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Abstract— Teleoperation could be used to replace a backup
safety driver on autonomous vehicles and could play a valuable
role in scaling up deployment of autonomous vehicles. The
surrounding environment of the remote vehicle needs to be
recreated for the teleoperator using video images received over
wireless channels. To handle the significant time delays in
receiving remote video data, this paper develops a predictive
display system that uses deep learning to estimate the current
video display for the teleoperator from old (delayed) camera
images. First, old camera and Lidar data are fused to create a
3D reconstruction of the remote vehicle environment using
conventional and deep-learning-based algorithms. Then the ego-
vehicle’s real-time position and orientation variables are
estimated using an extended Kalman filter. Predictive
modification of the reconstructed old 3D scene is performed
using the ego-vehicle’s estimated new trajectory variables. Deep-
learning based image in-painting is used to improve image
quality. Furthermore, this paper also introduces a new image
comparison metric for evaluating the accuracy of the object
detection and localization performance in the predictive display
image. Real-world experimental data from the nuScenes and
Kitti datasets are used for evaluation of the proposed system.
The predictive display images are compared with ground truth
images using various image comparison metrics and shown to
provide significantly superior performance compared to the
actual delayed images received over wireless channels.

I. INTRODUCTION

There is significant ongoing research related to
autonomous vehicles (AVs) in various parts of the world.
However, even according to the most optimistic estimates, a
fully self-driving vehicle will not be sold to the public till at
least 2028 at the earliest [1]. Current AV technology is
primarily at Level 3 and Level 4 of SAE capability levels,
with significant ongoing testing of Level 4 capabilities. While
AVs can operate autonomously a majority of the time,
occasional intervention from a human driver is needed. Such
scenarios requiring human intervention may include
unexpected snow on the road, construction zones, blocked
roads or component failures. In many AV companies’ backup
safety drivers are essential for vehicle testing. Enabling the
teleoperation of AVs will essentially allow remote human
intervention in unexpected situations and will also eliminate
the need for a backup safety driver.

Some startup companies like Vay [2] and Halo currently
use human teleoperators to drive rental cars to and from
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customers remotely. A Swedish company, Einride [3], utilizes
remote operators to assist their autonomous trucks in complex
driving scenarios. Future applications of occasional AV
teleoperation may include taxi fleets, valet parking, ride-
sharing, and autonomous buses for public transport. Hence,
AV teleoperation is likely to be a valuable technology in the
near future.

In teleoperation, the surrounding environment of the
remote vehicle needs to be recreated for the teleoperator using
video images received over wireless channels. The camera
and Lidar data, owing to their high data size, can experience
significant delays in their wireless communication. In the
context of AVs, even a 0.2 s delay can degrade the vehicle
control performance of the teleoperator [4]. Furthermore, if
the delay increases to 0.5 s, it can become virtually impossible
for the teleoperator to effectively control the vehicle [5].

One solution to this latency problem lies in using
Predictive Display (PD) to provide realistic intermediate
display updates to the teleoperator to compensate for the
delayed image feed. An essential feature for using PD is to
know the ego wvehicle's current real-time position and
orientation, which is obtained in this paper through state
estimation using GPS and IMU signals. Since these sensor
signals are small, they can be transmitted more frequently and
consistently than camera images. Thus, this estimation-based
PD system can obtain real-time estimates of the ego vehicles'
trajectory and synthesize new images, which compensate for
the delayed camera data. This paper proposes to develop an
estimation-based predictive display (PD) system that
performs novel sensor fusion of delayed camera and Lidar
data to recreate the 3D environment around the ego vehicle,
estimate trajectories of the ego vehicle, and use these
trajectory variables to synthesize predictive images for
accurate teleoperation. Furthermore, deep learning-based
image-inpainting will be used to improve the quality of the
synthesized images.

Prior research work in PD has been simplistic and
includes displaying the predicted position of the ego-vehicle
on the delayed image feed using a pointing line [6], a
semitransparent vehicle [7], or a rectangular frame and tracks
[8]. However, in these papers, the authors assumed that the
ego position was known and did not do state estimation.
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Predictors [9] and clothoids [10,11] have also been used to
predict the future position of the ego vehicle.

