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Algorithms in the data stream model use
O(polylog(N)) space to compute some property of an
input of size N , and many of these algorithms are
implemented and used in practice. However, sketch-
ing algorithms in the graph semi-streaming model use
O(V polylog(V )) space for a V -vertex graph, and the
fact that implementations of these algorithms are not
used in the academic literature or in industrial applica-
tions may be because this space requirement is too large
for RAM on today’s hardware.

In this paper we introduce the external semi-
streaming model, which addresses the aspects of the
semi-streaming model that limit its practical impact.
In this model, the input is in the form of a stream
and O(V polylog(V )) space is available, but most of that
space is accessible only via block I/O operations as in
the external memory model. The goal in the external
semi-streaming model is to simultaneously achieve small
space and low I/O cost.

We present a general transformation from any
vertex-based sketch algorithm to one which has a low
sketching cost in the new model. We prove that this
automatic transformation is tight or nearly (up to a
O(log(V )) factor) tight via an I/O lower bound for the
task of sketching the input stream.

Using this transformation and other techniques,
we present external semi-streaming algorithms for con-
nectivity, bipartiteness testing, (1 + ω)-approximating
MST weight, testing k-edge connectivity, (1 + ω)-
approximating the minimum cut of a graph, comput-
ing ω-cut sparsifiers, and approximating the density
of the densest subgraph. These algorithms all use
O(V poly(log(V ), ω→1, k) space. For many of these prob-
lems, our external semi-streaming algorithms outper-
form the state of the art algorithms in both the sketch-
ing and external-memory models.
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1 Introduction The streaming model has been
widely successful in both the theory and systems liter-
ature for a variety of reasons. In this model, the input
is presented as a arbitrarily-ordered stream of updates,
and the challenge is to design algorithms that compute
properties of the input in small (ideally polylogarithmic)
space. On the theory side, it is an elegant and simplified
model that allows for the development of interesting up-
per bounds without getting bogged down in the details
of the hardware. Despite the relative simplicity of the
model, it has also been successful in the systems liter-
ature because it does capture important aspects of real
computers. Specifically, it captures the idea that caches
are small and fast and streams of data arrive quickly and
are too big to store. The streaming model succeeded be-
cause it hit a sweet spot between the elegance needed
for theoretical results and capturing the right hardware
constraints for designing software.

However, not all streaming problems can be solved
in the streaming model. For example, most graph-
theoretic problems have outputs that are by themselves
too large to store in the polylogarithmically sized RAM
specified by the streaming model. The graph semi-
streaming model [21, 39] was introduced in order to
bridge this gap. Specifically, in the semi-streaming
model we assume that we have O(V polylogV ) space,
where V denotes the number of vertices in the input
graph. The input stream is a sequence of edge insertions
(and possibly deletions).

The semi-streaming model has proven to be fertile
soil for theoretical results for both upper and lower
bounds. For example, there is a rich literature for
addressing a long list of graph problems [4, 2, 40, 21,
39, 28, 25, 5, 15, 6, 36, 29, 34, 17, 37, 3, 43, 16, 32, 8],
as well as computational geometric problems [27, 12,
18, 49, 9, 22], and hypergraph problems [25, 35, 19,
38, 7, 10, 26]. The semi-streaming model is elegant
and captures something exciting about the structure
of graph problems and their algorithms. We refer the
reader to the full version of the paperfor a more detailed
discussion of related work.

In the general case where the stream contains dele-
tions, all known space-e!cient algorithms are linear
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sketches. These algorithms generate a random lin-
ear projection of the input that can be stored in
O(V polylogV ) space. Moreover, there is strong theoret-
ical evidence that linear sketches are universal; i.e., that
any space-e!cient single-pass semi-streaming algorithm
with constant success probability can be formulated as
a linear sketch [32].

There is a corresponding need in industry and large-
scale science to process massive, dynamic graphs. A
recent survey by Sahu et al. [44] of industrial uses of
graph algorithms indicates that a majority of indus-
try respondents need to process massive (at minimum
multi-billion-edge) graphs, and a majority work with
graphs that change over time. Scientific applications
include metagenome assembly [24, 42], large-scale clus-
tering [47, 48, 20], and tracking social network commu-
nities that change as users add or delete friends [31, 11].

Despite its great theoretical success and a wealth
of potential applications, the semi-streaming model
has not yielded a corresponding applied literature.
The reason is straightforward – for practical purposes
O(V polylogV ) space is enormously larger than RAM
and will remain so for the foreseeable future. In Appen-
dix A in the full version of the paper, we illustrate this
problem with a case study on the k-connectivity sketch
of Ahn et al. [4], one of the simplest and smallest graph
sketch algorithms. We show that the logarithmic and
constant factors in the space complexity of this algo-
rithm are large enough that it will not save space until
we have RAM sizes in the hundreds of TBs. We note
in the case study that due to a lower bound of Nelson
and Yu [40], this asymptotic space complexity cannot be
significantly improved. Additionally, the k-connectivity
sketch is a subroutine for many other semi-streaming
algorithms such as minimum cut, spectral sparsifica-
tion, and minimum spanning tree [4]. This suggests
that the problem illustrated in our case study is not
an isolated one but rather a general limitation of many
semi-streaming algorithms.

In this paper, we show that not all hope is lost.
Our optimism is based on a reexamination of hardware
trends. We notice that the bandwidth of high-speed
storage systems is now so high that the cost of random
access to RAM is comparable to the cost of sequential
access to storage. On the other hand, such high-speed
storage is expensive and limited in size. So one of
the contributions of this paper is a modification of the
semi-streaming model based on modern hardware. For
a more detailed description of hardware that we use
to reach these conclusions, see Appendix B in the full
version of the paper.

This observation about bandwidths has an interest-
ing algorithmic implication. Many if not most advanced

semi-streaming algorithms use hashing to keep sketches
in RAM, and therefore the random-access bandwidth of
RAM is an upper bound on their performance.1 So a
hypothetical semi-streaming algorithm that made only
sequential accesses could be run on storage at the same
speed that traditional semi-streaming algorithms can be
run on RAM.

Question 1. Is there a way to redesign a semi-
streaming algorithm that uses random RAM accesses to
perform the same computation using sequential accesses
instead?

This notion of algorithms limited to sequential
accesses on disk is captured by the well-studied external-
memory model [46]. It assumes RAM of size M and disk
of unbounded size. Words in RAM can be accessed for
free, but disk is accessed in blocks of size B = o(M) and
each block access costs one dick access (I/O). The goal
is to minimize I/O cost.

So our hardware observations seem to reflect some
aspects of both of these models: because semi-streaming
algorithms are too large for modern RAM, we hope
instead to run them on modern high-speed storage
devices. The block-access constraint of the external-
memory model captures the need to design algorithms
that make sequential accesses for good performance.
The space constraint of semi-streaming captures the
fact that modern high-speed storage devices are large
enough to store semi-streaming data structures but not
the entire input graph.

