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ABSTRACT. Motivated by work of Chan, Chan, and Liu, we obtain a new general theorem which
produces Ramanujan-Sato series for 1/m. We then use it to construct explicit examples related to
non-compact arithmetic triangle groups, as classified by Takeuchi. Some of our examples are new,
and some reproduce existing examples.

1. INTRODUCTION AND STATEMENT OF RESULTS

Ramanujan [21] gave a list of infinite series identities of the form

i (%)k(é)k(dfil)k(ak L) = %

k13
k=0

for d = 2,3,4,6, where \; are singular values that correspond to elliptic curves with complex
multiplication, a,d are explicit algebraic numbers, and (a); denotes the rising factorial (a)r =
a(a+1)---(a+ k —1). In fact, a similar identity was given even earlier by Bauer [2]. Proofs
of these formulas were first given by J. Borwein and P. Borwein [3] and D. Chudnovsky and G.
Chudnovsky [12], and both approaches rely on the arithmetic of elliptic integrals of the first and
second kind, including the Legendre relation at singular values. Since the 1980’s series of this
type have been at the forefront of algorithms to compute decimal approximations of 7. Although
Ramanujan indicated that there were general theories behind such series, this remains not fully
understood. Deriving new series for 1/7* and the unifying theories underlying such series is an
active research area (see [30], [7] for example).

In work of Chan, Chan, and Liu [6], motivated by Sato, the authors derive a general series for
1/7 that admits existing series as special cases. They give a table of explicitly computed examples,
each relating a hauptmodul and hypergeometric function connected to an index 2 subgroup pair of
triangle groups.

Here, we use the method of Chan, Chan, and Liu [6] to obtain a new general theorem which
produces series formulas for 1/m and as an application construct explicit Ramanujan-Sato type
formulas for 1/7 related to other non-compact arithmetic triangle groups as classified by Takeuchi
[25,26]. Some of our examples are new, and some reproduce existing examples.

Throughout the paper we denote the upper half plane by h = {r = x +iy € C:y > 0}. Our
main theorem is the following.
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Theorem 1.1. Let Z(7), X(7), U(T) be meromorphic on b such that =L X (1) = U(7)X (1) Z(7)

and when 7 € D, a domain of b, Z(1) = X(7)%°(1 — X(7))= Z A;X (1) foreg,e1 € R, Aj € C.
=0

Further assume there exist o, 3 € C, N,k € N, and elementsy = (2 5,),6 = (1 7(11 N)) € SLy(R)

such that for any T € b,

Set Mn(7) = Z(1)/Z(NT), and let 9 = % +

ckv/'N
2T

C\}N' Then it follows that if 9 € D,

= U(70) X (10)°(1 = X (70))*" Y _(2j + an)A; X (1),
>0

B X (10) ik dMy
aN—2<€o+€1X(TO)_1> BNk,/QX( 70) ax ’X:X(To)'

where

Alternatively if yr9 € D,

ckv/N
2T

= X(y70)7 (1 = X ()7 Y (b + aly) A, X (7o),
j>0

where

N = 2NU(y7),

ay = 2NU(y7) <Eo + 81%) BU(TO)X( 70) <dc?§(N> ‘X:X(To).

The rest of the paper is organized as follows. In Section 2 we provide some relevant background
material and give a few lemmas which will be useful for proving Theorem 1.1 and for our appli-
cations. In Section 3, we prove Theorem 1.1. In Sections 4 and 5 we give several applications
by constructing explicit examples of Ramanujan-Sato series for 1/7 related to certain arithmetic
triangle groups. The groups we use to construct examples are among the arithmetic triangle groups
commensurable with PSLo(Z) = (2,3,00) coming from Takeuchi’s class I (those of non-compact
type). These have the following subgroup diagram.

(2,6, 00) (2,3,00) (2,4, 00)
(6,6, 00) (3, 00, 00) (3,3,00) (2, 00, 00) (4,4, 00)
2
(00, 00,00)

In particular, in Section 4 we construct examples of series for 1/7 arising from modular forms for the
groups I'g(2) = (2,00,00), ['9(3) = (3,00,0), and T'g(4) = (00, 00,00). In Section 5 we construct
2



examples arising from modular forms for the groups PSLy(Z) & (2,3, 00), ['g(2)* = (2,4, ), and
F0(3)4_ = (27 67 OO)

2. PRELIMINARIES

Suppose I' is a discrete subgroup of SLy(R) having genus zero that is commensurable with a
subgroup I'(O) of SLy(R) arising from a norm 1 group of a quaternion order @. The group T’
acts on the upper half plane b and P!(R) by linear fractional transformations v - 7 = EZIZ, where
v = (‘é Z) e I'. A classical result from the theory of compact Riemann surfaces says that when I has
genus zero there exist finitely many elliptic or parabolic elements r1, ..., 7 that generate I'/{+1}
with the relations r1...7, = 1, i = 1. We call (0;ey,...,ex) the signature of I'/{£1}. Work of
Yang [28] has shown that the modular forms on I" can be expressed in terms of a hauptmodul ¢ of
I" and solutions of the Schwarzian differential equation

2Q()t'(1)* + {t, 7} =0,

where

" " 2
=50 -3 (50
(r)  2\#(7)
is the Schwarzian derivative. If T' has signature (0;ep,es,e3), then this differential equation is
hypergeometric and one can describe the modular forms on I' using hypergeometric functions.
Takeuchi [25,26] has classified arithmetic triangle groups, including their quaternion orders and
inclusion relations between them.

2.1. Arithmetic triangle groups and a theorem of Yang. Arithmetic triangle groups are
certain discrete subgroups of PSLo(R). Consider integers e, ez, e3 > 1, possibly oo, such that
% + é + é < 1. Then there exists a triangle S in h with internal angles %, % and -, where
= = 0. The group of symmetries of the tiling of h by triangles congruent to S is called a triangle

group, and can be presented in terms of generators
e e (&
(e1,e2,e3) = (r1,ro,r3 |1yt = 1ry® =715’ =rirars = 1),

where if one of e; = oo for i = 1,2,3, the relation r{* = 1 is trivial. Takeuchi [25, 26] found 85
triples, up to permutation, where the corresponding group (e, ez, e3) < PSLa(R) is arithmetic. In
this context, we define

To(N) i= {A _ <Z Z) €SLy(Z): A= <; :) (modN)} J{+1}.

For example, (2, 00,00) = I'g(2) and (00, 00,00) = I'g(4). We direct the reader to [25,26] for more
background on arithmetic triangle groups.
Throughout, we call an elliptic point of order co a cusp. The following theorem of Yang allows

us to write modular forms on 7' in terms of oF} hypergeometric functions evaluated at specific
Hauptmoduln X (7).

Theorem 2.1 (Yang [28, Thm. 9]). Assume that I' has signature (0;e1,ea,e3). Let X(7) be the
Hauptmodul of T' with values 0, 1, and oo at the elliptic points of order e1, e2, and e3 (possibly o),
respectively. Let k > 2 be an even integer. Then a basis for the space of modular forms of weight
k on T is given by

b
“ Vx| +oxVe,R

X KO=1/e)/2} (1 _ xy(K(O=1/e2)/2) i |
C

/2 N4
ab'X] ’
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j=0,...,D—1, for some constant C, where for a rational number x, we let {x} denote the
fractional part of x,

1 1 1 1 1
a=—-11-———— — > b:a—i_iv c=1—-—
2 el ey eg €3 €1

1 2

d=a+—, V=>b+—, d=c+—,

el e1 €1

and
D=1—-k+ |k(l1—-1/e1)/2| + |k(1 —1/e2)/2] + | k(1 —1/e3)/2]
is the dimension of the space of weight-k modular forms for I

In Table 1 we catalog the relevant elliptic point data needed to use Theorem 2.1 for the groups
I" we consider in Sections 4 and 5. In Table 1, the “Stabilizing elements” are the generators of the
isotropy subgroups of the group I' (the stabilizer in the group I') that fix the corresponding elliptic
points under the group action of I' on h U P}(R). The “Orders” are the orders of the isotropy
subgroups. For example, for the group I'g(2), there is one in-equivalent elliptic point represented
by % and two in-equivalent cusps, represented by 0 and ¢co. The elliptic point % is fixed by

all elements of the subgroup <(% j)), the cusp 0 is fixed by all elements of <<31 _01>>7 and 700 is
fixed by all elements of ((§1)).

