3) from Table 6 we have

U(
√
3i) =

√

1− 4
125

E4(
√
3i)

=
214/3 · 11 · π4

3 · 52 · Γ
(

1
3

)6 .

Thus from (46) we obtain

U(i/
√
3) = −1

3
U(

√
3i) = − 214/3 · 11 · π4

32 · 52 · Γ
(

1
3

)6 .
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Since τ = i√
3
̸∈ D, and γτ =

√
3i ∈ D, Corollary 5.1 implies that

2
√
3

π
=

∞
∑

j=0

(a3 + b3j)AjX
j(e−(2/

√
3)π),

where

a3 =
220/3 · π4

52
Γ

(

1

3

)−6

,

b3 =
217/3 · 11 · π4

52
Γ

(

1

3

)−6

.

We can write this as

(54)

√
3 · 52
π5

= 214/3Γ

(

1

3

)−6 ∞
∑

j=0

(11j + 2)Aj

(

4

125

)j

,

where Aj is as in (52).

5.2. Γ+
0 (2)

∼= (2, 4,∞). For example 5.4 we consider the case where m = 4. Here we have that
s = 2 so τ = 1√

2

(

0 −1
2 0

)

.

As in Tables 2 and 3, we define

X(τ) := t2,4 =
256η(τ)24η(2τ)24

(η(τ)24 + 64η(2τ)12)2
,

and for the corresponding domain D we choose the intersection of {τ ∈ h : |X(τ)| < 1} and the
following fundamental domain FD of Γ+

0 (2)

FD = {τ ∈ h : |Re(τ)| f 1/2, |τ | > 1/
√
2}.

Let

Z(τ) := Z4(τ) =
∞
∑

j=0

AjX
j(τ) = E2,2(τ)

2,

where by (37),

(55) Aj =

(

1
2

)

j

(

1
2 − 1

4

)

j

(

1
2 + 1

4

)

j

j!3

j
∑

n=0

(−j)3n(
1
2)n(

1
4)n(

3
4)n

(12 − j)n(
3
4 − j)n(

1
4 − j)nn!3

.

Furthermore, define Y (τ) := X(Nτ) and U(τ) := U4(τ).

Example 5.4. Let N = 3 and τ0 = i/
√
6. Using the values of η(i/

√
6), η(i

√

2/3), η(i
√

3/2), and

η(i
√
6) from Table 5 we get that

X(i/
√
6) = Y (i/

√
6) =

1

9
.

Using the polynomial relationship Φ3(X,Y ) = 0 from Lemma 6.5 and (51) we find dM3

dX

∣

∣

∣X=X(i/
√
6) = −81

2 .

Recall from (45) that

U(τ) =

√

1−X(τ)

E2,2(τ)
.

21



Using the value of E2,2(i/
√
6) from Table 7 we determine that

(56) U

(

i√
6

)

= −32π3

3
√
3

(

Γ

(

1

24

)

Γ

(

5

24

)

Γ

(

7

24

)

Γ

(

11

24

)

)−1

,

and furthermore from (46),

(57) U

(

i

√

3

2

)

=
32π3

√
3

(

Γ

(

1

24

)

Γ

(

5

24

)

Γ

(

7

24

)

Γ

(

11

24

)

)−1

.

Thus Corollary 5.1 yields that

(58)
2
√
6

π
=

∞
∑

j=0

(b3j + a3)Aj

(

1

9

)j

,

where

a3 = 24
√
3π3

(

Γ

(

1

24

)

Γ

(

5

24

)

Γ

(

7

24

)

Γ

(

11

24

)

)−1

,

b3 = 26
√
3π3

(

Γ

(

1

24

)

Γ

(

5

24

)

Γ

(

7

24

)

Γ

(

11

24

)

)−1

,

and Aj is as in (55).
We can write this as

1

π4
= 25/2

(

Γ

(

1

24

)

Γ

(

5

24

)

Γ

(

7

24

)

Γ

(

11

24

)

)−1 ∞
∑

j=0

(4j + 1)Aj

(

1

9

)j

,

where Aj is as in (55).