In this paper, we formalize this combination of semi-
streaming and external memory to provide a theoreti-
cal model that allows for interesting algorithmic devel-
opment while also holding out the hope that more of
the good ideas that have already been developed in the
semi-streaming literature can find their way to practical
relevance.

The external semi-streaming model. As in the semi-
streaming model, graph updates in the form of edge
insertions or deletions are received in a stream, and
the total space available is O(V polylog(V )). However,
there is an additional constraint on the type of memory
available for computation: only M = !(polylog(V ))
and M = o(V ) RAM is available, as in the data stream
model, and D = O(V polylog(V )) and D = o(V 2) disk
space is available. As in the external-memory model,
a word in RAM is accessed at no cost, and disk is
accessed in blocks of B = o(M) words at a cost of a
single I/O. The algorithmic challenge in the new model
is to minimize the I/O complexity (of ingesting stream

1Sequential-access RAM is significantly faster (an order of
magnitude) but existing sketch data structures do not perform
updates sequentially.
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updates and computing solutions to queries) in addition
to satisfying the typical limited-space requirement of the
data stream model.

The technical challenge. Of course, any existing
semi-streaming algorithm can be run in the new model,
in the sense that the data structures can be stored
on disk. However, since most existing graph-sketching
algorithms use techniques such as hashing to random
locations [33, 4, 28, 25, 8], most accesses that the
algorithm makes will be random accesses. So this
approach falls short because the I/O cost is too high.

Let us get more specific about what a good algo-
rithm in the new model would look like. Any graph
sketch algorithm first compresses a large graph stream
into a small sketch (we call this sketching the input
stream), and then extracts an answer to the problem
from the small sketch. We want an algorithm that com-
pletes both of these steps at low I/O cost and uses low
space throughout. Specifically an ideal algorithm would
have the following properties:

1. Sketching cost. The cost of sketching the input
stream is at most the cost of sorting it. We choose
sorting as our target complexity because it is a
natural lower bound for most non-trivial external-
memory problems.

2. Extraction cost. The cost of computing the
desired property of the input graph from the sketch
is no more than the cost of computing the property
on a sparsified graph via the best existing external-
memory algorithm.

3. Space. The space required is the same as the best
existing graph sketch for the problem.

1.1 Overview of Results Our first result is a
definition of the external semi-streaming model. We
also present external semi-streaming graph sketch algo-
rithms for classical problems: connectivity, hypergraph
connectivity, minimum cut, cut sparsification, bipartite-
ness testing, minimum spanning tree, and densest sub-
graph. These algorithms meet or nearly meet the above
list of properties that ideal external semi-streaming al-
gorithms should have; see Section 3 for a discussion.

Moreover, we show how to transform a graph sketch
algorithm that was not designed with external semi-
streaming in mind into one that sketches the input
stream with an I/O cost roughly equivalent to that of
permuting the stream. This transformation does not
increase the space cost. This transformation applies to
a large [33, 4, 28, 25, 8] class of sketches which are called
vertex-based sketches (see Section 2).

We complement these upper bounds with I/O lower
bounds for sketching input streams in external memory

via a reduction from sparse matrix-dense vector multi-
plication. For several of the problems we consider, the
upper and lower bounds match.

The external semi-streaming algorithms we present
in this paper match the space costs of the best existing
semi-streaming algorithms for these problems, but have
much lower I/O complexity. Interestingly, several of
our external semi-streaming algorithms have I/O costs
comparable to or better than existing external-memory
algorithms for the same problems. There are two
important consequences of these results.

Graph-sketching algorithms via external-memory
techniques. Practical graph-sketching algorithms will
have to use disk, but achieving I/O e!ciency is not
overly painful. By leveraging external-memory tech-
niques, we design graph-sketching algorithms with low
I/O cost. In fact, the I/O cost of most of these al-
gorithms is competitive with the best existing external-
memory algorithms even though our algorithms use lim-
ited space and only have stream access to the input.
Even better, these results show that the algorithm de-
signer who desires practical semi-streaming algorithms
need not throw out existing techniques from the semi-
streaming literature. They simply require additional
work to make them e!cient in the new model.

External-memory graph algorithms via graph
sketching. Graph sketching is a fruitful technique
for designing external-memory graph algorithms be-
cause one can exploit the data locality of sketches
to minimize I/Os. For example, we present the first
nontrivial external-memory algorithms for hypergraph
connectivity, cut sparsification, and densest subgraph.
Our algorithms for k→connectivity and ε→approximate
min cut also outperform the best existing algorithms
for these problems for some parameter settings (see
Section 3 for details).

Roadmap Section 2 gives definitions and other pre-
liminaries. We discuss our results in more detail in
Section 3. We give an external semi-streaming algo-
rithm for the connected components problem in Sec-
tion 4. Section 5 gives a general transformation to ef-
ficiently process any vertex-based sketch algorithm in
external memory, together with a corresponding lower
bound and algorithms for other problems as corollaries.
In Section 6, we provide external semi-streaming algo-
rithms for some problems that require additional tech-
niques for extracting the answer from the sketches. We
conclude with a discussion in Section 7. In the interest
of space, some parts of this paper refer the reader to
the full version of the paper, namely the proofs of most
lemmas/theorems, a discussion of related work, and the
appendix sections. That version can be found at the
following link: https://arxiv.org/abs/2504.17563.
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2 Preliminaries

Graphs and hypergraphs. For graph G = (V, E) let
V = |V| and E = |E|. In this paper we consider only
undirected graphs. For convenience, we number the
nodes in the graph arbitrarily from 0 to V →1 and adopt
the convention that the node ID of u is less than node
ID of v for edge e = (u, v). We refer to u as the left
endpoint of e and v as the right endpoint of e. We
sometimes consider weighted graphs where each edge
has a weight w(e) ↑ 0. We define the following notation
for graph properties: let ϑ(G) denote the minimum
weight cut (or equivalently the edge connectivity) of
graph G, and then |ϑ(G)| denote the weight of that cut.
Similarly, let ϑst(G) denote the minimum weight s → t
cut in G, let ϑe(G) = ϑuv denote the u → v cut for
edge e = (u, v), and let |ϑst(G)|, |ϑe(G)| denote their
respective weights. For any S ↓ V let ϑS(G) denote the
(S,V \ S) cut in (hyper)graph G.

A hypergraph G is specified by a set of vertices
V and a set E of subsets of V called hyperedges. We
assume all hyperedges have cardinality at most r for
some fixed r. Hypergraphs are a generalization of
graphs, which correspond to the special case where each
hyperedge has cardinality two. Let a spanning graph
T = (V, ET ) of a hypergraph be a subgraph such that
|ϑS(T )| ↑ min{1, |ϑS(G)|} for every S ↓ V.