TaBLE 1. Elliptic point data

Group I’ Elliptic points Stabilizing elements Orders
To(2) = (2,00,00) | 0000 | (521), (P %), (b)) | 20000
To(3) = (3,00,00) | #3,0,i00 | (Z44), (3 %), (b)) | 3,00, 00

0
1

6
F0<4) = (007 O0,00) 07 %7 100

(19, (133). (31 | o0 00,00
PSLy(Z) = (2,3,00) | i, =5 ico | (05), (§31), (41) | 23,00
o(2)* = (2,4,00) | &5 4 oo | J5(33):v2(021), (31| 24,00
Do(3)* = (2,6,00) | 5, &0 oo | (371, vB(021), (31) | 26,00

Each of the groups I' listed in Table 1 yield a modular curve of genus 0, and thus the function
field of this modular curve is generated by a single modular function for I'; a Hauptmodul. By the
theory of Riemann surfaces [20, Prop. 1.21] any nonconstant modular function for I' that has a
single simple pole is a Hauptmodul for T'.

In order to apply Theorem 2.1 to our groups I', we need to choose a Hauptmodul which takes
the values 0, 1, and oo at the elliptic points of I'. Then assign ej, ez, es to be the orders of the
elliptic points yielding the values 0, 1, oo, respectively. We list this choice of Hauptmodul X (7)
for each group I', along with the values of e1, ea, eg in Table 2, where n(7) is the Dedekind eta
function 7(7) 1= e™7/12 ][> (1 — *>™™7). That these are Hauptmoduln can be checked directly or
observed in [19] and [13].
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TABLE 2. Choice of Hauptmoduln

Group T' | Hauptmodul e1, €2, €3
[o(2) = (2,00,00) | ta(1) = —64(27)* /n(7)** 00, 2, 00
o(3) = (3,00,00) | t3(1) = —27n(37)"? /n(7)"? 00, 3, 00
Lo(4) = (00,00,00) | tao(7) = 16n(7)n(47)'% /n(27)** 00, 00, 00
PSLy(Z) = (2,3,00) | tas(r) = 1728/5(7) %, 2, 3
Lo(2)" = (2,4, 00) | ta,a(7) = 2561 (7)**n(27)**/(n(1)** + 64n(27)**)* | o0, 2, 4
Lo(3)" = (2,6,00) | ta,6(r) = 108n(7)"?n(37)"?/(n(1)'? +27n(37)'?)* | 00,2, 6

We note the following relationship between the j-function and ¢, as defined in Table 2, which
was observed by Maier [19]!
. 64(4ty —1)3
(1) j=e =k
2
We now use Theorem 2.1 and the Hauptmoduln in Table 2 to compute generators of spaces of

modular forms for our groups I'. For each group, we choose the least weight k that yields nontrivial
modular forms. The generators obtained are listed in Table 3. To save space, we use the notation

a b

Fla,b;c;x] := oFy oy
c

TABLE 3. Hypergeometric Modular Form Generators

Group I Weight &k | Generator(s) of weight & modular forms for I'
['o(2) = (2, 00,00) 2 (1—t2)2 F[L, 111592
['o(3) = (3, 00,00) 2 (1—t3)5 F[3, 311552
T'o(4) =2 (00, 00, 00) 2 Fl3, 4 1iteo)?, teo F 5, 33 15 too)?
PSLy(Z) = (2,3, 00) 4 F[{5, 15: 13 ta3]
To(2)" = (2,4, 00) 4 FlL,3:1t04)
To(3)T = (2,6,00) 4 FlL 51t

2.2. Connection to known modular forms and their properties. In our examples, we will
use some known modular forms. For even k > 4, the Eisenstein series of weight k£ is a modular

form (of weight k) for PSLy(Z) defined [15] as

1 1 ‘
2 E T -1— e2minT
@ M=) 2 Gt Z"’“ 1 !

(mvn)6227(070) TL>1

IThe t5 in [19] is equal to a constant multiple of —2° from our ¢,
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where ((s) is the Riemann zeta function, Bj is the kth Bernoulli number, and oj_;(n) is the
arithmetic function
op—1(n) = de_l.

d|n

The latter equality in (2) follows since Ej(7) converges absolutely for k > 4.
When k& = 2, we define

By(r) =1-24> o1(n)e*™,
n>1
For any positive number IV,
(3) EQ,N = EQ(’T)—NEQ(NT)

is a modular form of weight 2 for T'o(N) [15, Exercise 1.2.8].
The Jacobi #-functions are defined as

Or(7) = D M gy = DT eIy (r) = Y (— 1)
neZ nez nez
They can be expressed as eta quotients via [5, p.29]

_on(2r)? @) _n(r/2)?
W RO =2m B e T e
and satisfy the Jacobi identity [5, p.28]
(5) 03 + 05 = 03.

Moreover, the modular A-function is given by

02\ A%
A= 1-A=|—
© <93> ’ (93> ’
and satisfies the transformation formula [9, p.109]

(7) A <_1> =1—A(7).

T

The function A\(7) is a Hauptmodul for the group I'(2), which has cusps 0, 1, ico at which the
values of A are 1, oo, 0 respectively [9, Chapter VII, §7-8]. Moreover, the function A\(27) is a
Hauptmodul for I'g(4), and one can check A(27) equals the choice of Hauptmodul ¢, for T'g(4)
given in Table 2. Furthermore, each 6;(27) is a modular form of weight 1/2 for I'o(4) [5, p.28].

We also note the following classical results,

4E2(47’) — EQ(T)

) eden =" ahon) 4l = (60) + 04(n)) = ~Bralr),
() (05(27)05(67) + 05(27)02(67))2 = %Eg,g(f) _ (3”(37)?;7;:;7)(7/ 3)°)°
2 2
1 1 1 1
(10) S|P T i@ =60520)t Q= A()2F | P T AN2n)| = 6a(2r)h
1 1

Identities such as those above can be checked using Sturm-type bound arguments, which we
employ throughout the article. A theorem of Choi and Kim [11] gives a Sturm-type bound for
6



computationally determining when modular forms on genus 0 groups I'o(N)* are equal. Since
their bound is less than Sturm’s bound [23] for T'o(N), we give special cases of these results as
follows.

Given a formal sum f =% o c(n)q", define

ordieo f :=inf{n € Z | ¢(n) # 0}.

Theorem 2.2 (Sturm [23] and Choi, Kim [11]). Let N € N such that To(N)* has genus 0. Suppose
[ is a meromorphic modular form of weight k for T' € {To(N),To(N)*} having poles only at the
cusp 100. If f has integer Fourier coefficients and

ordico f > £ [SLa(Z) : To(N)]  when T = To(N),

ordioe f > £ [SLa(Z) : To(N)]  when T' = To(N)*,

then f = 0.

2.3. Some useful results. The following formula due to Clausen [1] states that

2

a b 2a 2b a+b
(11) o F ;2| = 3k ;2

a+b+1 2a+2b a+b+1
We next give two useful lemmas. The first we use in the proof of Theorem 1.1.

Lemma 2.3. Suppose f(7) is a meromorphic function on Y. If there exists A = (‘é 3) € SLo(R),
keN, and 8 € C such that for all T € b,

(fIxA)(T) = B (7),
then for any T € b that is not a pole of f,
1 d d _
B(cr—l—d)QdJ;(AT) = (e + d)k%(T) + ke(er + d)*Lf (7).
Proof. By hypothesis,
f(AT) = Bler + d)* f(7).

The proof follows immediately from taking % of both sides of this equation. O

The next lemma is used in our construction of explicit examples in Section 5.

Lemma 2.4. Let Z(7) be a modular form for T of even weight k. If vs = % (2 _01) eI for some

real s > 0, then for any real v > 0, we have

Z (\/ZFS> = (—r)k/2z <z :) .

O
Proof. By the modularity of Z(7), for any 7 € b,
Z(—1/s7) = (\/s7)"Z(7).
Setting 7 = z\/g , gives the desired result. O

Remark 2.5. We note that PSLy(Z) = (2,3, 00) contains v, ['g(2)T 2 (2,4, c0) contains 72, and
Tp(3)" = (2,6,00) contains 3, with s as described in Lemma 2.4.
7



3. PROOF OF THEOREM 1.1

For convenience we use the notation f'(7) := %%

(1) throughout this section.
Proof of Theorem 1.1. By hypothesis, we have for 7 € h that
(12) Z(y7) = aler — a)* Z(7).

