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ARTICLE INFO ABSTRACT
Keywords: Metallo-phosphines are ubiquitous in organometallic chemistry with widespread applications as catalysts in
Gold various chemical transformations, precursors for organic electronics, and chemotherapeutic agents or chemical
Phosphorus probes. Here, we provide a comprehensive review of the exploration of the current biological applications of Au
Bonding . . complexes bearing phosphine donor ligands. The goal is to deepen our understanding of the synthetic utility and
Organometallic chemistry .. . R .
Biology reactivity of Au-phosphine complexes to provide insights that could lead to the design of new molecules and
enhance the cross-application or repurposing of these complexes.
1. Introduction has attracted interest due to their facile synthesis, unique electronic
properties, diverse structural motifs, and promising applications in
The chemistry of Au complexes containing phosphine donor ligands catalysis, material science, and chemical biology [1-7]. Au has many
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Fig. 1. A. Orbital diagram showing relativistic effect on the s and d orbitals of
Au. B. Relative energy levels for Au non-relativistic (left) and relativistic (right).
Modified with permission from Refs [12,21]. Copyright 2015, 2023 Elsevier.

unique properties, which can been explained by the relativistic effect
[8-11]. Relativistic effect is characterized by anomalous chemical
properties usually observed in heavier atoms on the periodic table [12].
According to Einstein’s theory of relativity, the mass (m) of a moving
particle increases with the increase of its velocity (v) compared to its rest
mass (mg) [12-14]. In heavier atoms such as Au, there is an increase in
atomic nuclear charge (Z), which leads to increase in the velocity of
electrons that penetrate to the nucleus (the 6s electrons) and subsequent
increase in mass. This increase leads to smaller orbitals for 6s electrons
and shielding of the nuclear charge from other electrons in the 5d and 4f
subshell with larger orbitals (Fig. 1).

Relativistic effect of Au results in the stabilization of its 6s orbital
with Au having the highest electronegativity (E.N = 2.54) among metals
and situating Au complexes as thermodynamically metastable to
reduction to elemental Au [10]. Furthermore, the electrochemical po-
tential of Au is highly positive (Au'*/AuE® = 1.69V, Au®/Au™ E® =
1.41 V, Au®*/Au = 1.5 V) compared to other transition metals Ta>"/Ta
E°=-0.6V,W3'/W=0.1V,Re*" /Re=0.5V, 0s>"/0s = 0.9V, Ir*"/
Ir = 1.0, Pt>*/Pt = 1.18 V, Hg?*/Hg = 0.648 V, Ag!T/Ag E° = 0.8 V,
Cul®/Cu E° = 0.52 V, Cu®'/Cu't E° = 0.34 V [15-20] this means that
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gold complexes in any oxidation state can be easily reduced to elemental
Au when a reducing agent is present. Also, the stable electronic
configuration of Au ([Xe] 6s4f15d1%) with a full d orbital and half-
filled s orbital limited its reactivity and Au chemistry has been under-
explored until recently where different ligands have been used to tune
the reactivity of Au.

1.1. Chemistry of phosphine metal complexes

Concerted ligand to metal o-donation and metal to ligand n-back
donation for transition metals also known as Dewar-Chatt-Duncanson
model describes the interactions occurring between transition metal d-
orbital and a donor ligand. Phosphines are neutral c-donor ligands
donating their lone pair of electrons to the empty d orbital in transition
metals, they could also act as t-acceptor ligands (n-acids) depending on
the nature of R-groups on the phosphine. Alkyl R-groups has the lowest
n-acidity compared to alkoxy or aryl groups (Fig. 2) [22,23].

Phosphines such as triphenylphosphine (PPhs), triethylphosphine,
1,2-bis(diphenylphosphino) benzene (DPPBz), phosphaadamantane
(Fig. 3) and its derivatives exhibit strong affinity toward metal atoms,
forming stable coordination complexes with distinct coordination ge-
ometries, reactivity profiles, and applications [24-26]. Moreover, the
ability to tune the electronic and steric properties of phosphine ligands
during its synthesis has contributed to their development as effective
ligands in chemistry, while their multifaceted applications especially in
coupling reactions have resulted in more diverse and complex phos-
phines. However, many phosphines can oxidize easily in air and are
required to be handled in an inert atmosphere, yet phosphines such as
triphenylphosphine (PPhs), 1,2-Bis(diphenylphosphino)benzene
(DPPBz) are air stable. Whereas primary phosphines are generally
considered air sensitive, inclusion of bulkier groups, alkyl spacer groups,
extended 7-conjugation and heteroatoms have been proposed to confer
stability on phosphines [27-30]. Also, phosphines can be categorized
based on the nature of groups attached to it as homoleptic phosphines
containing similar groups on the phosphorus atom (e.g PPhs, DPPBz),
heteroleptic phosphines containing different groups on the phosphorus
atom (e.g 2-dicyclohexylphosphino-2',6'-dimethoxybiphenyl (SPhos), 2-
dicyclohexylphosphino-2',4,6"-triisopropylbiphenyl ~ (XPhos)), and
asymmetric (P-chiral) phosphines (e.g 1,2-Bis[(2R,5R)-2,5-dimethyl-
phospholano]benzene (R,R-MeDuPhos), (R,R)-2,3-Bis(tert-butylme-
thylphosphino)quinoxaline (R,R-QuinoxP)®) [31]. They can also be
classified as monodentate, bidentate and polydentate phosphines
(Figs. 3 and 4) based on the number of phosphorus atoms and/or
chelating ability of the phosphine.

Metallo-phosphines are ubiquitous in organometallic chemistry with
widespread applications as catalysts in various chemical trans-
formations, precursor for organic electronics, and as chemotherapeutic
agents or probes in medicine [1,6,32-38]. The first reported synthesis of
metallo-phosphines was the synthesis of Pd, Pt and Au complexes
bearing tertiary phosphine ligands in the late 19th century by Cahours
and Gal [39-41]. While Cahours and Gal identified bis(triethylphos-
phine)dichloroplatinum(II) as f and « isomers, the advent of Werners
theory of coordination complexes and other spectroscopic methods
ensured the complexes were given the correct nomenclature as cis ()
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Fig. 2. Bonding in phosphines.
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Fig. 3. Examples of monodentate phosphine ligands used in organometallic chemistry.

and trans (o) isomers. Mann et al., later reported on the synthesis of a
vast number of metallo-phosphines and investigated the nature of the
bond between phosphorus and the metal in the complex [42-46]. Also,
research by Jensen et al., determined the dipole moments of phosphine
and arsine metal complexes thereby assigning the correct cis/trans iso-
mer to previously synthesized complexes [47,48] and Chatt who trained
under Mann further synthesized a variety of tertiary metallo-phosphines
and studied the importance of phosphines in bringing complex chem-
istry out of aqueous solutions into organic solvents [49-53]. These
works further revolutionize the field with widespread applications as
hydrogenation and carbonylation catalysts, alkene and alkyne func-
tionalization reactions, stimuli responsive materials, biological probes
and drugs in medicine [54,55].

1.1.1. Factors that dictate structure activity relationship (SAR) in
phosphine-metal bonds

Changes in the chemical structure of phosphine ligands affect the
coordination, stability and biological reactivities of the resulting Au
complexes and a detailed SAR studies of phosphinogold complexes can
give valuable insights into the design of phosphine ligands and hence
their Au complexes for the synthesis of next generation of biologically
potent Au drugs. Over the past four decades immense research has been
carried out to understand the electron donor-acceptor properties of
phosphorus ligands. Earlier work by Strohmeier and Miiller studied
some monosubstituted metal carbonyls with phosphorus ligands (PRs3)
and ranked the relative n-acceptor strength of the phosphorus ligands
from the changes in the valence vibration band vC-O [56]. More
prominent work by Chad Tolman in the 1970s showed that electronic
and steric effects can cause marked changes in the behaviour of phos-
phines, the electronic parameters (v) were effectively determined by an
infrared method by computing the electron donor-acceptor properties of
PR3 based on measuring the A; carbonyl stretching frequency of 0.05 M
solution of Ni(CO)sL (L = PR3) in CHyCl, (Fig. 5). In his experiment,
Tolman proposed the substituent additivity rule for the Ni(CO)sPR3

complexes, where the A; of a complex was the summation of the con-
tributions of the different R-groups (Xi) on the phosphine ligand. Tri-
tert-butylphosphine (P(t-Bu)s) with frequency of 2056.1 cm ™! was the
most basic of the compounds studied with Xi = 0. The A; of the other
complexes were determined based of the P(¢-Bu)s reference from the
equation below [57].

3
vCO (A1) = 2056.1 + Y _ Xi

i=1

Also, the steric parameters was determined from the cone angle (6)
defined by angle formed by the metal atom at the base of a cone and the
two farthest atoms on the ligand and this provides a measure of the steric
demand of the ligand [57-59]. He and others later summarized this
findings on the effect of increasing the size of substituents on phos-
phorus in an extensive review [58].

With advancement in computational studies, the Tolman electronic
parameter (TEP) has been revisited and modified by various authors
[59-63]. The key arguments are the observed mode-mode coupling
between CO and M-C stretching vibrations that leads to coupling errors
and the oversimplified M-L bond strength described by Tolman. This has
led to authors postulating newer models such as the decoupled (local)
CO stretching frequency as a local TEP (LTEP) and metal-ligand elec-
tronic parameter (MLEP) to correct these anomalies [59,61,62]. The
electronic and steric parameters for metal-monophosphines have been
widely studied but only few reports on bisphosphine ligands have been
established. Phosphorus-Metal-Phosphorus bite angle (P-M-P) has been
the ligand parameter studied for various bisphosphine ligands used in
catalysis [64,65]. It should be noted that while the effect of electronic
parameter have been widely studied in the field of catalysis, there are
few reports that correlates the electronic parameters to biological
functions of phosphine metal complexes.