5.3. Γ+
0 (3)

∼= (2, 6,∞). For Examples 5.5 and 5.6 we consider m = 6, s = 3, and γ = 1√
3

(

0 −1
3 0

)

.

As in Tables 2 and 3, we define

X(τ) := t2,6(τ) =
108η(τ)12η(3τ)12

(η(τ)12 + 27η(3τ)12)2
,

and for the corresponding domain D we choose the intersection of {τ ∈ h : |X(τ)| < 1} and the
following fundamental domain FD of Γ+

0 (3)

{τ ∈ h : |Re(τ)| f 1/2, |τ | > 1/
√
3}.

Let

Z(τ) := Z6(τ) =

∞
∑

j=0

AjX
j(τ) =

1

4
E2,3(τ)

2,

where

(59) Aj =

(

1
2

)

j

(

1
3

)

j

(

2
3

)

j

j!3

j
∑

n=0

(−j)n

(

1
2

)

n

(

1
3

)

n

(

2
3

)

n
(

1
2 − j

)

n

(

2
3 − j

)

n

(

1
3 − j

)

n
n!3

.

Furthermore, define Y (τ) := X(Nτ) and U(τ) := U6(τ). Recall from (44) that

U(τ) =
−2

E2,3(τ)
· (η(τ)

12 − 27η(3τ)12)

(η(τ)12 + 27η(3τ)12)
.
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Using (9) we obtain

(60) U(τ) =
(η(τ)12 − 27η(3τ)12)η(τ)2

(η(τ)12 + 27η(3τ)12)(3η(3τ)3 + η(τ/3)3)2
.

Example 5.5. Let N = 2 and τ = i√
6
. We use the values of η

(

i/
√
6
)

, η
(

i
√
6
)

, η
(

i
√

2/3
)

,

η
(

i
√

3/2
)

, η
(

i/3
√
6
)

from Table 5 to compute X(i/
√
6) = Y (i/

√
6) = 1

2 . Using the polynomial

relationship Φ2(X,Y ) = 0 from Lemma 6.6 and (51) we get that dM2

dX

∣

∣

∣X=X(i/
√
6) = −16

3 .

Using (60) and the necessary η−values from from Table 5 we obtain

U

(

i√
6

)

= −8
√
2π3

√
3

,

and from the modularity of U (46),

U

(

i

√

2

3

)

=
16 ·

√
2π3

√
3

.

Since 2τ = i
√

2
3 ∈ D, Corollary 5.1 implies that

(61)
2
√
6

π
=

∞
∑

j=0

(b2j + a2)Aj

(

1

2

)j

,

where

a2 = −8

3
U

(

i√
6

)

,

b2 = 4U

(

i

√

2

3

)

= −8U

(

i√
6

)

.

We can write this as

(62)
9

π4
= 25 ·

(

Γ

(

1

24

)

Γ

(

5

24

)

Γ

(

7

24

)

Γ

(

11

24

)

)−1 ∞
∑

j=0

(3j + 1)Aj

(

1

2

)j

,

where Aj is as in (59).

Example 5.6. Let N = 5 and τ0 = i/
√
15. Using the values of η(i/

√
15), η(i

√

3/5), η(i
√

5/3)

and η(i
√
10) from Table 5 we find that

X(i/
√
10) = Y (i/

√
10) =

4

125
.

Using the polynomial relationship Φ5(X,Y ) = 0 from Lemma 6.6 and (51) we get dM5

dX

∣

∣

∣X=X(i/
√
15) =

−12500
33 .