Thus by Lemma 2.3,

k
Z'(y7) = aler — a)k+22’(7) + %(CT — a)kHZ(T).
i
Plugging in 70 = ¢ + - J ~ yields
kv N
c f - Z(r0) = Z' () + a M *N T Z! ().
T

Dividing by Z(79) and using (12), we obtain
ckv'N _ Z'(10) NZ'(’yTO)
21 Z(10) Z(y10)
On the other hand, changing the variable 7 — N7, we also have by hypothesis that
Z(6-Nt1)=pZ(NT1),

(13)

so applying Lemma 2.3 with ¢ = 0 yields that
Z'(6-Nt1)=pBZ (NT).

Z(7)

ZNr)» e obtain

Therefore, given My (1) =

M (1) ~Z'(7) Z'(Nt)  Z'(t)
(14) Mx(T) ~ Z(7) _NZ(NT) G _NZ(a.NT)‘

Note that v - 79 = - N7 so from (12) we obtain

k
i
BZ(N1y) =Z(6- N1o) = Z(vy-10) = aWZ(TO),
and therefore My (79) = 5];/;/2. So (14) at 79 becomes
ai Z'(7o) Z'(y10)
15 M Mly(ro) = - N
(15) BNk/2 w(m) Z (7o) Z(y70)
Using (15) we can rewrite (13) as both
ckv/N Z'(10) aif
1 =2 — M
( 6) o Z(To) 6Nk/2 N(To)a
ckv/N Z'(y10) ik
17 =2N M .
( ) o Z(’YTO) + 5Nk/2 N(TO)

From our hypotheses, we have that X'(r) = U(7)X(7)Z(r) for 7 € b and Z(7) = X(7)*(1 —
X(7))%t ijo A; X (1) for 7 € D. Using the fact that
X0 1

X'(1) 2midr

X = X = XEP = X0 (0 agi™ ).
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it follows that for 7 € D,

Z’ T co o ] X(r i
20— U x (- X0 Y (54 a0+ ) AX (Y.

(18)
= (1)

On the other hand for 7 € D, My(7) can be expressed as a function of X(7) and X(N7), so
1 dMp dMn

(19) i dr )T Ty

(1) - U(r) X (7)Z().

Thus for 7 € D,

1 dMpy
2w dr

(1) = URX (@) (1 - X)) O () Y 4 X
>0

(20)

Hence when 79 € D we can rewrite (16) using (18) and (20) to obtain

ck‘;ﬁ — 2T (70) X (10) (1 — X (10))°! Z (j +e0+ 51)(‘()5_(();0)> A; X (7o)

Jj=0

aik

_W ’XXTO ZAXTO)

7=>0

U () X () (1 — X ()" (dMN)

dX

which yields our first identity. Similarly when v79 € D we rewrite (17) using (18) and (19) to
obtain

kv N x |
HVN N () X 70 (1= X0 > (5 co+ 1) 4y xiomy
& (dM
* % <dXN> |x=x (7o) "U(70) X (70)Z(70).

Since by (12) we have Z(1y) = ku(’yTo), this becomes

ckv/N _ co 1 . X(vy70) j
o = 2NU(’YTQ)X("}/T[)) (1 — X(’}/T())) ‘PZO <] +é&0 + Elm AJX(’YTQ)
1 dM
+ BU(TO>X( 70) < dXN> | X=X () X (770)° (1 = X (y70))7 Y A; X (v
j>0
which yields our second identity. U

We conclude this section with a lemma that will be useful when we compute examples in the
following sections.

Lemma 3.1. Suppose X(7), Z(7),U(T) satisfy the conditions in Theorem 1.1. Then, writing X :=
X(7) and Y := X(NT) gives

iX Y U(NT)
Mv=N& "X 0w

Proof. Since My is a function of X and Y,

dy —dYy dr NQ(N ) dr N%(NT) ~ WYU(NT)Z(Nt) N Y U(N7)
dX ~ dr dx ~ dr- ) ax X XU(r)Z(r) My X U(r)’

which gives the result. (|



4. EXAMPLES OF THEOREM 1.1 OF FIRST TYPE

In this section we obtain six different Ramanujan-Sato series for 1/7 as examples of Theorem
1.1. One is already available in the literature and the others are new according to our knowledge.

To construct the examples in this section we use the following corollary for modular forms on
certain groups where the cusp ico has width 1, which follows immediately from Theorem 1.1 with
h=1and g =1.

Corollary 4.1. Let T’ be a discrete subgroup of SLa(R) commensurable with SLo(Z) such that
(§1) €T (ie. the cusp ico of I' has width 1), and let X(7) be a Hauptmodul of T'. Let Z(7) be a
weight-k modular form for T such that =% = U(7)X (1)Z(7) and when T € D, a domain of b,

2mi dr

Z(t) = X(1)%(1 — X (7))t 3 A; X (1)’ for eg,e1 € R, Aj € C. Further assume there exist o € C
=0
and v = (¢ %) € SLy(R) such that

Cc —a

(Zlev) (r) = aZ(7).

Set M () := Z(1)/Z(NT) for N € N satisfying (1 — N) € Z, and let 19 = ¢ + c\jﬁ' Then if

’YTOZ%+@€D, we have

Ckf = X (770) (1 = X (y70))™ > _(bnj + an)A; X (y70)?,

Jj=0

where

by = 2NU (v7),

ay =2NU (7o) <€0 +e1 XE(V(TZ)TD—)1> + U(70) X (70) <%> ’X:X(-ro).

~

Note that the arithmetic triangle groups (m, oo, 00) = I'o(m) for m € {2,3} and (00, 00, 00) =
I'o(4) contain the element (é %) In this section we construct examples of Corollary 4.1 for these
groups. We choose the Hauptmodul ¢, for I'g(m) with m € {2,3} and ¢ for I'y(4) given in
Table 2. Furthermore, from Table 3 we have that the space of modular forms of weight 2 for I'g(m)
for m = 2, 3,4 is generated by Zs, Z3 and Z,, respectively; these are given by

2

11 1 1
_1 2 2m 2 2m
(21) Zm(T) = (1= tm)' "7 2y " Ttm(T)|
1
and
2
11
2 2
(22) Zo(T) = 21 ; too(T)
1
Write f/ := ﬁ%. We next compute each U, for t,, with m € {2,3} so that
(23) tr = tmZmUn,.
From Table 2, the Hauptmodul ¢,, for m € {2,3} can be written as
k
n (mr)™"
24) tn(T) = —a0——7—,
( m n(7)km
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where o = m'F and km = %. Using the property 7' /n = iEQ, we get that

- (429 10) - () e

Moreover, since E3 ., is a modular form of weight 2 for I'y(m) by (3), and Z,, generates the space
of weight 2 modular forms for I'g(m) as seen in Table 3, Theorem 2.2 gives Z,,(7) = <ﬁ) Es .

Therefore for m = 2, 3,
(25) tr = tmZm, and U, = 1.

In order to apply Corollary 4.1 in these cases we need % where X (7) =t (7) and Y (7) = t,, (N 7).
Observe from Lemma 3.1 that when U = 1, we have

dX Y
My=N—: —
N ay T x
Thus taking the derivative with respect to X yields
dM d (%) Y 1 dX Y
N
2 —— =N : - - —
(26) dX X X + X dy Xx2 |’

which will be useful in subsequent subsections.
The computation of U and dMN for the group I'g(4) is given in §4.3 where we obtain an example
for this group.

4.1. Ty(2) = (2,00,00). As in Table 2 we choose the Hauptmodul X (7) = ta(7) = —6477((2:))214,

and for the corresponding domain D we choose the intersection of {r € b : | X(7)| < 1} and the
following fundamental domain F'D of T'y(2):

FD={reb:|Re(r) <1/2, |7 —1/2| > 1/2, |7 +1/2| > 1/2}.

