
  

   

Abstract— Teleoperation could be used to replace a backup 

safety driver on autonomous vehicles and could play a valuable 

role in scaling up deployment of autonomous vehicles. The 

surrounding environment of the remote vehicle needs to be 

recreated for the teleoperator using video images received over 

wireless channels. To handle the significant time delays in 

receiving remote video data, this paper develops a predictive 

display system that uses deep learning to estimate the current 

video display for the teleoperator from old (delayed) camera 

images. First, old camera and Lidar data are fused to create a 

3D reconstruction of the remote vehicle environment using 

conventional and deep-learning-based algorithms. Then the ego-

vehicle’s real-time position and orientation variables are 

estimated using an extended Kalman filter. Predictive 

modification of the reconstructed old 3D scene is performed 

using the ego-vehicle’s estimated new trajectory variables. Deep-

learning based image in-painting is used to improve image 

quality. Furthermore, this paper also introduces a new image 

comparison metric for evaluating the accuracy of the object 

detection and localization performance in the predictive display 

image. Real-world experimental data from the nuScenes and 

Kitti datasets are used for evaluation of the proposed system. 

The predictive display images are compared with ground truth 

images using various image comparison metrics and shown to 

provide significantly superior performance compared to the 

actual delayed images received over wireless channels. 

I. INTRODUCTION 

There is significant ongoing research related to 

autonomous vehicles (AVs) in various parts of the world. 

However, even according to the most optimistic estimates, a 

fully self-driving vehicle will not be sold to the public till at 

least 2028 at the earliest [1].  Current AV technology is 

primarily at Level 3 and Level 4 of SAE capability levels, 

with significant ongoing testing of Level 4 capabilities. While 

AVs can operate autonomously a majority of the time, 

occasional intervention from a human driver is needed. Such 

scenarios requiring human intervention may include 

unexpected snow on the road, construction zones, blocked 

roads or component failures. In many AV companies’ backup 

safety drivers are essential for vehicle testing. Enabling the 

teleoperation of AVs will essentially allow remote human 

intervention in unexpected situations and will also eliminate 

the need for a backup safety driver. 

Some startup companies like Vay [2] and Halo currently 

use human teleoperators to drive rental cars to and from 
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customers remotely. A Swedish company, Einride [3], utilizes 

remote operators to assist their autonomous trucks in complex 

driving scenarios.  Future applications of occasional AV 

teleoperation may include taxi fleets, valet parking, ride-

sharing, and autonomous buses for public transport. Hence, 

AV teleoperation is likely to be a valuable technology in the 

near future.  

In teleoperation, the surrounding environment of the 

remote vehicle needs to be recreated for the teleoperator using 

video images received over wireless channels. The camera 

and Lidar data, owing to their high data size, can experience 

significant delays in their wireless communication. In the 

context of AVs, even a 0.2 s delay can degrade the vehicle 

control performance of the teleoperator [4]. Furthermore, if 

the delay increases to 0.5 s, it can become virtually impossible 

for the teleoperator to effectively control the vehicle [5]. 

One solution to this latency problem lies in using 

Predictive Display (PD) to provide realistic intermediate 

display updates to the teleoperator to compensate for the 

delayed image feed. An essential feature for using PD is to 

know the ego vehicle's current real-time position and 

orientation, which is obtained in this paper through state 

estimation using GPS and IMU signals. Since these sensor 

signals are small, they can be transmitted more frequently and 

consistently than camera images. Thus, this estimation-based 

PD system can obtain real-time estimates of the ego vehicles' 

trajectory and synthesize new images, which compensate for 

the delayed camera data. This paper proposes to develop an 

estimation-based predictive display (PD) system that 

performs novel sensor fusion of delayed camera and Lidar 

data to recreate the 3D environment around the ego vehicle, 

estimate trajectories of the ego vehicle, and use these 

trajectory variables to synthesize predictive images for 

accurate teleoperation. Furthermore, deep learning-based 

image-inpainting will be used to improve the quality of the 

synthesized images.  

Prior research work in PD has been simplistic and 

includes displaying the predicted position of the ego-vehicle 

on the delayed image feed using a pointing line [6], a 

semitransparent vehicle [7], or a rectangular frame and tracks 

[8]. However, in these papers, the authors assumed that the 

ego position was known and did not do state estimation. 
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Predictors [9] and clothoids [10,11] have also been used to 

predict the future position of the ego vehicle.   

Some researchers have also used image transformation 

techniques based on real-time throttle/brake/steering inputs 

from the teleoperator [12,13]. Recently, a more rigorous 

estimation-based PD system was developed in a MATLAB-

Unreal Engine co-simulation environment to evaluate the 

teleoperation performance of human subjects [5]. However, 

none of the authors have so far been able to implement their 

PD system on real-world camera images.  

One way to create PD system for AV teleoperation is to by 

formulating it as a video prediction task by directly trying to 

predict the future frames of the video stream from the past 

frames. Generative models such as GANs, VAEs and most 

recent diffusion models have shown remarkable capabilities 

for image and video generation tasks. However, these models 

often struggle with videos featuring complex motion such as 

those found in urban environments encountered in 

autonomous driving datasets. Furthermore, the large 

inference times for diffusion models have prevented their 

widespread use in real-time applications such as autonomous 

driving [14]. In such scenarios, methods based on deep 

learning based optical flow [15,16,17] are more popular. Such 

methods require the input of a sequence of delayed camera 

images and can then predict the future frames. However, such 

generative models suffer from generalization issues required 

for real life driving scenarios [18].  

In contrast, the approach presented in this paper, where 

image synthesis is performed using a combination of state 

estimation and generative models, is much more 

generalizable. Furthermore, deep learning-based methods are 

unable to effectively handle scenarios involving ego vehicle 

turning and tend to generate random images during such 

maneuvers. On the other hand, the inpainting pipeline 

introduced in this work can effectively handle such scenarios.  

The estimation-based PD system relies on accurate state 

estimation of the ego vehicle for which EKF has been used 

which relies on an accurate vehicle dynamic model along with 

IMU and GPS measurements. This method is especially 

suitable for teleoperation as it relies on sending low size IMU 

and GPS data with very little delay. Advanced optical flow 

and scene estimation methods [19] can also be used to 

estimate the states of the ego vehicle, but such methods rely 

on a sequence of camera images. Since the camera images 

themselves have huge delays (of the order of 500 

milliseconds), the state estimation using these methods will in 

turn be further delayed resulting in large errors. Thus, such 

methods although suitable for estimating the camera pose of 

ego vehicle are not suitable in the context of teleoperation. 

Furthermore, computing optical flow or scene flow using 

deep learning methods can’t be used in a generalized 

framework for unknown roads. The proposed EKF based state 

estimation on the other hand can provide accurate state 

estimates across varied environments. Nonlinear observers, in 

lieu of EKFs, have also been used for vehicle related 

nonlinear estimation applications [20]. 

The primary contributions of this paper are as follows: 

1) The paper develops an estimation-based predictive display 

(PD) system that reconstructs the 3D environment around 

the ego-vehicle using a deep learning-based meshing 

algorithm based on the sensor fusion of delayed camera 

and Lidar data. 