Semi-streaming model. In the graph semi-
streaming model [21, 39] (sometimes just called the
graph-streaming model), an algorithm is presented
with a stream ϖ of updates (each an edge insertion or
deletion) where the length of the stream is N . Stream
ϖ defines an undirected input graph G = (V, E). The
challenge in this model is to compute (perhaps approx-
imately) some property of G given a single pass over ϖ
and at most o(V 2) (and ideally O(V polylog(V ))) words
of memory. The model can be extended to hypergraphs
as well and the formalism below applies to both settings.

Each stream update has the form (e,”, w(e)) where
e = (u, v) for u, v ↔ V, u < v, ” ↔ {→1, 1} where
1 indicates an edge insertion, →1 indicates an edge
deletion, and w(e) denotes the weight of the edge. For
most of the problems considered in this paper, the graph
is unweighted, and in these cases we omit w(e) in the
update notation. Let si denote the ith element of ϖ,
and let ϖi denote the first i elements of ϖ. Let Ei be the
edge set defined by ϖi, i.e., those edges which have been
inserted and not subsequently deleted by step i. The
stream may only insert edge e at time i if e /↔ Ei→1, and
may only delete edge e at time i if e ↔ Ei→1.

Once every update in the graph stream has been
processed, a single query is performed, to which
the algorithm returns the computed property of the
graph. The query procedure is performed using the

O(V polylog(V )) memory retained by the algorithm at
the conclusion of the stream.

Vertex-based Sketches. In this paper we present
techniques that apply to a large family of graph sketch
algorithms[33, 4, 28, 25, 8] called vertex-based sketches.

Definition 2.1 (Vertex-based sketch[25]). We
say a linear measurement is local for vertex v if the
measurement only depends on edges incident to v, i.e.,
ce = 0 for all edges that do not include v. We say
a sketch is vertex-based if every linear measurement is
local to some vertex.

In other words, a vertex-based sketch is partitioned
such that each part is mapped to a unique vertex in the
graph, and each edge update only needs to be applied
to the sketches associated with its endpoints.

External-memory model. In the external-
memory (EM) model [46], memory is partitioned
into RAM and disk. RAM has size M and disk has
unbounded size. A word stored in RAM may be
accessed at no cost, while disk is accessed in blocks of
B = o(M) words. We refer to a disk block read or write
as an I/O, and the goal is to minimize the number of
I/Os required for an algorithm.

We will use the shorthand notation scan(N) =

#
(
N
B

)
, sort(N) = #

(
N
B logM/B

(
N
B

))
, and

permute(N) = min(N, sort(N)) for the optimal
I/Os to scan, sort, and permute data of size N in
external memory, respectively [14].

External semi-streaming model. For convenience,
we restate the definition of our external semi-streaming
model here.

In the external semi-streaming model , edge
insertions or deletions arrive in a stream. An algorithm
in this model has M = !(polylog(V )) = o(V ) RAM
available, and D = O(V polylog(V )) = o(V 2) disk
space. A word in RAM is accessed at no cost, and disk
is accessed in blocks of B = o(M) words at a cost of a
single I/O.

3 Detailed Discussion of Results In Ta-
ble 3.1, we summarize the space and I/O bounds for the
algorithms we present in this paper. All of our sketches
are vertex based (see Definition 2.1) so for each algo-
rithm Ai, its sketch is partitioned into exactly V equal-
sized vertex sketches and we denote the size of a ver-
tex sketch as ϱi. For most of these algorithms, the I/O
cost is dominated by the cost of permuting the input
stream, subject to mild assumptions. Specifically, this
is true when N , the length of the stream, is greater than
the size of the sketches, and M = !(ϱi), i.e., a single
vertex sketch fits in RAM.

Table 3.2 compares these bounds to those of the
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Algorithm Vertex Sketch Size I/O Cost

Connected Comp. ω1 = O(log2 V ) O (permute(N) + sort(V ω1))
Bipartiteness Testing ω2 = O(log2 V ) O(permute(N) + sort(V ω2))
Hypergraph Conn. ω3 = O(r2 log2 V ) O(permute(rN) + scan(Nω3/M) + sort(V ) · poly(r, log V ))
ε-Appx MST Weight ω4 = O(ε→1 log2 V ) O(permute(N) + scan(Nω4/M) + sort(V ) · poly(ε→1

, log V ))
k-Connectivity ω5 = O(k log2 V ) O(permute(N) + scan(Nω5/M) + sort(V ) · poly(k, log V ))
ε-Appx Min Cut ω6 = O(ε→2 log4 V ) O(permute(N) + scan(Nω6/M) + sort(V ) · poly(ε→1

, log V ))
ε-Cut Sparsifier ω7 = O(ε→2 log5 V ) O(permute(N) + scan(Nω7/M) + scan(V 2+o(1)) · poly(ε→1

, log V ))
2(1 + ε)-Appx ω8 = O(ε→2 log2 V ) O(permute(N) + scan(Nω8/M) + sort(V 2) · poly(ε→1

, log V ))
Densest Subgraph

Table 3.1: Space and I/O bounds for our algorithms in words of space. N denotes the length of the stream, V
denotes the number of vertices in the graph, and M denotes the size of RAM. To improve readability, we report
the space of our algorithms in terms of ϱ, the size of a vertex sketch (all of the reported sketch algorithms except
densest subgraph are vertex-based; see Section 5). The total space for algorithm i is O(V ϱi). For hypergraph
connectivity, r denotes the maximum hyperedge cardinality.

Algorithm Sketch Ext. Mem.

I/O Space I/O Space

Connected Components Better Same Same Better
Bipartiteness Testing Better Same Same Better
Hypergraph Connectivity Better Same First First
ε-Approximate MST Weight* Better Same Worse Better
k-Connectivity Better Same Conditional Better
ε-Approximate Minimum Cut Better O(log)-factor worse Conditional Better

ε-Cut Sparsifier Better Same First First
2(1 + ε)-Approximate Densest Subgraph* Better Same First First

Table 3.2: Comparison of our external semi-streaming algorithms’ space and I/O complexities to the best existing
graph sketching and external-memory algorithms. For example, “ Better ” indicates that the external semi-
streaming algorithm has a lower cost than the other algorithm, and “ Worse ” indicates that it has a higher cost.
Note for MST weight we compute an approximation while the best EM algorithm solves it exactly, and for densest
subgraph we compute a 2(1 + ε)-approximation while the existing sketch gives a (1 + ε)-approximation.

best existing graph sketch and external-memory algo-
rithms for the problems we study. To compare I/O
costs against external memory graph algorithms which
assume a static input graph, we treat them as having
an insert-only input stream of length N = E. For refer-
ence, the full details of the space and I/O costs of these
existing algorithms are summarized in Appendix C in
the full version of the paper.

Comparison to existing graph sketches. Our exter-
nal semi-streaming graph sketches always have signifi-
cantly lower I/O costs than existing graph sketches for
the same problems, and always match their space costs
(with the exception of the cut sparsifier sketch, which
uses a log V factor more space).