Recall that Z = Z5 from (21). It follows from (11) that
2

1 1 1 1 1
@27 Zm)=0-X@)aA Y x| =0 -X)iaR |t 2 X
1 1 1
Thus,
1 1 1
(28) Z( ) %Z (2)] (2) (Z)JX]( )

For Examples 4.2 and 4.3 below, we use v = wq = \}5 (g 0 ) To find the transformation property

of Z with respect to ws, we first note that Theorem 2.2 implies

1
2() = L0+ Bu(r)).
Also, using the transformation formula n(—1/7) = +/—iTn(7) [15, p.20] and (4), we have

0§ <;> = —47'29§(2T),

—1 5(4
03 <> = 4?1670 —47%65(27).

27 nt(27)
11



Using the last two equalities in (8), we thus obtain the following transformation property
(29) (Z|w2)(1) = —Z(71), ie., Z(—=1/21) = =272 Z(7).

We see that Z and X above satisfy the conditions in Corollary 4.1 with U =1, v = wa, k = 2,
g0=0,e1 =3, a=—1,and any N € N.

For Examples 4.4 and 4.5 below, we consider v = (% j ) Since Z = Z, is a weight 2 modular
form on I'g(2), we have the following transformation property
(30) (ZI)(7) = Z(7), ie., Z <27T__11) = (27 —1)°Z(7).

We see that Z and X above satisfy conditions in Corollary 4.1 with U =1, v = (1 71) k: =2,

eg =0, e1 = 5, and o = 1. Note that, for this choice of 7, we need to choose N such that 1 N ¢ 7.
We now proceed with examples for the group I'p(2) = (2, 00, 00).

Example 4.2. Let N = 3, v = wy above, and 79 = i/v/6. Using the values of 7(i/v/6), 1(iv6),
n(iy/2/3) and n(i/3/2) from Table 5 we get
X(i/V6) = —17 — 12V/2,

Y (i/V6) = X (i\/3/2) = =17 + 12V/2.
Using (26) and the polynomial relationship ®3(X,Y) = 0 between X (7) = t2(7) and Y (1) = ta(y7)

given in Lemma 6.2, we obtain
dM3 _19_ 17
xexom =12

From Corollary 4.1 and (28) we then have

1 1 1
f (1= X(iv/3/2))"2 ) (6] + as) (2)j (?>J’<2>J’XW%J',

= (41)?
X)Efl?l 0 () -3

where

3

2

Finally we have

N|—

*I(\@—l)z<12j+3—\/§) <%>a‘ (;>]<

N3
T >0 (J-)

>j (12\/5— 17)j .

Example 4.3. Let N = 5, ¥ = ws, and 79 = i/1/10. Using the values of j(i/+/10) and j <z\/§>

64(4X—1)3
X

from Table 4 and the relationship j = from (1), we get the values

X(i/V10) = =161 — 72V/5,

X (z\/§> = —161 + 72V/5.

12



Using the polynomial relationship ®5(X,Y) = 0 between X (7) = to(7) and Y (7) = ta(y7) from
Lemma 6.2, we obtain

dM5 1440 — 644+/5
P UL B E—

From Corollary 4.1 and (28) we then have
1/2

2 (o (4) o LG )

Jj=0

where

(L5:5

So, finally we have

V5 _ 2) Y- (605 + 15— 4v5) <%> <%>j <%)j (72v5 - 161>j.

= (41)?

Example 4.4. Let N = 3, v = (5 j), and 19 = Ltiv3, Using the values n (‘HTM), n(iv/'3)

2
from Table 5, and the transformation formula n(y7)%* = (cr + d)*2n(7)?** [15, p. 20], we have

X(m0) = X(ym0) = 1

Using the polynomial relationship ®3(X,Y) = 0 between X (7) = t2(7) and Y (7) = ta(y7) from
Lemma 6.2 and (26) we obtain

dMs;
(31) (dX) =&

Corollary 4.1 and (28) yield the series

Z)f = (1= X(y70))2 Y (65 + as) ), E;,?; ) X (vm0)?,
Jj=0

az =3 <X€(7(TZ;—021> + X (70) <%> ‘X:X(T@) =1L

= (0),0),0),

(1+67) L(1/4).
=0

where

Hence, we obtain

J

This series is one of the well-known Ramanujan series in [21] for 1/7, which also arises from Chan,
Chan, and Liu [6, (1.1)]).
13



Example 4.5. Let N =5, v = (% :}), and 19 = % Then, by using the values of j(79), j(770)

64(4X—1)3
X

from Table 4 and the relationship j = from (1), we get

X(70) = X(y70) = 9 — 4/5.

Next, using the polynomial relationship ®5(X,Y) = 0 between X (7) = t2(7) and Y (1) = ta(y7)
from Lemma 6.2, we obtain

dM,
(%) oy =15+

Then, from Corollary 4.1 and (28), the series is of the form

1 1 1
25 (1= X))t Y0105 +a) ) S;?é 9
Jj=0

275
=

where

a5 = 5 (W) + X (o) (‘%) ‘X:xm) 55

So, we finally obtain

N[ =
~—
<.

2;@ =(V5-2)12%}° (20j +5— \/S) <§)j (.2>§ (

|
= (4")
4.2. Ty(3) = (3,00,00). As in Table 2 we choose the Hauptmodul

n(37)"?
(7)1’

and for the corresponding domain D we choose the intersection of {7 € h : |X(7)| < 1} and the
following fundamental domain F'D of T'y(3)

X(1)=ts(r)=—-27

FD={reb: [Re(r)| < 1/2, |7 — 1/3| > 1/3, |7+ 1/3| > 1/3}.

Recall Z = Z3 as given in (21). From the hypergeometric product formula [16, Theorem 2.3], we
get that

where

(32) Ay =

Recalling (25), we see that Z and X above satisfy the conditions in Corollary 4.1 with U = 1,
k‘:2,€0:0,€1:%, and o = 1.
14



V3 V6
n (z/\/6>, n (m/é) and 7 (u/%) from Table 5, we have

t3 (k) = —3-2V2,

ts <Z\/§> = —3+2V2.

Using the polynomial relationship ®2(X,Y) = 0 between X (7) = t3(7) and Y (7) = t3(y7) from

Lemma 6.3 we get
dM> 4-3V2
dX ‘X=X<T0) T3
Then, from Corollary 4.1 and (28), we get the following series
V6

s

Example 4.6. Consider N = 2, v = w3 = = (g 0 ) and 79 = —=. Using the values 7 (’L 3/2),

= (1= X(v70))*/* Y (45 + az) A; X (7o),
720

where A; is given in (32) and
2 X(ym0) d Mo 4 -2
=4 (2 2UT0 )y (222 ‘ oy = Y
@2 (3 Xy —1) " () { 7x ) |x=x () 3
Then, finally we obtain
3 .
f = (4-2v2)*% (125 + 4 — V2)4;(2v2 - 3)/,
7>0
where A; is given in (32).
4.3. To(4) = (00, 00,00). By Table 2, we choose the Hauptmodul
(33) X (1) = too(7) = 160(7)n(47)"° /n(27)*,

which can also be written A(27), where A(7) is the modular lambda function introduced in (6). For
the corresponding fundamental domain, we use

{reb: |Re(r)| <1,|r—1/4] > 1/4, |7 — 3/4| > 1/4}.

Then using (22) and (10), Z is a weight 2 modular form for I'g(4) given by

2
L1

Z(r)=-F |° % X(r)| = 63020t
1

Using the hypergeometric product formula [16, Theorem 2.3],

2r) = 3 AX (Y,
=0
where
1) iz (1)
(34) A= (;'2]2 (J)k<§>k2
k=0 k2 (3 —j)k



1 df
2mi dr*

(35) X' =XZU.

Differentiating X (1) = 16n(7)%n(47)16/n(27)?* and using the classical fact that 7 = 5;nEs, we
compute that

As before, we write [’ := We next compute U so that

X' =01-X)XZ.
Here we needed to use the identity E2o(7) = —(02(27)* + 05(27)*) from (8). Thus
U=1-X.
From Lemma 3.1, we obtain the following by differentiating My with respect to X

X dy ay
dMy _ Y 1-Y d(w) QX(W)—Y g(l—X)(—ﬁ)Hl—Y)
X T X1-X| dx Tdv XY dy 1-Y)(1-X)

We choose v = ( 1/ 2 ) Using transformation properties of theta functions we can show for
that
Z(—1/47) = 05(—1/27)* = —47% . 05(27)* = —47%Z (7).