2) This paper further uses a dynamic vehicle model proposed 

in this paper together with an extended Kalman Filter to 

perform predictive modification of the reconstructed old 

3D scene using faster updates from GPS and IMU sensors. 

Furthermore, the system can also handle GPS denied 

environments by utilizing measurements from Lidar based 

SLAM methods.   

3) This paper also presents a novel pipeline to improve the 

image quality of the PD images using deep learning-based 

image inpainting. Furthermore, to tackle ego-vehicle 

turning the images from the front and side cameras are 

combined using the developed deep learning-based 

meshing algorithm. 

4) The paper further develops a deep learning-based image 

comparison metric for AV teleoperation for evaluating the 

accuracy of object detection and localization. 

5) This paper presents for the first time the application of PD 

on experimental real-world AV data, clearly pointing out 

the benefits of using such algorithms to compensate for 

delayed camera data. In this paper, the open-source KITTI 

and nuScenes datasets are used for analysis. 
The outline of the rest of the paper is as follows. In section 

II, the estimation-based PD algorithm is described which 
includes state estimation, 3D reconstruction and image-
inpainting. Section III describes a new metric for image 
comparison based on object detection and localization. Section 
IV discusses the results using various image metric 
comparison for the developed algorithms and proves the 
efficacy of estimation-based PD system on real-world data. 
Section V contains the conclusions. 

II. ESTIMATION BASED PREDICTIVE DISPLAY 

Latency due to wireless transmission can affect AV 

teleoperation significantly, and even a 0.5 s delay can highly 

deteriorate the lateral and longitudinal control performance of 

the remote teleoperator [5]. Hence, it is vital to reduce latency 

and provide accurate intermediate visual updates to the 

teleoperator. This section describes the PD system aimed at 

enhancing AV teleoperation by recreating the 3D 

environment around the vehicle using delayed camera and 

Lidar data and updating this image based on state estimates of 

the Ego vehicle. The given PD system relies on GPS and IMU 

sensors for state estimation and the front camera and Lidar for 

3D reconstruction. Furthermore, image inpainting has also 

been used to improve the quality of the generated images.  

A. State Estimation of Ego Vehicle 

The accurate position and yaw angle of the ego vehicle are 

critical variables for accurately transforming the delayed 

camera images. Hence, ego-vehicle state estimation is an 

integral part of the PD system.  

In this work the inertial position of the ego vehicle is 

estimated which requires the use of Inertial and Ego frames. 



  

The Inertial Frame {𝐼} is a global fixed frame which is 

stationary and hence has no linear or angular rates. The GPS 

readings as well as the state vector are defined with respect to 

this frame. The origin of the Inertial Frame is located at 𝑂𝐼 

and the basis vectors are given by 𝑥𝐼 , 𝑦𝐼 and 𝑧𝐼 as shown in 

Fig. 1. The Ego Frame {𝐸} is located on the center of mass 

(CoM) of the ego vehicle and moves with the ego vehicle. The 

IMU readings are defined with respect to this frame. The 

origin of the Ego Frame is located at 𝑂𝐸 and the basis vectors 

are given by 𝑥𝐸, 𝑦𝐸 and 𝑧𝐸. The position of the CoM of the 

ego vehicle in the inertial frame is given by 𝑥 and 𝑦 and the 

yaw angle is given by 𝜓. Let, the state vector 𝑋 be, 

 𝑋 = [𝑥 𝑦 𝑥̇ 𝑦̇ 𝜓]𝑇 (1) 

where 𝑥̇ and 𝑦̇ are the velocity of the CoM of the ego vehicle 

in the inertial frame. The IMU provides the acceleration and 

the yaw rate of the CoM of the ego vehicles and its 

measurements are given as follows, 

 𝑢 = [𝑎𝑥 𝑎𝑦 𝜓̇]
𝑇
 (2) 

where, the accelerometer reading about the 𝑥𝐸 and 𝑦𝐸 axis is 

given by 𝑎𝑥 and 𝑎𝑦 respectively, and the yaw rate provided 

by the gyroscope is given by 𝜓̇. Due to the presence of biases 

the IMU reading differs from that of the true accelerations and 

rotational rates and the noisy and biased measurements are 

given as follows, 
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] = [

𝑎𝑥

𝑎𝑦

𝜓̇
]

𝑡

+ [

𝑎𝑥

𝑎𝑦

𝜓̇
]

𝑏𝑡

+ [

𝑎𝑥

𝑎𝑦

𝜓̇
]

𝑛

 (3) 

where, [ ]𝑡 are the true readings, [ ]𝑏𝑡 are the constant biases 

and [ ]𝑛 are zero mean noise signals with constant standard 

deviation. The various frames of reference as well as IMU 

inputs are shown in Fig. 1. 

The state dynamics for the ego vehicle are as follows, 

 

𝑋̇ =

[
 
 
 
 
 

𝑥̇
𝑦̇

𝑎𝑥 cos(𝜓) − 𝑎𝑦 sin(𝜓)

𝑎𝑥 sin(𝜓) + 𝑎𝑦 cos(𝜓)

𝜓̇ ]
 
 
 
 
 

= 𝑓(𝑋, 𝑢) (4) 

The state dynamics is nonlinear in nature and due to the 

presence of biases in the measured IMU signals, direct use of 

the dynamic model will result in a drift error over time. 

Hence, there is a need to use additional GNSS measurements 

for accurate ego vehicle localization. In Lidar or camera based 

odometry methods there is a large bandwidth requirement 

which adds further delays to state estimation these are thus 

infeasible to use in teleoperation. On the other hand, GNSS 

has very low data size and is thus a feasible option for 

teleoperation. In this work, real-world data which uses GNSS 

with a specified accuracy of 10 cm has been used. The 

measurement equation used for estimating the state vectors is 

given as follows, 

 𝒚 =  [𝑥 𝑦 𝜓]𝑇 + 𝑣 (5) 

where, 𝑣 is zero mean gaussian white noise. The measurement 

of the yaw angle can be obtained from a dual antenna GPS 

device or for small slip angles can be approximated to be 

equal to the heading angle of the vehicle. Accurate 

measurement of GPS and yaw angle for both KITTI and 

nuScenes dataset were available and were used for accurate 

state estimation. Given the nonlinear state dynamics of (4) 

and the measurements of (5), the Extended Kalman Filter 

(EKF) was used for state estimation of the ego vehicle [21]. 