Furthermore, from (60) and (46) we use the values of η(i/
√
15), η(i

√

3/5), and η(i/3
√
15) from Ta-

ble 5 to obtain

U(i/
√
15) = − 352π3

25
√
15

(

Γ

(

1

15

)

Γ

(

2

15

)

Γ

(

4

15

)

Γ

(

8

15

)

)−1

,

and

U(i
√

5/3) = −5U(i/
√
10) =

352π3

5
√
15

(

Γ

(

1

15

)

Γ

(

2

15

)

Γ

(

4

15

)

Γ

(

8

15

)

)−1

.
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By Corollary 5.1 we have that

2
√
15

π
=

∞
∑

j=0

(b5j + a5)Aj

(

4

125

)j

,

where

b5 = 10U(i
√

5/3) =
10 · 352π3

5
√
15

(

Γ

(

1

15

)

Γ

(

2

15

)

Γ

(

4

15

)

Γ

(

8

15

)

)−1

,

a5 =
400

33
· 10 · 352π

3

5
√
15

(

Γ

(

1

15

)

Γ

(

2

15

)

Γ

(

4

15

)

Γ

(

8

15

)

)−1

.

We can write this as

32 · 5
π4

= 25

(

Γ

(

1

15

)

Γ

(

2

15

)

Γ

(

4

15

)

Γ

(

8

15

)

)−1

·
∞
∑

j=0

(33j + 8)Aj

(

4

125

)j

,

where Aj is as in (59).

6. Appendix – Modular Polynomials

Throughout, let Γ be a discrete subgroup of SL2(R) commensurable with SL2(Z). Further assume
Γ is of genus zero and contains a principal congruence subgroup Γ(N). Let t be a Hauptmodul
of Γ and N be the smallest positive integer such that Γ contains Γ(N). For a positive integer
m coprime to N , the modular polynomial of level m is defined to be the polynomial Φm(x, y) of
minimal degree (up to scalar) such that for α ∈ GL2(Q) with detα = m,

Φm(x, t(τ)) =
∏

γ∈Γ\ΓαΓ
(x− t(γτ)).

Below we state as lemmas each of the modular polynomials that we use in this article. In addition
to using the Fourier expansion of t to find modular polynomials computationally, we prove some of
the lemmas to illustrate how we can obtain modular polynomials using known modular polynomials
computed using the method of Bröker, Lauter, and Sutherland [4] and the covering maps between
modular curves.

6.1. Modular polynomials for t2,3, t2, t3 and t∞. We first recall results for groups which are
subgroups of PSL2(Z).

Lemma 6.1. For t2,3(τ) = 1728/j(τ), the level-2 and level-3 modular polynomials are, respectively,

Φ2(X,Y ) =1728(X3 + Y 3)− 162000(X3Y +XY 3) + 2571264(X2Y +XY 2)− 2985984XY

+ 5062500(X3Y 2 +X2Y 3) + 40773375X2Y 2 − 52734375X3Y 3,

Φ3(X,Y ) =(1728)2(X4 + Y 4)− (1728)4XY + (1728)3(2232)(X2Y +XY 2)

− (1728)2(1069956)(X3Y +XY 3) + (1728)(36864000)(X4Y +XY 4)

+ (1728)2(2587918086)X2Y 2 + (1728)(8900222976000)(X2Y 3 +X3Y 2)

+ 452984832000000(X2Y 4 +X4Y 2)− 770845966336000000X3Y 3

+ 1073741824000000000(X4Y 3 +X3Y 4).
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Proof. Let x = j(τ) and y = j(2τ). From Sutherland [24] we have that x, y satisfy

(63) 0 = (x3 + y3)− 162000(x2 + y2) + 1488(x2y + xy2)− x2y2

+ 8748000000(x+ y) + 40773375xy − 157464000000000.

Since X(τ) = 1728/x, multiplying through by (1728)4/x3y3 gives us the first result.
Similarly, for x = j(τ) and y = j(3τ), from Sutherland [24] we have that x, y satisfy

0 = (x4 + y4)− x3y3 + 2232(x3y2 + x2y3)− 1069956(x3y + xy3)

+ 36864000(x3 + y3) + 2587918086x2y2

+ 8900222976000(x2y + xy2) + 452984832000000(x2 + y2)

− 770845966336000000xy + 1855425871872000000000(x+ y).