Comparison to existing external-memory algo-
rithms. Our external semi-streaming graph sketches al-
ways use less space than existing external-memory al-
gorithms except when N = o(V ϱi), i.e., when the
graph is very sparse and the input stream is very

short. Our algorithms for hypergraph connectivity,
approximate densest subgraph, and cut sparsification
are the first non-trivial external-memory algorithms
for these problems to our knowledge. For connected
components and bipartiteness testing, our sketches es-
sentially match (permute(N) vs. sort(N)) the I/O
costs of the best known algorithms. For approx-
imate MST, our graph sketch has worse I/O per-
formance than the best exact EM algorithm. For
k→connectivity, our algorithm performs better than the
best EM algorithm when k = O(min(M log3 V,E/V )).
For ε→approximate min cut, our algorithm performs
better than the best (exact) EM algorithm if ω =

!
(
max

(
M→1/2 log→1/2 V, (V/E)1/4loglog1/4V )

))
.

The upshot is that many of our external semi-
streaming algorithms have I/O costs comparable to or
better than existing external-memory algorithms.
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4 An External Semi-Streaming Algorithm

for Connectivity We begin by considering the prob-
lem of computing the connected components problem in
the external semi-streaming model. Ahn et al. [4] give
a O(V log2 V )-space sketching algorithm to solve semi-
streaming connectivity and, later, Nelson and Yu [40]
prove that this space cost is optimal. Subsequent
work by Tench et al. [45] presents a somewhat I/O-
e!cient version of the connectivity sketch, which was
su!cient to achieve good performance when imple-
mented, but falls short of our desired properties for
a external semi-streaming algorithm. In this section
we present a sketching algorithm which improves on
the I/O cost of the Tench et al. algorithm, and ac-
tually matches the I/O cost of the best known external-
memory connected components algorithm (assuming
that E = !(V log2 V ), that is, when the graph is not
so sparse that sketching would save no space). Further,
we show a lower bound in Section 5 for a large family
of sketch algorithms that implies as a special case that
our connectivity sketch is I/O-optimal.

4.1 Ahn et al.’s Connectivity Sketch We be-
gin by reviewing the dynamic semi-streaming connectiv-
ity algorithm of Ahn, Guha, and McGregor, which we
refer to as StreamingCC [4]:

Theorem 4.1. There exists an O(V log2(V ))-space
dynamic streaming algorithm for the connected com-
ponents problem that succeeds with high probability
(w.h.p.) in V .

The algorithm in the above theorem is a linear-sketching
algorithm:

Definition 4.2. A linear measurement of a graph
on n vertices is defined by a set of coe!cients {ce :
e ↔

(V
2

)
}. Given a graph G = (V, E), the evaluation of

this measurement is defined as
∑

e↑E ce. A sketch is a
collection of (non-adaptive) linear measurements. The
cardinality of this collection is referred to as the size of
the sketch. We will assume that the magnitude of the
coe!cients ce is poly(n).

Nearly all known small-space algorithms for data
stream problems whose input streams have both inser-
tions and deletions are linear sketch algorithms. Fur-
ther, Li et al. [32] show that the family of linear sketch
algorithms are essentially universal for insert/delete
data stream problems: for any space-optimal algorithm
that succeeds with constant probability, there is an
equivalent linear sketching algorithm that uses at most
a logarithmic factor more space than optimal.

In this paper we elide many details of Stream-
ingCC but make several necessary observations here.
Let S(G) denote a connectivity sketch of graph G. S(G)

can be partitioned into V O(log2(V ))-size data struc-
tures S

0(G),S1(G), . . .SV→1(G) which have the prop-
erty that edge update e = (u, v,”) induces changes
only to S

u(G) and S
v(G). We call S

u(G) the vertex
sketch of vertex u. For a subset A ↗ V , we let
S
A(G) =

⋃
u↑A S

u(G) denote the union of the sketches
of the vertices in A.

Crucially, the sketch is linear; i.e., it has the
property that S

u(G) =
∑

(v,w)↑E S
u((v, w)) for all u ↔

V. S(G) is computed by keeping a running sum of the
vertex sketches of each stream update.

S
u(G) may be queried to sample edges from the

neighborhood of u, and S
A(G) may be queried to sample

edges from the cut (A,V \ A). After the stream,
the algorithm finds the connected components using
Boruvka’s algorithm [41], querying sketches to sample
edges leaving each component.

Some algorithms in this paper make use of multiple
connectivity sketches of the same graph, where each
connectivity sketch is initialized with di"erent random
bits. We denote the ith connectivity sketch as Si(G).

In the external semi-streaming model, Stream-
ingCC has high I/O complexity. While Tench et al.’s
modified algorithm gets better performance in practice,
their I/O complexity can be improved. See Appendix D
in the full version of the paper.

4.2 Connectivity: Sketching the Input

Stream We present a new algorithm called ExtS-
ketchCC that computes the connected components of
the graph defined by the input stream. We refine the
stream-sketching technique of Tench et al. [45] and in-
troduce a new query procedure. As a result, ExtS-
ketchCC uses fewer I/Os to sketch the input stream
and to compute connectivity from the sketch than either
StreamingCC or Tench et al.’s algorithm.

First we describe how ExtSketchCC sketches
the input stream. As stream updates come in, we
process them in batches. For each batch, the updates
are initially sent to disk after collecting B at a time.
Once O(V log2 V ) updates have been collected, we
empty the batch by applying all its updates to the
corresponding vertex sketches. We repeat this process
for every succeeding O(V log2 V ) updates until the
stream terminates.

We now describe the batching and update proce-
dure in more detail. We arbitrarily partition the ver-
tices of the graph into vertex groups of cardinality
max{1, B/ log2(V )}. Let U ↓ V denote a vertex group.
We store S

U (G), the vertex sketches associated with the
vertices in U , contiguously on disk. This allows S

U (G)
to be read into memory I/O e!ciently: if vertex groups
are of cardinality 1, then B is smaller than the size of a
vertex sketch, and if each vertex group has cardinality
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B/ log2(V ) > 1, then the sketches for the group have
total size #(B).

For each vertex group, we have a corresponding up-
date bu!er , which will collect the updates a"ecting
that vertex group so that they can be processed e!-
ciently. The update bu"ers are stored on disk in the
same order as the vertex sketches. Since each edge up-
date e = (u, v) needs to be applied to both endpoints,
before performing the following update procedure, we
make a copy of each edge update, and mark one copy
with the left endpoint u and one with the right end-
point v. Once a batch is full, we permute the updates
into the update bu"ers corresponding to the marked
(left or right) endpoints. If the update bu"er belonging
to any vertex group U fills up during the course of the
permuting procedure, we immediately empty it by read-
ing S

U (G) into memory and applying the updates in the
bu"er. This ensures that all updates can be placed in
their target update bu"ers without overflow. Once all
elements have been permuted, we simultaneously scan
through the update bu"ers and the sketches, applying
each remaining update to the corresponding sketch.