Thus Z and X above satisfy the conditions in Corollary 4.1 with U =1—- X, v = ( _1/2), k=2,
eg=0,e1 =0, and a = —1.
Example 4.7. Let N = 2, v = < *%)/2>, 70 = 1/2v/2. Using the value A\(v/2i) = (vV2 — 1)2 [3,
(4.6.10)], we obtain
X(i/V2) =3 —2V?2,
U(i/V2) =2(vV2 - 1).
Moreover, the transformation property of A (7) yields that
X(i/2V2) = Ai/V2) =1— (V2 -1 =2(vV2 - 1),
U(i/2V2) = 3 — 2V2.

Next, using the polynomial relationship ®2(X,Y) = 0 satisfied by X(7) = too(7) and Y (1) =
too(7y7) from Lemma 6.4 we get
dMs,
dx
Thus applying Corollary 4.1 yields that

7fz V2 —1)j —4+3V2)A;(3 — 2v2),

7>0

| x=x(i/2v3)= =v2+2.

where A; is given in (34).

5. EXAMPLES OF THEOREM 1.1 OF SECOND TYPE

In this section we obtain five additional Ramanujan-Sato series for 1/7 as examples of Theorem
1.1. To construct the examples we use the following corollary for modular forms on certain groups
where the cusp 700 has general width h, which follows immediately from Theorem 1.1 with v = ~,
0=1,a=1,8=1,and N € N is arbitrary.
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Corollary 5.1. Let I' be a discrete subgroup of SLa(R) commensurable with SLa(Z) such that

Vs = \}g (0 71) e I’ for some real s > 0, and let h be the width of the cusp ico of T'. Let X (1) be a

Hauptmodul of T' and Z(7) a weight-k modular form for F such that 5 - ‘fff =U(r)X(1)Z(T) and
when 7 € D, a domain of by, Z(1) = X (1)%°(1 — X (1)) Z A;jX (1) forep,e1 € R, Aj € C. Set
§=0

My(r):= Z(r)/Z(NT) for N € N and let 1o = —=. Then if 1o € D,

kh\/sW _ U(Z/\/W)X(l/\/ﬁ)eo (1 B X(Z/\/W))El Z(2j + aN)AjX<i/\/W)ja

2 -
Jj=0

where

X (i/V/sN) ke dM
aN:2<€O+€1X(i/\/W)—1> Nk/g (/\/7>( N)‘X X(i/VsN):

Alternatively if vr9 € D,

RSN (/N /5700 — XV V) 3 b + ) Ay X VRV

2T -
j=0

where

dy = INUGVF /) ( S e 1>

UVRX G (D) s

From Remark 2.5, we know that the arithmetic triangle groups (2, m, cco) for m € {3,4,6} contain
the element ~y, for s = [ %], respectively. In this section we construct examples of Corollary 5.1 for
these groups.

Fix m € {3,4,6} and let I';;, = (2,m,00). Then the width of the cusp ico of I'y, is h = 1, and
we have seen in Tables 2 and 3 that ¢ ,, is a Hauptmodul for I';,, and that the space of modular
forms of weight 4 for I'y, is generated by Z,,(7). Using Clausen’s formula (11),

4 2
1 11 1 1 11 1,1
= — 4 = _l’_ —_— = = — = = + —_
173 173 2 2 2
Zm(T) 1= 2F} " " tom(T)| = 3P " " tom(T)
1 1 1
Thus we see that
0 .
(36) Zin(T) = Am jtam(T),
§=0

where by the hypergeometric product formula [16, Theorem 2.3], we have?

(3). G-), 5+ %), S ORI~ B e

(37) Am7.7 = y N r
I e E) N S Y W S ) BT
Thus for each m € {3,4,6}, Z,, meets the conditions for Corollary 5.1 with g =&1 =0

ZNote that the ¢ Fs series arising from the formula in [16] naturally truncates at j.
17



We use Theorem 2.2 to recognize Z,, in terms of common modular forms. In each case the weight
is k = 4, so it suffices to check the Fourier coefficients up to the ¢! term. We obtain that

(38) Z3(7) = Ea(7),
(39) Z4(1) = Eaa(1)%,

1
(40) Zg(T) = ZEg,g(r)?.
Write [/ := qg—]; = %%. We next compute each U, so that
(41) ty = t2,mZmUn.

When m = 3, we have tg 3 = 1728/j. Thus,

-/
—J
the = < >t23,
’ j ’

and using Theorem 2.2 with k = 6 it is easy to check that

_j/E4 = jE67
so from (38) we obtain that
Es(1)
42 U. =
( ) 3(T) E4(T)2
For m = 4,6 we first observe that
dafg
t2,m - 27
(f +ag)

where f(1) = n(r)*, g(7) = n(m71/2)*™, ky, = 48/(m — 2), and o = (m/2)'?/(m=2)_ Using the
fact that ' = inEg, differentiating and simplifying yields

g _ dal=fe(f' + ag' + (9 + af'g®)]

am (f +ag)?

[f/_f’]
g f

Thus we have that

-1 (A(T) — 64A(27))
(43) Ug(r) = Faa(7) (A7) + 64A(27))
(44) Us(r) = =2 (1)1 = 2Tn(37))

T Bag(r) (n(r)”2 +2m(37)12)

Note that in each case we can see by Theorem 2.2 that

1-— t2 m(T)
45 U2 — - em\lJ
(49 A =
Moreover, we have that 1/U(7) is a meromorphic modular form of weight 2 on SLy(Z) so
(46) Un(=1/s7) = (v/s7)Un(7).

18



For each m € {3,4,6}, let X =t9,,, Y = X(N7), and U = Up,. In order to compute examples via

dMN . By Lemma 3.1 we have that
dX Y U(NT)
4 M
(47) N(T) = N5 (1) U0
SO
dXY , \?U(NT)?
48 Mpy(7)? = N? .
(18) v =3 (o) S
From (45) we have
U(NT)? 1-Y(1) Zn(7) 1-Y
49 = : = My (7).
(49) U(r)? <Zm(NT) —x() " 1ox M
Therefore
dXy Y
2 _
MG =8 () L b
and so
dXY\?1-Y
— N2 =22 -
(50) My=N (dYX) 1—X
Differentiating with respect to X we get
aX ay
oy Ay e (X7 (120 (48] axX(K) )
dax dY X J\1-X dX X dY X?

L (AXYY? (1- X) (—%) F(1-Y)
dy X (1—X)2 '
For each m € {3,4,6} we construct specific examples of Corollary 1.4 for some choices of N.

For each example we need to compute the special values of X,Y, and U,,, and find an explicit
polynomial relationship between X (7) := t3,,,(7) and Y (7) := X(N7) in order to compute the

special value of dMN .

5.1. PSLy(Z) = (2,3,00). For Examples 5.2 and 5.3 we consider m =3, s =1, and vy = (9 ').
As in Tables 2 and 3, we define

1728

()’

and for the corresponding domain D we choose the standard fundamental domain

{rebh:|Re(r) <1/2, || > 1}

X(71) :=ta3(7) =

Let
Z(r) = Zs(1) = Y A; X/ (7) = Eu(7),
=0

where by (37),

H)i(2);3); & 'n
(52) A= ]‘3 Z %

0
Furthermore, define Y (7) := X (N7) and U(T) ( ).




Example 5.2. Let N =2 and 79 = 7 We need to determine X (i/v/2) and Y (i/v/2) = X (iv/?2).
From the values of j(i/v/2) and j(iv/2) in Table 4 we have

X(/VD) =V (i/V3) = o
500

Using the polynomial relationship ®2(X,Y) = 0 from Lemma 6.1 and (51) we find % X(ro) = — 63 -
Letting 7 = v/2i in (46) gives that

(53) U(iv2) = JU(i/V2),

Using (45), we can determine U (i1/2) using the value of X (iv/2) from above and Z3(iv/2) = F4(iv/2)
from Table 6 to determine that

o= () (2)

ving = =20 (3) e (2)

Since 19 = ﬁ ¢ D but yr9 € D, Corollary 5.1 implies that

and thus from (46)

2/2 & .
i =) (ag+boj) A; XI(V2i),
m =
where
, dMy 73.3.26  /1\ 2 _ /3\ 2
— U(i/V2)X (i/v3) N =r<) r() ,
7327 7 /1\ 2. /3\ 2
—AUWV2) =—=""1(=) r(2) .
by = 4U (V/2i) = <8> <8>

This can be written as

52 1\ 2_/3\ & 27\’
=92 (2} rf: § 1475)
p— <8> <8> Pt (84 145) (125) !

where A; is as in (52).