The effect of phosphine substituents on gold complexes have been
described both theoretically and in biological systems. Rosch and Hab-
erlen described this effect using the scalar-relativistic version of the
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R = Et, Me, i-Pr, n-Bu R = Me, Et, i-Pr, n-Bu R = Et, n-Bu
AuP-1-4 HO AcO
r= HO o) R = AcO O  AuP-9,10
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OH OAc
AuP-5-8 R =n-Bu
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R = Et NHAc
HO
.. HO o
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OH
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OH

N.B. AuCl was prepared in situ by the reduction of HAuCl,e3H,0 with S(CH,CH,OH) (thiodiglycol).

linear combination of Gaussian-type orbitals (LCGTO) local density
functional (LDF) on three Au(I) complexes MeAuPR3 (R = H, Me, Ph).
This model ensures the treatment of all electrons in the molecule. Results
from the spectroscopic constant indicates a monotonic decrease in the
ionization potential from 9.10 eV for MeAuPMe; to 8.13 eV for
MeAuPPhg which aligns with the increasing electron donating activity of
the ligands [66]. Furthermore, Dos Santos et al., studied the role of
phosphine auxiliary ligands on the stability and redox behaviour of two
classes of Au(Ill) complexes [Au(C-N-C)PR3]" (C-N-C = 2,6-diphe-
nylpyridine) and [Au(N—N—N)PR3]®>* (N-N-N = 2,2':6/,2"-terpyridine)
where PR3 = phosphine ligand. The stability of these anticancer Au(III)
complexes was influenced by the electronic properties of the phosphine
ligands, complexes with strong c-donor phosphine substituent and
buried volume (%Vpyr 32.8-41.6 %) destabilizes [Au(C-N-C)PR3]*
complexes. Furthermore, complexes with t-But and cyclohexyl R-groups,
caused a large torsion of the N-Au-P bond angle that also contributes to
facilitate the reduction of Au(Ill) complexes [67].

While this work will not attempt to postulate a model, we will review
the biological applications of Au complexes with phosphine donor li-
gands as potential drugs and highlight examples where structure-
activity relationships have aided their design as a general introduction
to this review.

1.2. Evolution of Au phosphine in biology

The medicinal application of Au compounds can be traced back to
5000 B-C in many ancient culture like Egypt, India and China and its use
was popularized during the late Middle Age and Renaissance [68-70].
The search for an improved therapy specific to treatment of rheumatoid
arthritis in the 1960s to early 1970s fostered the birth of Au phosphine
biology. Earlier studies have demonstrated the utility of chrysotherapy
in the remission of the disease in both juvenile and adult forms with
parenterally administered Au drugs aurothioglucose and aurothiomalate
leading the way, yet there was the need for improved therapy with oral
route of administration. Findings by researchers at Smith Kline and
French Laboratories Philadelphia, Pennsylvania in 1972 on the anti-
arthritic properties of 13 Au complexes with phosphine donor ligands
Table 1 [71] that led to the discovery and approval of auranofin by FDA
in 1985 propelled further studies on Au complexes with phosphine
donor ligands in different disease indications [72-74].

These linear 2-coordinate Au compounds showed a high degree of

lipophilicity with promising anti-arthritic activity when administered
orally to adjuvant arthritic rat at low therapeutic dosage. Tables 1 and 2
shows the synthetic route and anti-arthritic activity of 13 Au phosphine
compounds Class 1 compounds include compounds without a thiosugar
and different phosphine alkyl groups while Class 2 and 3 includes
compounds with different phosphine alkyl and thiosugar or oxosugar.
The Au phosphine complexes showed significant plasma Au absorption
and the degree of arthritis prevention in adjuvant arthritic rat correlate
well with the degree of serum Au concentration and the nature of the
phosphine ligand attached to the complex. In Class 1 compounds, the
therapeutic effect and serum Au concentration decreases with increase
in alkyl chain length except for AuP-1 with triethyl phosphine (Et3P). In
fact, as seen in Table 2, complexes with EtsP (AuP-1, AuP- 6, AuP-9,
AuP-12, AuP-13) showed the highest serum Au concentration and
therapeutic efficacy, and the non-phosphine groups have less effect in
dictating Au concentration and anti-arthritic activity. Overall, AuP-9
(auranofin) with oral LDsy dose of 265 (190.6-368.4) mg/kg was
advanced for further clinical studies due to in vivo tolerability and it was
approved by FDA in 1985 [71]. Auranofin stands out not just as an orally
administered drug compared to the earlier injectable Au formulation
such as sodium Au thiomalate and Au thioglucose but auranofin is also
highly lipophilic with a slight net charge in solution and reacts less
strongly with sulfhydryl groups [71,75].

The potent anti-inflammatory properties of auranofin have led to
studies aimed at repurposing the drug with 14 clinical trials on aur-
anofin in different diseased conditions including tuberculosis, combi-
nation regimen for rheumatoid arthritis, HIV, giardia and cancer
[72,75-92]. Lorber et al., demonstrated the antitumor activity of aur-
anofin in vitro and in vivo in HeLa cells and P388 leukemia-bearing mice
[93-95], Mirabelli et al., also reported on the antitumor activities of
auranofin and its analogues in both B12 melanoma cells and P388 leu-
kemia cells [96,97].

Numerous researchers have studied the mechanism of action of
auranofin in rheumatoid arthritis and other diseases [98]. Key finding
involves inhibition of key enzymes such as thioredoxin reductase (TrxR)
which protects cells from oxidative stress thereby maintaining intra-
cellular ROS levels and modulation of immune cell functions (macro-
phages and T-cells) [99-102]. Earlier studies showed that auranofin
affects polymorphonuclear cells and monocytes at lower concentrations
and generally affects humoral and cell-mediated immunity [99]. In a
study by Yamashita et al., where auranofin was administered to rat
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Table 2
Anti-arthritic activity and plasma Au concentration of Au(I) phosphines.

Hind-leg vol% redness from adj

control”
Injected leg Uninjected
leg
Compd Dose, mg/kg per Day 3 Dayl6  Day 16 Au, pg/mL
day, caled as Au of serum
Class 1, R3PAuCl
AuP-1 10 14.38°  23.25¢  36.60° 5.38
AuP-2 10 9.59¢ e e 1.66
b 24.60°  19.47°  32.33
AuP-3 10 14.73°  15.79°  33.33° 3.49
AuP-4 10 19.86¢ °© ¢ 0.92
Class 2, R3PAuSR’
AuP-5 10 14.45°  15.96'  °© 2.3
AuP-6 20 27.229 2244  44.48¢ 6.92
b 25.79¢ 23119 42339
10 16.88¢  °© 27.20° 413
b 39.38¢0  32.82¢ 54.12¢
5 11.25'  20.70c  34.06° 3.53
b 39.38¢  32.82¢ 54.12¢
AuP-7 10 18.24  15.35°  15.76 h
b 35507 4193  47.23¢
5 e ¢ ¢ 1.63
b 23.479 36757  38.60'
AuP-8 20 e &
b 25.79¢ 23119 42339
10 28.44% ¢ € 1.15
b 39.38¢  32.82¢ 54.12¢
5 e ¢ e 0.92
b 39.38¢  32.82¢ 54.12¢
AuP-9 20 33.81Y 23119 55.21¢ 7.89
25.79d  23.11¢  42.33¢
10 30.00¢°  29.74 44519 4.11
b 39.38¢  32.82¢ 54.12¢
5 30.000 e e 2.95
b 39.38¢  32.82¢ 54.12¢
AuP- 20 26.07¢  18.66°  36.20 2.04
10
b 25.79d  23.11¢ 42339
10 19.38° e e 1.25
b 39.38¢0  32.82¢ 54.12¢
5 ¢ ¢ ¢ 1.24
b 39.38¢  32.82¢ 54.12¢
AuP- 20 30.09°  15.11°  30.37¢ 1.70
11
b 25.79¢ 23119 42.33¢
10 21.88¢ e e 1.08
b 39.380  32.82¢ 54.12¢
5 26.25¢ ¢ ¢ 1.15
b 39.38¢  32.82¢ 54.12¢
Class 3
AuP- 10 9.59" 27.19¢  33.99¢ 4.8
12
AuP- 10 17.479  30.04%  44.44¢ 5.7
13

# % redn from adj control = (hind-leg vol of untreated adj control rat - hind-leg
vol of treated control rat)/hind-leg vol of untreated adj control rat. Untreated
non-adj-control hind-leg vol approximates a 50 % redn from that of adj control
rat.

b prednisolone treated, 20 mg/kg per day.

€ 0.001 < P < 0.01.

4 p < 0.001.

¢ No significant redn in paw vol.

£0.01 <p <0.05.

8 All animals died by day 16.

" Au content not detd.

Coordination Chemistry Reviews 522 (2025) 216208

/ N\
PhyP, /T’th_l X Ph,P PPhy
Ph P’Au\PPh Au Au
25 , 2 X X
Au-bisP-1 Au-bisP-2

X = Cl, Br, I, NOs, X = Cl, Br, OCOCHj, SCN,

CH;3S03, HO(CH,),SO3 SCF3, SCSOEt, SGlu,
SGluAc,, SGal, SMan, SManAc,
thll’/Hn\ PPh, Ph,P PPhy
AIU Alu A‘u Au
I |
Cl Cl Cly Cl,
Au-bisP-3 Au-bisP-4

Fig. 6. Structures of bis-chelated Au(I/III) phosphine complexes.

stimulated and non-stimulated peritoneal macrophages, auranofin
significantly inhibited the production of prostaglandin E2 (PGEy) in the
former while inducing the production of PGE; in the non-stimulated
group within 4 h. Further studies in rat peritoneal macrophages
showed that auranofin increased COX-1-dependent PGE, production,
but markedly decreased COX-2-dependent PGE; production [101,102].
Other mechanism of action reported include inhibition of the ubiquitin-
proteasome system (UPS), reduction of pro-inflammatory cytokines,
inhibition of NF-xB, induction of apoptosis, and disruption of mito-
chondrial function [98,103-106]. These combined effects contribute to
its therapeutic efficacy in treating rheumatoid arthritis and other in-
flammatory conditions.

Despite the notable efficacy of auranofin in the treatment of rheu-
matoid arthritis, some adverse effects attributed to long term use in
chronic patient have limited its application. Gastrointestinal problems
are the most common adverse effect with about 40 % of patient reported
to have loose stools in the early months while about 5 % of patient re-
ported watery diarrhoea. Other reported adverse effects include
conjunctivitis, proteinuria, interstitial fibrosis, kidney problems,
abdominal cramping and skin rashes which occur in about 20 % of pa-
tients [72,107-109].