Multiplying through by (1728)6/x4y4 and simplifying, gives us the second result. □

Lemma 6.2. For t2(τ) = −64η(2τ)24

η(τ)24
, the level-3 and level-5 modular polynomials are, respectively,

Φ3(X,Y ) =X4 + Y 4 − 4096X3Y 3 − 900
(

X3Y +XY 3
)

+ 28422X2Y 2

+ 4608
(

X3Y 2 +X2Y 3 +X2Y +XY 2
)

− 4096XY,

Φ5(X,Y ) =X6 + Y 6 − 16777216(XY +X5Y 5) + 31457280(X2Y +XY 2 +X4Y 5 +X5Y 4)

− 17940480(X3Y +XY 3 +X3Y 5 +X5Y 3) + 3143680(X4Y +X2Y 5 +X5Y 2 +XY 4)

− 90630(X5Y +XY 5) + 3709829120(X2Y 2 +X4Y 4) + 746465295(X4Y 2 +X2Y 4)

+ 6259476480(X3Y 2 +X2Y 3 +X4Y 3 +X3Y 4)− 33983400980X3Y 3.

Proof. Recall from Sutherland [24] that the level-3 modular polynomial for the elliptic j-function
is

Φ3(x, y) =x4 + y4 − x3y3 + 2232(x3y2 + x2y3)− 1069956(x3y + xy3) + 2587918086x2y2

+ 36864000(x3 + y3) + 8900222976000(x2y + xy2) + 452984832000000(x2 + y2)

− 770845966336000000xy + 1855425871872000000000(x+ y).

Moreover the relation between j and t2 is j = 64(4t2−1)3

t2
. Hence, the functions s := t2(τ) and

t := t2(3τ) satisfy the equation

Φ3

(

64(4s− 1)3

s
,
64(4t− 1)3

t

)

= 0.

Together with the Fourier expansions of s and t, we obtain

−4096s3t3 +4608(s3t2 + s2t3) + s4 + t4 − 900(s3t+ st3) + 28422s2t2 +4608(s2t+ st2)− 4096st = 0,

which gives the modular polynomial of level-3 for t2. The proof for level-5 follows similarly. □

Lemma 6.3. For t3(τ) := −27η(3τ)12

η(τ)12
, the level-2 modular polynomial is

Φ2(X,Y ) =X3 + Y 3 + 27X2Y 2 − 24(X2Y +XY 2) + 27XY.

Proof. The proof follows similarly to that of Lemmas 6.1 and 6.2, using the relation

j = −27
(t3 − 1)(9t3 − 1)3

t3
.

□
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Lemma 6.4. For t∞(τ) := −16η(τ)8η(4τ)16/η(2τ)24, the functions t∞(τ) and t2(2τ) satisfy the
equation

0 =X2Y 2 − 2X2Y +X2 + 16XY − 16Y.

6.2. Modular polynomials for t2,4 and t2,6.

Lemma 6.5. For t2,4(τ) = 256η(τ)24η(2τ)24

(η(τ)24+64η(2τ)24)2
, the level-3 and level-5 modular polynomials are,

respectively,

Φ3(X,Y ) =X4 + Y 4 + 5308416X4Y 4 + 442368(X4Y 3 +X3Y 4) + 13824(X4Y 2 +X2Y 4)

+ 192(X4Y +XY 4)− 14015488X3Y 3 + 2058048(X3Y 2 +X2Y 3)

− 19332(X3Y +XY 3) + 3622662X2Y 2 + 79872(X2Y +XY 2)− 65536XY,

Φ5(X,Y ) =X6 + Y 6 + 451377585192960000(X6Y 4 +X4Y 6) + 761203159669407744X5Y 5

+ 69657034752000(X6Y 3 +X3Y 6)− 609930927695462400(X5Y 4 +X4Y 5)

+ 4031078400(X6Y 2 +X2Y 6)− 20244489582182400(X5Y 3 +X3Y 5)