Example 5.3. Consider N = 3 so 79 = ﬁ Using the values j(i/v/3) and j(iv/3) from Table 4 we
get

(i
(i/V3) = Y (6/V3) = 1o

Using the polynomial relationship ®3(X,Y’) = 0 from Lemma 6.1 and (51) we find % X=X(i/V3) = —L2
Furthermore, using (45), the value X (iv/3) above, and the value of E4(iv/3) from Table 6 we have

1— 3 2W3.11. 0

I i e

Thus from (46) we obtain
214/3 11 - 7t

Ui/V3) :—%U(\/gi) - ol
52T (2
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Since T = % ¢ D, and v7 = +/3i € D, Corollary 5.1 implies that

23 _ > (az+ baj)A; X (e @/VIm),
=0

920/3 | 14 1 —6
a =" T (3) ’

217/3 117t 1\ 7°
by= T (=) .
52 3

™

where

We can write this as

54 TE S =l o 115 +2)A; =
o e (5) e ()
where A; is as in (52).
5.2. Td(2) & (2,4,00). For example 5.4 we consider the case where m = 4. Here we have that
8—2807‘—%(8*01)
As in Tables 2 and 3, we define

256m(7)%4n(27)%
(n(7)?* 4 64n(27)12)%’

and for the corresponding domain D we choose the intersection of {7 € h : |X(7)| < 1} and the
following fundamental domain FD of T'g (2)

FD={reh: [Re(r)| <1/2, |7| > 1/V2}.

X(7)i=toq =

Let
2(r) = Za(r) = 3 A X (7) = Eaalr)"
j=0
where by (37),
1 1_1 1,1 .
(55) 4; = QA f‘zﬂ‘ (+4), S CEEan
J n=0 (ﬁ_j)n(l_])n<1_j) n!3

Furthermore, define Y (7) := X (N7) and U(7) := Uy(7).

Example 5.4. Let N = 3 and 79 = i/v/6. Using the values of 1(i/v/6), 1(i\/2/3), n(i,/3/2), and
1n(iv/6) from Table 5 we get that

X(i/V6) =Y (i/V6) = =

Using the polynomial relationship ®3(X,Y") = 0 from Lemma 6.5 and (51) we find % ’X:X(i/\/@ =—5
Recall from (45) that
1—X(7)
Ulrt) = +—F+——-.
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Using the value of Es5(i/+/6) from Table 7 we determine that

w () GG ) ()

and furthermore from (46),

—1
/3 3273 1 5 7 11
o Y ( 2) R (F (3)7 () (o) (24)) |
Thus Corollary 5.1 yields that
W6 o=, 1\’
(58) — = Z(b&? +a3)A; <9> :

where

and A; is as in (55).
We can write this as

Lo () () G () Seoa ()

where A; is as in (55).
5.3. T§(3) = (2,6,00). For Examples 5.5 and 5.6 we consider m = 6, s = 3, and v = —= (3 !).
As in Tables 2 and 3, we define
108n(7)"?n(37)2
(n(7)' +27n(37)12)*’

and for the corresponding domain D we choose the intersection of {T € b : |X(7)| < 1} and the
following fundamental domain FD of T'g (3)

{reb: |Re(r) <1/2, |7| > 1/V3}.

X(71) :=ta6(1) =

Let
2() i= Zo(r) = 3 A;X0(r) = { Eaalr),
=0
where

(59) A= =gt ) N (1
| (5-9),(6-9), (-
Furthermore, define Y (7) := X(N7) and U(7) := Ugs(7). Recall from (44) that

—2 ()" -2 (37)"?)

U= B ) 2 )




Using (9) we obtain

(n(1)" — 27n(37)"*)n(7)*
(n(7)'2 +27n(37)12)(3n(37)3 + n(7/3)?)*
Example 5.5. Let N = 2 and 7 = %. We use the values of 7 (z/\/6>, n (2\/6), n (z 2/3),
n (i\/3/2>, n (1/3\/6> from Table 5 to compute X (i/v/6) = Y (i/v/6) = 3. Using the polynomial

relationship ®(X,Y) = 0 from Lemma 6.6 and (51) we get that %42 ‘X:X(i/\/é) =-1

(60) U(r) =

Using (60) and the necessary n—values from from Table 5 we obtain
U < i > _ 8ver’

NG V3

and from the modularity of U (46),

P 16 - /213
U(z 3) :T.

Since 27 = z\/g € D, Corollary 5.1 implies that

(61) 20 S (b + an) 4 (;)

where

We can write this as

@ e (@) () S (3).

where A; is as in (59).

Example 5.6. Let N = 5 and 79 = i/v/15. Using the values of n(i/v/15), n(i\/3/5), n(i\/5/3)

and 7(iv/10) from Table 5 we find that
4
X(i/v10) =Y (i/V10) = o5

Using the polynomial relationship ®5(X,Y") = 0 from Lemma 6.6 and (51) we get % ‘X:X(i/\/ﬁ) = =120,

Furthermore, from (60) and (46) we use the values of 7(i/v/15),1(i+/3/5), and (i /3v/15) from Ta-

ble 5 to obtain »
v =2 (e (e () (5)r (2))

o = s =32 (1 (35) 1 (3) ()7 (5))

23
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By Corollary 5.1 we have that

where

bs = 10U (i/5/3) = 105'3\/? (r <115> r <125> r (145> r (185>> _1,
-1
S A GOLOROEE)

We can write this as

L)) (E) S ()

where A; is as in (59).

6. APPENDIX — MODULAR POLYNOMIALS

Throughout, let I' be a discrete subgroup of SLa(R) commensurable with SLy(Z). Further assume
' is of genus zero and contains a principal congruence subgroup I'(N). Let ¢ be a Hauptmodul
of I' and N be the smallest positive integer such that I' contains I'(/V). For a positive integer
m coprime to N, the modular polynomial of level m is defined to be the polynomial ®,,(z,y) of
minimal degree (up to scalar) such that for a € GL2(Q) with det v = m

Oz, t(r) = [ (@—t(r)),
~eT\Tal

Below we state as lemmas each of the modular polynomials that we use in this article. In addition
to using the Fourier expansion of ¢ to find modular polynomials computationally, we prove some of
the lemmas to illustrate how we can obtain modular polynomials using known modular polynomials
computed using the method of Broker, Lauter, and Sutherland [4] and the covering maps between
modular curves.

6.1. Modular polynomials for t533, t2, t3 and t,. We first recall results for groups which are
subgroups of PSLy(Z).

Lemma 6.1. Forty (1) = 1728/j(7), the level-2 and level-3 modular polynomials are, respectively,

Do(X,Y) =1728(X3 + YV3) — 162000( XY + XY3) 4 2571264(X?Y + XY?) — 2985984 XY
+ 5062500(X3Y? + X2Y3) 4 40773375X2Y? — 52734375X3Y3,
B3(X,Y) =(1728)3(X* + Y1) — (1728)1XY + (1728)3(2232)(X%Y + XY?)
— (1728)%(1069956) (X3Y + XY3) + (1728)(36864000)(X*Y 4 XY?)
+ (1728)2(2587918086) X 2Y'2 + (1728)(8900222976000)(X2Y3 + X3Y?)
+ 452984832000000( X 2Y* + X4Y?) — 770845966336000000X 3y 3

+ 1073741824000000000( X 1Y 3 + X3y4).
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Proof. Let x = j(7) and y = j(27). From Sutherland [24] we have that x,y satisfy
(63) 0= (2° +¢®) — 162000(2* + y*) + 1488(z%y + xy?) — 2°y?
+ 8748000000(x + y) + 407733752y — 157464000000000.

Since X (7) = 1728/z, multiplying through by (1728)* /23y gives us the first result.
Similarly, for x = j(7) and y = j(37), from Sutherland [24] we have that z,y satisfy

0= (2 +y*) — 233 + 2232(23y* + %) — 1069956(23y + 2y®)
+ 36864000(x* + y*) + 258791808627y

+ 8900222976000 (z%y + zy?) + 452984832000000(z> + 3)
— 7708459663360000002y + 1855425871872000000000( + ¥).