The proof of the following lemma is deferred to the
full version of the paper.

Lemma 4.3. ExtSketchCC’s stream
ingestion uses O(V log2(V )) space and
O
(
min

(
N, N

B logM/B((V/B) log2 V )
)
+ scan(V log2 V )

)

I/Os.

4.3 Extracting the Components from the

Sketch We now describe ExtSketchCC’s procedure
for computing connected components once all stream
updates have been processed.

Our algorithm proceeds through O(log V ) rounds
each with three phases. In the first phase, an edge
is recovered from the sketch of each current connected
component. These edges make up a ‘merge list’.

In the second phase, for each edge in the merge list,
its endpoints are merged in a union–find data struc-
ture which keeps track of the current connected compo-
nents. We use the union–find data structure of Agarwal
et al. [1] for e!cient batched computation. To obtain
the best bounds from this data structure, we need the
merge list to be free of redundant merges (i.e., two di"er-
ent edges that e"ectively merge the same components).
To achieve this, we preprocess the merge list as follows.
First, we find the supernodes corresponding to the end-
points of each edge in parallel: we sort edges by increas-
ing node ID of their left endpoints. Then we simultane-
ously scan through this sorted edge list and the union–
find data structure to get the parent of each left end-
point. Repeating this ς(V ) times gives the component
of each left endpoint, where ς denotes the inverse Ack-

ermann function. Finally, we repeat these steps for the
right endpoints of each edge. At the end of this phase
we have a new list of O(V ) merges of the form u ↘ v,
indicating that the sketch for component u should be
merged into the sketch for component v. In order to re-
move redundant merges, we construct a graph H from
this list, where each vertex corresponds to a supernode
in the list, and an edge (u, v) for every merge u ↘ v.
Connected components in H correspond to nodes that
will all be merged together when all merges in the list
are completed. Therefore, we run the external-memory
connected components algorithm of Chiang et al. [14] to
compute these connected components. We then replace
the merges in the list with merges of the form u ↘ v↓,
where v↓ is the representative of the connected compo-
nent of v. Finally, we run this list of merges through
the union find data structure.

In the third phase, for each pair of connected com-
ponents merged in phase 2, the corresponding sketches
are summed. Summing the sketches of the merged
components together naïvely is I/O e!cient if B =
O(log2(V )), since the disk reads and writes necessary
for summing sketches are the size of a block or larger.

If B = φ(log2(V )), that is if sketches are much
smaller than the block size, then we need a more sophis-
ticated merge procedure. Since the merges performed
in each round of Bor#vka are a function both of the in-
put stream and of the randomness of the sketches, these
merges induce random accesses to the sketches on disk
if performed directly. In this case, this induces O(1)
I/Os per sketch merged for a total cost of O(V ) I/Os
to perform all the sketch merges. However, this opera-
tion can be done more e!ciently by sorting the merge
list by merge source in node ID order and sorting the
sketches in the same order. We then scan through the
sketches, marking each sketch with its merge destina-
tion, and finally sort the sketches by these merge desti-
nations. Now, because the sketches for each component
are stored contiguously, we can perform all the merges
with one more scan of the sketches.

The proof of the following lemma is deferred to the
full version of the paper.

Lemma 4.4. Once all stream updates have been
processed, ExtSketchCC computes connected compo-
nents using O(sort(V log2(V ))) I/Os.

ExtSketchCC can also be used as an external-
memory connected components algorithm on a static
graph. Provided the graph has enough edges, it matches
the best known upper bound of sort(E) I/Os for con-
nected components [14], and uses Õ(V ) less space.

Corollary 4.5. When E = !(V log2(V )), ExtS-
ketchCC solves the connected components problem in
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O
(
min

(
E, E

B logM/B((V/B) log2 V )
))

I/Os.

5 A General Transformation for External

Semi-Streaming Graph Sketching In the prior
section we showed that connectivity can be solved
via sketching for essentially the same I/O cost as
the best known (non-sketching) external-memory algo-
rithm. This surprising fact is due in part to the fact
that it is a vertex-based sketch, because each edge up-
date only needs to be applied to the sketches associated
with its endpoints. In this section we show how to, for
any such algorithm, sketch the input stream using essen-
tially the number of I/Os required to permute the input
stream — without increasing the space cost. We then
show that this I/O cost is optimal or nearly optimal (de-
pending on the problem) via a lower bound based on a
reduction to sparse matrix/dense vector multiplication.

Theorem 5.1. For any single-pass vertex-based
sketch streaming algorithm, the input stream can be pro-
cessed using

vsketch(N,V,ϱ) :=

O

(
min

(
N,

N

B
logM/B(V ϱ/B)

)

+ scan(Nϱ/M) + scan(V ϱ))

I/Os and total space O(V ϱ).

Proof. We follow the procedure described in Section
4.2, except we set the size of a batch to be O(V ϱ), vertex
groups to have cardinality max{1, B/ϱ} and the size of
each update bu"er to be ϱ.

In the case where ϱ = o(M), the result follows
immediately. In the case where ϱ = !(M), the
procedure for applying the updates in an update bu"er
to a sketch is more complicated and expensive. (In this
case, vertex groups will always be of size 1.)

Sorting each batch costs permute(V ϱ) =
min(V ϱ, sort(V ϱ)) I/Os. Whenever the update
bu"er for vertex u fills, we apply the updates by hold-
ing the first O(M) elements of the bu"er in memory
and scanning over Su(G) in O(M)-size chunks, applying
the updates to each chunk. This costs scan(ϱ) I/Os per
O(M) updates, and there are at most V ϱ/M such sets
of updates per batch, for a total I/O cost to apply the
updates of O(scan(V ϱ2/M)) per batch.

There are N/(V ϱ) batches, for a total ingestion
I/O cost of O

(
N
V ω (permute(V ϱ) + scan(V ϱ2/M))

)
=

O
(
min

(
N,N logM/B(V ϱ/B)

)
+ scan(Nϱ/M)

)
.

Finally, similarly to Lemma 4.3, we have an I/O
cost of scan(V ϱ) in the case that N < V ϱ.

5.1 A Matching I/O Lower Bound Now we
show an I/O lower bound for sketching the input stream

for any vertex-based sketch algorithm. Depending on
the problem and M , the lower bound either matches
the upper bound exactly or has a O(log V ) gap.

To prove a lower bound, it is useful to separate
the sketching from the data-structural aspect, so that
we can argue about the I/O complexity of the data-
structure. Here, we focus on sketching algorithms such
that

• The sketch is created from N edge updates (insert
or delete) that are presented in arbitrary order to
the data structure.