The EKF performs prediction and correction to obtain 

accurate state estimates. In the prediction step the apriori state 

estimates 𝑥̅𝑘
− are obtained using the system’s nonlinear 

dynamics along with the apriori state covariance matrix 𝑃𝑘
− as 

follows, 

 𝑥̅𝑘
− = 𝑓(𝑥̅𝑘−1

+ , 𝑢𝑘−1) (6) 

 𝑃𝑘
− = 𝐹𝑘−1𝑃𝑘−1

+ 𝐹𝑘−1
𝑇 + 𝑄𝑘−1 (7) 

where, 𝐹𝑘−1 = 𝐼5 + 𝑇𝐴𝑘−1, 

𝐴𝑘−1 =
𝜕𝑓

𝜕𝑥
(𝑥̅𝑘−1

+ , 𝑢𝑘−1) =

[
 
 
 
 
0 0 1 0 0
0 0 0 1 0
0 0 0 0 −𝑎𝑥 𝑠𝑖𝑛(𝑥5) − 𝑎𝑦𝑐𝑜𝑠 (𝑥5)

0 0 0 0 𝑎𝑥 𝑐𝑜𝑠(𝑥5) − 𝑎𝑦𝑠𝑖𝑛 (𝑥5)

0 0 0 0 0 ]
 
 
 
 

, 

where, 𝐼5 is 5 × 5 identity matrix, 𝑇 is the time step and 𝑄𝑘−1 

is the process noise covariance matrix.   

 In the correction step the apriori estimates and state 

covariance are corrected using the measurements 𝑦𝑘 and the 

Kalman gain 𝐾𝑘 to obtain aposterior estimates 𝑥̅𝑘
+ and state 

covariance 𝑃𝑘
+ as follows, 

 𝐾𝑘 = 𝑃𝑘
−𝐻𝑘

𝑇(𝐻𝑘𝑃𝑘
−𝐻𝑘

𝑇 + 𝑅𝑘)
−1 (8) 

 𝑥̅𝑘
+ = 𝑥̅𝑘

− + 𝐾𝑘(𝒚𝒌 − 𝐻𝑘𝑥̅𝑘
−) (9) 

 𝑃𝑘
+ = (𝐼5 − 𝐾𝑘𝐻𝑘)𝑃𝑘

− (10) 

where, 𝐻𝑘 = [
1 0 0 0 0
0 1 0 0 0
0 0 0 0 1

] and 𝑅𝑘 is the measurement 

noise covariance matrix. It has been assumed that there is no 

latency in the transmission of GPS and IMU data due to their 

much lower data size compared to camera and Lidar data. 

 However, there are instances where GPS data may have 

poor accuracy or may be completely lost. For example, in 

urban areas tall buildings and other structures can block the 

line of sight to GPS satellites resulting in loss of GPS signals. 

In such cases it is important to use the EKF based filter with 

other localization techniques like visual SLAM or Lidar 

SLAM.  

 
 

Fig. 1. Inertial and Ego Frames for state estimation 



  

In the context of teleoperation, the SLAM based 

localization algorithm cannot run on the teleoperation station 

due to huge delay in image and Lidar data. Therefore, such 

methods must be able to run on the remote vehicle and the 

localization data (which includes the positions and the yaw 

angle) can then be transmitted to the teleoperation station. 

This localization data can essentially replace the measurement 

given by Eq. (5) for the EKF thus allowing for improved 

localization even in GPS denied regions. Compared to 

monocular camera-based SLAM, Lidar based SLAM are 

more suitable for outdoor environment [22] and hence, in this 

work two well-known methods are used. The first one is 

KISS-ICP [23] which is a simple, accurate and robust Lidar 

odometry and the second one is FAST-LIO [24] which is a 

robust and computationally efficient for Lidar-inertial 

odometry which integrates IMU data along with Lidar data. 

Both the methods has reduced computational load such that 

both can easily run at 10 Hz. Thus, the new measurement 

equation for the EKF becomes, 

 
𝒚 = {

[𝑥 𝑦 𝜓]𝑇|𝐺𝑃𝑆, 𝐺𝑃𝑆 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒

[𝑥 𝑦 𝜓]𝑇|𝑆𝐿𝐴𝑀, 𝐺𝑃𝑆 𝑜𝑢𝑡𝑎𝑔𝑒  
  (11) 

 

One of the benefits of this integrated localization filter is 

that the measurement model is independent of the SLAM 

algorithm and hence can accommodate any kind of future 

SLAM based algorithms which may provide more accurate 

and real-time measurements.  

B. 3D Reconstruction 

Updating the delayed camera images requires the current 

ego state estimates as well as an accurate 3D representation 

of the environment around the ego vehicle to generate new 

images based on the estimated position of the ego vehicle. The 

point cloud obtained from the delayed Lidar data is used to 

create a 3D mesh for the environment around the ego vehicle 

and the image synthesis is done based on this mesh. 

In this paper, the images generated from a monocular 

camera are considered (i.e. from the front camera) along with 

the 3600 point cloud data from Lidar. The image synthesis 

pipeline has four major key processes: 

1. Point cloud filtering 

2. Mesh creation 

3. Raycasting 

4. Camera motion using state estimation 

In the first process the 3600 point cloud is reduced to just 

the points in the field of view of the camera. This allows for 

decreasing the size of the point cloud data thus decreasing the 

delay as well as speeding up 3D reconstruction. The points in 

the Lidar frame were first transformed to the camera frame. 

The Lidar points which were behind the camera were 

removed and only those points which were in the front of the 

camera were projected onto the image plane. Among these 

points, those points whose pixels were outside the image were 

removed and the Lidar points corresponding to the pixels 

inside the image were obtained and the normal vectors for 

each of these points were computed using Open3D. These 

points, which are called filtered points were then used for 

generating the 3D mesh. The Lidar point cloud and the filtered 

points for a sample nuScenes dataset are shown in Fig. 2. 

In the second process two different methods were explored 

to create a 3D mesh for the filtered points. The first method 

used was Poisson Surface Reconstruction (PSR) which is a 

classical method relying on mathematical and algorithmic 

techniques to generate a surface from point cloud data [25]. It 

aims to fit a watertight, triangulated mesh for a given input of 

points and the normal of each point. In this algorithm an 

indicator function 𝜒 which has a value less than 1 outside the 

mesh and greater than 1 inside, is computed by solving the 

Poisson problem given as follows, 

 ∇2𝜒 = ∇ ⋅ 𝑉⃗  (12) 

where, 𝑉⃗  is the vector field for the surface normal. PSR is 

aimed at generating closed surfaces, and in many test cases it 

created unnatural closure like an artificial "lid" over the scene, 

closing off the open environment in an unnatural way. 

Because of this closed mesh it was not possible to perform 

accurate image synthesis. This problem will be further 

explained in Section IV.  

Neural Kernal Surface Reconstruction (NKSR) was then 

employed to counter this disadvantage of PSR. NKSR 

employs neural networks and kernel methods to capture 

complex surface details and model intricate geometries and 

fine details. Unlike PSR, which forces a closed surface, 

NKSR can handle open structures more naturally, which is 

particularly beneficial for outdoor scenes where open 

boundaries and partial structures are common.  

NKSR is trained on the data from a CARLA simulator and 

the trained model has been successfully used in real outdoor 

environment also [26]. Although NKSR is able to handle open 

boundaries, often it produces black patches in the image due 

to non-meshed regions. 