Multiplying through by (1728)¢/2%y* and simplifying, gives us the second result. O
Lemma 6.2. For to(7) = —64%, the level-3 and level-5b modular polynomials are, respectively,

B3(X,Y) =X4 + Y4 — 4096 X3V — 900 <X3Y + XY3) 4 28422X2Y?
+ 4608 (X3Y2 + X238 + X?Y + XYQ) — 4096 XY,
O5(X,Y) =XO + YO —16777216(XY + X°Y?) + 31457280( XY + XY? + X1Y° + X°Y?)
— 17940480(X3Y + XY3 + X3Y® + X°Y3) + 3143680(X 'Y + X2V + X°Y? + XY?)
—90630(X°Y + XY?) + 3709829120( X 2Y? + X1Y*) 4 746465295(X Y2 + X?2Y?)
+ 6259476480(X3Y 2 + X?Y3 + X1Y3 + X3Y?) — 33983400980 X3Y 3.
Proof. Recall from Sutherland [24] that the level-3 modular polynomial for the elliptic j-function

1S
®3(x,y) =zt + y* — 233 + 2232(2y? + 2%y°) — 1069956(2>y + xy®) + 2587918086x2y>
+ 36864000(z> 4 33) 4 8900222976000(z%y + xy?*) + 452984832000000(22 + y?)
— 770845966336000000zy + 1855425871872000000000(x + 7).

64(4ta—1)3

Moreover the relation between j and t2 is j = -

t := to(37) satisfy the equation

o, (64(43 —1)% 64(4t — 1)3> L

Hence, the functions s := t3(7) and

s ' t
Together with the Fourier expansions of s and ¢, we obtain
—409653t3 4+ 4608(s°1? 4 s2t3) 4+ s + 1 — 900(s>t + st?) + 2842252 + 4608 (s>t + st?) — 40965t = 0,

which gives the modular polynomial of level-3 for t5. The proof for level-5 follows similarly. ([l
Lemma 6.3. For t3(7) := —277777(5’:))1122, the level-2 modular polynomial is

Do(X,Y) =X3 + V3 4 27X2Y? — 24(X?Y 4+ XY?) 4 27XY.
Proof. The proof follows similarly to that of Lemmas 6.1 and 6.2, using the relation
(ts — 1)(9t3 — 1)3

= —27
J ts
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Lemma 6.4. For to(7) := —160(7)%n(47)1 /n(27)?*, the functions too(T) and t2(27) satisfy the
equation

0=X2Y?-2X%Y + X2+ 16XY — 16Y.

6.2. Modular polynomials for ¢4 and t5.
Lemma 6.5. For to4(1) = (niiﬁgii)gzg((;))jf)z , the level-3 and level-5 modular polynomials are,
respectively,
O3(X,Y) =X* +Y* 45308416 X 1Y + 442368(X1Y3 4+ X3Y?) + 13824(X Y2 + X2y
+192(X1Y 4+ XY?) — 14015488 X3Y 3 + 2058048(X3Y? 4 X?Y3)
—19332(X3Y + XY3) + 3622662X2Y? + 79872(X%Y + XY?) — 65536 XY,
5(X,Y) =X6 + Y6 + 451377585192960000(X Y4 + X4V ) + 761203159669407744 XY
+ 69657034752000( X Y2 4+ X3Y°) — 609930927695462400(X°Y* + X1Y®)
4 4031078400(X Y2 + X2Y°®) — 20244489582182400(X°Y3 4+ X3Y?)
+ 154441688220057600X Y + 103680(X°®Y + XY%) 4 4666060857600( X °Y 2 4 X2Y)
+ 36839200367577600( XY + X3Y*) — 65094150(X°Y + XYP)
+ 98471158056975(X Y2 + X2Y*) — 13453926179834900X3Y 3
+ 1256857600( XY + XY*) 4 173582058905600( X3Y? + X?Y3)
— 5655756800(X°Y + XY?3) + 24370885427200X %Y 2
4 8724152320(X %Y + XY?) — 4294967296 X Y.

Proof. In this case the group we are considering is I'g(2)*2? := (I'g(2),ws). However, we first
consider I'g(6)72 := (I'g(6),ws), which is an index-4 subgroup of I'g(6)*2. It is known that that

4
u = (M) is a Hauptmodul on Tg(6)*2 (see [8] for example), so X can be written as a

n(m)n(27)
rational function of degree 4 in w. In particular, one can check that
_ 256u
(1427wt
Next, we observe that since ws normalizes I'g(6)72, u(ws7) is also a hauptmodul and u(wst) =
‘Cl;‘is () for some (2Y) € GLy(C). In particular, for w3 = % 2:%) we have w3t = g::g. Thus

using the transformation law for the n-function we can relate u(ws7) and u(7), namely,

=) (=) (D)) (0 )e)

u(wsT) = = = .
372 3r—2 1
(3R (283) o ((5_3)37') ' ((L%)&) 81u()
Hence,
256u°
Y(r):=X =
(7—) (W3T) (1 + 3u)47
and the rational function determined by the relations X = (1152677;)4 and Y = (12_?%15;4 gives rise to

the desired level-3 polynomial for X.
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Next we obtain the polynomial for level-5. Consider the following Atkin-Lehner involutions for
Iy(10),
Lo —1> L 59
Wy = — , Ws = ——= .
2 \/5 < 10 —4 5 \/5 ( 10 5)
Similar to the previous case, we start with the relation between X and the given Hauptmoul
2
u= (M) for To(10)™2 := (T9(10),ws). One can check that

n(T)n(27)
_ 256w
(14 25u)4(25u2 + 6u + 1)’
and ,
1 2
sy — L (om@n) V11
25 \ n(107)n(57) 25 u(7)
Hence,
256u°
Y(r):=X =
()= X(@s7) = 252 + 6u 1)’
from which we obtain the desired level-5 polynomial. O
Lemma 6.6. For ty¢(7) = (ntgs);?z(?;g((;:));jp , the level-2 and level-5 modular polynomials are,
respectively,

Do(X,Y) =4X3Y3 — 12(X3Y2 + X2V3) + 12(X3Y + XV3) — 381X%Y2 — 4(X3 4+ YV?)
—336(X?Y + XY?) + 432XV,

®5(X,Y) =262144000000X Y + 19660800000X Y + 19660800000X°Y 6 + 614400000X 6y
— 2550877126656 X°Y® + 614400000X 4Y% + 10240000X°Y3 + 2094980505600 XY
+ 2094980505600X Y5 + 10240000X3Y S + 96000X Y2 — 128213414400X°Y
— 4716435974400X4Y* — 128213414400X3Y® + 96000X %Y + 480X°Y
+ 1141065600X°Y? + 3568236045600X Y3 + 3568236045600 X3Y* + 1141065600X %Y
+ 480X Y5 + X6 — 1221150X°Y + 75265374975 XY ? — 4489016056900X %Y
+ 75265374975 X 2Y* — 1221150X Y5 + Y6 + 31422600X 1Y + 309367560600X Y2
+ 309367560600X %Y 4 31422600XY? — 160088400X3Y + 101058937200X 2y 2
— 160088400X Y3 + 264539520X2Y + 264539520 X Y2 — 136048896 X Y.

7. APPENDIX — SPECIAL VALUES

In this appendix, we list the special values used in this article in Tables 4, 6, 7, and 5. Most of
the values are obtained by either applying the Chowla-Selberg formula (see for example [10, Eq.
(1)]), or using known or obtainable values together with relations between modular functions. We
first give an example of each of these methods below.

Example 7.1. Let A(7) := n(7)?*, the normalized weight-12 Hecke eigenform on PSLy(Z). Then

- 1 N2 /30 12
Proof. Using the Chowla-Selberg formula [10, Eq. (1)], we compute A(y/2i) in terms of Gamma

functions. In particular, Q(v/—8) = Q(v/—2) has class number 1, and the unique reduced binary
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quadratic form with discriminant —8 is 2% + 2y2. Moreover, 1 are the only roots of unity in
Q(v/—2). Thus the Chowla-Selberg formula gives that

8 m\ (=)
AW2)=@6m) S ] (= ,
I+ (%)

where in the powers of the Gamma values are Kronecker symbols. Evaluating the Kronecker symbols
we have that (%) = 0 when a, m are both even, and (%8) = (?) = 1, while (%8) = (%8) =—1.

