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Abstract

The prediction of solar energetic particle (SEP) events garners increasing interest as space missions extend beyond
Earth’s protective magnetosphere. These events, which are, in most cases, products of magnetic-reconnection-
driven processes during solar flares or fast coronal-mass-ejection-driven shock waves, pose significant radiation
hazards to aviation, space-based electronics, and particularly space exploration. In this work, we utilize the recently
developed data set that combines the Solar Dynamics Observatory/Space-weather Helioseismic and Magnetic
Imager Active Region Patches and the Solar and Heliospheric Observatory/Space-weather Michelson Doppler
Imager Active Region Patches. We employ a suite of machine learning strategies, including support vector
machines (SVMs) and regression models, to evaluate the predictive potential of this new data product for a forecast
of post-solar flare SEP events. Our study indicates that despite the augmented volume of data, the prediction
accuracy reaches 0.7± 0.1 (experimental setting), which aligns with but does not exceed these published
benchmarks. A linear SVM model with training and testing configurations that mimic an operational setting
(positive–negative imbalance) reveals a slight increase (+0.04± 0.05) in the accuracy of a 14 hr SEP forecast
compared to previous studies. This outcome emphasizes the imperative for more sophisticated, physics-informed
models to better understand the underlying processes leading to SEP events.

Unified Astronomy Thesaurus concepts: Solar energetic particles (1491); Solar storm (1526); Solar particle
emission (1517); Support vector machine (1936); Regression (1914); Linear regression (1945)

1. Introduction

Solar energetic particle (SEP) events are one of the
manifestations of solar activity that may significantly impact
the conditions of the space environment. For example, the large
solar particle event of 2017 September emphasized a significant
surge in the charged and neutral particle flux that was able to
reach Mars’ surface (C. Zeitlin et al. 2018). While the doses
from this specific event were below NASA’s stipulated
radiation exposure limits for astronauts, the risk for future
explorers is evident. This concern becomes particularly
relevant in scenarios where human explorers might be far
from their habitats on other celestial bodies, with the onset of
an event leaving them vulnerable to enhanced radiation doses.
Therefore, forecasting and predicting SEP events is paramount.

SEP events vary in intensity, spanning from suprathermal
(few keV) up to relativistic (few GeV) energies, and are
accelerated near the Sun either by magnetic-reconnection-
driven processes during solar flares or by fast coronal mass
ejections. SEP events are categorized as impulsive and gradual
(M. Desai & J. Giacalone 2016). The large gradual SEP events
are of special interest because they are accompanied by high-
energy protons (�10MeV) that pose serious radiation threats
to aviation and space operations. While these events are
intriguing from a scientific viewpoint, they have not always
been consistently detected. Therefore, while over 200 major

solar proton events were observed over the last 40 yr,
discerning a pattern between these occurrences and the solar
cycle remains elusive, adding to the difficulty in inferring the
number and intensity of major solar proton events that can
affect Earth (M. Shea & D. Smart 1990).
Many models have been developed to predict SEP events

(K. Whitman et al. 2022). These models vary in their
intricacies, ranging from physics-based (e.g., M. Zhang &
L. Zhao 2017) to empirical (e.g., A. Anastasiadis et al. 2017;
M. K. Georgoulis et al. 2021) and probabilistic (e.g., A. Papa-
ioannou et al. 2022). Lately, the embrace of machine learning
(ML) and hybrid model approaches signals a multidimensional
approach toward tackling this issue. For instance, the Space
Radiation Intelligence System merges preeruptive and poster-
uptive metadata, offering predictions for various solar-driven
events, including SEPs (A. Engell et al. 2017).
Leveraging vast data sets, ML models are being trained to

predict solar proton events (SPEs) by considering diverse
parameters, such as the magnetic field characteristics of solar
active regions (ARs), the preceding soft X-ray and proton
fluxes, and the statistics of solar radio bursts. For example, ML
models have demonstrated predictive capabilities superior to
conventional SWPC NOAA forecasts, indicating the possibility
of developing robust “all-clear” SPE forecasts (e.g., V. Sady-
kov et al. 2021). A. Ji et al. (2020) have demonstrated that
through data collection and intricate predictive model building,
a time series classification apparatus can offer more precise
forecasts compared to baseline models by tuning model
hyperparameters. It is also critical to address the challenges
posed by imbalanced data sets in forecasting SPEs. As
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highlighted by M. Stumpo et al. (2021), it is important for
machine learning techniques to reinterpret traditional statistical
SPE forecasting models (M. Laurenza et al. 2009), demonstrat-
ing that there are validation strategies that enhance the forecast
accuracy by balancing class distributions. Similarly, E. Lavasa
et al. (2021) tackle SEP event prediction as an imbalanced
binary classification problem, emphasizing the necessity of
class-dependent penalization to accurately reflect the rarity of
SEP events that we encounter in real-world applications.

In this study, we build upon the current state of SEP
modeling, utilizing a data set that spans two solar cycles. This
extended data set offers a new perspective on the SEP
prediction problem, aiming to improve the accuracy and
reliability of the existing models. To do this, we take advantage
of our previous developments (S. Kasapis et al. 2022) and a
new data set that covers two solar cycles, 23 and 24 (P. A.
Kosovich et al. 2024), briefly described in Section 2. Because
the prediction method is based on the known connection
between SEP events and solar flares (G.-M. Le & X.-
F. Zhang 2017), Section 3 outlines the process of matching
these space-weather phenomena that follow up statistical
analysis presented in Section 4. Finally, in Sections 5 and 6,
we present the results of this study and the ML models, while
in Section 7 we summarize the results that span the two solar
cycle observations.

2. Solar Cycles 23 and 24 Active Regions Data Set

It is well known that not all ARs exhibit eruptive activity,
and only a few of the ones that do are a source of SEP events
(H. Cane et al. 2010). Over Solar Cycle 23, although the
number of ARs and flares that erupted within them are on
the order of thousands, only 93 SEPs were recorded by the
NASA Space Radiation Analysis Group5 (SRAG). This
creates a significant statistical disproportion expectation of
SEP events (so-called class-imbalance problem) when the
forecast is based on the thousands of flares, and as a result,
models often tend to miss them. Therefore, increasing the size
of the data set suitable for ML training, by combining two solar
cycles worth of data (168 SEPs in Solar Cycles 23 and 24),
may improve the robustness of the SEP events forecast.
Because most SEP events are associated with flares that erupted
in ARs, it is natural to utilize the available Space-weather
Helioseismic and Magnetic Imager (MDI) Active Region
Patches (SMARP; M. Bobra 2017) and Space-weather
Michelson Doppler Imager (HMI) Active Region Patches
(SHARP; M. Bobra et al. 2011). The SMARP and SHARP data
sets include maps of automatically tracked ARs extracted from
full-disk magnetograms. These AR patches and their para-
meters have been used for a number of solar flare prediction
studies (e.g., M. G. Bobra & S. Couvidat 2015; I. Kontogiannis
et al. 2017; J. Wang et al. 2023). The vast majority of previous
studies did not take advantage of either SMARP or SHARP.
Training a machine learning model with the SMARP data set
demonstrated a potential to predict SEP events (S. Kasapis
et al. 2022), where training was based on five predictors: the
total unsigned magnetic flux, the vertical field gradient, the
unsigned flux R near the polarity inversion lines (C. J. Schrij-
ver 2007), the angular distance between an AR and Earth’s
magnetic foot point (A. Ippolito et al. 2005), and the area of
an AR.