+ 154441688220057600X4Y 4 + 103680(X6Y +XY 6) + 4666060857600(X5Y 2 +X2Y 5)

+ 36839200367577600(X4Y 3 +X3Y 4)− 65094150(X5Y +XY 5)

+ 98471158056975(X4Y 2 +X2Y 4)− 13453926179834900X3Y 3

+ 1256857600(X4Y +XY 4) + 173582058905600(X3Y 2 +X2Y 3)

− 5655756800(X3Y +XY 3) + 24370885427200X2Y 2

+ 8724152320(X2Y +XY 2)− 4294967296XY.

Proof. In this case the group we are considering is Γ0(2)
+2 := ïΓ0(2), ω2ð. However, we first

consider Γ0(6)
+2 := ïΓ0(6), ω2ð, which is an index-4 subgroup of Γ0(6)

+2. It is known that that

u =
(

η(6τ)η(3τ)
η(τ)η(2τ)

)4
is a Hauptmodul on Γ0(6)

+2 (see [8] for example), so X can be written as a

rational function of degree 4 in u. In particular, one can check that

X =
256u

(1 + 27u)4
.

Next, we observe that since ω3 normalizes Γ0(6)
+2, u(ω3τ) is also a hauptmodul and u(ω3τ) =

au+b
cu+d(τ) for some

(

a b
c d

)

∈ GL2(C). In particular, for ω3 = 1√
3

(

3 −2
6 −3

)

, we have ω3τ = 3τ−2
6τ−3 . Thus

using the transformation law for the η-function we can relate u(ω3τ) and u(τ), namely,

u(ω3τ) =
η4
(

63τ−2
6τ−3

)

η4
(

33τ−2
6τ−3

)

η4
(

3τ−2
6τ−3

)

η4
(

23τ−2
6τ−3

) =

η4
(

(

3 −2
2 −1

)

τ

)

η4
(

(

3 −4
1 −1

)

2τ

)

η4
(

(

1 −2
2 −3

)

3τ

)

η4
(

(

1 −4
1 −3

)

6τ

) =
1

81u(τ)
.

Hence,

Y (τ) := X(ω3τ) =
256u3

(1 + 3u)4
,

and the rational function determined by the relations X = 256u
(1+27u)4

and Y = 256u3

(1+3u)4
gives rise to

the desired level-3 polynomial for X.
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Next we obtain the polynomial for level-5. Consider the following Atkin-Lehner involutions for
Γ0(10),

ω2 =
1√
2

(

2 −1
10 −4

)

, ω5 =
1√
5

(

5 2
10 5

)

.

Similar to the previous case, we start with the relation between X and the given Hauptmoul

u =
(

η(10τ)η(5τ)
η(τ)η(2τ)

)2
for Γ0(10)

+2 := ïΓ0(10), ω2ð. One can check that

X =
256u

(1 + 25u)4(25u2 + 6u+ 1)
,

and

u(ω5τ) =
1

25

(

η(τ)η(2τ)

η(10τ)η(5τ)

)2

=
1

25

1

u(τ)
.

Hence,

Y (τ) := X(ω5τ) =
256u5

(u+ 1)4(25u2 + 6u+ 1)
,

from which we obtain the desired level-5 polynomial. □

Lemma 6.6. For t2,6(τ) = 108η(τ)12η(3τ)12

(η(τ)12+27η(3τ)12)2
, the level-2 and level-5 modular polynomials are,

respectively,

Φ2(X,Y ) =4X3Y 3 − 12(X3Y 2 +X2Y 3) + 12(X3Y +XY 3)− 381X2Y 2 − 4(X3 + Y 3)