Whereas early research into the biology of auranofin and its mono-
phosphine derivatives were burgeoning, there were ongoing research
into the antitumoral activities of Au-bisphosphine complexes. These
studies were published in series of publications from Peter Sadler, Susan
Berners-Price at University of London and researchers from Smith Kline
and French Laboratories Philadelphia [110-114]. They synthesized
various bis-chelated Au(I/III) phosphine complexes (Fig. 6) that were
more active than auranofin in B16 melanoma cancer cells and P388
leukemia cancer cells. Also, these bis-chelated cytotoxic Au phosphines
showed distinct mechanism of action by inhibiting mitochondria func-
tions in cancer cells. Their SAR studies involve varying the counterions
and varying the dynamics of chelate ring. The chelate ring was per-
turbed either by fluorination, increasing the bridge length between two
P centres or by reducing the lipophilicity of the bisphosphine ligand.
Although variation to the counterion did not significantly impact cyto-
toxicity, varying the dynamics of the chelate rings affected the cyto-
toxicity and selectivity of the compounds to normal and cancer cells
[111].

The success recorded by auranofin in rheumatoid arthritis, followed
by promising result of bisphosphine Au(I/III) provided impetus for
chemist to further study the synthesis, geometry [113,115], anti-
inflammatory [116], antimicrobial [ 90], antidiabetic [117] and
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anticancer [111,112,118] activities of Au phosphines.

1.3. Therapeutic Au phosphine complexes

1.3.1. Antiparasitic

The search for novel drugs to combat parasitic infection is a major
concern globally. About 3.5 billion people are affected by intestinal
parasitic infection globally with over 200,000 reported deaths yearly
[119]. With this rising number, there is the need for newer drug treat-
ment regime to combat parasitic infections. The antiparasitic potential
of auranofin has been investigated and the inhibition of key biological
enzymes in vitro and in vivo antiparasitic studies has been demonstrated
[120-122]. Leishmaniasis is a tropical parasitic disease caused by pro-
tozoans of the genus Leishmania and phosphinogold compounds
including auranofin have been studied as a treatment option for the
disease. Auranofin showed 100 % inhibition of Leishmania infantum and
Leishmania major promastigotes at 50 pM while causing 41 % reduction
of thioredoxin reductase in Leishmania infantum at 100 nM auranofin
treatment [123,124]. de Almedia and co-workers studied the anti-
leishmanial activities of some Au(I) complexes containing phosphine
and 5-phenyl-1,3,4-oxadiazole-2-thione derivatives as ligands (Fig. 7).
The complexes were potent against the promastigote (ICsop = 1.94-11

/
N H

»=N

\ AuPPhs

Au-Ylideneamine-1

Noom
N\ ©is>_N\

Au-Ylideneamine-2
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pM) and intracellular amastigotes forms of L. infantum, L. braziliensis (1
pM) and presented high selectivity index (SI) values compared to treated
THP-1 macrophages [125]. These studies shows the prospect of phos-
phinogold compounds as antileishmanial drug.

Entamoeba histolytica is a protozoan that causes amoebiasis and it
affects about 48 million people with about 54,000 deaths yearly. Stage 1
clinical studies with auranofin focusing on pharmacokinetics and safety
profile in 15 healthy volunteers indicates the safety of auranofin with no
significant adverse effect or death recorded at 7 days of drug adminis-
tration [82,120]. Auranofin have also been studied as a treatment option
for patients with toxoplasmosis. Toxoplasmosis is a tropical disease that
affects immunocompromised people leading to neurological and ocular
diseases. Auranofin inhibits invasion of host cell by T. gondii’s through
induction of apoptosis during the extracellular stages of the parasite

[82,126].
j +
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B
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Fig. 10. Structure of bis-chelated Au(I) 2-pyridyl phosphine complex.
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Fig. 14. Antimicrobial activity of auranofin and its derivatives against ESKAPE pathogens.

Table 3
Minimum inhibitory concentration (ug/mL) of auranofin, vancomycin and
metronidazole against different strains of C. difficile.

C. difficile Strain 1D Auranofin  Vancomycin = Metronidazole
number
P2 NR-32883 0.5 0.25 0.06
P3 NR-32884 4 1 0.25
P4 NR-32889 1 2 0.125
P5 NR-32885 0.5 1 0.125
P6 NR-32886 2 1 0.125
P7 NR-32887 0.5 1 0.125
P8 NR-32888 1 0.5 0.125
P13 NR-32891 1 0.5 0.125
P15 NR-32892 1 0.5 0.06
P19 NR-32895 1 1 0.25
P20 NR-32896 4 1 0.25
P21 NR-32897 1 0.25 0.125
P29 NR-32903 1 0.25 0.06
P30 NR-32904 1 0.5 0.25
Isolate 1 NR-13427 1 1 0.25
Isolate 2 NR-13428 1 1 0.06
Isolate 4 NR-13430 2 0.25 0.06
Isolate 5 NR-13431 2 0.5 0.25
Isolate 6 NR-13432 1 0.5 0.125
Isolate 7 NR-13433 0.5 0.5 0.25
Isolate 9 NR-13435 0.25 0.5 0.06
Isolate 10 NR-13436 1 0.5 0.125
Isolate 11 NR-13437 2 1 0.25
Isolate 13 NR-13553 4 1 0.25
NAPO7 HM-88 1 0.5 0.25
002-P50-2011 HM-746 0.25 0.25 0.125
ATCC 700057 VPI 11186 1 0.5 0.25
ATCC 43598 1470 0.5 0.5 0.25
ATCC BAA 1801 3232 1 0.5 0.125
ATCC BAA 1870 4118 0.5 1 0.25
Isolate NR-49277 0.25 0.5 0.125
20,100,502
Isolate NR-49278 0.25 0.25 1
20,100,207
Isolate NR-49281 0.25 0.25 0.125
20,110,052
Isolate NR-49287 0.25 0.25 0.25
20,110,868
Isolate NR-49288 0.5 0.5 0.25
20,110,870
Isolate NR-49285 0.25 0.25 0.25
20,110,979
Isolate NR-49286 0.25 0.25 0.25
20,110,999
Isolate NR-49283 0.25 0.25 0.125
20,120,013
Isolate NR-49289 0.5 0.25 0.25
20,120,184
Isolate NR-49290 0.5 0.5 0.25
20,120,187
Isolate NR-49291 0.25 0.5 0.25
20,120,236
MIC 50 1 0.5 0.25
MIC o 2 1 0.25

Malaria is another parasitic disease affecting millions of people. The
disease is transmitted when a female anopheles mosquitoes carrying the
plasmodium parasite bites a person and transmit the parasite [127].
Current antimalarial drugs include chloroquine (CQ), artesunate-
amodiaquine, while patients with resistant strains are treated with
artemether-lumefantrine, quinine plus clindamycin, or mefloquine
[128-132]. Yet, there is a need for improvement in medication as newer
plasmodium strains that are resistant to current therapy emerges.
Coetzee et al., reported some ylideneamine-functionalized heterocyclic
carbenes coordinated through the imine nitrogen to Au-phosphine
(Fig. 8). These complexes showed lower antimalarial activity against
3D7 strain compared to chloroquine with low selectivity index, indi-
cating the need for further structural modification for improved activity
for this class of compounds [133].

Another work by Molter et al., reported mono and dinuclear Au(l)
phosphine complexes containing seleno- (SeSC) and thio-
semicarbazonato (TSC) ligands (Fig. 9). These complexes were charac-
terized by NMR spectroscopy and three isomers were observed (Z, E and
EZ), however in solid state only the EZ isomer was observed. The com-
plexes showed similar to lower ICsg values compared to chloroquine in
P. falciparum strains [134].

Auranofin has also been studied to be repurposed as antimalarial
agents. Ssemaganda et al., reported on the antimalarial activity of aur-
anofin and bis-chelated Au(I) 2-pyridyl phosphine complex [Au
(d2pype)2lCl (Fig. 10). Both compounds showed potent inhibition
against Plasmodium falciparum and P. knowlesi and showed reduction of
P. chabaudi AS parasite in vitro in infected mice at 2 pM. While these
compounds were potent in in vitro assays, in vivo data suggests a
decreased availability as auranofin and [Au(d2pype)2]Cl as there was no
significant inhibition of P. chabaudi AS strains in vivo [135]. These re-
sults indicate that further pharmacokinetic studies need to be carried out
to understand the bioavailability of these compounds after
administration.

Micali et al., studied the ability of auranofin and other Au(I) com-
plexes including compounds with 1,3,5-triaza-7-phosphaadamantane
(PTA) ligand to inhibit Falcipain 2 (Fp2) an important protease of P.
falciparum that is involved in the degradation of host haemoglobin,
thereby providing the ingredients (peptides and amino acids) to sustain
the growth of the parasite. Initial Fp2 inhibition assay with Au-PTA and
auranofin showed mild inhibition of 24 % and 30 % respectively while
the ICsg of P. falciparum growth inhibition was 5.16 + 0.14 and 0.142 +
0.003 puM respectively (Fig. 11) [136]. Further work by Tapanelli et al.,
on water soluble Au(I) phosphine of the archetype [M(L)4]PFs where L
= 1,3,5-triaza-7-phosphaadamantane (PTA) or tris(thydroxymethyl)
phosphane (THP) studied the ability of these compounds to affect early
sporogonic stages (ookinete) of Plasmodium and thus inhibit parasite
establishment in the mosquito vector. The complexes demonstrate mild
activity against ookinete development in the mosquito that translates to
70 % parasite growth inhibition by Au-THP at 100 pM [137].

Au-conjugated metallocenes have also being studied for their anti-
malarial activities. Bjelosevic et al., reported five Au(I) complexes Fc-
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Fig. 15. Antimicrobial activity of phosphinogold(I) thiourea in Bacillus subtilis.

Table 4
Minimum inhibitory concentration (pg/mL) of Au complexes bearing mesityl
and bisphosphine ligands.[a]

Compd Gram-negative Gram-positive Yeast
S. typhimurium  E. coli B. cereus S. aureus S. cerevisiae

Au-Mes-1 ins™ ins!™ 10 10 ins™
Au-Mes-2 10 10 1 10 >100"“!
Au-Mes-3 10 10 10 10 >100'¢!
Au-Mes-4 ins!®! ins'®) 10 10 ins®!
Au-Mes-5 >100' >100')  >100" >100' >100'!
AgOClO; 100 100 10 100 100
AgS05CFs 100 100 10 100 100
Au-Mes-6 >100'¢) >100°  >100'" >100'¢! >100'¢!
Au-Mes-7 100 100 100 100 100
Au-Mes-8 100 100 100 100 100
Au-Mes-9 >100' >100"/ 100 100 >100'
Au-Mes-10 100 100 100 100 >100"“!

2 Compounds were dissolved in DMSO.

b ins—the compound was insoluble in aqueous solution above 10 pgmL*.

© Concentrations greater than 100 pgmL ™! were not tested because the com-
pounds would not have been soluble.