We use a time series of summary parameters (keywords) of
solar ARs from both the SMARP and SHARP data series
(M. Bobra et al. 2011; M. Bobra 2017; M. G. Bobra et al. 2021),
which were combined into a single consistent data set (P. A.
Kosovich et al. 2024). This merged data set keeps the original
cadence of the data products: 96minutes for MDI and
12minutes for HMI observations. The SMARP/SHARP data
set includes a continuous set of 21 keywords (Table 1),
representing homogeneous observations of AR patches from the
Solar and Heliospheric Observatory (SOHO) MDI and Solar
Dynamics Observatory (SDO) HMI for the period between 1996
April 4 and 2022 December 30. Because MDI did not
observe the transverse magnetic field, we computed the
vertical components of the unsigned flux and the mean
magnetic field gradient from the line-of-sight parameters assum-
ing that the magnetic field of ARs is predominantly radial. For
both SHARP and SMARP data sets, the R_VALUE was
recomputed by finding the common antilogarithm of the original
R_VALUE, and SMARP MEANGBL units were converted
from Gauss pixel−1 to Gauss Mm−1. Filtering was applied to
exclude low-quality observables and any records corresponding
to the Stonyhurst coordinates beyond±65° longitude to mitigate
the foreshortening effect near the solar limb. Six SMARP
parameters (USFLUXL, MEANGBL, R_VALUE, CMASKL,
MEANGBZ, and USFLUXZ) were rescaled by applying total
least squares fitting, and the two data sets were merged on 2010
May 1, 00:00:00 TAI. For a more thorough overview of
filtering, rescaling, and merging of the SHARP and SMARP
keywords, we refer readers to P. A. Kosovich et al. (2024).
To evaluate the predictive capabilities of an ML-driven SEP

analysis, we use parameters of the flaring ARs as precursors,
which are stored as the SMARP/SHARP parameters (Table 1).
In our research, we use eight of these parameters (marked bold
in Table 1). Five physical parameters (R_VALUE,
MEANGBL, MEANGBZ, USFLUXL, USFLUXZ) are used
for the model’s training and evaluation. These keywords (so-
called “predictors” in machine learning) are used as input to an
ML model. Spatial parameters CRLT_OBS and CRLN_OBS
are also involved in training and evaluation as they define the
magnetic connectivity of ARs to the Earth (A. Ippolito et al.
2005), which we also use as a predictor. The time variable,
T_OBS, allows us to pick the correct SMARP/SHARP data
records associated with an SEP. More information about how
T_OBS is used and the selection of the appropriate prediction
windows for this research can be found in the following two
sections.

3. Coupling of SEP Events and Solar Flares

Most SEP events are associated with solar eruptive activity;
therefore the NOAA solar X-ray flare catalog6 and the list of
SEP events provided by the NASA SRAG are used to identify
the SMARP/SHARP data points (selected from the AR time
series) that will train our ML models. Note here that the NASA
SRAG SEP list contains fewer SEP events than other data sets
(S. Rotti et al. 2022) as only SEPs that can be connected with
certainty to flare events are included. The flare catalog contains
4238 flares recorded from 1996 April 22 to 2022 December 30,
the period between SOHO’s first record and the SHARP/
SMARP processed data availability at the time this research
was conducted. This catalog only contains flares for which all

5 https://srag.jsc.nasa.gov/ 6 https://www.ngdc.noaa.gov/stp/solar/solarflares.html

2

The Astrophysical Journal, 974:131 (13pp), 2024 October 10 Kasapis et al.

https://srag.jsc.nasa.gov/
https://www.ngdc.noaa.gov/stp/solar/solarflares.html


information related to their location and intensity/class is
available and only flares produced in ARs that are included in
the SHARP/SMARP data set. Only flares of the C, M, and X
classes are kept because the weaker flares do not produce SEP
events (A. Papaioannou et al. 2016; H. Cane et al. 2010),
allowing us to mitigate the class-imbalance problem. Thus, the
total number of flares was reduced to 3421. The SEP list
includes 168 events recorded from 1997 November 4 to 2023
May 9. We excluded 14 SEP events because they occurred on
the far side of the Sun or they were not associated with flares.
Our analysis does not include any SEP events on the limb or far
side because of the absence of reliable observations. The SEP
list provided by NASA SRAG contains 154 SEP–flare couples
(SEPs associated with flares). The NOAA list includes only
115 flares that can be verified (matched) with these SEP–flare
couples.

Similar to S. Kasapis et al. (2022), we define flares
associated with SEP as a positive event and the flares that
did not produce an SEP event as a negative event. Due to data
gaps that exist in the merged SMARP/SHARP data set, an
additional 5 positive and 60 negative of these SEP–flare
couples had to be excluded. Therefore, the final count for the
flares that will be used for SEP prediction is 110 positive and

3246 negative events. The SMARP/SHARP data points
availability and selection are discussed in Section 4.
To perform the association of SEP events to solar flares, we

use the NOAA flare keywords (t_start, t_max, t_end, class,
location, and AR) in Table 2. Additional keywords were
generated to reflect if a particular flare produced an SEP event
or not (SEP_Match keyword), as well as additional character-
istics of an eruptive event (intensity, coords, and ang_dist
keywords). The SEP_Match keyword is particularly important
in this project, as it is used as the target for our ML-ready data
sets. This SEP–flare matching process has assigned 110 flares
as positive (SEP_Match= “True”) and 3246 as negative
(SEP_Match= “False”).
The flare intensity keyword in Table 2 is defined as I= n× f,

where n corresponds to the intensity within the flare class (class
keyword), and f is the classification factor which depends on
the class of a flare: 10−6 for “C” class flares, 10−5 for “M,” and
10−4 for “X” class flares. The coords keyword is produced by
converting the solar flare location coordinates from the NSEW
format (location) to heliographic coordinates. The NSEW format
is a string-based representation, where the first character indicates
north (N) or south (S), followed by two digits representing the
latitude. The fourth character represents east (E) or west (W),

Table 1
List of Merged SMARP/SHARP Keywords (P. A. Kosovich et al. 2024)

Keyword Description Example

DBINDEX Database Index “mdi.smarp_cea_96m...”