In the third process, raycasting using Open3D was 

employed to cast rays from the camera (of the delayed camera 

image) onto the mesh to obtain the corresponding colors of 

the triangles on the mesh. Raycasting requires the input of the 

camera intrinsic matrix 𝐾 and the transformation matrix from 

the Lidar frame to the Camera frame. Given the pixel triangle 

correspondence, each triangle was assigned the color 

according to its pixel correspondence. Those triangles that 

spanned multiple pixels were assigned the same color, which 

was the mean for all the pixels to which it corresponded. 

The transformation matrix of frame {𝐵} with respect to 

  
(a) Lidar point cloud (b) Filtered Lidar points 

Fig. 2. Lidar point cloud and filtered points 



  

frame {𝐴} is given by 𝑇𝐵
𝐴 ∈ ℝ4×4 and this convention is 

followed throughout this paper. Consider the Lidar and 

camera frame at time 𝑡 to be {𝐿𝑡} and {𝐶𝑡}. The delayed image 

and Lidar data is obtained for time 𝑡1 and the image is 

synthesized for time 𝑡2 = 𝑡1 + Δ𝑡. To synthesize this image, 

it is required to know 𝑇𝐿𝑡1

𝐶𝑡2  which can be computed as follows, 

 𝑇𝐿𝑡1

𝐶𝑡2 = 𝑇𝐸𝑡2

𝐶𝑡2𝑇𝐸𝑡1

𝐸𝑡2𝑇𝐿𝑡1

𝐸𝑡1  (13) 

where, the matrices 𝑇𝐸𝑡𝑖

𝐶𝑡𝑖  and 𝑇𝐸𝑡𝑖

𝐿𝑡𝑖  are computed based on 

sensor locations and are fixed ∀ 𝑡𝑖. The transformation matrix 

from the ego frame at time 𝑡1 to the ego frame at time 𝑡2, 𝑇𝐸𝑡1

𝐸𝑡2 

is given as follows, 

 𝑇𝐸𝑡1

𝐸𝑡2 = (𝑇𝐸𝑡2
𝐼 )

−1
𝑇𝐸𝑡1

𝐼  (14) 

The transformation matrix from the Ego frame at time 𝑡1 to 

the Inertial Frame can be obtained from the state estimates of 

the ego vehicle and is given by, 

 

𝑇𝐸𝑡1

𝐼 = [

𝑐𝑜𝑠(𝜓(𝑡1)) −𝑠𝑖𝑛(𝜓(𝑡1)) 0 𝑥(𝑡1)

𝑠𝑖𝑛(𝜓(𝑡1)) 𝑐𝑜𝑠(𝜓(𝑡1)) 0 𝑦(𝑡1)
0 0 1 0
0 0 0 1

] (15) 

Using (14), the expression 𝑇𝐸𝑡1

𝐸𝑡2 can be obtained as follows, 

 

𝑇𝐸𝑡1

𝐸𝑡2 = [

𝑐𝑜𝑠(Δ𝜓𝐸) −𝑠𝑖𝑛(Δ𝜓𝐸) 0 𝑡𝑥
𝑠𝑖𝑛(Δ𝜓𝐸) 𝑐𝑜𝑠(Δ𝜓𝐸) 0 𝑡𝑦

0 0 1 0
0 0 0 1

] (16) 

where, Δ𝜓𝐸 = 𝜓(𝑡1) − 𝜓(𝑡2),  

𝑡𝑥 = cos𝜓(𝑡2) (𝑥(𝑡1) − 𝑥(𝑡2)) + sin𝜓(𝑡2) (𝑦(𝑡1) − 𝑦(𝑡2)) 

𝑡𝑦 = cos𝜓(𝑡2) (𝑦(𝑡1) − 𝑦(𝑡2)) + sin𝜓(𝑡2) (𝑥(𝑡1) − 𝑥(𝑡2)) 

 From (15), it can be observed that image synthesis requires 

the knowledge of both the delayed time 𝑡1 and the time delay 

Δ𝑡 (which gives 𝑡2 = 𝑡1 + Δ𝑡). Once these variables are 

known image synthesis can be performed for both constant 

delay as well as variable delay cases.  

Furthermore, the PD system can also be used to handle 

cases when the camera and Lidar data are not synchronized. 

Consider the case when the Lidar data is received at time 𝑡1′ 

and the camera data is received at time 𝑡1, in such a case the 

point cloud obtained at time 𝑡1′ can be transformed to time 𝑡1 

as follows, 

 𝑝(𝑡1) = 𝑇𝐸𝑡1

𝐿𝑡1𝑇𝐸𝑡1′

𝐸𝑡1 𝑇𝐿𝑡1′

𝐸𝑡1′
𝑝(𝑡1

′) (17) 

where, 𝑝(𝑡1) is the filtered point cloud at time 𝑡1. This 

transformed point cloud is then used to create the mesh and 

then (12) can be used to synthesize images. Since the GPS and 

IMU have very small data size, hence it is assumed that they 

have negligible delay and hence the use of the estimation-

based PD can counter the effects of high constant delay, 

variable delay and even asynchronized sensor use. 

Given the new transformation of Lidar frame {𝐿𝑡1} w.r.t 

new camera {𝐶𝑡2} in (12), another raycasting was performed 

using camera intrinsic matrix 𝐾 and 𝑇𝐿𝑡1

𝐶𝑡2  to obtain the new 

triangles corresponding to the pixels at the new camera pose. 

Thus, an image based on the estimated position of the ego 

vehicle was generated. The entire image synthesis pipeline 

using 3D reconstruction is shown in Fig. 3. From the figure 

one can observe that the mesh created via NKSR has many 

open spaces (white regions in the mesh) which results in many 

black patches in the image due to the presence of unmeshed 

regions. Also, due to the presence of uncolored triangles in 

the mesh, moving the camera in the 3D environment further 

creates more black regions in the synthesized image.  

It was observed that if the size of triangles in the mesh is 

large, then blurry images are generated due to the 

correspondence of many pixels with one triangle, thus 

creating an image having effects similar to Gaussian blurring. 

Hence, after constructing the 3D mesh, the triangles were 

subdivided into smaller triangles to synthesize sharp and more 

realistic images. However, as the size of the triangles 

decreases, there are many uncolored triangles, which results 

in even more black patches (apart from unmeshed regions) in 

the synthesized image. Image inpainting was done to fill up 

these black patches, which will be described in the following 

subsection.  

C. Image Inpainting 

The image obtained after the second raycasting in the 

 
Fig. 3. Image synthesis pipeline for estimation-based PD using 3D reconstruction  

        
           

        
     

             
            
        

    
       
     

      
         

      
        

         

  

         

  

        



  

NKSR/PSR mesh contains three kinds of black patches: 

1. Large black patches are present due to the presence of 

unmeshed regions generated due to NKSR meshing. 

2. Small black patches which are present due to the 

presence of unmeshed regions generated due to NKSR 

meshing. 

3. Small black patches which are present due to the 

presence of uncolored triangles in the mesh.  

 The three kinds of black patches are shown in Fig. 4 

where the green region represents the first kind of black patch 

which is always obtained on the top part or side part of the 

synthesized image and is a result of lack of Lidar points in 

such areas. The blue regions represent the second kind of 

black patches which are a result of unmeshed regions in the 

environment generated due to sparse Lidar points in the data. 