Au-P-1-5 bearing either ruthenocenyl or ferrocenyl phosphine ligand
(Fig. 12). However, these complexes are not viable candidates for
further studies because their antimalarial activity in CQ resistant cells
lines gave lower ICsy compared to standard drug chloroquine [138]. In
another work, Subramanian et al., synthesized three Au phosphine
conjugated ferrocenes Fc-Au-P-6-8 (Fig. 12). The most active compound
Fc-Au-P8 exhibited significant parasitemia reduction above 80 % at
three different concentrations (100, 25, 6.25 uM) while significantly
inhibiting early erythrocytic stage (ring to trophozoite), and hematin
compared to the ferrocenyl phosphine derivatives studied. These results
point toward Fc-Au-P6 been a great candidate for next generation
antimalarial drug [139].

A few studies have also focused on conjugating existing antimalarials
to Au phosphine. In an earlier study by Navarro et al., chloroquine-based
Au(I) phosphine complexes CQ-Au-P Fig. 13 were synthesized, and they
displayed excellent activity against two chloroquine- resistant strains of
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P. falciparum. CQ-Au(I)-P1 showed marked in vivo efficacy 84 % when
compared to chloroquine diphosphate (44 %) in a Plasmodium berghei
infected mice treated at 1 mg/kg for 4 days with no acute toxicity
observed [140,141]. Buoyed by these impressive studies, Colina-Vegas
et al., reported an amodiaquine (AMQ) derivative AMQ-Au-P Fig. 13.
This compound showed impressive activity inhibiting multiple stages of
the Plasmodium life cycle both in vitro and in vivo. Their result shows
that AMQ-Au-P was twice as potent as amodiaquine in both chloroquine
sensitive (NF54) and chloroquine resistant cell lines (W2) in overcoming
chloroquine resistance with higher selectivity when compared to amo-
diaquine in mammalian cell lines. Also, AMQ-Au-P showed efficacy as a
blood schizonticidal agent in vivo when administered to P. berghei
infected mice with 70 % cure rate when administered at 30 pmol/kg
[142].

1.3.2. Antimicrobial

Since the discovery of cephalosporins as an antibiotic with unique
mechanism of action in the late 1960s [143], the search for newer an-
tibiotics focused on derivatizing old drugs, and this has stalled the
emergence of antibiotics with new mechanisms of action [144,145].
Also, the decrease in financial and labour commitment by industries
made researchers to rely on old drugs for new purposes [145]. The use of
Au salts for treatment of microbial infection dates to the work of Robert
Koch in 1890 who demonstrated the antibacterial activity of K[Au
(CN),] against Mycobacterium tuberculosis [146,147]. This discovery led
to further research into the design of several Au-based compounds as
antimicrobial agents. Auranofin has been well studied for their antimi-
crobial activities with studies progressing to clinical trials in bacterial
and viral infections.

1.3.2.1. Antibacterial. In bacterial infections auranofin have been
effective against various gram-positive bacteria strain including multi-
drug resistant bacteria [148-150]. The consensus is that auranofin is
active in gram positive bacteria including multidrug resistant strains
while inactive in gram negative strains, this is due in part to the gluta-
thione/glutathione reductase system being able to compensate for the
loss of reducing capability in the Trx-TrxR system caused by auranofin
[151]. Another explanation for the inactivity of auranofin in gram
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negative bacteria is the outer membrane present in gram-negative bac-
teria that acts as a barrier to accumulation of auranofin [152]. Wu et al.,
screened 40 compounds comprising of auranofin and its analogs against
ESKAPE pathogens. This in-depth SAR study indicates that auranofin is
active against gram positive bacteria including multidrug resistant
strain Mycobacterium tuberculosis but inactive against gram negative
bacteria Fig. 14. To modulate the antimicrobial activity of auranofin in
both bacteria strains, changes in the phosphine substituent, the sugar
moiety and/or thiol groups were carried out. Their result indicates that
auranofin derivative with PMeg substituent showed no significant
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Fig. 18. Antifungal phosphinogold(I) agents.

difference in activity against gram positive strains compared to aur-
anofin while derivatives with increased alkyl chain length or aryl
phosphine substituent showed a reduction of antimicrobial activity in
gram positive bacteria. In gram negative bacteria, complexes with PMes
were effective and increasing the alkyl chain led to a decrease in activity
against gram negative bacteria. This shows that increase the electron
donating capacity of the phosphine ligands can impart their activity
against both gram positive and gram negative bacteria [153].

Reports has also shown auranofin to be effective against Clostridium
difficile [154]. Infections due to C. difficile are deadly with the emergence
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of hypervirulent mutants with increased capability to produce toxins
and spores accounting for about 500,000 cases yearly [155,156]. The
standard drugs used to treat C. difficile are vancomycin, metronidazole
and fidaxomicin and these drugs have shown limited efficacy and high
recurrence rates, hence the need for newer drugs [155]. Auranofin
inhibit the growth of 41 C. difficile strains with concentrations ranging
from 0.25 to 4 pg/mL. Table 3. Auranofin also inhibits toxin production
and spore formation in hypervirulent, toxigenic strain of ATCC
BAA—1870C. difficile [154].

Henderson et al., reported moderate antibacterial activity of 14
phosphine Au(I) thiourea complexes Fig. 15 against Bacillus subtilis
[157]. Ortego et al., described some aminophosphane Au(I) complexes
that were active in gram positive bacteria but inactive toward gram
negative bacteria. These complexes showed a bacteriostatic activity at
the lower minimum inhibitory concentration (MIC) [158].

Organo-heterometallic = complexes containing mesityl and
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bisphosphane bridging ligands of the general formular [Aug(p-mes)s(p-
LL)] (Au-Mes-1 - 5) and [AuaM(p-mes)2(p-LL)][A] (Au-Mes-6-10) have
been reported. These luminescent complexes were shown to have
promising antimicrobial activities. The dinuclear Au complexes with
dppe ligands Au-Mes-1 were insoluble, while their heteronuclear com-
plexes counterpart Au-Mes-2 and Au-Mes-3 were soluble and displayed
the lowest inhibition concentration in both gram positive and negative
bacteria Table 4. Also, Au-Mes-2 and Au-Mes-3 showed strong bacteri-
cidal activity in E. coli and S. aureus. The luminescence properties of
these complexes can be exploited to track their interactions with various
cells and organelles via fluorescence microscopy [159].

Phosphinogold complexes bearing diphenyl pyridine have also been
reported in literature. These complexes were reported to be active
against both gram-negative bacteria at low concentration with Au-PyPh-
3 Fig. 16 inhibiting P. aeruginosa at 3.89 pg/mL and E. coli at 3.15 pg/
mL, while auranofin was inactive [160].
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Table 5

ICs0 (uM) for inhibition of TrxR 1 and TrxR2 by water soluble Au phosphines.
Compound TrxR1 TrxR2
auranofin 0.74 + 0.20 2.45 + 0.32
Au-PTA-1 1.61 +0.21 4.12 £0.28
Au-PTA-2 1.92 + 0.15 6.73 £ 0.25
Au-DAPTA-3 1.54 + 0.17 6.20 £ 0.35
Au-PTA-4 0.96 + 0.08 4.06 + 0.41
Au-DAPTA-5 1.55+0.16 5.86 £ 0.32
Au-TPPTS-6 0.62 £+ 0.04 6.95 £ 0.14
Au-TPPTS-7 1.67 + 0.05 6.82 £ 0.25

Coordination of an anticancer drug 5-fluorouracil (5-FU) with Au
phosphine (Fig. 17) represents another class of compounds that has
shown antibacterial activity against E. coli and B. subtilis. Gram-positive
and gram-negative bacterial strains have previously been demonstrated
to be susceptible to 5-fluorouracil with its primary mode of action being
the regulation of virulence genes and behaviors, quenching of quorum
sensing in bacteria or inhibiting the growth of biofilms [161-163].
When 5-FU is coordinated to Au-phosphine, the activity of the complex
is improved greater than 5 times the drug alone. The improved activity
was also observed in treated biofilms viewed under scanning electron
microscope, with the images showing changes in the morphology and
damages to the outer membrane of biofilms treated with Au-phosphine-
uracil construct compared to biofilms treated with 5-FU only [164].

1.3.2.2. Antifungal. Despite notable advancement in management of
mycosis (fungal infection) in the last three decades, common invasive
mycosis such as Cryptococcus neoformans, Candida albicans, Candida
auris, and Aspergillus fumigatus, still have a high mortality rate [165]. To
determine the effective treatment regime for fungal infections, there is
the need to identify the class of infection based on 3 main criteria. 1)
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Determine the site of infection and extent of the infection as either
systemic or local. 2) Determine if the route of acquiring the infection is
through an exogenous process or endogenous process and 3) determine
the nature or virulence of the causative organism either as a primary
infection or opportunistic infection [166,167]. To combat the growing
threat of resistance of fungi infections to currently approved antifungal
drugs, there is an urgent need for new antifungal agents with novel
mechanism of action. Awuah and Garneau-Tsodikova’s lab reported six
Au-phosphine complexes (Fig. 18) and tested their potency against
panel of 21 fungal strains including invasive mycosis such as Candida
spp., Cryptococcus spp., Aspergillus spp., and Fusarium spp. The phos-
phinogold complexes showed potent activity against fungal strains and
biofilms including the multidrug resistant Candida auris [168].

1.3.2.3. Antiviral. There is a pressing need for novel antiviral drugs
with newer mechanism of action as fatalities due to viral infection keeps
increasing worldwide. Unlike antibiotics, antivirals do not destroy the
pathogen but rather inhibit the development of the pathogen. Au com-
plexes have been shown to have antiviral properties with auranofin
entered into clinical trial as a potential antiviral agent for treatment of
HIV [88,169-171]. In the multi intervention study, the impact of aur-
anofin, maraviroc and dolutegravir on proviral HIV-1 DNA was exam-
ined on subjects undergoing antiretroviral therapy. In the study,
auranofin was well tolerated with no major side effect, and it impacted
the viral DNA dynamics by decreasing the total viral DNA in peripheral
blood mononuclear cell (PBMCs) significantly compared to treatment
groups without auranofin [169]. Also, Au(III) salts have been reported
to interact with nucleocapsid protein of HIV-1 [172], therefore changes
in viral DNA dynamics were further quantified by measuring the inte-
grated viral DNA using Alu PCR techniques and observed significant
decrease of the integrated HIV-1 DNA over time in groups that included
auranofin in the treatment regime [169]. Earlier report by Fonteh and
Meyer reports on the ability of Au(I) phosphine complexes AuVir-1 —
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Fig. 22. Cellular distribution of trinuclear N[Au(C = CCH2)(PTA)]3 in A2780 cancer cells after 6 h incubation at 37 °C. Reproduced from ref. [204] Copyright 2010

American Chemical Society.