T_OBS Time of observation 11/4/97 4:47

UNIX_TIME T_OBS expressed as time elapsed since Unix epoch (days) 10169.19965

ARPNUM Number of AR patch 581

NOAA_AR NOAA AR number that best matches ARPNUM 8100

NOAA_ARS List of all NOAA ARs matching this ARPNUM 8100

USFLUXL Total line-of-sight unsigned flux (Maxwells) 3.18E+22

R_VALUE Unsigned flux R near polarity inversion lines (Maxwells) 251995.71

MEANGBL Mean value of line-of-sight field gradient (Gauss Mm−1) 103.10

USFLUXZ Vertical component of the total unsigned flux (Maxwells) 120.44

MEANGBZ Mean value of the vertical field gradient (Gauss Mm−1) 6.75E+22

LAT_FWT Stonyhurst latitude of flux-weighted center of active pixels (degrees) −19.58

CRLT_OBS Carrington latitude of the observer (degrees) 4.02

LON_FWT Stonyhurst longitude of flux-weighted center of active pixels (degrees) 27.23

CRLN_OBS Carrington longitude of the observer (degrees) 324.65

CAR_ROT Carrington rotation number of CRLN_OBS 1929

CMASKL Cylindrical equal-area pixels in the AR 182848.46

CDELT1 Map scale in degrees per pixel 0.12

DSUN_OBS Distance from SOHO/SDO to the center of the Sun (meters) 146808723630.28

RSUN_OBS Observed angular radius of the Sun (arcseconds) 977.876787

QUALITY Quality index 512

Note. In bold are the keywords used as predictors in this study, and as examples, the values that describe AR8100 on 1997 November 4, 04:47:00, are given. The
ARPNUM is called “TARPNUM” in the SMARP data set and “HARPNUM” in the SHARP data set, but were renamed here for consistency.
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followed by two digits for the longitude. The heliographic
coordinates are based on the Sun’s rotation and are expressed
as latitude and longitude in degrees, with N and W considered
positive. Therefore, the NSEW coordinates “S14W33” would
be converted to (−14, 33) in heliographic coordinates
(Table 2, New Keywords). Finally, the ang_dist keyword
represents the angular distance Δσ between the AR and the
magnetic foot point of Earth using the haversine formula
(C. C. Robusto 1957), which is appropriate for calculating
great-circle distances between two points on a sphere:

( ( )) ( )s q q q q f fD = + -arccos sin sin cos cos cos , 11 2 1 2 1 2

where (θ1, f1) are the latitude and longitude of an AR, and (θ2,
f2) are the latitude and longitude of the magnetic foot point of
Earth. The distance to the magnetic foot point of the Earth is
critical for SEP prediction because it delineates the magnetic
connectivity between solar flares and the Earth, serving as a
pathway for SEPs to travel to our planet’s vicinity (A. Ippolito
et al. 2005). We assume that the magnetic foot point of Earth is
at the position (0, 45) degrees in the Stonehurst heliographic
coordinates, the location of the magnetic field line connecting
the Sun and Earth on the source surface (2.5 solar radii from the
solar center) where Parker’s spiral originates. The coordinates
are initially in degrees, but we convert them into radians to fit
the Python trigonometric functions requirement. After the
calculation, the angular distance Δσ is returned in radians. An
additional consideration is made for the ARs that are east of the
magnetic foot point, in which case the distance is assigned a
negative sign. Thus, using the SHARP/SMARP coordinates

(CRLT_OBS and CRLN_OBS, Table 1) in Equation (1), we
obtained the angular distance to the magnetic foot point of the
Earth (ANG_DIST keyword) for the ARs in the SHARP/
SMARP data set.
The ang_dist flare keyword is calculated using the flare

location in Table 2, whereas, in our ML models, we will be
using the AR location information from Table 1. The keyword
values in Table 1 are the ones provided in the SMARP/
SHARP data set, and we are going to be evaluating them in this
research rather than the NOAA flare information. The solar
flare keywords are not used to train the ML models as in an
operational setting, at the moment of prediction, we do not
have knowledge of the flare eruption and the physical
parameters associated with it. The flare keywords are only
used to assign targets (SEP or not) to the SMARP/SHARP data
points and to shed light on the relationship between flares and
the SEPs they produced. For example, the density histogram on
the left panel of Figure 1 shows much less overlap between the
positive (green) and negative (red) flares compared to the
histograms on the right panel, indicating higher predictive
capabilities of magnetic flux.
Although Figure 1 demonstrates that intensity is a relatively

reliable predictor of SEP events, the right panel shows that the
angular distance is not, but still carries some information
related to SEP production. As expected, flares with low values
of angular distance (flares that occurred close to the Earth–Sun
magnetic connection point) are more likely to produce SEPs
that can be observed at Earth, compared to flares that erupted
far away from the magnetic foot point (Figure 1, right panel,
angular distance values �−1). It is important to note, that such
keywords can be used for SEP prediction only if a flare
prediction model is able to infer the flare intensity and position
on the solar disk (Z. Jiao et al. 2020; A. Chen et al. 2021).
Although this work is limited to the predictors that the
SHARP/SMARP data set offers, it is important to note that
other SEP prediction and characterization studies have used a
variety of different observables as inputs, such as the radio
burst flux (S. W. Kahler & A. G. Ling 2017), the soft X-ray
(SXR) flux, the SXR duration, the SXR rise time, and other
(E. Lavasa et al. 2021; K. Whitman et al. 2022; P. M. O’Keefe
et al. 2023).

4. SHARP/SMARP Data Selection and Creation of ML-
ready Data Sets

To predict the SEP events, we consider the time evolution of
an AR and its properties during the start time of a
corresponding solar flare. In this work, we use 3869 ARs
from the SMARP/SHARP data set (P. A. Kosovich et al.
2024), 872 of which produced a flare. Because the eruptive
activity of the Sun is the primary source of the SEP events, we
consider only flaring ARs (such as the two example ARs in
Figure 2). Thus, we combine information available from the
three data sources: (1) properties of flaring ARs from the
SHARP/SMARP data set, (2) the NOAA catalog of solar
flares, and (3) the SWPC catalog of SEP events.
After labeling every flare in the NOAA flare list (using the

SEP_Match keyword) based on whether it is associated with an
SEP (Section 3), we proceed with selecting the appropriate
SHARP/SMARP data (Section 4) used to train various ML
models. Figure 2 illustrates these two distinct processes of
creating different data sets used in this paper (flare and SEP
coupling, SMARP/SHARP data selection).