− 336(X2Y +XY 2) + 432XY,

Φ5(X,Y ) =262144000000X6Y 6 + 19660800000X6Y 5 + 19660800000X5Y 6 + 614400000X6Y 4

− 2550877126656X5Y 5 + 614400000X4Y 6 + 10240000X6Y 3 + 2094980505600X5Y 4

+ 2094980505600X4Y 5 + 10240000X3Y 6 + 96000X6Y 2 − 128213414400X5Y 3

− 4716435974400X4Y 4 − 128213414400X3Y 5 + 96000X2Y 6 + 480X6Y

+ 1141065600X5Y 2 + 3568236045600X4Y 3 + 3568236045600X3Y 4 + 1141065600X2Y 5

+ 480XY 6 +X6 − 1221150X5Y + 75265374975X4Y 2 − 4489016056900X3Y 3

+ 75265374975X2Y 4 − 1221150XY 5 + Y 6 + 31422600X4Y + 309367560600X3Y 2

+ 309367560600X2Y 3 + 31422600XY 4 − 160088400X3Y + 101058937200X2Y 2

− 160088400XY 3 + 264539520X2Y + 264539520XY 2 − 136048896XY.

7. Appendix – Special Values

In this appendix, we list the special values used in this article in Tables 4, 6, 7, and 5. Most of
the values are obtained by either applying the Chowla-Selberg formula (see for example [10, Eq.
(1)]), or using known or obtainable values together with relations between modular functions. We
first give an example of each of these methods below.

Example 7.1. Let ∆(τ) := η(τ)24, the normalized weight-12 Hecke eigenform on PSL2(Z). Then

∆(
√
2i) =

1

233π18
Γ

(

1

8

)12

Γ

(

3

8

)12

.

Proof. Using the Chowla-Selberg formula [10, Eq. (1)], we compute ∆(
√
2i) in terms of Gamma

functions. In particular, Q(
√
−8) = Q(

√
−2) has class number 1, and the unique reduced binary
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quadratic form with discriminant −8 is x2 + 2y2. Moreover, ±1 are the only roots of unity in
Q(

√
−2). Thus the Chowla-Selberg formula gives that

∆(
√
2i) = (16π)−6

8
∏

m=1

Γ

(

m

8

)6(−8

m )
,

where in the powers of the Gamma values are Kronecker symbols. Evaluating the Kronecker symbols

we have that
(

a
m

)

= 0 when a,m are both even, and
(

−8
1

)

=
(

−8
3

)

= 1, while
(

−8
5

)

=
(

−8
7

)

= −1.

Thus we obtain

∆(
√
2i) =

1

224π6

Γ
(

1
8

)6
Γ
(

3
8

)6

Γ
(

5
8

)6
Γ
(

7
8

)6 .

By the Γ-reflection formula, Γ(1/8)Γ(7/8) = π
sin(π/8) and Γ(3/8)Γ(5/8) = π

sin(3π/8) . Thus we have

∆(
√
2i) =

(sin(π/8) sin(3π/8))6

224π18
Γ

(

1

8

)12

Γ

(

3

8

)12

.

Using half-angle trigonometric formulas we calculate that sin(π/8) = (1/2)
√

2−
√
2 and sin(3π/8) =

(1/2)
√

2 +
√
2 so that (sin(π/8) sin(3π/8))6 = 2−9, which gives the desired value. □

Example 7.2. Let X(τ) be the Hauptmodul −64η(2τ)24

η(τ)24
for Γ0(2). We have

X(i/
√
6) = −17− 12

√
2,

X(i
√
6) = 6

√
2 +

71

8
− 21

4

√
3− 27

8

√
6,

X(i
√

3/2) = −17 + 12
√
2.

Proof. We first establish the j-value

(64) j(i
√
6) = j(i/

√
6) = 1728(1399 + 988

√
2).

Since i
√
6 is a CM point and Q(i

√
6) a CM field of discriminant −24 and class number 2, Class

Field Theory gives that Q(j(i
√
6)) = Q(

√
2) and j(i

√
6) ∈ Z[

√
2]. Moreover, since the lattices

Z + i
√
6Z and 2Z + i

√
6Z are inequivalent as ideals of Z[i

√
6], the j-values j(i

√
6) and j(i

√
6/2)

are Galois conjugates, so there exist a, b ∈ Z such that j(i
√
6) = a+ b

√
2 and j(i

√
6/2) = a− b

√
2.