AuVir-10 and auranofin Fig. 19 to inhibit HIV enzymes. In the report, all
the compounds tested were non-toxic to PBMCs and was taken effi-
ciently as quantified by ICP-AES. Also, the compounds inhibit either
reverse transcriptase activity or protease activity while AuVir-3 inhibi-
ted both reverse transcriptase activity and protease activity, and aur-
anofin did not inhibit transcriptase nor protease activity. This points to
the fact that these compounds exhibit their antiviral activity through a
mechanism different from auranofin [173].

Chikungunya fever is a viral infection caused by the RNA virus
Chikungunya that affects people across the Mediterranean countries and
North America. Currently there are no drugs to treat this condition
hence the need to develop new drugs [174,175]. Aires et al., synthesized
a series of Au complexes containing phosphine and 1,3-bis(mesityl)imid-
azole-2-ylidene ligands. Complexes with phosphine ligand AuVir-11 and
AuVir-12 (Fig. 19) inhibited CHIKV replication in BHK-21 infected cells
and showed higher cellular uptake compared to complexes with 1,3-bis
(mesityl)imidazole-2-ylidene [176].

Trichomoniasis is the most common non-sexually transmitted viral
infection caused by Trichomonas vaginalis with about 200 million people
infected worldwide [177]. Reported cases of resistance to approved
medications (metronidazole and tinidazole) has necessitated the need
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for newer drugs to combat drug resistance [178]. Drugs that target Trx-
dependent antioxidant defense systems can help circumvent drug
resistance as Trx and Trx peroxidase is upregulated in T. vaginalis.
Auranofin has been demonstrated to target TrxR in microbial infections
[179-182], therefore it is worthy to study the effect of auranofin and
other Au phosphines on the treatment of T. vaginalis. Wrischnik et al.,
studied the effect of auranofin on the growth of T. vaginalis and T. foetus
and they observed that auranofin suppresses the growth of the virus by
targeting TrxR which encodes for a functional reductase in T. vaginalis
trophozoites [183]. Following up on this study, Eckman et al., reported
SAR studies of some Au phosphines to improve drug selectivity. Their
study showed that trimethyl, triethyl, tripropyl, and triisopropyl, mono-
and bisphosphine ligands showed excellent trichomonacidal activity
with great selectivity compared to tributyl and triisobutyl phosphine
ligands and replacement of the alkyl chain with phenyl, tolyl or tri-
fluoromethyl phenyl groups compromised the activity and selectivity
toward T. vaginalis. Also, the active compounds inhibited the two most
abundant isoforms of TrxR and significantly reduced the infection in
BALB/c mice model [184].
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1.3.3. Anticancer activity groups for their anticancer activities in different cancer models. The

Despite numerous interventions and intensive research into cancer anticancer properties of auranofin and Au(I) phosphines have been
treatment, cancer remains the second leading cause of death worldwide attributed primarily to inhibition of thioredoxin reductase in the mito-
and it is not surprising that research into the anticancer properties of Au chondria and cytosol leading to disruption in intracellular redox ho-
phosphine complexes exceed other medicinal applications. In this sec- meostasis, induction of oxidative stress and anticancer activity in vitro
tion, the focus will be on the structure and mechanism of anticancer Au [185-187]. Aside targeting thioredoxin reductase, other targets have
phosphine complexes studied within the past two decades. Auranofin been suggested for Au phosphines. Mitochondria is the powerhouse of
and its derivatives have been extensively studied by different research the cell where ATP is generated through oxidative phosphorylation
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(OXPHOS). Also, mitochondria play a pivotal role in regulating many
cellular processes including maintaining homeostasis, providing in-
termediates for construction of biomolecules, regulating proteins in the
apoptosis pathway, and a primary source for cellular ROS generation
[188-190]. Therefore, various gold phosphine compounds have been
studied as mitochondria targeting anticancer agents [189,191-193].

1.3.3.1. Water soluble Au-phosphine complexes. Oral drug intake is the
most common route of drug administration because of its ease of
administration, minimal sterility restrictions, good patient compliance,
economical to produce and purchase, and dose form design flexibility
[194-196]. Low oral bioavailability of a drug can be attributed to poor
solubility in aqueous media and low permeability, therefore oral
bioavailability is an important factor to consider in drug design. As
discussed above, earlier Au phosphine drug design focused on either
auranofin derivatives or compounds with delocalized lipophilic cations
compounds such as Au-bis-P-1-4 Fig. 6. This class of compounds, though
cytotoxic, has numerous side effects due to the nonspecific binding to
biomolecules hence the need for hydrophilic Au compounds
[112,197,198]. On the other hand, highly hydrophilic Au compounds
can also be excreted easily out of the body because of low protein
binding. Therefore, there is a need for a balance between the lipophilic
and hydrophilic character of metallodrugs to ensure potent anticancer
activity [199].

Diphos ligand is a water-soluble variant of the dppe class of ligand
with the phenyl ring replaced by pyridinyl ring resulting in improved
selectivity and reduced side effects. Some hydrophilic Au(I) complexes
bearing DiPhos ligand (Fig. 20) have been reported with logD7 4 be-
tween —1.73 and + 0.79. These complexes with moderate lipophilicity
exhibited promising ICsg values ranging from 0.4 to 40 pM in A2780

cisplatin sensitive and resistant cells [200].

Adamantane-like phosphanes is another class of hydrophilic ligand
that has gathered much attention due to similar reactivity to other
alkylphosphanes ligands, its resistance to oxidation and greater stability
in air [201,202]. These properties confer the complexes with the ability
to overcome the challenges of complicated drug formulations for in vitro
and in vivo testing. Vergara et al., reported on some neutral hydrophilic
Au phosphine complexes that inhibit TrxR1 and TrxR2 Table 5. These
complexes contains water soluble PTA, DAPTA and TPPTS ligands
((Fig. 21) and they displayed good cytotoxicity especially in cisplatin
resistant cell lines (A2780R) with ICs¢ between 4 and 16 pM [203].

The same group later reported on some mono, di and trinuclear Au(I)
alkynyl complexes bearing phosphaadamantane ligands. The mono-
nuclear [Au(C = CPh)(DAPTA)], [Au(C = C-3-SC4H3)(PR3)], [Au(C =
CCH,0H)(PR3)] and trinuclear N[Au(C=CCH5)(PR3)]3 (PR3 = PTA or
DAPTA) complexes showed potent antiproliferative activity in both
cisplatin-sensitive (A2780) and cisplatin-resistant (A2780cisR) human
ovarian cancer cells. The compounds also displayed intracellular accu-
mulation when A2780 treated cells were incubated for 6 h at 37 °C and
viewed under an epifluorescence microscopy (Fig. 22). The images
showed an efficient uptake of the compound into cancer cells. Further
subcellular accumulation studies could not be ascertained due to the
relatively low level of fluorescence observed [204].

Santini et al., later reported on monocationic complexes [Au(L)4]PFg
(L: thp = tristhydroxymethyl)phosphine, PTA = 1,3,5-triaza-7-phos-
phaadamantane, or thpp = tris(thydroxypropyl)phosphine). The com-
plexes were synthesized from metathesis reactions of [Au(L)4]Cl and
TIPF¢ at room temperature and displayed low cytotoxicity compared to
their Cu(I) counterparts [205]. Mariano Laguna’s group also synthesized
Au(l) phosphaadamantanes by the reaction of [AuCl(tht)] with [PTA-R]
Br (R = -CH,C = CH, -CH,CONH,, -CH2COOH) to give [AuCI(PTA-R)]
Br complexes (Fig. 23). These complexes displayed potent activity
against A2780 and cisplatin resistant A2780cisR cell lines better than
cisplatin [206]. They further reported some Au(I) thiolates bearing
alkylated PTA ligands that showed strong antiproliferative activity in
CaCo-2 cancer cells and apoptosis induced cell death for all 16 com-
pounds tested [207]. Also Wei et al., recently explored the influence of
different alkynyl substituent on the cytotoxicity of luminescent Au
phosphines complexes. They observed that the complexes showed strong
emissive characteristics at the range of 477-613 nm with microsecond
range of luminescent lifetime (0.40-14.0 ps) in solid states at 298 K and
77 K while showing potent anticancer activity in MCF-7 cancer cells
[208].

Later, they reported some mono and dinuclear Au(I) phosphaada-
mantane complexes (Fig. 24). The dinuclear water soluble complexes
were obtained by treating [AuY(tht)] (Y = Cl, SCN, C¢Fs;) with bis-PTA
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phosphanes ligands. The complexes displayed increased cytotoxicity
against colon cancer cells (Caco-2/PD7 and Caco-2/TC7 clones, isolated
from late and early passage) compared to cisplatin. Also, the dinuclear
complexes displayed similar potency when compared to the mono-
nuclear complexes indicating that increasing the metallic centers from
one to two does not affect the cytotoxicity in Caco-2 cells [209].
Rodriguez and co-workers reported on some luminescent Au phosphines
with water soluble phosphines and 4-pyridylethynyl Au-TPPTS-13 or
propargyloxycoumarin chromophoric unit Au-TPPTS-14, Au-PTA-15,
and Au-DAPTA-16 Fig. 23. The complexes showed low cytotoxicity in
MDA-MB-231 and HT-29 cancer cells but strong inhibitory TrxR inhi-
bition. The low cytotoxicity of the complexes was attributed to the poor
bioavailability of the compounds in the cell lines tested [210].

Cyclodiphosphazanes is a class of phosphorus containing compound
that has gained prominence due to their synthetic utility in forming
macrocycles, however their catalytic and biological applications have
been underexplored. Suresh et al., reported on the synthesis of water
soluble cyclodiphosphazanes ligands and their coordination with
[(Me3S)AuCl] to afford both mono and binuclear Au(I) complexes. These
complexes showed potent antiproliferative activity against HeLa cells
and causes induction of apoptosis by inhibiting p53 protein (Fig. 25)
[211].