The red regions represent the third kind of black patch which 

are generated due to uncolored triangles in the mesh generated 

due to moving the camera in the 3D environment.  

To improve the quality of the synthesized image it is very 

important to fill these black patches and hence for this purpose 

image inpainting is used. The first kind of black patches are 

bound to appear in regions when the top part of the camera 

(such as the sky) is not captured at all by the Lidar point cloud. 

Such black patches present an outpainting problem rather than 

an inpainting problem. When these regions are very far away 

and do not change much with ego motion, they can be 

replaced with the corresponding parts of the delayed image, 

and this is what is being done in this work. Otherwise, it is 

very important to utilize deep learning-based image 

outpainting to fill these regions. However, this is out of the 

scope for this paper and is a topic for further research.  

The second and third kind of black patches can be filled by 

applying image inpainting. One of the simplest methods to 

inpaint is to use the color of the nearest colored triangle and 

this method in this paper is being referred to as nearest inpaint. 

With this method one can fill up smaller black patches but it 

becomes very difficult to fill up larger regions. Hence for this 

purpose the state-of-the-art large hole inpainting Mask-Aware 

Transformer (MAT) is being used [27]. This deep learning 

network utilizes the merits of transformers and convolutions 

to efficiently process high-resolution images. MAT is 

provided with the synthesized image and the mask for the 

black patches and it inpaints the black regions, thus improving 

the quality image quality which is then displayed to the 

teleoperator. 

Furthermore, during situations involving turning of the 

vehicle the delayed image from the center front camera is not 

able to capture the entire scene. In such cases the delayed 

camera feed from side cameras can be utilized along with the 

NKSR method to fill the otherwise black regions encountered 

during the turning of the ego vehicle. When the ego vehicle is 

turning (determined using the yaw rate), the point cloud 

projected on the side camera along with the a part of the image 

from the side camera (one fourth of the camera image) can be 

sent to the teleoperator. Using these two as inputs, the NKSR 

pipeline shown in Fig. 3 is applied to synthesize side camera 

image at the new ego position which can be effectively used 

to inpaint the side large black patches during the turning of 

the ego vehicle. Hence the use of additional camera 

measurements effectively inpaints the unknown black regions 

and increases the system’s effectiveness to handle turns where 

even the state-of-the-art deep learning methods fails. The 

entire image inpainting pipeline is shown in Fig. 5. Algorithm 

1 describes the estimation-based PD system utilizing state 

estimation, NKSR and image inpainting.  

III. NEW IMAGE COMPARISON METRIC FOR 

TELEOPERATION STUDIES 

In the context of evaluating the generated image quality, 

various pixel comparison metrics like Peak Signal to Noise 

ratio (PSNR), Structural Similarity Index (SSIM), Multi-

Scale Structural Similarity Index (MS-SSIM) and Feature 

Similarity Index (FSIM) can be used. However, such metrics 

suffer from the problem of lack of contextual understanding 

and cannot differentiate between important and unimportant 

parts of image regions for teleoperation. Furthermore, they do 

Algorithm 1: Estimation-based PD with image inpainting 
 Require: Predictive Display ← f(Camera Matrix P, IMU, GPS, Lidar 

point cloud 𝑋𝐿, Camera image 𝐼𝐶 , Current time 𝑡2, Delayed time 𝑡1, 𝑇𝐸𝑡1

𝐶𝑡1 

and 𝑇𝐸𝑡1

𝐿𝑡1) 

 1. while The system runs do 

 2.  ⊳3D Reconstruction: 

 3.  Filtered Point Cloud, 𝑋̅𝐿 ∈ {𝑋𝐿| 𝑥 = 𝑃(𝑇𝐿
𝐶𝑋𝐶)𝑓𝑟𝑜𝑛𝑡 ∈ 𝐼𝐶} 

 4.  mesh, 𝑆 = NKSR(𝑋̅𝐿) 

 5.  Colored triangles, 𝑆𝑐 = RayCasting(𝑆, 𝑃, 𝑇𝐿𝑡1

𝐶𝑡1) 

 6.  T𝐼
𝐸𝑡1  = StateEstimation(𝐼𝑀𝑈(𝑡1), 𝐺𝑃𝑆(𝑡1)) 

 7.  T𝐼
𝐸𝑡2  = StateEstimation(𝐼𝑀𝑈(𝑡2), 𝐺𝑃𝑆(𝑡2)) 

 8.  T𝐿𝑡1

𝐶𝑡2 = 𝑇𝐸𝑡2

𝐶𝑡2𝑇𝐼
𝐸𝑡2𝑇𝐸𝑡1

𝐼 𝑇𝐿𝑡1

𝐸𝑡1 

     9.  New triangles, 𝑆′𝑐 = RayCasting(𝑆, 𝑃, 𝑇𝐿𝑡1

𝐶𝑡2) 

   10.  Predicted image, 𝐼′𝐶 = {𝑆′
𝑐| 𝑆′𝑐 ∈ 𝑆𝑐}  

   11.  ⊳Image Inpainting: 

   12.  Mask for uncoloured small black patch, 𝑀1 = {𝑆′
𝑐| 𝑆′𝑐 ∉ 𝑆𝑐} 

   13.  Mask for other patches, 𝑀 = {𝐼′
𝐶|𝐼

′
𝐶 − 𝑀1 ∈ (0,0,0)} 

   14.  Mask for unmeshed large black patch, 𝑀2 = {𝑀|𝑀 has largest             

               area} 
   15.  Mask for unmeshed small black patch, 𝑀3 = {𝐼′

𝐶|𝐼
′
𝐶 − 𝑀1 − 

               𝑀2 ∈ (0,0,0)} 
   16.       Inpainted Image, 𝐼′′𝑐=MAT(𝐼𝐶

′ , 𝑀2, 𝑀3) + {𝐼𝐶|𝐼𝐶 ∈ 𝑀1} 
   17. end while 

   18. Result: PD using state estimation of ego vehicle. 

 
 

Fig. 4. Three kinds of black patches for image inpainting 
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not consider high-level semantics, such as the presence of 

objects and their relationships to the ego vehicle, which are 

crucial for human perception and teleoperation. These 

existing metrics can provide some insights into image quality, 

but their limitations make them less than ideal for the specific 

needs of autonomous vehicles (for example, teleoperation).  

Deep learning metrics like LPIPS are generally used to 

compare the perceptual similarity between images, often in 

generative models, image compression, or style transfer. 

However, for AV applications (especially teleoperation), the 

primary focus is on accurate nearby object detection and 

localization. High LPIPS scores indicate good perceptual 

quality but do not guarantee improved detection performance. 

The primary concern for AV systems is the accuracy and 

reliability of object detection, not just image quality. Also, the 

effectiveness of LPIPS depends on the specific pre-trained 

neural network used. The quality assessment might be less 

reliable if the pre-trained model does not generalize well to 

the diverse scenarios AV systems encounter. Hence, a new 

metric must be developed to evaluate the performance of PD 

algorithms. 