These are the j-invariants of elliptic curves with CM discriminant −24 over a quadratic field, and
the L-functions and Modular Forms Database [18] shows that the only j-values of such curves
are 1728(1399 + 988

√
2) and 1728(1399 − 988

√
2). As the j-values are finite at these points, the

Fourier expansion of j allows the use of numerical approximation to determine which value is which.
(See [14, 22] for example.)

The relation between j and X is

(65) j =
64(4X − 1)3

X
,

and solving the equation 64(4X−1)3

X = 1728(1399 + 988
√
2), yields the three solutions

6
√
2 +

71

8
− 21

4

√
3− 27

8

√
6, 6

√
2 +

71

8
+

21

4

√
3 +

27

8

√
6, −17− 12

√
2.

To nail down which of the three values above are X(i/
√
6) and X(i

√
6), one can plug i/

√
6 and

i
√
6 respectively into the Fourier expansion of X to approximate and recognize the desired values.
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To find the third value X(i
√

3/2) = X(i
√
6/2), we can use either of the following two methods.

First, recall from (63) that level-2 polynomial satisfied by x = j(τ) and y = j(2τ) is

Φ2(x, y) = x3 + y3 − x2y2 + 1488(xy2 + x2y)− 162000(x2 + y2)

+ 40773375xy + 8748000000(x+ y)− 157464000000000.

Thus using (64) to solve the equation

Φ2(x, j(i
√
6)) = 0,

yields the possible values of j(i
√
6/2), so we can use the Fourier expansion of j(τ) as above to

approximate j(i
√
6/2) and determine which is the correct value. Then using (65) we can similarly

deduce the desired value of X(i
√

3/2).
Alternatively, using the transformation law for the η-function we note that

X

(−1

2τ

)

= −64
η
(

−1
τ

)24

η
(

−1
2τ

)24 =
1

X(τ)
.

Therefore, letting τ = i/
√
6 gives that

(66) X(i
√

3/2) = 1/(−17− 12
√
2) = −17 + 12

√
2.

□

7.1. Tables of special values. In Tables 4 and 5 we indicate references for known or determined
values. We also indicate when a value is obtained directly or from previous values in the table using
one or more of the following methods labeled A-K below.

A : Use the transformation formula η(−1/τ) =
√
−iτη(τ) together with the value for η(−1/τ0)

to find the value of η(τ0).
B : Use the relationship between t2(τ) = −64/j2B(τ) and j(τ) (t2 is given in terms of η(τ)

and η(2τ)) along with the values of j(τ0), η(τ0) to find the value of η(2τ0).
C : Use the action of the Atkin-Lehner involution W3 on t2,6(τ) sending i

√
6 to i/3

√
6 along

with the value of η(i
√
6).

D : Use the modular polynomial φ3 = x4+36x3+270x2−xj+756x+729 relating x = −27t3(τ)
to j(τ) along with the values of j(τ0) and η(τ0) to find the value of η(3τ0).

E : Use the modular polynomial relating j(τ) and j(2τ).
F : Apply the action of the matrix S =

(

0 −1
1 0

)

.

G : Apply the action of the matrix T =
(

1 1
0 1

)

.
H : Use the modular polynomial relating j(τ) and j(5τ).
I : Use the transformation formula η(γτ)24 = (cτ + d)12η(τ)24 for γ ∈ SL2(Z).
J : Use the Chowla-Selberg formula, as in Example 7.1.
K : Use Class Field Theory and the L-functions and Modular Forms Database, as in (64).

In Table 5 we also use the following definitions to preserve space

a = (71639575 + 32038171
√
5 + 77

√

2838511914270 + 1269421119050
√
5),

b = (6 · 102/3(9125 + 4081
√
5)),

c = (−647 + 288
√
5 + 9

√

2(5145− 2300
√
5)).