Table 2
List of Keywords in the NOAA Flare Data Set (Top) and the Ones Created for

the Convenience of Our Analysis (Bottom)

Default NOAA Flare Keywords

Keyword Description Example

t_start Flare start time 1997-11-04
05:52:00

t_max Flare maximum intensity time 1997-11-04
05:58:00

t_end Flare end time 1997-11-04
06:02:00

class Flare class X2.1

location Flare location (NESW format) S14W33

AR NOAA AR number associated with flare 8100

New Keywords

Keyword Description Example

SEP_Match SEP-producing flare (True or False) True

intensity Intensity (Watts per square meter) 0.00021

coords Flare heliographic coordinates (degrees) (−14, 33)

ang_dist Angular distance from the magnetic foot
point of the Earth (radians)

−0.32045

Note. Although the SEP_Match keyword is used for the ML models training,
the intensity, coords, and ang_dist keywords are only used for demonstrating
the relationship between flares and SEPs in Figure 1.
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The procedure of preparing data sets (ML-ready) for the
training and validation of the machine learning models used in
this research is illustrated in Figure 3. In blue and magenta are
the USFLUXL and R_VALUE timelines (Figure 3, top panel),
which within a day show small fluctuations in value. Note that
only two out of the six available keyword timelines (Figure 2,
SMARP/SHARP data set timelines) are shown in Figure 3,
annotated with the SEP starting time as defined by NOAA (red
vertical line) and the starting times of the non-SEP-producing
(negative) flares that occurred within AR 10180 (Figure 3, gray
dashed lines). The moments of time 2, 5, and 10 hr before the
start time of an SEP-producing (positive) flare are shown in
green dashed lines (Figure 3, bottom only). These intervals are
the different time windows this study produced results for (2, 5,
10 hr window). The forecasting window (or prediction window
tp, the time interval between green rectangles and lines in
Figure 3) is defined as the selected time window plus the time
to the first available data point. The three time windows were
chosen based on the data cadence of the SOHO MDI, which is

1.6 hr (greater than the SDO HMI data cadence) and therefore
2 hr is the shortest, round, prediction window that could be
used for our analysis. We set the upper limit to be 10 hr because
extending the time window would lead to loss of positive
events due to data availability constraints.
The matching algorithm picks the first available SHARP/

SMARP data point (Figure 3, bottom panel, green rectangles)
before tstart− x for x ä [2, 5, 10] hr. This process is the same for
all flares, regardless of whether they produced an SEP or not.
These are the positive and negative data points (for three
different time windows) that will comprise the ML-ready data
sets discussed in this study. Every flare event has a unique
prediction window tp� tstart− x. The data set has a mean
forecast window of 14.21 hr for the positive flares and 12.06 hr
for the negative flares. Similar forecast windows were used in
previous studies (A. García-Rigo et al. 2016; A. Anastasiadis
et al. 2017), allowing for reliable comparison of results.
To understand better the multidimensional problem that the

ML model has to solve, we present in Figure 4 density

Figure 1. Probability density distribution of the 3356 positive (green) and 110 negative (red) events in our data set that occurred between 1996 April 4, and 2022
December 30 (SHARP/SMARP data set availability) for the logarithm of flare intensities (left panel) and angular distances to the magnetic foot point of the Earth
(right panel).

Figure 2. Scheme of a workflow to prepare ML-ready data sets from the SMARP and SHARP (M. G. Bobra et al. 2021; P. A. Kosovich et al. 2024). The arrows
depict the previous work (light black, Section 2), the flare and SEP coupling process (black, Section 3), and the SMARP/SHARP data selection (blue, Section 4).
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histograms of the six predictors (bold keywords, Table 1). The
use of density instead of normal histogram values is essential
when the populations of two different groups (positive and
negative), are highly imbalanced like in our study. A strong
SHARP/SMARP predictor would be one where the positive
(green) and negative (red) event distributions have less overlap.
The physical parameters that represent the mean value of the
line-of-sight magnetic field gradient (MEANGBL; Figure 4(f))
offer less information about the eruption of an SEP. The
angular distance of the AR and the magnetic foot point of the
Earth, along with the unsigned flux R near polarity inversion
lines (R_VALUE; Figure 4(d)), provide some information
about the ability to distinguish between positive and negative
flares and therefore the SEPs that can reach Earth. SEPs will
unlikely start early in the evolution of the AR (or west of the
magnetic foot point of the earth as seen for AND_DIST_AR,
Figure 4(e)). Two Gaussian distributions are visible at −0.4
and 0.4 rad from the magnetic foot point. Therefore, some
predictive capability can be observed in this single parameter,
which, in combination with others, could distinguish whether a
flare about to erupt can lead to an SEP or not.

Similar to S. Kasapis et al. (2022), the predictors that carry
most of the information beneficial to prediction tasks are those
related to the unsigned magnetic flux (USFLUXL and
USFLUXZ, Figures 4(a), (b)). Although for both USFLUXL
and USFLUXZ the overlap between positive and negative
flares is significant (still less than the rest of the predictors),

these predictors can carry meaningful information for an ML
method to distinguish between the two populations. The
difference between their distributions is noteworthy, with
USFLUXZ showing better predictive capabilities. As expected,
flares produced in AR areas where there is an increased value
of magnetic flux, are more likely to produce an SEP. This is
even more obvious for values of unsigned magnetic flux on the
line of sight that are greater than 1.75 Maxwells
(USFLUXZ� 1.75 Maxwells) as seen in panel b of Figure 4.
A similar behavior can be observed for large values
(�120 Gauss Mm−1) of the line-of-sight field gradient
(MEANGBZ; Figure 4(d)).
Following the SMARP/SHARP data selection processes

described in this section, we have created the first group of data
sets for different time windows, which include information for
all flares that occurred within the tracked ARs. We proceed
with creating a second group of data sets (referred to as
“clean”) by omitting the non-SEP-productive flares in the SEP-
productive ARs as it is almost impossible for an ML method to
distinguish between positive and negative data points that have
such similar values. The difficulty here arises because an AR
that hosts an SEP-producing flare, in most cases, also hosts
multiple more non-SEP-producing flares that will have similar
values with each other. Omitting the non-SEP-productive flares
that erupted in SEP-productive ARs, transforms the problem, as
the forecasting now concerns the AR itself (and whether it is
SEP-producing or not) rather than concerning the flare

Figure 3. Timelines of the total line-of-sight unsigned flux (USFLUXL in Maxwells) and the unsigned flux R near polarity inversion lines (R_VALUE in Maxwells)
for the total tracking period of AR 10180 and the day (2002 September 11) during which an SEP occurred (bottom). Underlined (solid green) are the start time (t_start
keyword) of the SEP producing (positive) flare of this AR and the data points that the matching algorithm selects for the ML-ready data sets. The process of selecting
the data points in the green boxes is referred to as SMARP/SHARP data selection in Figure 2.
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occurrences. In Figure 3, the data points related to the gray
dashed lines (tstart of the negative flares) are the ones omitted
when training our support vector machines (SVM) method on
the “clean” data set. Tables 3 and 5 show how we can present
our ML models with an easier problem by omitting these noise-
inducing flares.