Laguna et al., explored some water-soluble heteroleptic Au(I)com-
plexes bearing phosphane HMPT and an ethynylphenyl or ethynylpyr-
idine moiety Fig. 26 and their absorption, distribution, metabolism, and
excretion (ADME) properties evaluated. These cytotoxic complexes
induce apoptosis and causes cell cycle in the G2/M (Au-P-Alkynyl-4 - 5
and 7) or S phase (Au-P-Alkyne-6) in Caco-2/TC7 cells [212].
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1.3.3.2. Lipophilic cationic Au complexes. Research into the use of lipo-
philic agents as drugs has a long history. This is because the lipophilicity
of the compound is a crucial consideration in the development of effi-
cacious anticancer agent as they affect the compound’s pharmacokinetic
properties, biodistribution, and cellular uptake. Earlier works have
shown that lipophilic cationic compounds such as bisquaternary de-
rivatives of terephthalanilides, quinolinium dibromide, rhodamine 123,
dequalinium, ditercalinium, and pyronine Y accumulate in the mito-
chondria to perturb cellular functions [213-221]. These compounds
exhibited great potency in vitro and in vivo but the high level of toxicity
during clinical trials has stalled their development.

[Au(dppe)] ™ is a lipophilic cationic Au(I) phosphine compound that
displayed potent antitumor activity in vitro and in vivo in several cancer
models [114,197]. Earlier studies has shown that [Au(dppe),] " perturbs
mitochondria activities as a mode of action but further research was
abandoned due to toxicity to normal cells and tissues, this was attributed
to alterations in mitochondria function [198,222,223].

1.3.3.3. Heteroleptic Au-phosphines. The design of anticancer agents as
heteroleptic complex is an attractive option in coordination chemistry.
The central metal is surrounded by more than one type of ligand thereby
improving ligand tuning, variability, and the antiproliferative activities
displayed. In this section, we shall discuss the anticancer properties of
heteroleptic Au complexes containing a phosphine and one other ligand
(halides, thiolates, dithiocarbamates, thiosemicarbazones, thio-
carbohydrates and N-heterocyclic carbenes).

Phosphinogold(I) thiolates have been extensively studied due to the
repurposing of auranofin [106,224,225]. Previous studies have shown
that auranofin can perturb internal redox homeostasis by elevating ROS
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Fig. 28. Anticancer phosphinogold complexes bearing dithiocarbamate ligands.

levels to inhibit tumor cell growth and promote apoptosis [106,187].
SAR studies have focused on different phosphine derivatives and/or
substituting the sugar moiety with an aliphatic or aromatic group. To
further understand the mechanism of auranofin, Luo et al., studied the
effect of auranofin and its analogs (where the sugar was replaced by
different R-groups) on the regulation of lipid metabolism in lung cancer
cells. Results from their study suggest inhibition of the key enzymes
(SREBF1, FASN, and ACLY) that are involved in de novo lipid synthesis.
This inhibition led to the reduction of endogenous fatty acid and phos-
pholipid synthesis, thereby interfering with physiological functions of
tumor cells to proliferation, invasion, redox balance and resisting energy
stress (Fig. 27) [226]. Also, other studies have explored the use of
different saccharide thiols, a bi-gold system and different phosphine
ligands to understand the mechanism of action of auranofin and other
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Au phosphines. In recent studies, Wen et al., evaluated some novel
glycosylated bi-Au mitocans in lung cancer and cancer stem cells. These
complexes accumulate preferentially in the mitochondria nearly 40-fold
higher than auranofin, inhibited oxygen consumption rate (OCR) pro-
duced mitochondria ROS significantly and depolarized mitochondria
membrane [227,228]. Other studies have shown the anticancer prop-
erties of auranofin and its derivatives acting alone or in synergy with
other biologically active agents in a broad spectrum of cancer cells such
as colorectal cancer [229-231], ovarian cancer [232,233], lung cancer
[234-236], cervical cancer [237], prostate cancer [238-240] liver
cancer [241,242] and breast cancer [243-246],

Keter et al., reported on novel mono- and diphosphinogold(I)
dithiocarbamate bearing triphenylphosphine, diphenylphosphinoalkyl
ligands Au-P-DTC-1-6 Fig. 28. Attempts to grow crystals of the
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compounds showed that complexes with diphenylphosphinoethane
were unstable transforming to a Aul8 cluster and longer chain phos-
phines produced stable Au complexes in solution. Cytotoxicity of the
stable phosphinogold(I) complexes showed activity against HeLa cells
with complexes with hexyl chain length the most active and selective
class of compound [247]. Sulaiman et al., also reported on phoshinogold
(I) dithiocarbamate complexes Au-P-DTC-7-12. These complexes
showed little to moderate cytotoxicity (ICso = 3.45 - > 100) in A549,
HeLa and HepG2 cancer cells examined [248]. Van Le et al., reported on
some cytotoxic phosphinogold dithiocarbamate complexes Au-P-DTC-
13 - 16 (Fig. 28) that induces severe ER stress in ovarian cancer cell
models and causes a concentration dependent increase in calreticulin

(CRT) expressing cells which can trigger anticancer immunogenic
response [249].

Biofriendly thiocarbohydrates have also been used as ligands in the
synthesis of mononuclear and binuclear phosphinogold(I) complexes
because of their biocompatibility, water solubility and reduced toxicity.
Cytotoxicity studies of these complexes indicate that the compounds
show a broad spectrum of activity against MCF-7 (breast cancer),
HCT116 (colon cancer) and PC3 (prostate cancer) cells with the nature
of phosphine ligand influencing cytotoxicity. Also two of the dinuclear
complexes showed great tumor specificity between PC3 cancerous and
W-I-38 normal cells demonstrating the efficacy of these complexes in
colon cancer (Fig. 29) [250].
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Zarewa et al., synthesized four phosphanegold(I) thiosemicarbazone
complexes (Au-P-TSCs) with high solution stability in DMSO and H0:
Ethanol (1:1). These complexes showed potent anticancer activity in
HCT116 (human colon cancer), MDA-MB-231 (human breast cancer),
and B16 (murine skin cancer) cancer cells. Further studies on the
mechanism of cell death shows that Au-P-TSC acts as potent apoptosis-
inducing agent in breast cancer MDA-MB-231 cells, with upregulation of
caspase-3, downregulation of BCL-xL, and depolarization of mitochon-
drial membrane potential in a concentration dependent manner
(Fig. 30) [251]. Diversifying the route for the synthesis of metal com-
plexes can help in the synthesis of a wider range of complexes. In this
regard, Gonzalez-Barcia and co-workers synthesized cytotoxic neutral
phosphinogold(I) thiosemicarbazones via electrochemical synthesis and
cationic phosphinogold(I) thiosemicarbazones complexes via traditional
chemical synthesis. The electrochemistry approach affords access to
synthesize a wide range of Au-based complexes without the need for
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bases, ligands and counterions [252].

There is an increase in the use of N-heterocyclic carbenes (NHC) as
ligands in bioinorganic chemistry. This may be related to the enhanced
stability displayed by NHC in biological conditions because of strong
o-donation of NHCs and the ability to tune the lipophilicity of Au-NHC
complexes by modulating the substituent groups on the heterocyclic ring
[253-255]. In a SAR study of Au complexes containing 1,3-diethyl-4,5-
diarylimidazol-2-ylidene ligands, and other ligands including triphenyl
phosphine (Fig. 31), Liu et al., showed that incorporating a phosphine
ligand to Au(l) 1,3-diethyl-4,5-diarylimidazol-2-ylidene complexes
(AuNHC-P1) resulted in a 5-fold decrease in ICsy compared to the parent
compound AuNHC-Br and higher cellular and nuclear uptake in MCF-7
and HT-29 cancer cells [256]. Ingo Ott and co-workers reported on the
potent antiproliferative activities of AUNHC-P-2 in MCF-7 and HT-29
cancer cells. AuNHC-P-2 inhibits TrxR significantly, binds to bovine
serum albumin, and accumulates significantly intracellularly and in the
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mitochondria compared to other carbenes. On the mode of cytotoxic
action, AuNHC-P-2 induces cell death via apoptosis and accumulation of
ROS [257]. To unravel the molecular mechanisms underlying the
cytotoxic activity of Au()NHC phosphines, Ott and co-worker further
examined the effect of AUNHC-P-3 (Fig. 31) phosphines to modulate
redox homeostasis. Apoptotic cell death was observed as a result of
irreversible loss of mitochondrial respiration that was triggered by
imbalance in redox homeostasis. Furthermore, upregulation of pro-
apoptotic proteins (p38 and JNK) and down regulation of thioredoxin
was observed pointing to the role of thioredoxin reductase as a target for
this class of Au-NHC phosphines [258]. This group later showed by ESI-
MS that thioredoxin reductase is a realistic target of Au(/)NHC phos-
phines when incubated with C-terminal dodecapeptide of hTrxR con-
taining selenocysteine at position 498 [259]. Furthermore they reported
SAR studies of this class of Au complexes by substituting the triphe-
nylphosphine with different alkyl phosphines AuNHC-P-2 (Fig. 31).
Results from the antiproliferative uptake studies shows that alkyl
substituted AuNHC-P-2 (Fig. 31) shows a decrease in potency and
cellular uptake in MCF-7 and HT-29 cancer cells which could be
attributed to the higher lipophilicity of the triphenylphosphine
compared to the alkylated phosphines [260].

A series of seven complexes containing NHC and phosphine mixed
ligands were described by Sulaiman and coworkers. The anti-
proliferative activity of all seven complexes were higher than cisplatin in
ovarian cancer cells A2780 and A2780cis with a fold resistance (FR)
ranging from 0.86 to 1.78, thus excluding cross-resistance to cisplatin in
these cell lines. Au-NHC-P-10 the only member of the series with fold
resistance <1 was chosen for further studies. Au-NHC-P-10 induced cell
death through apoptosis, mitochondrial ROS, and DNA damage while
causing G1 phase cell cycle arrest. Au-NHC-P-10 also inhibited 20S
proteasome activity, and cell migration and significantly inhibits OvCa
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murine xenografts (Fig. 32) [261].

Further work by this lab on three dinuclear Au(I) complexes con-
taining NHC and phosphine ligands ([AuNHC-P]; 4-6) (Fig. 31) showed
that the novel dinuclear Au complexes showed a distinct mechanism of
action inhibiting 20S proteasome activity and NF-kB in A549, while the
enzymatic activity of TrxR was not affected. Furthermore, the dinuclear
Au phosphine complexes reduced the expression levels of certain lung
cancer stem cell biomarkers (ALDH1, CD133, CD44 and NOTCHI1 re-
ceptor) in A549 lung cancer cell, and was more cytotoxic than cisplatin
in A549-2D cell culture. The complexes also inhibited viability of A549
in 3D-multicellular tumor spheroids (3D-MCTSs) with an ICsg of 0.95
pM compared to cisplatin ICso = 44 pM. These interesting results dem-
onstrates the utility of Au phosphine complexes as next generation
anticancer agents [262].