One of the most critical requirements to teleoperate a 

vehicle successfully is to accurately know the position of 

various objects in the environment. Hence, accurate object 

detection is a key ingredient for successful teleoperation, and 

the synthesized images from a PD algorithm must be able to 

cater to this need. Deep learning-based object detection 

algorithms like YOLO can detect various objects like vehicles 

and pedestrians in undelayed images. However, when 

multiple such objects are present, finding them and comparing 

their overlap in a test image is important. This test image can 

be either the delayed image or the image synthesized using 

PD. The proposed new Teleoperation Object Location Metric 

(TOLM) is aimed at this task. This new metric relies on 

accurately detecting and comparing objects from undelayed 

and test images, matching the corresponding boxes and 

computing the Intersection Over Union (IoU) for the two 

boxes. The computation of the TOLM metric can be divided 

into three parts: 

1. Object detection. 

2. Feature Matching 

3. IoU computation 

For detecting various objects in the undelayed and test 

image, YOLO v8 [28] is being used. Ultralytics YOLO v8 is 

the latest version of a well-known real-time object detection 

and image segmentation model and offers good performance 

in terms of speed and accuracy.  

Once the bounding boxes for the various objects in the 

undelayed and test image are obtained, each of the bounding 

boxes in the undelayed image is then compared to all the 

bounding boxes obtained from the test image using SIFT 

feature matching. This step aims to obtain the correspondence 

of each bounding box in the undelayed image with a box in 

the test image for accurate object localization. SIFT identifies 

invariant features across scale, rotation, and translations and 

can hence be used for robust feature detection and matching. 

For each bounding box in the undelayed image, a region of 

interest (RoI) is obtained (based on the dimension of the 

bounding box) for which key points are located using SIFT, 

and a descriptor for each key point is also obtained. The same 

is done for all the RoI in the test images, and the descriptors 

are compared using ratio test. The correspondence between 

the two boxes is established when the number of good 

matches is greater than four. Each corresponding bounding 

box in the undelayed and test image IoU is computed which 

is an indicator of object localization in the image. An IoU of 

1 corresponds to a complete overlap of the two bounding 

boxes, and an IoU of 0 corresponds to no overlap. IoU for 

each of the bounding boxes in the undelayed image is 

computed and the TOLM is obtained as follows, 

 
𝑇𝑂𝐿𝑀 = 

∑ 𝐼𝑜𝑈𝑖
𝑛
𝑖=1

𝑛
 (18) 

where, 𝑛 is the number of bounding boxes present in the 

 
 

Fig. 6. Pipeline for TOLM 

         
                             

          
        

           
  

       

         
         

         
         

             
        

         

        

        
   

        
    

   

  

 
 

Fig. 5. Image inpainting pipeline 

                  
       

             

         
         

             

         
         

             

         
         

             

   

          
           
     

          
     

              
     

             
            

         
        

   
    
     
  

        



  

undelayed image. The complete pipeline for this new image 

comparison metric is given in Fig. 6. 

IV. RESULTS 

To evaluate the performance of the estimation-based PD 

system on real world experimental data, two open-source 

datasets KITTI and nuScenes have been used. This section 

describes the various results obtained on these two datasets. 

The results obtained from estimation-based PD using 3D 

reconstruction are compared with those obtained from the 

delayed display feed using image comparison metrics like 

PSNR, SSIM, FSIM and MS-SSIM. Furthermore, the results 

are also compared using TOLM to evaluate the performance 

of PD for object detection and localization.  

TABLE I.  SENSOR SPECIFICATION OF EGO VEHICLE 

Sensor Specification KITTI nuScenes 

GPS rate (Hz) 5 50 

IMU rate (Hz) 10 100 

Camera display rate (FPS) 10 12 

Image size (pixels) 1242×375 1600×900 

Lidar rate (Hz) 10 12 

Lidar vertical field of view (deg) 26.8 41.33 

Lidar accuracy (cm) 2 2 

A. Sensor Rates and State Estimation 

 The details of the various sensors for both KITTI and 

nuScenes datasets that were used for estimation-based PD is 

given in Table I. From the table it can be observed that the 

GPS and IMU sensor rates for the KITTI dataset are lower 

than the nuScenes dataset, which allows the evaluation of the 

state estimation algorithm on varied datasets. Furthermore, 

the camera and Lidar rates for both datasets are almost 

similar. However, the image size and Lidar vertical field of 

view are different for both datasets, which allows effective 

evaluation of PD for assorted datasets. 

TABLE II.  EGO-VEHICLE STATE ESTIMATION RESULTS 

Error KITTI nuScenes 

 RMSE Max error RMSE Max error 

𝑥̃ (m) 0.03 0.11 0.029 0.145 

𝑦̃ (m) 0.03 0.14 0.042 0.146 

𝜓̃ (deg) 0.22 0.67 0.13 0.59 

 The state estimation results for the two datasets are 

provided in Table II where 𝑥̃, 𝑦̃ and 𝜓̃ is the error in estimated 

position and yaw angle. From the table, it can be observed that 

for both datasets, the RMSE for position is less than 4 cm, and 

for yaw angle, it is less than 0.25 deg. The maximum error for 

the position is less than 15 cm, and that of the yaw angle is 

less than 0.7 deg. Hence, state estimation based on GNSS can 

provide accurate estimates for both position and yaw angle for 

image synthesis using 3D reconstruction. 

B. PSR Vs NKSR 

 The image synthesized using PD depends on the accuracy 

of the state estimates and the quality of the mesh generated 

using 3D reconstruction. Two methods, PSR and NKSR, were 

implemented to create a mesh and will be analyzed in this 

subsection. Often, the mesh generated by PSR is such that 

there is an artificial lid over the scene, blocking the viewpoint 

because of which the synthesized image is completely black. 

Sometimes, the mesh in PSR bulges up, which also partially 

blocks the viewpoints. Fig 7 shows the artificial lid that was 

generated in the KITTI dataset, thus creating a completely 

black image at around 0.2 s. On the other hand, the image 

synthesized using NKSR is consistent over the whole time 

period for both KITTI and nuScenes data.  

TABLE III.  NKSR AND PSR COMPARISION 

Metric KITTI nuScenes 

 PSR NKSR PSR NKSR 

 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 𝜇 𝜎 

𝑃𝑆𝑁𝑅 10.54 2.00 10.54 0.7 11.60 2.00 10.40 0.67 

𝑆𝑆𝐼𝑀 0.20 0.07 0.19 0.03 0.23 0.08 0.25 0.04 

𝐹𝑆𝐼𝑀 0.49 0.04 0.49 0.04 0.57 0.04 0.58 0.02 

MS-

SSIM 
0.26 0.07 0.29 0.06 0.34 0.06 0.33 0.04 

Table III shows the numeric comparison of PSR and NKSR 

results for the two data sets. In this table 𝜇 and 𝜎 refers to the 

mean and standard deviation for a given image metric. It can 

be observed that although the mean value of PSR and NKSR 

are almost same, PSR has larger standard deviation thus 

indicating the variability of the results obtained from PSR.  