• Sketches work with vertex sketches of polylog many
numbers that are treated as atoms of the I/O
model. These atoms can only be added up (using
associativity and commutativity).

• An edge contributes precisely to the two vertex
sketches of its endpoints. An edge is treated as
an I/O atom. The I/O algorithm can read out the
(polylog many) number atoms from an edge atom
at no cost in internal memory (transformation).
The di"erence between insert and delete is not
visible to the I/O data structure—it merely adds
up all the components of the sketches. This can
easily be used to implement deletions by canceling
contributions. The data structure is not required
to check if the multiplicity of an edge is 1. The
transformation function is available to the I/O
algorithm at no cost.

• All vertex sketches have the following two-
dimensional sparsity structure: The sketch consists
of numbers organized in ↼ rows and ↽ = #(logN)
columns. The contribution of a single edge satisfies

– The first column of each row always has a non-
zero entry.

– Each row starts with non-zero entries followed
by zero entries.

– The probability of a row having k non-zero
entries is (1/2)k. This is truncated at ↽ , if the
row should be longer.

Encapsulating the nature of hash functions defining the
contributions of an edge to a sketch, the above “magic
expansion” of an edge atom into many number atoms is
justified: while it is deterministic, to the I/O algorithm
everything looks as if it is completely random and has no
structure that can be exploited for improved e!ciency.

Add edge (u, v) The item is a single atom of the I/O
model.

Finalize The algorithm produces a sorted list of vertex
sketches, each having ↼ rows and ↽ columns.
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The parameters of this interface are N , the number of
add (insert/delete) operations; ↼, the number of rows in
a vertex sketch; ↽ , the number of columns in a vertex
sketch; ϱ = ↼↽ , the number of atoms in a vertex sketch;
and V , the number of vertices.

The upper bound is

O
(
min

(
N,

N

B
logM/B(V ϱ/B)

)

+ scan(Nϱ/M) + scan(V ϱ)
)
.

Theorem 5.2. Assume there is an implementation
of the above interface. There exists a sequence of N Add
operations followed by a Finalize such that the following
number of I/Os are necessary:

!

(
min

(
N,

N

B
logM/B(V ϱ/B)

)
+ scan(N↼/M)

)

The proof of this theorem is deferred to the full
version of the paper.

Observe that for the case of M ↑ ϱ (and the scan-
ning of the sketch not dominating the algorithm), we
have asymptotically matching upper and lower bounds.
This is the case for the previously stated assumption
M = !(polylog(V )) of our hybrid graph streaming set-
ting. Otherwise, in an extended parameter range of the
I/O data structure, with the results presented so far,
there is a #(logN) gap between the upper and lower
bounds. To almost close this gap, we can improve the
upper bound by the following considerations. The fol-
lowing lemma follows by a straightforward union bound.

Lemma 5.3. Assume there are ↼ random variables
Xi ↑ 1 with p[Xi = j] = (1/2)j. Then the probability
p[≃i : Xi > j] ⇐ min(1, ↼(1/2)j)

Now we split the data structure for the sketches
by columns, ↽ ↓ ↑ 1 columns per data structure, chosen
such that ↽ ↓↼ ⇐ M (if possible, otherwise set ↽ ↓ = 1).
An edge is always inserted into the data structure for
the first columns, and also in all the data structures
where one of its rows has a non-zero entry in one of
the columns of the data structure. Hence, the expected
contribution of an edge to the input stream of the
k-th data structures is min(1, ↼(1/2)kε

→
), i.e., 1 for

k↽ ↓ < log ↼ and then geometrically decreasing. This
improves the scan(Nω

M ) term in the upper bound to
scan(Nϑ log logN

M ). As long as ↼ is polylogarithmic in
N this leads to a gap of O(log logN) between the upper
and lower bounds. If M = !(↼ log logN), there is no
asymptotic gap between the upper and lower bounds.

5.2 More External Semi-Streaming Algo-

rithms Theorem 5.1 immediately implies e!cient ex-
ternal semi-streaming algorithms for hypergraph con-
nectivity (for bounded hyperedge cardinality r), bipar-
titeness testing, and (1+ω)-approximating MST weight,
all of which use O(V poly(log(V ), ω→1, k, r)) space and
vsketch(N,V, poly(log(V ), ω→1, k, r)) I/Os.

Hypergraph connectivity. In followup work, Guha
et al. [25] show that by using a slightly di"erent vector
encoding, their connectivity result can be extended
to hypergraphs at the cost of a multiplicative O(r2)
increase in the size of the sketch, where r is the
maximum hyperedge cardinality. The remainder of the
algorithm is essentially unchanged. We defer the proof
of this corollary to the full version of the paper.

Corollary 5.4. Given a hypergraph G = (V, E)
with maximum edge cardinality r, there exists a
O(vsketch(rN, V, r2 log2 V )+sort(r2V log2 V )) -I/O al-
gorithm which computes a spanning forest of G w.h.p.
and uses O(r2V log2(V )) space.

To our knowledge, this is the first nontrivial
external-memory algorithm for hypergraph connectiv-
ity.

Bipartiteness testing. We present an algorithm for
testing whether a graph is bipartite. The result is
immediate: Ahn et al. [4] reduce determining whether a
graph G = (V, E) is bipartite to computing the number
of connected components of a graph D(G) = (V ↓, E ↓)
such that for each v ↔ V we add v1, v2 ↔ V

↓ and for each
edge (u, v) ↔ E , we add two edges (u1, v2) and (u2, v1).
This, combined with Lemmas 4.3 and 4.4, give the
following theorem:

Theorem 5.5. There exists a O(V log2(V ))-space,
vsketch(N,V, log2 V )- I/O algorithm for bipartiteness
testing that succeeds w.h.p.

Approximating minimum spanning tree weight.
Ahn et al. [4] show how to (1 + ω) approximate the
weight of the minimum spanning tree (MST) of a graph
G = (V, E) by using their connected components (CC)
sketches. For edge weights in the range [W ], they create
r = log1+ϖ(W ) CC sketches and use the ith to sketch
Gi = (V, Ei), where Ei = {e ↔ E : w(e) ⇐ (1 + ω)i}, and
w(e) denotes the weight of edge e. They prove that

w(T ) ⇐ n→ (1 + ω)r +
r∑

i=0

⇀icc(Gi) ⇐ (1 + ω)w(T ),

where T denotes the minimum spanning tree of G,
cc(Gi) denotes the number of connected components in
Gi, and ⇀i = (1 + ω)i → (1 + ω)i→1.

It su!ces to find the number of connected
components of each Gi. Constructing the
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O(log(V )) CC sketches via Theorem 5.1 uses
O(vsketch(N,V, ε→1 log2 V )) I/Os, and reconstruct-
ing the spanning forests from each sketch takes
sort(V log2(V )) I/Os by Lemma 4.4. This gives the
following theorem:

Theorem 5.6. There exists a O(ω→1V log2(V ))-
space, O(vsketch(N,V, ε→1 log2 V ) +
ε→1sort(V log2(V ))) I/O algorithm which (1 + ω)-
approximates minimum spanning tree weight w.h.p.