Casini et al., also synthesized cytotoxic Au()NHC phosphine con-
taining an activatable ester moiety (AuNHC-P-7 & 8) (Fig. 31). These
complexes showed 2-fold selectivity in A2780 ovarian cancer cells
compared to non-tumorigenic HEK-293 T cells [263], while Sivarem
et al., described a heteroleptic Au()phenylphosphine complex bearing a
pyrazole-based ligand (AuNHC-P-9) (Fig. 31) that showed similar
cytotoxicity to cisplatin in NCI-H1666 non-small cell lung cancer cell
line [264].

Horvath et al., reported on the synthesis and anticancer properties of
25 phosphinogold(I) complexes bearing N-donor molecules such as
imidazole, pyrazole, pyrrole, 1,2,3-triazole, 1,2,4-triazole, 9H-purine
and adenine Au-P-N-1 — Au-P-N-4 (Fig. 33). The cytotoxicity of these
dinuclear complexes is determined by the length of the alkyl chain be-
tween the phosphorus donor atoms with complexes with 5 or 6 bridging
carbons presenting lower ICsg. Also, these complexes induces cell death
by apoptosis but their effect in mitochondria processes was not promi-
nent [265]. Maneiro reported two benzimidazole gold(I) phosphines Au-
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P-N-5 or Au-P-N-6 Fig. 33 that exhibited potent anticancer activity in
SH-SY5Y neuroblastoma cancer cell. In vitro analysis of these com-
pounds indicate that they induce apoptosis and induce cell death
through caspase dependent and caspase independent mechanism [266].

Furthermore, Awuah et al., reported SAR studies on tricoordinate
phosphino Au(I) and arsino Au(I) complexes bearing N, N-bidentate li-
gands. The tricoordinate geometry of these Au(I) complexes seems to
play an important role in anticancer activity, with ICsg values in the low
micromolar range in MDA-MB-231 triple negative breast cancer cell
(TNBC) and displayed high selectivity (>35 times) toward TNBC’s over
normal lung fibroblasts. This class of Au(I) phosphine complexes were
found to fragment and perturb the mitochondria structure in MDA-MB-
231 by significantly increasing the maximal cristae width in comparison
to the vehicle control, downregulating OPA1, MFN1, MFF and TOM20,
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key proteins that are involved in mitochondrial structure homeostasis
(Fig. 34). Further studies shows the Au-Tri depolarizes mitochondria
membrane and showed in vivo tolerability in mice [267].

Au phosphine-alkyne is another class of heteroleptic Au complexes
investigated for their antiproliferative effect in several cancer cell lines.
This is due to their stable coordinative bond (strong Au—C c-bond) that
enhances stability in physiological conditions. Ott and coworkers syn-
thesized some phosphinogold(I) alkynyl complexes P-Au-C = CRa-f
(Fig. 35) that showed selective inhibition of thioredoxin reductase over
glutathione reductase. These complexes inhibited mitochondrial respi-
ration and triggered significant anti-angiogenic effect in zebrafish em-
bryos [268]. Later, they reported some bridged dinuclear phosphinogold
(I) alkynyl complexes [Py-C = C-Au-PR3]2(CH3), a-d Fig. 35 that inhibits
TrxR mildly in MCF-7 breast cancer cells coupled with potent anticancer
activity (0.7-2.8 pM) in MCF-7 breast cancer and HT-29 colon carci-
noma cells for the active TrxR inhibitors [269]. Motivated by this
interesting results, Ott and coworkers further studied the SAR of phos-
phinogold(I) alkynyl of the type PR3-Au-C = C a-f Fig. 35 by varying the
phosphine ligands and evaluated their cytotoxic effects on cellular
signaling and in vivo anticancer potency. While the cytotoxicity of the
complexes was independent of the phosphino groups attached to the Au
central atom, groups with alkyl or phenyl phosphines inhibited TrxR
preferentially to complexes studied. [PPh3-Au-C = C-] was observed to
significantly induce ERK1/2 phosphorylation and HSP27 phosphoryla-
tion as the signaling pathway. Initial difficulty in drug formulation for in
vivo studies was overcome by nano formulation of [PPh3-Au-C = C] in a
peanut oil nano emulsion prior to injection in mice however the treat-
ment condition was not effective to inhibit tumor growth [270].
Recently, Wang et al., reported some Au(I) phosphines PR3-Au-C = C-2 -
PR3-Au-C = C-7 Fig. 35 that exhibited in vitro cytotoxicity in PC3
prostate cancer cells and showed significant reduction of tumor weigh
and in vivo tolerability in PC3 injected nude mice compared to aur-
anofin and cisplatin [271].
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Balasingham et al., reported on some luminescent Au phosphine-
alkyne that showed -cytotoxicity in MCF-7 breast cancer -cells
compared to the free ligand. Further live cell imaging with confocal
microscopy showed localization of the Au phosphine-alkyne in the
cytoplasm Fig. 36 [272].

Complexation of metal complexes with biologically active molecules
such as non-steroidal anti-inflammatory drugs (NSAIDs), flavonoids,
chloroquine and cinnamide have been shown to improve the anticancer
properties of the metal complexes [273,274]. Tabrizi and Romanova
synthesized phosphinogold(I) alkynyl complexes bearing ibuprofen, a
NSAID, IBU-C = C-Au-PPhs (Fig. 37). This compound showed solution
stability in DMSO/PBS solution (1:99 v/v) and potent anticancer activity
with 4.2, 3.7, and 1.7-fold more cytotoxic than cisplatin in HT-29, MDA-
MB-231, MCF-7 cancer cell lines respectively [275]. The role of dietary
flavonoids in cancer management has been widely discussed and the
anticancer activity of their phosphinogold alkynyl complex was studied
in PC-2 (human prostate cancer) cell line. The study showed that FL-C =
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C-Au-PPhs (Fig. 37) has an improved bioactivity compared to the free
compound. Further studies are required to elucidate whether the cyto-
toxicity observed was a result of synergistic effect of the flavone and Au
(PPh3) fragments [276]. Au(I) complexes containing propagylated cin-
namides and lipophilic (PPh3) or water soluble (PTA) ligands have also
been explored for their anticancer activities [CNA-C = C-Au-PPhgs] or
[CNA-C = C-Au-PTA] (Fig. 37). These complexes showed good stability
in a buffer solution containing 50 mM Tris, 4 mM NaCl, pH 7.4 over 72 h
using UV-vis spectroscopy. The complexes containing lipophilic PPhg
ligands were more potent compared to the complexes with hydrophilic
ligands in A549 (lung), D24 (melanoma), and HT1080 (fibrosarcoma)
cancer cells. Also [CNA-C = C-Au-PPhs -c] inhibit TrxR, induces
mitochondrial-mediated apoptosis and showed significant anti-
angiogenic effects in zebrafish embryos, in contrast to cisplatin, which is
almost inactive [277].

Suntharalingam, Awuah and coworkers reported on the anti-breast
cancer stem cell (CSC) properties of some linear Au(I) phosphines
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bearing non-steroidal anti-inflammatory drugs (NSAIDs) Fig. 37 by
inhibiting cyclooxygenase-2 (COX-2) — an enzyme responsible for
inflammation and pain. The cytotoxicity of Au-NSAIDs1-3 was exam-
ined against a panel of human, murine bulk breast cancer cells (MDA-
MB-231, MDA-MB-468, HMLER, and 4 T1) and breast CSC-enriched
cells (HMLER-shEcad) complexes and they showed potency with ICsq
in the lower micromolar range. Interestingly, Au-NSAIDs-1 showed
greater potency at inhibiting breast CSC than clinically approved breast
cancer drugs such as 5-fluorouracil, capecitabine, cisplatin, and carbo-
platin while showing selectivity for breast cancer cells against non-
tumorigenic HEK 293 cells. Further mechanistic studies showed that
the inhibitory activity of Au-NSAID-1 is related to its ability to inhibit
COX-2 activity, promotes apoptosis and increase intracellular ROS
[278].

To understand whether Au-phosphine complexes act as prodrug or
the Au atom remains attached to the phosphine in biological systems,
Bodio et al., studied structurally similar Au phosphine complexes
bearing coumarin ligands Au-P-Cl-1, Au-P-Cl-2, Au-P-SAcGlu and its
non-Au phosphonium counterpart Fig. 38 [279,280], and track their
activity through fluorescence microscopy. Despite the similarity in the
structure of these compounds, they show different cytotoxic activity,
subcellular localization, and biodistribution in the zebrafish larval
model. While the Au-phosphine complexes accumulate in lipid raft with
no ROS accumulation, the phosphonium compound accumulated in the
cytoplasm [279]. Further they showed that potency of Au phosphine
complexes can be increased by combining them with a phosphonium
ligand Au-P-Br-4 — Au-P-Br-9 Fig. 38. This is due to the lipophilic
cationic character of the complex that could facilitates entry into the
cells to elicit anticancer activity [281]. Later, they reported on Au-P-Br-3
with structural capability for in vitro tracking through two photon im-
aging and improved anticancer activity due to the presence of coumarin

FL-C=C-Au-PPhj3
R=H, Me

o

R—:\ S H\

Au.
PTA

CNA-C=C-Au-PTA
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Fig. 37. Chemical structures of anticancer phosphinogold alkynyl complexes biologically active molecules.
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and phosphonium ligands. This complex shows good in vitro anticancer
activity in A549, MDA-MB-231 and SW480 cancer cells. Further they
demonstrate in vivo potency in CT26 tumor bearing BALB/c mice [282].

Au(I)/(III) complexes bearing methoxy substituted triphenyl phos-
phines have also been shown to have anticancer efficacy in 2D and 3D
cancer model in the lower micromolar range (Fig. 39) [283,284]. The
cationic Au(I) complexes showed improved anticancer activity
compared to the neutral Au(IIl) complexes. Furthermore, there was an
increase in ROS produced, induction of apoptosis, sub G1 cell cycle ar-
rest and caspase-3 activation in HeLa cells [283]. Also, Au(I) complexes
containing 2-BrC¢F4PPh, have been reported to show excellent anti-
proliferative activity in 2D and 3D spheroids of HelLa cells. These com-
plexes induce mitochondria damage by loss of membrane potential and
increase in ROS production [285].