To quantify the histograms of Figure 4, the Anderson–
Darling and Kolmogorov–Smirnov of the positive and negative
samples in our data sets are calculated and presented in Table 3.
The Anderson–Darling test (F. W. Scholz & M. A. Steph-
ens 1987) is a statistical test that measures how well the data
fits a specified distribution, with a particular focus on the tails
of the distribution, making it sensitive to differences in the
extremes. The Kolmogorov–Smirnov test (Massey 1951)

assesses the goodness of fit between data and a theoretical
distribution as a one-sample test, while the Smirnov test
(V. W. Berger & Y. Zhou 2014), its two-sample counterpart
used in this research, evaluates whether two data sets come
from the same distribution by comparing their empirical
cumulative distribution functions.
The first two columns under the “regular” category in the

table represent the Anderson and Smirnov for the data set
which includes all flares (not “clean”). For instance, the
keyword USFLUXL demonstrates an Anderson–Darling sta-
tistic (Anderson) of 2.3164 and a Smirnov statistic of 0.1309,
reflecting a moderate distinction between the two groups. In
contrast, ANG_DIST_AR, with an Anderson statistic of
23.8579 and a Smirnov statistic of 0.3015, reveals a more

Figure 4. Probability density histograms for the six SHARP/SMARP predictors (Table 1) for the 10 hr window ML-ready data set for the positive (red) and negative
(green) events. The red and green curves correspond to the fitted trend lines of the histogram bin values.
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pronounced difference, indicating that the disparity in distribu-
tions is more significant. This pattern holds true across all data
sets; keywords that exhibit higher values for both Anderson
and Smirnov tests, such as USFLUXZ, R_VALUE, and
ANG_DIST_AR, suggest a greater divergence between the
distributions of positive and negative samples. Conversely,
keywords with lower statistics, like MEANGBL_GMM,
indicate a closer resemblance between the two distributions,
implying a lesser degree of distinction.

The increase in both Anderson–Darling and Kolmogorov–
Smirnov statistics for USFLUXL, USFLUXL, USFLUXZ,
R_VALUE, and MEANGBZ, upon cleaning the data, signifies
an enhancement in the ability to distinguish between the
distributions of positive and negative flares. This could lead to
improved discrimination power when these variables are used
as features in our prediction models. However, it is important to
note the very slight increase in the Anderson for ANG_DIST
AND MEANGBL upon cleaning. This underlines the bound-
aries of predictive power within the SHARP/SMARP data set,
even when the prediction problem becomes easier.

The flare intensity statistic values are indicative of the
predictive power the flare information holds. The Anderson
statistic for flare intensity is 170.99, substantially greater than
that of ANG_DIST (23.85). Similar observations can be done
for the Smirnov values proving the consistency of these results.
For the physical parameter that the two data sets (flares and
SHARP/SMARP) share in common, the distance to the
magnetic foot point of the Earth, the Anderson of 23.50 for
ang_dist (Table 2) is very similar to that of ANG_DIST. This
proves that using the exact point the flare erupted in ang_dist
compared to the, less accurate, AR midpoint coordinates in
ANG_DIST, does not provide any additional information
useful for prediction. Given the concrete knowledge these
statistic tests provide, in the following Sections we will be
using the SMARP/SHARP data set predictors to forecast SEP
events at least half a day (14 hr) before they are observed.

5. Machine Learning Models and Methodology

To evaluate the predictive capabilities of the SMARP/
SHARP data set for SEP prediction, we use the SVM and linear
regression models available in the Scikit-Learn7 Python library
(sklearn). SVMs (M. A. Hearst et al. 1998; I. Steinwart &
A. Christmann 2008), a supervised ML approach, are designed
for both classification and regression tasks. Their primary
objective is to find the optimal hyperplane that best separates

different class data points in a high-dimensional space. They
are particularly effective in high-dimensional spaces such as
ours, as we deal with six SMARP/SHARP predictors (six
dimensions) and when the classes are linearly separable. Since
there is no certainty about the linear separability of our data
(Figure 4), especially in their original feature space, in this
research we explore different SVM kernels. The kernel trick
involves mapping the data into a higher-dimensional space
where it becomes linearly separable, or more separable than in
the original space. The SVM kernels used in this research are:
(a) the polynomial kernel (poly: finds a polynomial of the given
degree to separate the data), (b) the radial basis function (RBF)
or Gaussian kernel (RBF creates a landscape where data points
that are close in the original space are at the peak, and those
further away are down the slope) and the sigmoid kernel
(sigmoid maps the similarity between data points into values
between −1 and 1).
The second group of ML models is regression models

(L. Fahrmeir et al. 2013), which are a set of statistical methods
for estimating the relationships among variables. They are used
to predict a continuous outcome variable (dependent variable)
based on one or more predictors (independent variables). The
most common type of regression analysis is linear (S. Weisb-
erg 2005), where a line of best fit is determined, but other types
of models include logistic (T. G. Nick & K. M. Campb-
ell 2007), polynomial (R. M. Heiberger et al. 2009) and Ridge
(D. W. Marquardt & R. D. Snee 1975) regression. While linear
regression is traditionally used for predicting continuous
numerical values, there are variants of linear models suitable
for non-continuous or categorical data such as the ones
discussed in this work (SEP/no-SEP). Logistic regression
models such as the ones used in this and many other SEP works
(M. Laurenza et al. 2009, 2018; L. M. Winter & K. Ledbet-
ter 2015; A. Papaioannou et al. 2018), for instance, are
designed for binary classification tasks that fit the positive/
negative (SEP/No-SEP) prediction problem.
These ML models are dependent on a set of hyperparameters,

which play a crucial role in determining the performance of the
prediction capability. While model parameters are learned during
training, hyperparameters are external to the model, they often
control its overall behavior. The choice of the kernel (linear,
polynomial, RBF, etc.) and their respective parameters, like the
degree for a polynomial kernel or gamma for RBF, are all
considered hyperparameters. Similarly, in logistic regression, the
regularization strength and type (L1 or L2) are hyperparameters
that can influence the model’s performance. Manually selecting
these hyperparameters can be suboptimal; we, therefore, employ

Table 3
Anderson and Smirnov Coefficients for the Six Keywords of the Regular and Clean Data Sets

Keyword Regular Clean Difference
Anderson Smirnov Anderson Smirnov Anderson / Smirnov

USFLUXL 2.3164 0.1309 6.8960 0.1813 +4.5796/+0.0504
USFLUXZ 9.5532 0.2273 17.7214 0.2784 +8.1682/+0.0511
R_VALUE 4.9641 0.1681 16.0888 0.2379 +11.1247/+0.0698
MEANGBZ 3.8905 0.1407 9.4534 0.1885 +5.5629/+0.0478
ANG_DIST 23.8579 0.3015 24.6131 0.3090 +0.7552/+0.0075
MEANGBL 0.3643 0.0845 1.7362 0.1080 +1.3719/+0.0235

Note. The last two columns include the difference in Anderson and Smirnov between the regular and clean data sets.

7 https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
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tools like GridSearchCV8 from Scikit-Learn, which offers an
automated and systematic approach to hyperparameter tuning.
By searching through specified hyperparameter combinations
and cross-validating, the GridSearchCV algorithm ensures
the selection of hyperparameters that yield the best model
performance. However, it is worth acknowledging the
computational expense of such a brute-force approach,
especially when considering extensive hyperparameter spaces
or sizable data sets. In this study, we train our models using six-
dimensional feature vectors in the number of low thousands;
therefore, the computational expense is on the order of minutes.
In the following section, SEP prediction results are produced
by six ML methods: linear, RBF, polynomial, and sigmoid
SVMs, along with logistic and ridge regression.