6 More Extraction Techniques for Exter-

nal Semi-Streaming Algorithms The algorithms
described in the previous section rely on both the gen-
eral transformation described in Theorem 5.1 and the
procedure described in Lemma 4.4 that computes a
spanning forest from the sketches after stream inges-
tion. In general, while Theorem 5.1 provides a way to
perform stream ingestion I/O e!ciently on any single-
pass vertex-based sketch algorithm, the challenge of how
to minimize the extraction cost remains open. Most
graph sketch algorithms have a post-stream procedure
for querying their sketch data structures to produce
a sparse graph which retains (perhaps approximately)
some property of the graph defined by the stream. We
now present some external semi-streaming algorithms
that demonstrate how to minimize both the I/O cost
of querying the sketch to produce a sparsifier, and then
computing the answer from that sparsifier. The proofs
of the theorems in this section are deferred to the full
version of the paper.

Testing k-edge-connectivity. We consider the prob-
lem of testing k-connectivity of a graph G = (V, E), or
equivalently, exactly computing the minimum cut ϑ(G)
if ϑ(G) ⇐ k.

We make use of the solution of Ahn et al. [4],
which constructs a k-connectivity certificate H =⋃

i↑[k] Fi where F0, F1, . . . , Fk→1 are edge-disjoint span-
ning forests of G. H has the property that it is k↓-
edge connected i" G is k↓-edge connected for all k↓ ⇐ k.
They find each Fi by computing a connectivity sketch
Si(G \

⋃
j<i Fj). This is done in a single pass over

the stream: during the stream, they keep k di"erent
sketches of G: S0(G),S1(G), . . . ,Sk→1(G). We use K(G)
to denote the concatenation of these k connectivity
sketches. After the stream, S0(G) is used to find F0 and
the edges of F0 are deleted from the remaining k → 1
connectivity sketches. S1(G \ F0) can now be used to
get F1, whose edges are subsequently deleted from the
remaining k → 2 sketches and so on.

The extraction step of the above algorithm must
access K(G) at least once so it has a trivial lower I/O
bound of scan(kV log2 V ). Performing the spanning for-
est deletions naively requires a k factor I/O overhead:

scan(k2V log2 V ). Recall that we would like our algo-
rithm to have an extraction cost not much higher than
the cost of computing the property on a sparse graph in
external memory, so we must reduce this overhead. The
primary challenge to doing so is that the edges found
in each spanning forest induce deletions to subsequent
spanning forests, which necessitate many random ac-
cesses with di"erent deadlines. We solve this issue by
scheduling deletions for each spanning forest Fi care-
fully so that the deletion cost can be amortized over the
cost of querying later sketches Sj⇒j > i, as described in
the proof in the full version of the paper. This reduces
the I/O overhead from k to log k. Finally, we apply an
exact min cut algorithm due to Geissman and Giani-
nazzi [23] to compute the minimum cut of the union of
the k forests. This gives the following theorem:

Theorem 6.1. There exists an O(kV log2(V ))-
space, O(vsketch(N,V, k log2 V ) + ksketch(V, k) +
sort(kV ) log4(V )) -I/O algorithm for testing k-edge
connectivity that succeeds w.h.p., where

ksketch(V, k) =






scan (k log(k)V log2(V )),

when k log2(V ) = o(M)

scan (k2V log2(V )), otherwise.

Approximating the minimum cut. Ahn et al. [2]
provide a O(ω→2V log4(V ))-space single-pass streaming
algorithm for (1 + ω)-approximating the minimum cut.
We summarize it here.

Define G0 = G and form Gi ↓ Gi→1 by deleting
each edge in Gi→1 independently with probability 1/2
for each i ↔ [O(log(V ))]. For each Gi, construct a
k = O(ω→2 log(V ))-skeleton Hi using Ahn et al.’s k-
connectivity algorithm [4]. The authors show that
ϑ(G) ⇐ 2jϑ(Hj) ⇐ (1 + ω)ϑ(G) for j = min{i :
ϑ(Hi) < k} where ϑ(D) denotes the minimum cut of
graph D. Therefore, returning 2jϑ(Hj) gives the desired
approximation to ϑ(G). Note that while the algorithm
returns a vertex set S such that the cut (S,V \ S) has
weight no more than (1 + ω)ϑ(G), it cannot be used to
recover the set of edges across (S,V \ S).

We can obtain a external semi-streaming algorithm
by applying Theorem 5.1 and Theorem 6.1 to the above
sketch, and then applying the external-memory exact
min cut algorithm of Geissman and Gianinazzi [23] to
find the minimum cuts of each (Hi). This gives the
following theorem.

Theorem 6.2. There exists a external semi-
streaming algorithm for (1 + ω)-approximating the
minimum cut of G w.h.p. that uses O(ω→2V log4(V ))-
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space and

O(vsketch(N,V, ω→2 log4 V )

+ loglogV · ksketch(V, ω→2 log(V ))

+ log4(V )loglog(V )sort(ω→2V log(V )))

I/Os.

Returning the Edges Crossing a Minimum Cut In
the external-memory model, where we retain access to
all the edges in G, we can recover all of the edges in
the approximate minimum cut returned by the above
algorithm. Let (S,V \ S) denote the (1 + ω) minimum
cut returned. Sort the nodes in S in increasing node
ID order. Similarly, sort the list of edges E in the input
graph G in increasing node ID order of the left endpoint,
that is, each edge e = (u, v) is sorted in increasing node
ID order of u. Scan through the list of nodes in S and
the list of edges simultaneously, marking each edge e s.t.
u ↔ S. Next, sort the edge list in increasing node ID
order of right endpoint, and mark each edge e s.t. v ↔ S
similarly. Finally, scan through the edge list and return
each edge such that exactly one of its endpoints is in S.
This gives the following corollary to Theorem 6.2:

Corollary 6.3. There exists a

O(sort(E) + loglogV · ksketch(V, ω→2 log(V ))

+ log4(V )loglog(V )sort(ω→2V log(V )))

-I/O external-memory algorithm that returns the edges
of a cut (S,V \S) that is at most (1+ω) times the weight
of the minimum cut w.h.p.

Cut sparsifiers. We turn our attention to approx-
imating any cut value in the graph. Specifically, the
task is to find a ω→cut sparsifier H of G, that is, a
weighted subgraph H = (V, E ↓, w) is an ε-cut sparsifier
for G if ⇒S ↓ V, (1→ ω)ϑS(H) ⇐ ϑS(G) ⇐ (1 + ω)ϑS(H).