1.3.3.4. Cyclometalated phosphinogold(I/Il) complexes. The develop-
ment of novel cyclometalated phosphinoAu(I/III) complexes has been
on the increase in recent years owing to the strong Au-carbon c-bond
that inhibits adverse intracellular redox processes and boost the stability
of Au complexes under physiological environment. A variety of
cycloaurated complexes bearing C—N, C-N-N, C-N-C and C—C ligands
have been successfully synthesized with important anticancer activities
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and mechanism of actions. Sun et al., reported on dinuclear cyclo-
metalated phosphinogold(III) complex that inhibits TrxR at nanomolar
concentration, induces ER stress and inhibits tumor growth in animal
models [286].

Awuah and coworkers reported on the SAR studies of cyclometalated
Au(I/III) complexes with either QuinoxP* or dppe bisphosphine ligands.
Comparing Au-P-C-N-1, a Au(IIl) dicationic compound with its mono-
cationic Au(l) counterpart Au-P-P-1, Au-P-C-N-1 exhibited greater
physiological stability in PBS and DMEM compared to its reductive
elimination product Au-P-P1 (Fig. 40). These findings were supported by
computational studies which showed that the four Au—P bonds in Au-P-
P-1 are ~2.5 A, while the two Au—P bonds in Au-P-C-N-1 show shorter
bond lengths of 2.38 and 2.5A, respectively, which is indicative of
stronger bonds [26].

Further in-depth mechanistic study on Au-P-C-N-1 by Olelewe et al.,
in a panel of TNBCs indicate the ability of this Au(Ill)-phosphine to
selectively interact with oxidative phosphorylation (OXPHOS) in
different TNBCs by inhibiting mitochondria respiration, depolarizing
mitochondria membrane, depleting mitochondria DNA, and inducing
significant AMPK activation. Furthermore, the compound causes cell
cycle arrest in the G1 phase and shows in vivo tolerability in TNBCs
Figure 41 [287]. Later, Kim et al., carried out a genome wide CRISPR
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screen to elucidate the target of Au-P-Cl-1 Fig. 40. Using TOXCRISPR,
their study reveals proteins involved in mitochondrial carriers, mito-
chondrial metabolism, and oxidative phosphorylation [288].

Expanding the library of C—N cyclometalated Au complexes Awuah
and Sullivan lab reported on Au(Ill) complexes bearing DPPBz
bisphosphine ligands Fig. 42. These complexes showed in vitro potency
across a wide range of cancer cell lines with significant lethality in a
panel of NCI-60 cell lines assessed. AuPhos89, the lead compound in the
study stimulates mitochondria respiration in mouse liver and cancerous
liver cells leading to oxidative stress and apoptotic cell death [289]. The
novel mechanism of action of this compound has propelled advanced
research into its use in other diseased conditions [290,291].

To understand the speciation of phosphinogold(III) complexes in the
presence of biological reductant such as glutathione, Awuah et al.,
synthesized seven cytotoxic C—N cyclometalated Au(III) complexes
bearing chiral MeDuPhos or iPrDuPhos ligand. AuP-C-N2 was incubated
with L-glutathione (1:1) in acetonitrile/water mixture and speciation
adduct formed was monitored by HPLC-MS over 4 h (Fig. 43). Products
consistent with reductively eliminated C—S bond was observed imme-
diately after incubation corresponding to peaks with reduced Au(I) ad-
ducts [IPrDuPhos-Au] " (m/z = 615.2) or [IPrDuPhos-Au-ACN]" (m/z =
656.2) and 2-(p-tolyl)pyridine-GSH (m/z = 475) while the parent peak
was observed throughout the experiment as M2' ion. Analysis of the
HPLC results calculated from % area under the curve (%AUC) for each
peak showed that while the peak intensity of the parent ion reduced, the
peak intensity of the adducts increased over the 4 h time interval
(Fig. 43). They further showed that these chiral Au(III) complexes have
potent anticancer activity in vitro and in vivo cancer cell models and
inhibit oxygen consumption rate (OCR) in MDA-MB-231 (triple negative
breast cancer model) [292].

Structural modification to Au(Ill) complexes offers a path to the
synthesis of stable complexes. Arojojoye et al., rationalized that stability
of cyclometalated Au(Ill) complexes can be improved by substituting
C—N with C—C cyclometalation. SAR studies was carried out to syn-
thesize novel C—C cyclometalated Au(III) bisphosphines from the
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reaction of u-chloro biphenyl Au(IIl) [293-295] and different bisphos-
phine ligands Fig. 44. The complexes demonstrate high physiological
stability in GSH and blood serum showing unaltered absorbance peaks
and absence of reductive elimination product for all compounds except
for highly conjugated Au-P-C-5. On the mechanism of action studies,
destabilization of cellular energy homeostasis through mitochondrial
uncoupling is known to create vulnerability in cancer cells. Au-P-C3
depolarizes mitochondria membrane, increases oxygen consumption
even at the inhibition of ATP synthase, and causes a decrease in mito-
chondrial ATP production leading to mild uncoupling activity in TNBCs.
Further in vivo anticancer studies reveals that Au-P-C3 inhibit the
growth of 4 T1 in mice [296].

Che et al., reported on C-N-C cyclometalated Au complex that in-
duces autophagy in HeLa cancer cells [297,298]. Au-P-C-N-C-1 Fig. 45 is
stable physiologically with impressive in vitro selectivity about 2.3-2.9
between normal and cancerous cell line [298]. They later reported on six
dinuclear cyclometalated Au(IlI) complexes Au-P-C-N-C-2 Fig. 45 that
showed impressive anticancer activities in PLC, HepG2 and HeLa cancer
cells. This study enabled SAR studies where the cytotoxicity of the
different complexes was observed based on variation of phosphines
backbones (alkyl chain length elongation). The most promising candi-
date Au-P-C-N-C-2 containing a propyl phosphine backbone further
showed promising anticancer activities in vivo and TrxR inhibition.
Further mechanistic studies revealed that this compound induces ER
stress [286]. Casini et al., also worked on cyclometalated Au complexes
bearing water soluble PTA ligand Au-P-C-N-C-3 Fig. 45. Although the
ICso of Au-P-C-N-C-3 is ~50 pM in the cell lines studied, it inhibited
cytosolic thioredoxin reductase in the low nanomolar range [299].

Square planar enantiomeric Au(IlI) complexes containing QuinoxP
ligands that showed high solution stability has also been reported by
Awuabh et al., These complexes also showed similar anticancer activities
in HCC1937, H460 and MDA-MB-468 cancer cells [300]. Furthermore,
cyclic trimer and tetramers containing Au-phosphines have been ported
by Barghava and co-workers Fig. 46. These complexes were stable in PBS
solution at room temperature for 72 h while showing significant potency
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and selectivity toward DU 145 (prostate cancer), HeLa (cervical cancer),
MDA-MB-231 breast cancer and HT1080 (fibro sarcoma cancer cells),
with ICs¢ values in the range of 0.04-4.65 pM. The mechanism of
cytotoxicity of these complexes were investigated in HT1080 cancer
cells using wound healing assay, actin staining, flow-cytometry and
Hoechst nuclear staining. Condensation of actin polymers and inhibition
of migration potential was observed. Moreover, there was disruption of
mitochondria function as seen in the depolarization of the mitochondria
membrane, induction of apoptosis, G0/G1 cell cycle arrest and increase
ROS production. These reports point to the potential of cyclic Au
phosphine complexes in anticancer treatment [301].

Romero-Nieto et al., reported Au complexes bearing phosphorus
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heterocyclic ligands Fig. 47 that showed significant cytotoxicity in four
glioma cells [302]. The use of phosphorus heterocycles in ligand design
of anticancer agents is rare, this class of compounds possess distinct
chemical properties from phosphines and can be utilized in synthesis of
novel anticancer agent with unique mechanism of action.

1.4. Limitations and future perspectives

Despite the potential of gold-phosphines in medicine, it is critical to
acknowledge that this field of research is continually evolving with
many challenges, but opportunities abound for new therapeutic appli-
cation for Au phosphines in the clinic. To achieve economic viability and
accessibility of Au drugs, simple, robust, and reproducible synthetic
methods are critical to advance the field of gold phosphines. Some of the
current synthetic methods employed include reaction of the ligand with
Au precursors such as [AuCly]™, [AuCl(SMe2)], or Au salts, trans-
metallation reaction from Ag or Cu complexes or through electrosyn-
thesis. These methods, though efficient, have some drawbacks which
include the need for air free techniques, risk of possible contamination
from other metals, long reaction times and the limited scope of ligands
that can be employed hence the need for newer approach to the syn-
thesis. For more detailed work on the synthetic approaches to synthesis
of Au complexes, readers may refer to [303-306] Also, more research
needs to be devoted into optimizing the pharmacodynamic properties of
Au phosphines to reduce toxicity and improve drug specificity and
localization. Improved drug delivery and localization can be achieved by
methods such as drug encapsulation with biocompatible proteins, bio-
degradeable polymers which have been shown to improve drug uptake,
reduce toxicity and increase clinical application [307-313].

Furthermore, the field of computational chemistry and machine
learning is burgeoning, and it can be applied to aid in the design of Au
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phosphines, their redox stability, and predict their reactivity and mo-
lecular interactions with protein.

1.5. Conclusion

In conclusion, it is evident that Au phosphine complexes can play an
important role in the development of next generation therapeutics.
While Pt and other metal-based drugs remain effective in the treatment
of cancer and other diseases, there is a need for improved therapy to
overcome drug resistance and toxic side effects presented by current
therapies. Also, the fact that Au complexes can cause cytotoxic activity
through different mechanism of action different from other metal-based
drugs provides impetus for its sustained research. Au complexes with
phosphine donor ligands represent an interesting class of compounds
that has garnered attention in the past few decades due to their diverse
structural motifs, electronic properties, and cross functional applications
in chemistry and biology. As outlined, there is an enormous phosphine
structural scaffold available to a chemist and this has contributed to the
large body of work on Au-phosphine complexes. Additionally, Au-
phosphine complexes have shown promise in chemical biology with
impressive anticancer, antimicrobial, and anti-inflammatory properties.
Their ability to interact with biological targets has also led to the
development of potential therapeutic agents for various diseases.

In summary, Au complexes with phosphine donor ligands offer
exciting opportunities for both fundamental inorganic chemistry
research and practical applications not just in medicinal chemistry alone
but also in catalysis, and materials science [11,25,314,315]
[5,316-319].
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