To assess the performance of each machine learning model,
a suite of evaluation metrics was chosen (Table 5). Accuracy
(ACC) measures the proportion of correct predictions made by
the model relative to the total number of predictions. For ACC,
a score of 1 indicates perfect prediction, while a score of 0.5
suggests no better than random guessing. The true skill statistic
(TSS) and the Heidke skill score (HSS) both account for the
skill of the model in distinguishing between the classes,
factoring in both false positives and false negatives. For both
TSS and HSS, a score of 1 indicates perfect skill, 0 indicates no
better than random prediction, and negative values indicate
inverse or contrary predictions. The false-alarm rate (FAR)
measures the proportion of negative instances that were
incorrectly classified as positive; a lower FAR is more
desirable, with 0 being the ideal score. Lastly, the F1 Score
provides a balance between precision and recall. An F1 score
closer to 1 indicates better balance and performance, while a
score closer to 0 suggests poor performance. These metrics
provide a comprehensive evaluation framework, ensuring the
model’s performance is assessed from multiple vantage points.

To robustly evaluate the predictive ability of the various
predictors discussed in Section 4 and to quantify model
uncertainty, each model was trained and validated across 100
distinct runs. Therefore, the results reported in this work reflect
the mean value and standard deviation of 100 distinct ML
training and testing runs that used the same hyperparameters
but different initializations. A one-to-ten (0.1) train-to-test ratio
is used for the validation of every individual run. Our ML-
ready data sets include 110 positive events; therefore 99 of
them are used for training and 11 for testing. The methodology
employed for training the aforementioned ML models was
designed to account for the severe class imbalance in the data
set. There are 3356 negative samples (non-SEP-producing

flares) in contrast to only 110 positive samples (SEP-producing
flares), resulting in an imbalance ratio of 1/30. Two types of
training and validation schemes are used in our analysis: one
where the positive and negative data sets are balanced (referred
to as balanced) and one where the 1/30 imbalance is retained
(imbalanced).
In the balanced case, every run utilizes all positive samples

(110) and an equal number of negative samples, randomly
chosen out of the total population (3356). Therefore the 110
chosen samples are different in each one of the 100 runs,
ensuring a fair representation of the entire population. This
experimental configuration (referred to as balanced in Table 5)
was intentionally chosen to discern the inherent predictive
capability of the predictors in a balanced, experimental
scenario. In this case, testing is performed using the same
amount of negative and positive samples. In the second case
(labeled imbalanced in Table 5), rather than randomly picking
an equal amount of negative samples, we used the entire data
set (retains the 1/30 imbalance) but added a weighting factor,
which during training allows for more attention to the minority
class (positive). Here, the number of negative samples reserved
for testing is chosen to be 30 times greater (3300 negative
testing samples) than that of positive.

6. Results

In the pursuit to identify the most effective machine learning
model for SEP prediction, a series of experiments were
conducted with different combinations of the six SMARP/
SHARP predictors (Figure 4). We performed tests with all
possible predictor combinations. In this paper, we present the
five best combinations. Across these tests, the performance of
the models in terms of accuracy remained within a relatively
narrow band, from 0.53± 0.10 for the USFLUXL, MEANGB,
MEANGBZ combination (Table 4), to 0.67± 0.11 for the
R_VALUE, ANG_DIST predictors. It is noteworthy that
although the R_VALUE has lower Anderson and Smirnov
values than USFLUXZ when used along with the highest
Anderson predictor in Table 3 (ANG_DIST), produces slightly
better results than if the ANG_DIST was combined with the
USFLUXZ. This pair consistently achieved the highest
accuracy across all models, reaching 0.67± 0.09 when training
an SVM model that uses the sigmoid kernel.
Surprisingly, incorporating more predictors did not translate

to enhanced performance. For instance, using all available
predictors yielded accuracies such as 0.64± 0.10 (0.03
decrease compared to examples with the best performance,
Table 4) for the linear SVM model, which is not superior
to using just two predictors, as seen with R_VALUE
and ANG_DIST. This can be attributed to the inclusion of

Table 4
ACC Values for SVM and Regression Models When Trained on Six Combinations of the SMARP/SHARP Predictors for Runs That Include All Flares (Regular Data

Set in Table 5), a 10 hr Time Window, and a “Balanced” Setting

SVM Regression

SMARP/SHARP Predictors Linear RBF Polynomial Sigmoid Logistic Ridge

ALL PREDICTORS 0.64 ± 0.10 0.62 ± 0.10 0.64 ± 0.10 0.62 ± 0.10 0.65 ± 0.09 0.65 ± 0.12
USFLUXZ, R_VALUE, ANG_DIST 0.66 ± 0.09 0.65 ± 0.10 0.66 ± 0.10 0.64 ± 0.10 0.65 ± 0.10 0.65 ± 0.09
USFLUXL, MEANGB, MEANGBZ 0.55 ± 0.10 0.55 ± 0.10 0.54 ± 0.10 0.53 ± 0.10 0.56 ± 0.10 0.56 ± 0.11
R_VALUE, ANG_DIST 0.67 ± 0.10 0.66 ± 0.10 0.67 ± 0.11 0.67 ± 0.09 0.66 ± 0.10 0.65 ± 0.10
USFLUXZ, ANG_DIST 0.66 ± 0.10 0.64 ± 0.11 0.64 ± 0.10 0.66 ± 0.10 0.66 ± 0.11 0.65 ± 0.10
USFLUXZ, R_VALUE 0.54 ± 0.11 0.58 ± 0.11 0.54 ± 0.08 0.58 ± 0.10 0.57 ± 0.09 0.55 ± 0.11

8 https://scikit-learn.org/stable/modules/generated/sklearn.model_
selection.GridSearchCV.html
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low-quality features that may introduce noise to the ML
training rather than providing valuable information. Observing
the SVM model results (Table 4), it is evident that the linear,
RBF, and polynomial kernels consistently demonstrate similar
performance across most predictor combinations. Similarly, the
regression models, both logistic and ridge, show competitive
performance compared to the SVM models. Their accuracy
values are in line with the top-performing SVM models, and
the consistency in their performance is evident from the
relatively small standard deviations.