C. Image Inpainting 

 The use of NKSR for image synthesis leads to many black 

patches in the image. To fill these, image inpainting using 

MAT has been used. The results obtained are for three delay 

cases: 0.5 s, 1 s, and 0.7 s/0.75 s for both KITTI and nuScenes 

datasets. For the KITTI dataset, 0.7 s delay was considered, 

and for nuScenes, 0.75 s delay was considered. In all the 

subsequent plots and tables, ‘NKSR’ and ‘Inpainted’ refer to 

the inpainting of image synthesized using NKSR with the 

nearest inpaint and with MAT, respectively.  

  The box plot for various metrics for KITTI and nuScenes 

data for 0.5 s delay is shown in Fig. 8. The plot shows the 

PSNR values (greater than 1) on the left y-axis and other 

metrics values (ranging from 0 to 1) on the right y-axis.  From 

the plot, it is clear that image synthesis using NKSR is greater 

for almost all the metrics as compared to delay cases. Also, 

 
 

Fig. 7. Artificial lid generated using PSR for KITTI dataset 



  

image synthesis using NKSR inpainted with MAT gives 

better results for all metrics than delayed image and NKSR. It 

can be easily observed that the TOLM metric is higher for 

inpainted images, indicating that deep learning-based 

inpainting methods improve object detection and localization 

accuracy. The improvement in PSNR shows less noise in the 

synthesized image, while that in SSIM indicates better 

structural similarity of synthesized with ground truth. 

Increased MS-SSIM for inpainted synthesized images 

indicates better similarity with ground truth over multiple 

resolutions. Improvement in the FSIM metric indicates that 

the synthesized image has better perceived quality, especially 

in terms of edges and textures, which are significant for 

human visual perception. 

 Tables IV and V show the Image metrics and TOLM 

comparison for KITTI and nuScenes datasets for various 

delay cases. The tables show the mean value of the various 

metrics over the whole-time interval. From the table, it is clear 

that in almost all the metrics, the performance of inpainted 

image synthesis is the best. The only exception is the PSNR 

values in Table IV for 0.7 s and 1 s delay cases, where the 

performance of NKSR is better.  

 It is very important to note that the value of the TOLM 

index for inpainted image synthesis is about double that of 

delayed image feed, which clearly indicates that the 

estimation-based PD system with image inpainting is able to 

increase the object detection and localization performance by 

50 % as compared to delayed cases. The same trend is 

observed for both datasets, which proves the generality of the 

algorithm over various driving conditions. 

D. Qualitative Results  

 The qualitative result for a sample time for both scenes and 

KITTI dataset for 0.5 s delay is shown in Fig. 9. From the 

figure, it is clear that the estimation-based PD can recreate 

images that match the ground truth. For the nuScenese 

dataset, the black Sedan on the right is partially visible in the 

ground truth, NKSR, and inpainted but fully visible in the 

delayed image. In the KITTI dataset, a black car is visible in 

the delayed image but not in ground truth, NKSR, and 

inpainted images. This fact points out that using delayed 

images for teleoperation results in incorrect perception of 

reality, and the estimation-based PD algorithm with deep 

learning-based image inpainting is able to create realistic 

images, which compensates for teleoperation delay. However, 

it can be observed that PD cannot capture the high-frequency 

components (for example the logs in the wooden fence as 

shown in Fig. 9 for KITTI dataset) in the image due to 

limitations on the mesh quality and raycasting, although it can 

accurately capture nearby buildings and vehicles on the road.  

 The qualitative results for the TOLM metric are shown in 

Fig. 10 for a sample time in the KITTI dataset. The results are 

for the 0.5 s delay case where the figure shows the delayed 

image, ground truth, NKSR results, and inpainted results. 

From the figure, it is clear that the car in the delayed image is 

far away from the ego vehicle compared to the ground truth, 

which is why the bounding box for the delayed image is 

smaller than the ground truth bounding box. On the other 

hand, for NKSR and inpainted cases, the bounding boxes for 

TABLE IV.  IMAGE METRIC COMPARISION FOR KITTI DATASET 

Metric PSNR ↑ SSIM ↑ FSIM ↑ MS-SSIM ↑ TOLM ↑ 

Delay 0.5 s 0.7 s 1.0 s  0.5 s 0.7 s 1.0 s  0.5 s 0.7 s 1.0 s  0.5 s 0.7 s 1.0 s  0.5 s 0.7 s 1.0 s  

Delayed 10.39 9.84 9.29 0.25 0.23 0.22 0.58 0.56 0.55 0.26 0.23 0.20 0.25 0.17 0.10 

NKSR 12.28 11.56 10.82 0.29 0.27 0.25 0.58 0.57 0.55 0.36 0.32 0.28 0.26 0.18 0.14 

Inpainted 12.35 11.53 10.74 0.30 0.28 0.26 0.60 0.58 0.57 0.38 0.33 0.29 0.33 0.25 0.20 

TABLE V.  IMAGE METRIC COMPARISION FOR NUSCENES DATASET 

Metric PSNR ↑ SSIM ↑ FSIM ↑ MS-SSIM ↑ TOLM ↑ 

Delay 0.5 s 0.75 s 1.0 s  0.5 s 0.75 s 1.0 s  0.5 s 0.75 s 1.0 s  0.5 s 0.75 s 1.0 s  0.5 s 0.75 s 1.0 s  

Delayed 15.22 14.56 14.03 0.38 0.36 0.35 0.65 0.64 0.63 0.41 0.39 0.37 0.26 0.19 0.15 

NKSR 11.67 11.40 11.16 0.44 0.39 0.37 0.65 0.63 0.62 0.50 0.46 0.43 0.41 0.30 0.24 

Inpainted 16.37 15.29 14.66 0.47 0.43 0.40 0.70 0.66 0.64 0.51 0.46 0.43 0.48 0.36 0.29 

 

  
(a) KITTI dataset (b) nuScenes dataset 

Fig. 8. Box plot for 0.5 s delay 



  

the car are similar to that in the ground truth image. However, 

due to the artifacts created using the nearest inpainted method 

in NKSR, there is an additional bounding box for a person in 

the image. But using deep-learning-based inpainting methods, 

no such artifacts are present in the inpainted image, thus 

allowing for a more realistic image synthesis of the ground 

truth. For this sample time, the TOLM index for the delayed 

image was 0.3, while for NKSR and inpainted, it was 0.8 and 

0.87, respectively, which proves the significant superiority of 

estimation-based PD and that of inpainting using deep 

learning.  

E. Robustness against Variable Time Delays 

 In this subsection the estimation-based PD system is 

validated against real-time transmission issues like delays in 

sending GPS and IMU data and the occurrence of variable 

time delays for sending camera data. Due to certain network, 

constraints sometimes the transmission of even the GPS and 

IMU data may encounter brief delays of the order of 100 

milliseconds. Hence, the performance of the PD system in 

such cases is evaluated. Table VI presents the perk of the PD 

system when there is a delay of 10 ms and 100 ms in the 

 

 

 
(a) nuScenes Dataset (b) KITTI Dataset 

Fig. 9. Qualitative results on nuScenes and KITTI datasets 

 
Fig. 10. Qualitative results for TOLM metric 



  

transmission of GPS and IMU data for the nuScenes dataset. 