Thus we obtain ) ]
a1 T

92476 /N6 _ /N6
HOR©

By the I'-reflection formula, I'(1/8)T'(7/8) = m and I'(3/8)I'(5/8) = m Thus we have
. (sin(r/8)sin(37/8))% _ /1\'2 /3\"
A(\/i@) = 2247r18 F g F g .

Using half-angle trigonometric formulas we calculate that sin(7/8) = (1/2)v/2 — v/2 and sin(37/8) =
(1/2)V2 4+ v/2 so that (sin(7/8) sin(37/8))® = 272, which gives the desired value. O

Example 7.2. Let X(7) be the Hauptmodul — 4"((7))24 for Tg(2). We have
X(i/V6) = =17 — 12v/2,
X@6) =6va+ o - 2va -2,
X(in/3/2) = —17 + 12[.

Proof. We first establish the j-value
(64) §(iV6) = j(i/V6) = 1728(1399 + 988V/2).

Since iv/6 is a CM point and Q(iv/6) a CM field of discriminant —24 and class number 2, Class
Field Theory gives that Q(j(iv/6)) = Q(v/2) and j(iv/6) € Z[v/2]. Moreover, since the lattices
Z 4+ iv/6Z and 27 + i\/6Z are inequivalent as ideals of Z[i1/6], the j-values j(iv/6) and j(iv/6/2)
are Galois conjugates, so there exist a,b € Z such that j(iv/6) = a + bv/2 and 5(iv/6/2) = a — b\/2.
These are the j-invariants of elliptic curves with CM discriminant —24 over a quadratic field, and
the L-functions and Modular Forms Database [18] shows that the only j-values of such curves
are 1728(1399 + 988+/2) and 1728(1399 — 988v/2). As the j-values are finite at these points, the
Fourier expansion of j allows the use of numerical approximation to determine which value is which.
(See [14,22] for example.)
The relation between j and X is

. 64(4X —1)°
(65) j=n
and solving the equation M = 1728(1399 + 988+/2), yields the three solutions
27 21 27
6f+———xf < V6 6f+—+ TV3+ Ve —1T—12v2

To nail down which of the three values above are X (i/v/6) and X (iv/6), one can plug i/v/6 and
11/ 6 respectively into the Fourier expansion of X to approximate and recognize the desired values.
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To find the third value X (i1/3/2) = X (iv/6/2), we can use either of the following two methods.
First, recall from (63) that level-2 polynomial satisfied by x = j(7) and y = j(27) is
y(z,y) = 2° +y° — 22y* + 1488(zy” + 2°%y) — 162000(z* + 3?)
+ 407733752y + 8748000000(z + y) — 157464000000000.
Thus using (64) to solve the equation

s (w, j(iV6)) =0,
yields the possible values of j(iv/6/2), so we can use the Fourier expansion of j(7) as above to
approximate j(i1/6/2) and determine which is the correct value. Then using (65) we can similarly
deduce the desired value of X (i4/3/2).
Alternatively, using the transformation law for the n-function we note that

- . %1 24
() -+t

27

Therefore, letting 7 = i/1/6 gives that
(66) X(in/3/2) = 1/(=17 = 12V/2) = =17 + 12V/2,
O

7.1. Tables of special values. In Tables 4 and 5 we indicate references for known or determined
values. We also indicate when a value is obtained directly or from previous values in the table using
one or more of the following methods labeled A-K below.
A : Use the transformation formula n(—1/7) = /—irn(7) together with the value for n(—1/7)
to find the value of n(7).
B : Use the relationship between to(7) = —64/jop(7) and j(7) (t2 is given in terms of n(7)
and 7(27)) along with the values of j(70),n(7p) to find the value of n(27).
C : Use the action of the Atkin-Lehner involution W3 on t54(7) sending iv/6 to i/3+/6 along
with the value of 1(iv/6).
D : Use the modular polynomial ¢3 = % +3623+27022 — 25+ 7562 +729 relating x = —27t3(7)
to j(7) along with the values of j(7p) and n(7p) to find the value of n(37).

: Use the modular polynomial relating j(7) and j(27).
: Apply the action of the matrix S = ((1) _01
: Apply the action of the matrix T'= (§ }).

: Use the modular polynomial relating j(7) and j(57).

: Use the transformation formula n(y7)?* = (cr + d)'2n(7)?* for v € SLy(Z).

: Use the Chowla-Selberg formula, as in Example 7.1.

: Use Class Field Theory and the L-functions and Modular Forms Database, as in (64).

In Table 5 we also use the following definitions to preserve space

a = (71639575 + 320381715 + 77\/ 2838511914270 + 12694211190501/5),
b= (6-10%/3(9125 + 4081V/5)),

c = (—647 + 2885 + 9\/2(5145 —2300V/5)).

To compute the special values in Tables 6 we utilize the relationship between Fy4, Fg, and A and
in 7 we utilize the relationship Fa(7) = —(63(27)* + 62(27)%).
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TABLE 4. j-values

T j(r) Method

iv2 8000 29]
i/V?2 8000 F

(1+iv3)/2 0 [29]

iv3 54000 E, G
i/V/3 54000 F
2i\/3 40500(35010 + 20213+/3) E
iV3/2 40500(35010 — 20213+/3) E
ivG6 1728(1399 + 988+v/2) K
i/V6 1728(1399 + 988+/2) F
ivV6/2 1728(1399 — 988+/2) K
iN/2/3 1728(1399 — 988+/2) E

(14+iv/6)/2 | 216(27014055899 + 19101822064+/2 — 15596572446+/3 — 11028442113+/6) | E, G
iv/10 8640(24635 + 11016+/5) K
i/y/10 8640(24635 + 11016+/5) F
i\/5/2 8640(24635 — 110161/5) K
i\/2/5 8640(24635 — 110161/5) F
iv5 320(1975 + 884+/5) K
i/V5 320(1975 + 884+/5) F
(1+iv/5)/2 320(1975 — 884+/5) K

(14+i/v/5)/2 320(1975 — 884+/5) E, G
(1414v/15)/2 —135(1415 + 637V/5) [29]

iv15 132274207975 + 122629507V/5) E, G
i/v/15 132274207975 + 122629507/5) F
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TABLE 5. n-values

T n(7)
iv/3 ST (1/3)%”
(~1+iv3)/2 Sl (1/3)%2
iV/3/2 v (V2 + DY (T ()T
iV2/3 g (V2 + DY (DTN ()T(3h)
iv6 g (V2 = DY (DT (G0 ()T(3)
i/V/6 s (V2= Y12 (DT (Er()rh)
2\/2/3 (V2 - I+ B3 - Z5V6)12 (iy/2]3)
i/3v6 614 (iv6)((—12v/2 + 12)(12v/2 + 17)%/3 — 18v/2 + 36(12v/2 + 17)1/3 — 39)1/12
1/24
206 (2359+1668\/§+§\_/21\2/3§6594+874404\/§) ST <F <i> r <%> r <%) . (
(1+iVi5)/2 o e (7)) (LTI
iv15 s (V6 = DY 2 (TN ()T ($)0())
/I3 g (V6 — Y12 (D))
i/3/5 s (V5 — 1)5/12(123 4 551/5)1/12 (%F(%)F(%)F(%)F
/315 ST 100Ebar 100 PR (5 — 1)/ (T ()P ()T
in/5/3 L 31/453/44(i/3+/15)
iV/5/2 e N A EINE N EINE N EDINE INE
W10 s (DTG (TGP ()T ()T (3314
V10 o () (T (BT () r(Zr )
iv/2/5 i (TN GGG T ) r(E)réh)
%ir/2]5 o (M) ()T (TN (N2
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1]

TABLE 6. FEj-values

T Ey(T) Eg(T
4 4 6 6
iv2| @ () T (3) | st (3) T (3)
12 18
V3| et (3) stk (3)

TABLE 7. Es j-values

k T Es k(1)

: V24 (= 14V2)?/3 (79254 56951/2+4584/3—32821/6) /3 (L) <g> (1) (Q)
2 l/\/é 32(v/2—1)2/3(—714+48/24+42/3—27/6)1/373 r 24 r 24 r 24 r

24
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