Note that for every value tabulated in Table 4, 100 different
runs are performed using an equal amount (110) of positive and
negative data points (balanced), the same hyperparameters,
different model initialization, and a different set of randomly
picked negative data points. The training of each model is
performed using 90% of the 220 (2× 110) available data points
while 10% of the data points (22) are unseen during training
and reserved for evaluation (198 training vectors, 99 positive
and 99 negative and 22 evaluation vectors, 11 positive and 11
negative). Similar training and testing configurations are used
to produce the results of Table 5 but for the two different
training processes (balanced and imbalanced) and the two
different groups of data sets (regular and clean) discussed in
previous sections. The training and data set selection are the
factors that define whether the setting of a test is closer to
simulating an operational setting (labeled as operational in

Table 5) or whether the setup is more experimental (semi-
operational and experimental). The experimental results are
closely examined in Figure 5.
To comprehend the results in a setting that better addresses

the operational needs of an SEP prediction apparatus, we
adopted a different approach where each ML model is trained
on the entire data set, and a weighting factor, class_weight
(parameter in the Scikit-Learn Python library) is introduced to
account for the class-imbalance problem. For the “imbalance”
models (Table 5), the weight for the negative class was set to
be the ratio (1/30) of positive to negative samples in the
training set. This approach allows the model to emphasize the
minority class during training, compensating for the lack of
negative samples. The results obtained from this methodol-
ogy, as presented in Table 5, reveal that the accuracy cannot
remain competitive compared to the balanced and therefore
experimental setting. More specifically, a significant drop in
evaluation metrics such as ACC, TSS, HSS, and F1 is
observed, with the largest being a 0.10± 0.09 decrease in
accuracy. Despite this fact, the F1 score for the operational
ML method imbalanced for the entire data set is higher than
when we train on an experimental balanced scheme (last row,
Table 5). This suggests that, in general, although the
operational model’s overall capability to correctly predict
both positive and negative classes has decreased to almost a
random pick, the model makes fewer false negatives

Figure 5. Distribution of 100 score values of ACC, TSS, HSS FAR, and F1 (left panel). Each metric is calculated using the entries of the confusion matrix produced in
each run, the average over 100 runs (right panel). The values were obtained using the R_VALUE and the ANG_DIST on a logistic regression model and constitute the
best SEP prediction the SMARP/SHARP data can achieve. The box range shows the interquartile range, the green line inside is the median value, the whiskers show
the results range, and the circles show two outlier values. The samples are obtained using the clean data set, where non-SEP-producing flares in SEP-producing ARs
are omitted and used on a balanced training method where positive and negative training and evaluation data sets are of equal size.

Table 5
Results for a Variety of ML Models and Training Configurations When Using the Strongest Predictors Couple, the R_VALUE and the ANG_DIST

Setting Training Data Set Model ACC TSS HSS FAR F1

Operational Imbalance Regular SVM Linear 0.56 ± 0.04 0.32 ± 0.10 0.05 ± 0.02 0.24 ± 0.10 0.71 ± 0.04
S. Kasapis et al. (2022) Imbalance Regular SVM Poly 0.52 ± 0.05 0.01 ± 0.01 0.01 ± 0.01 0.98 ± 0.05 0.58 ± 0.06
Semi-operational Balanced Regular SVM Linear 0.66 ± 0.10 0.33 ± 0.19 0.33 ± 0.19 0.26 ± 0.14 0.63 ± 0.12
S. Kasapis et al. (2022) Balanced Regular SVM RBF 0.65 ± 0.13 0.33 ± 0.28 0.31 ± 0.26 0.31 ± 0.10 0.75 ± 0.04
Semi-operational Imbalance Clean SVM Linear 0.67 ± 0.04 0.35 ± 0.13 0.08 ± 0.03 0.32 ± 0.12 0.79 ± 0.03
Experimental Balanced Clean SVM Linear 0.69 ± 0.09 0.38 ± 0.19 0.38 ± 0.19 0.26 ± 0.14 0.67 ± 0.11
Experimental Balanced Clean Logistic Reg 0.70 ± 0.09 0.39 ± 0.19 0.37 ± 0.19 0.30 ± 0.14 0.69 ± 0.10
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(increased recall), and the accuracy of positive predictions
(precision) remains high, even if the overall accuracy has
dropped. Such trade-offs are often seen in ML binary
classification.

Another two types of learning schemes are employed, one
in which all available flares are included (original data set)
and one where all non-SEP-producing flares that have
occurred in an SEP-producing AR (Figure 2, clean data sets)
have been omitted. This is done because, as demonstrated in
Figure 3, it is almost impossible for an ML model trained on
low-dimensional data to distinguish between a positive and a
negative flare sample that has occurred almost at the same
time in very close proximity. As expected, for both the
balanced and imbalanced runs in Table 5, the clean data
set runs exhibit higher predictive performances in the majority
of the metrics analyzed. A slight increase in accuracy
(+0.3± 0.1) is observed when training our models using a
balanced data set, whereas a significant increase (+0.11±
0.1) can be observed when training with the clean data set a
linear SVM with imbalance. This is notable because it shows
that even when training with imbalance, an ML method can
predict whether an AR (instead of a flare) will be SEP-
productive or not.

Table 5 shows that both the operational and the semi-
operational configuration results are comparable to the
corresponding results by S. Kasapis et al. (2022) for similar
settings. In an operational setting, an SVM model performs
better (ACC increase of 0.04± 0.1 and F1 increase of
0.13± 0.1) when trained on data from two solar cycles
compared to if it was trained only using the SMARP
parameters. Regardless of this increase, our efforts to simulate
an operational setting by conserving the inherited imbalance
led to predictions that are marginally better than a random
guess (Table 5, operational ACC= 0.56± 0.04). When shift-
ing to a semi-operational setting, the increase in the ACC, TSS,
and HSS scores for an SVM model (Table 5, third row) trained
on almost double the amount of data, compared to the results of
our previous work (fourth row), is within the margin of error,
therefore insignificant. In this study, the FAR has decreased by
0.05± 0.1, showing that the increase in positive events allows
the SVM models to reduce the number of false alarms. The
highest accuracy achieved in S. Kasapis et al. (2022), for an
experimental setting, is 0.72± 0.12 on a third-degree poly-
nomial SVM when training on USFLUXL and ARDIST
(equivalent of ANG_DIST in this work) results that could not
be reached using the equivalent SMARP/SHARP data set
predictors. In this work, the R_VALUE and ANG_DIST
combination of parameters is the one that showed the best
performance. This shows that the recomputed R_VALUE in
the data set provided by P. A. Kosovich et al. (2024) provides
meaningful information to ML models in regard to SEP
production.