To compute the special values in Tables 6 we utilize the relationship between E4, E6, and ∆ and
in 7 we utilize the relationship E2,2(τ) = −(θ3(2τ)

4 + θ2(2τ)
4).
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Table 4. j-values

τ j(τ) Method

i
√
2 8000 [29]

i/
√
2 8000 F

(1 + i
√
3)/2 0 [29]

i
√
3 54000 E, G

i/
√
3 54000 F

2i
√
3 40500(35010 + 20213

√
3) E

i
√
3/2 40500(35010− 20213

√
3) E

i
√
6 1728(1399 + 988

√
2) K

i/
√
6 1728(1399 + 988

√
2) F

i
√
6/2 1728(1399− 988

√
2) K

i
√

2/3 1728(1399− 988
√
2) E

(1 + i
√
6)/2 216(27014055899 + 19101822064

√
2− 15596572446

√
3− 11028442113

√
6) E, G

i
√
10 8640(24635 + 11016

√
5) K

i/
√
10 8640(24635 + 11016

√
5) F

i
√

5/2 8640(24635− 11016
√
5) K

i
√

2/5 8640(24635− 11016
√
5) F

i
√
5 320(1975 + 884

√
5) K

i/
√
5 320(1975 + 884

√
5) F

(1 + i
√
5)/2 320(1975− 884

√
5) K

(1 + i/
√
5)/2 320(1975− 884

√
5) E, G

(1 + i
√
15)/2 −135

2 (1415 + 637
√
5) [29]

i
√
15 135

2 (274207975 + 122629507
√
5) E, G

i/
√
15 135

2 (274207975 + 122629507
√
5) F
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Table 5. η-values

τ η(τ) Method

i
√
3 31/8

24/3π
Γ
(

1/3
)3/2

[17]

(−1 + i
√
3)/2 31/8

eπi/242π
Γ(1/3)3/2 [17]

i
√

3/2 1
25/431/4π3/4 (

√
2 + 1)1/12

(

Γ( 1
24)Γ(

5
24)Γ(

7
24)Γ(

11
24)
)1/4

(66), J

i
√

2/3 1
23/2π3/4 (

√
2 + 1)1/12

(

Γ( 1
24)Γ(

5
24)Γ(

7
24)Γ(

11
24)
)1/4

A

i
√
6 1

25/461/4π3/4 (
√
2− 1)1/12

(

Γ( 1
24)Γ(

5
24)Γ(

7
24)Γ(

11
24)
)1/4

(66), J

i/
√
6 1

25/4π3/4 (
√
2− 1)1/12

(

Γ( 1
24)Γ(

5
24)Γ(

7
24)Γ(

11
24)
)1/4

A

2i
√

2/3 ( 3
32

√
2− 71

512 + 21
256

√
3− 27

512

√
6)1/24η

(

i
√

2/3
)

E, B

i/3
√
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Table 6. Ek-values

τ E4(τ) E6(τ)
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Table 7. E2,k-values
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[4] Reinier Bröker, Kristin Lauter, and Andrew Sutherland. Modular polynomials via isogeny volcanoes. Mathemat-
ics of Computation, 81(278):1201–1231, 2012.

[5] Jan Hendrik Bruinier, Gerard van der Geer, Günter Harder, and Don Zagier. The 1-2-3 of modular forms.
Universitext. Springer-Verlag, Berlin, 2008. Lectures from the Summer School on Modular Forms and their
Applications held in Nordfjordeid, June 2004, Edited by Kristian Ranestad.

[6] Heng Huat Chan, Song Heng Chan, and Zhiguo Liu. Domb’s numbers and ramanujan–sato type series for 1/π.
Advances in Mathematics, 186(2):396–410, 2004.

[7] Heng Huat Chan and Shaun Cooper. Rational analogues of Ramanujan’s series for 1/π. Math. Proc. Cambridge
Philos. Soc., 153(2):361–383, 2012.
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