From the table it can be observed that the PD system has 

comparable performance to the no delay case although there 

is a slight increase in error and a slight decrease in PSNR. 

Although the metrics decrease a bit, the system is largely at 

par with the no delay case. 

TABLE VI.  EFFECT OF DELAY ON GPS AND IMU  

Delay (ms) 𝑥̃ (m) 𝑦̃ (m) 𝜓̃ (deg) PSNR 

0 0.029 0.042 0.13 16.37 

10 0.045 0.06 0.28 16.3 

100 0.34 0.33 1.5 15.73 

 

Furthermore, the effects of variable time delay in the 

camera data along with a 10 ms and 100 ms delay in GPS and 

IMU data on the PD system are illustrated using Table VII, 

where the performance of the PD system is compared with 

that of the constant delay case.  

TABLE VII.  EFFECT OF VARIABLE DELAY IN CAMERA DATA  

Delay in GPS and 

IMU data (ms) 
Average delay in 

camera image(s) 

Variabilit

y (s) PSNR FSIM 

10 0.5 0 16.3 0.67 

10 0.4583 0.0417 16.34 0.68 

100 0.4583 0.0417 15.82 0.65 

From Table VII, it can be observed that the image metrics 

for the case of variable time delay are actually higher than that 

of average delay case, this is due to the fact that the average 

value for the variable time delay is less as compared to the 

constant delay case. Thus, it can be concluded that the system 

is able to perform adequately even in the case of delay in GPS 

and IMU signals and variable time delay in camera and Lidar 

data. 

F. Comparison with Video Prediction Methods  

This subsection details the comparison of the estimation-

based PD system with a state-of-art deep learning video 

prediction method DMVFN [17] to predict future images 

based on delayed images. DMVFN is an advanced video 

prediction framework that incorporates dynamic routing 

mechanisms alongside multi-scale motion estimation 

techniques. Furthermore, the quality of images generated by 

DMVFN is claimed to be better than other methods [15,16]. 

The deep learning network takes two consecutive images at 

time 𝑡 and 𝑡 − 1 to predict images for time 𝑡2 = 𝑡1 + Δ𝑡. 

Table VIII shows the average PSNR, SSIM and TOLM metric 

for the proposed method (NKSR) and DMVFN for the 

nuScenes dataset for a 0.5 s delay. From the table it is 

observed that NKSR is able to perform better than DMVFN 

on all the three metrics. It is also important to note that 

although DMVFN is able to produce images, since it doesn’t 

utilize any information for the current position of the ego 

vehicle, the TOLM metric is indeed very low as compared to 

NKSR. The NKSR is able to increase the vehicle detection 

and localization accuracy by 96 % compared to DMVFN.  

Another important drawback of deep learning networks is 

that they fail to capture the complete scene when the ego 

vehicle is turning but the estimation-based PD system 

alleviates this problem by transforming the delayed images 

from both the front and side camera using the same 

estimation-based PD system. Fig 11 shows the synthesized 

image for both DMVFN and NKSR and it can been seen that 

DMVFN is unable to synthesize the white car in the right 

portion of the image when the ego vehicle is turning right, 

whereas NKSR is able to do so. The slight difference in the 

illumination of the white car in NKSR as compared to ground 

truth image is due to the fact that the side portion of the NKSR 

image was inpainted by synthesizing the new image from the 

right-side camera which had an illumination different from 

the front camera. 

TABLE VIII.  COMPARISION WITH VIDEO PREDICTION METHODS  

Method PSNR SSIM TOLM 

DMVFN 20.6 0.56 0.26 

NKSR 21 0.58 0.51 

G. Robustness against GPS outage  

This subsection details the robustness of the estimation-based 

PD system in cases when there is GPS outage resulting in the 

loss of GPS signal. In such cases, Lidar-based localization 

methods can be used to obtain the measurements for the EKF.  

TABLE IX.  EFFECT OF GPS OUTAGE  

Case 𝑥̃ (m) 𝑦̃ (m) 𝜓̃ (deg) PSNR 

GPS Available 0.017 0.014 0.620 12.01 

GPS Outage 

(EKF-KISS-ICP) 
0.270 0.120 0.640 12 

GPS Outage 

(EKF-FAST-LIO) 
0.200 0.160 1.160 11.98 

 

 Two such methods are evaluated. In KISS-ICP, ego-

localization is done using Lidar odometry while in FAST-LIO 

it is done by fusing the IMU and Lidar data. Both methods 

were operated at 10 Hz on the ego vehicle and the obtained 

position and yaw angle of the ego vehicle was then 

transmitted to the teleoperation station where they were used 

 
Fig. 11. Image comparison for DMVFN and NKSR 



  

as measurement for the EKF in cases when there was GPS 

outage. Consider the case, when a sample trajectory for KITTI 

dataset encountered a GPS loss. Table IX shows the 

performance of the EKF-based KISS-ICP and FAST-LIO as 

compared to the case when GPS measurements are available.  

From table IX it can be seen that the accuracy of the EKF 

based on KISS-ICP and FAST-LIO SLAM is less as 

compared to the case when the GPS readings are available. 

Although there is decrease in accuracy yet there is a negligible 

decrease in the PSNR values of the generated images. Hence, 

the estimation-based PD system with GPS outage is at par 

with the case when GPS signals are available.  

V. CONCLUSION 

In this paper, an estimation-based PD system was designed 

based on 3D reconstruction of the environment around the 

ego-vehicle using novel sensor fusion of delayed camera and 

Lidar data. Two techniques, one based on Poisson 

reconstruction (PSR) and the other based on deep learning 

(NKSR), were evaluated for creating a mesh representation of 

the 3D environment. Raycasting was then performed to 

synthesize images based on the estimated non-delayed 

position and orientation of the ego vehicle obtained through 

ego vehicle state estimation. Although the synthesized images 

were better than the delayed image feed, they had many black 

patches due to unmeshed regions and uncolored triangles. 

Hence, deep learning-based image inpainting was applied to 

the generated images to fill the black patches and generate 

realistic images for AV teleoperation. Furthermore, a new 

metric for evaluating the performance of PD algorithms for 

object detection and localization (TOLM) was developed. 

The developed PD algorithm was then applied to real-world 

experimental data from KITTI and nuScenes datasets. The 

results indicated the superior performance of estimation-

based PD algorithms with image inpainting compared to 

delayed image feed over various image comparison metrics 

like PSNR, SSIM, FSIM, and MS-SSIM. Furthermore, the PD 

algorithm was also evaluated on a new TOLM metric, and it 

showed an improvement of 50 % over the delayed image feed, 

thus proving the effectiveness of PD systems in detecting and 

locating other vehicles on the road. This work focused on a 

static environment around the ego-vehicle. Future work 

would incorporate various dynamic objects like moving 

vehicles or pedestrians in the scene. 
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