This work has shown us which predictors in the SHARP/
SMARP data set are most useful for SEP forecasting. Another
important finding of this work though, is that in realistic
imbalanced problems (operational and semi-operational set-
tings), the data set and its predictors are marginally able to
predict SEPs. This is worth underlying, not only because it
shows that the absence of an adequate amount of positive
instances inhibits even modern solar data sets from reliably
predicting SEP events, but also verifies the findings of previous
works (E. Lavasa et al. 2021; M. Stumpo et al. 2021). The

SMARP/SHARP data set is not suitable for SEP prediction by
itself but is recommended for other tasks such as solar cycle
and flare prediction, or to even complement other existing data
sets used for SEP prediction applications.
The results procured from the best-performing, in terms of

accuracy, run of the experimental logistic regression model in
Table 5 (seventh row), trained on a balanced positive and
negative setting, offer some interesting insights. The model
showcases an accuracy of 0.70± 0.093 over 100 runs, and the
TSS and HSS both register an average of 0.386± 0.187. The
FAR of 0.303± 0.138 indicates a moderate rate of false alarms,
while the F1 score is 0.688± 0.099, representing a harmoniza-
tion of precision and recall. In this experimental case, where the
problem is reduced to predicting whether an AR will produce an
SEP, the SMARP/SHARP data set shows a notable forecasting
capability, comparable to other studies (M. Núñez 2011;
A. García-Rigo et al. 2016; S. Kasapis et al. 2022).
To examine the models’ performance, it is essential to

consider the combination of different metrics. Figure 6 shows
that adjusting the threshold in logistic regression impacts the
different performance metrics. By default, many ML models,
including logistic regression, employ a threshold of 0.5,
whereby probabilities greater than this value are designated as
the positive class, and those below are designated as the
negative class. Lowering the threshold from 0.65 to 0.35
generally reduces the false-alarm rate, from 0.66 (τ= 0.65) to
0.118 (τ= 0.35), indicating fewer false positives. However,
this benefit comes with a trade-off, as accuracy drops to 0.62
at τ= 0.65. The F1 Score, which represents the balance
between precision and recall, is maximum when τ= 0.55,
suggesting this may be the best threshold for a harmonized
performance. Selecting the right threshold involves balancing
these trade-offs, aiming for minimal false alarms (lower FAR)
or higher overall accuracy and skill (higher ACC, TSS, and
HSS). The influence of the probability threshold on the
metrics discussed exhibits a predictable behavior, as detailed
in a series of studies (C. C. Balch 2008; M. Laurenza et al.
2009; A. Anastasiadis et al. 2017).
Lastly, a comparison of the “operational” results (Table 5,

first row) to the equivalent of E. Lavasa et al. (2021) is
performed, as this work has built models that have the most
similarities in settings to ours. The E. Lavasa et al. (2021)
“Flare_Noisy” linear SVM Model with an imbalanced data
setting indicates generally better performance, as it exhibits
better TSS (+0.14) and HSS (+0.36) scores. Such an increase
in performance is expected as the model is trained on
significantly more positive data. Comparing the FAR and the
F1 scores provides further insight into the performance of the
two SVM models. The current model demonstrates an FAR of
0.24± 0.10, significantly lower than the FAR of 0.63± 0.07
reported by E. Lavasa et al. (2021), suggesting that it is less
prone to incorrectly predicting SEP" “operational” model
achieves an F1 score of 0.71± 0.04, which is substantially
higher than the 0.41± 0.05F1 score of the “Flare_Noisy”
linear SVM. The lower FAR indicates a more cautious
prediction model that potentially reduces the number of false
alerts while the higher F1 score signifies that the current model
maintains a respectable balance between the ability to detect
SEP events (sensitivity) and the accuracy of those detections
(precision).
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7. Conclusion

To refine SEP event prediction, this work utilizes a new data
set that combines the SMARP and SHARP parameters
covering Solar Cycles 23 and 24 (P. A. Kosovich et al.
2024). The SMARP/SHARP data set provides physical
parameters for 110 ARs that produced SEP events. Due to
differences in their problem formulation, it is difficult to make
fair comparisons between works on SEP prediction in space-
weather literature. Despite this fact, in this work, a fair
comparison is possible with S. Kasapis et al. (2022) and
E. Lavasa et al. (2021) as all sets of experiments use similar
setups. This work can be seen as a continuation of the work by
S. Kasapis et al. (2022) with the novelty being that it: (a)
extends the available data to span two solar cycles instead of
one, thus increasing the rare positive instances and (b) tests the
SMARP/SHARP data set on the SEP prediction while also the
results interpretation reveals the new SMARP/SHARP physi-
cal values that carry SEP precursor information. The

knowledge gained from this research effort allows for future
work recommendations.
A set of ML models was trained on a number of data

sets that differ in the number of predictors used (varying
from 2 to 6), their type (USFLUX, R_VALUE, MEANGBL,
USFLUXZ, MEANGBZ, and ANG_DIST), and the time
window (2, 5, and 10 hr) their selected data offer. Our
investigation reveals that when the SMARP/SHARP data set-
based ML model faces a problem of detecting whether an AR
will produce an SEP, regardless of how many flares occurred
within it, the resulting accuracy of 0.70± 0.09 is comparable
to the results of the author’s previous study. When
encountering the problem of predicting whether a flare
produces an SEP or not, the predictive power of the data set
diminishes. Although the results for an ML model based on
the SMARP/SHARP data set appear better than if only
SMARPs were used, for an operational setting, the accuracy
results are only slightly better (ACC= 0.56± 0.04) than a
random pick.

Figure 6. Box plots of the distribution of 100 score values of ACC, TSS, HSS FAR, and F1, for seven decision thresholds τ. The values were obtained using the
R_VALUE and the ANG_DIST to train an experimental logistic regression model. The box range shows the interquartile range, the green line inside it shows the
median value, the whiskers show the results range, and the circles show two outlier values. These results correspond to the seventh row in Table 5 for τ = 0.5.
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Our results’ similarities with those in previous studies,
underscores the inherent complexity of SEP prediction; even
with increased data (double in volume), the ceiling of accuracy
remains consistent. Interestingly, our results indicate a modest
increase of 0.04± 0.05 in ACC but significant improvements
for the TSS, HSS, FAR, and F1 metrics in the operational
context, where data imbalance is introduced. The SMARP/
SHARP data set contributes positively here, yet the overall
accuracy achieved still denotes a considerable margin for
enhancement. This suggests that the predictive capability of the
data, while evident, lacks the reliability required for confident
operational forecasting. The low dimensionality of the
SMARP/SHARP data and the inherent imbalance of the
problem hinder our models’ ability to distinguish between SEP-
producing and non-SEP-producing flares that occur within the
same AR. This is also evident when testing different prediction
windows, where the SMARP/SHARP values do not change
enough between the 2, 5, and 10 hr windows, and therefore, the
trained models did not produce noticeably different results.
Consequently, we acknowledge the limitations of the SHARP/
SMARP data set and advocate for the exploration of more
sophisticated methodologies that may understand better the
intricate patterns of SEP events. The authors recommend that
future work should focus on: (a) using data sets that include
even more positive instances (SEPs), (b) increasing the input
size and the dimensions (predictors) of the data, and (c) using
deeper and more sophisticated ML methods. The employment
of deeper networks on continuous high-resolution SDO/HMI
products has shown promising results in predicting the
emergence of ARs (S. Kasapis et al. 2024); therefore similar
methods should be tested on the prediction of SEP events too.

Lastly, our study shed light on the relevance of the SMARP/
SHARP data set physical parameters (keywords) to SEP
events. This study verifies that the total line-of-sight unsigned
magnetic flux, the distance of the flare location to the magnetic
foot point of the Earth, and the unsigned flux R near the
polarity inversion lines are physical quantities that relate to the
production of SEP events. It is recommended that future studies
use them for the prediction of SEP events. The importance of
magnetic connectivity between the flare location on the solar
disk and the Earth is also shown for an SEP to be detected.
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