Ahnet al. [2] provide a semi-streaming algorithm for
constructing a cut sparsifier. As in the algorithm for
approximating the minimum cut, define G0 = G, and
then graphs Gi ↓ Gi→1 are formed by deleting each
edge in Gi→1 independently with probability 1/2, for
each i ↔ [O(log(V ))]. For each such i, construct Hi, a
k = O(ω→2 log2(V ))-connectivity certificate of Gi. Then
a post-processing step decides for each edge e ↔

⋃
i Hi

whether to add e to the sparsifier H, as follows. For
each e, compute j(e) = min{i : ϑe(Hi) < k} . Then e is
added to H with weight 2j(e) if and only if e ↔ Hj . H

is returned as the desired cut sparsifier.
We need an I/O e!cient way to compute ϑe for all

the edges in each Hi. We make use of Laxhuber et al.’s
ω-approximate max flow algorithm [30], which has I/O
cost that is proportional to E1+o(1). By using sketching

to sparsify the graph while preserving scaled cut values,
we reduce both the number of max flow computations
as well as their individual cost by reducing the number
of edges by a Õ(V ) factor.

Theorem 6.4. There exists a O(ω→2V log5(V ))-
space and O(vsketch(N,V, ε→2 log5(V )) +
log log(V )(ω→10V 2 log11(V ))1+o(1)/B)-I/O algorithm
for constructing a (1 + ω)-cut sparsifier of a graph G

w.h.p.

Once we have the cut sparsifier, we can use it to ap-
proximately answer s-t min cut queries with Laxhuber’s
max flow algorithm [30]. If we want a (1 + ε) approxi-
mation overall, we must set ε↓ =

⇑
1 + ε → 1 = O(ε1/2)

for both the cut sparsifier algorithm and the max flow
algorithm. This yields the following corollary:

Corollary 6.5. There exists an algorithm to find
x di"erent s→ t min cuts on a graph G w.h.p. using

O(vsketch(N,V, ε→4 log5(V ))

+ log log(V )ω→20 log11 V )scan(V 2)

+ xε→6scan(ε→4V log3(V ))

I/Os.

Densest subgraph. McGregor et al. [34] give an
algorithm for (1 + ω)-approximating the density d↔(G)
of the densest subgraph of graph G. The main idea is to
create a subgraph H, which subsamples each edge in G

independently with probability p = V log V
ϖ2E , despite the

fact that true value of E (and therefore p) is not known
until the end of the stream. They show that 1

pd
↔(H)

approximates d↔(G) to within a factor of (1 + ω) with
high probability. The density of the densest subgraph
of H is computed by a black-box algorithm.

The following is performed O(log V ) times indepen-
dently in parallel. Before the stream, partition the po-
tential edges of the graph into #(ω→2V ) buckets using
pairwise independent hash functions. Insert arriving
edges into the O(log V ) ⇁0-sketches corresponding to
their bucket.

In the post-processing step, compute p based on the
final number of edges E that are present in the graph.
Then simulate sampling each edge independently with
probability p as follows. For the ith bucket in the jth
partition, randomly draw Xij ⇓ Bin(Eij , p), where Eij

is the number of edges present in the bucket at the
end of the stream. Then, select Xij edges uniformly
without replacement by querying each of the first Xij

of the bucket’s sketches in sequence to produce one
edge each, where any queried edges are deleted from
all subsequent sketches before querying the next sketch.
This is performed only for buckets that are ‘small’, i.e.,
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those that contain at most 4ω2E/V edges. The parallel
partitions are performed to ensure that every edge is in
some small bucket with high probability. Finally, the
union of the queried edges from makes up H.

The above algorithm is not a vertex-based algo-
rithm. However, we show below that it is possible to
partition the edges once using a #(log V )-wise inde-
pendent hash function such that every bucket is small
with high probability. Now we maintain O(log2 V ) ⇁0-
sketches for each bucket. This ensures that edges only
have to be added to the sketches for their one cor-
responding bucket, which can be stored contiguously.
This allows us to apply Theorem 5.1.

To compute the densest subgraph in H, we use
Charikar’s greedy peeling algorithm [13]. The algo-
rithm iteratively removes the lowest degree vertex from
the graph, as well as all incident edges, to produce a set
of induced subgraphs down to a singleton vertex. The
algorithm returns the densest of these subgraphs. This
provides a 2-approximation to the densest subgraph, re-
sulting in a 2(1 + ω)-approximation overall.

Theorem 6.6. For a graph G = (V, E) and
ω > 0 with ω2E/V = !(log V ), there exists a
O(ω→2V log3 V )-space and O(vsketch(N, ω→2V, log3 V )+
V sort(ω→2V log2 V ))-I/O algorithm for 2(1+ω) approxi-
mating the density of the densest subgraph of a G w.h.p.

7 Conclusion In this paper we introduce the
external semi-streaming model, which combines the
stream input and limited space of the semi-streaming
model with the block-access constraint of the external-
memory model.

We present a general transformation from any
vertex-based sketch algorithm in the semi-streaming
model to one which a low sketching cost in the external
semi-streaming model. We complement this transfor-
mation with a I/O lower bound for sketching the input
stream. For some algorithms, these bounds are tight;
for others there is a O(log V ) gap.

We present several techniques for minimizing the
extraction cost. We show how to I/O-e!ciently extract
many mutually edge-disjoint spanning forests from a
k-connectivity, min cut, or cut sparsifier sketch. We
also present new external-memory graph algorithms
for densest subgraph and cut sparsification. These
algorithms have low I/O complexity on sparse graphs
and high I/O complexity on dense graphs, but because
we sparsify the input graph via sketching, our result is
an algorithm that has low I/O complexity on any graph
regardless of density.

Putting these techniques together, we present ex-
ternal semi-streaming algorithms for connectivity, hy-
pergraph connectivity, minimum cut, cut sparsification,

bipartiteness testing, minimum spanning tree, and dens-
est subgraph. For many of these problems, our external
semi-streaming algorithms outperform the state of the
art in sketching and external-memory graph algorithms.

The field of semi-streaming has had the problem
that the algorithms developed in the model are gen-
erally too big for RAM and too random for SSD. This
barrier prevents most graph sketch algorithms from run-
ning on today’s hardware, making them useless for any
reasonable application. External semi-streaming algo-
rithms get around this barrier because they are small
enough to store on SSD and they make mostly sequen-
tial accesses. So instead of having to wait decades for
these algorithms to be useful, we may be able to make
use of graph sketching on today’s hardware.

Given the results in this paper, we believe that I/O
complexity should be treated as a first-class citizen in
the design and analysis of semi-streaming algorithms.
The transformations in this paper for vertex-based
sketches makes it more feasible, and in some cases even
trivial, to design external semi-streaming algorithms.
We also believe that sketching is a powerful technique
for designing external-memory graph algorithms, even
outside of a streaming setting.

Finally we note that the fields of external memory
and semi-streaming have been parallel but separate
ways of dealing with massive data. In this paper we
show that each field can contribute to the other in
important ways.
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