Some researchers have also used image transformation
techniques based on real-time throttle/brake/steering inputs
from the teleoperator [12,13]. Recently, a more rigorous
estimation-based PD system was developed in a MATLAB-
Unreal Engine co-simulation environment to evaluate the
teleoperation performance of human subjects [5]. However,
none of the authors have so far been able to implement their
PD system on real-world camera images.

One way to create PD system for AV teleoperation is to by
formulating it as a video prediction task by directly trying to
predict the future frames of the video stream from the past
frames. Generative models such as GANs, VAEs and most
recent diffusion models have shown remarkable capabilities
for image and video generation tasks. However, these models
often struggle with videos featuring complex motion such as
those found in wurban environments encountered in
autonomous driving datasets. Furthermore, the large
inference times for diffusion models have prevented their
widespread use in real-time applications such as autonomous
driving [14]. In such scenarios, methods based on deep
learning based optical flow [15,16,17] are more popular. Such
methods require the input of a sequence of delayed camera
images and can then predict the future frames. However, such
generative models suffer from generalization issues required
for real life driving scenarios [18].

In contrast, the approach presented in this paper, where
image synthesis is performed using a combination of state
estimation and generative models, is much more
generalizable. Furthermore, deep learning-based methods are
unable to effectively handle scenarios involving ego vehicle
turning and tend to generate random images during such
maneuvers. On the other hand, the inpainting pipeline
introduced in this work can effectively handle such scenarios.

The estimation-based PD system relies on accurate state
estimation of the ego vehicle for which EKF has been used
which relies on an accurate vehicle dynamic model along with
IMU and GPS measurements. This method is especially
suitable for teleoperation as it relies on sending low size IMU
and GPS data with very little delay. Advanced optical flow
and scene estimation methods [19] can also be used to
estimate the states of the ego vehicle, but such methods rely
on a sequence of camera images. Since the camera images
themselves have huge delays (of the order of 500
milliseconds), the state estimation using these methods will in
turn be further delayed resulting in large errors. Thus, such
methods although suitable for estimating the camera pose of
ego vehicle are not suitable in the context of teleoperation.
Furthermore, computing optical flow or scene flow using
deep learning methods can’t be used in a generalized
framework for unknown roads. The proposed EKF based state
estimation on the other hand can provide accurate state
estimates across varied environments. Nonlinear observers, in
lieu of EKFs, have also been used for vehicle related
nonlinear estimation applications [20].

The primary contributions of this paper are as follows:

1) The paper develops an estimation-based predictive display
(PD) system that reconstructs the 3D environment around
the ego-vehicle using a deep learning-based meshing
algorithm based on the sensor fusion of delayed camera
and Lidar data.

2) This paper further uses a dynamic vehicle model proposed
in this paper together with an extended Kalman Filter to
perform predictive modification of the reconstructed old
3D scene using faster updates from GPS and IMU sensors.
Furthermore, the system can also handle GPS denied
environments by utilizing measurements from Lidar based
SLAM methods.

3) This paper also presents a novel pipeline to improve the
image quality of the PD images using deep learning-based
image inpainting. Furthermore, to tackle ego-vehicle
turning the images from the front and side cameras are
combined using the developed deep learning-based
meshing algorithm.

4) The paper further develops a deep learning-based image
comparison metric for AV teleoperation for evaluating the
accuracy of object detection and localization.

5) This paper presents for the first time the application of PD
on experimental real-world AV data, clearly pointing out
the benefits of using such algorithms to compensate for
delayed camera data. In this paper, the open-source KITTI
and nuScenes datasets are used for analysis.

The outline of the rest of the paper is as follows. In section

II, the estimation-based PD algorithm is described which

includes state estimation, 3D reconstruction and image-

inpainting. Section III describes a new metric for image
comparison based on object detection and localization. Section

IV discusses the results using various image metric

comparison for the developed algorithms and proves the

efficacy of estimation-based PD system on real-world data.

Section V contains the conclusions.

II. ESTIMATION BASED PREDICTIVE DISPLAY

Latency due to wireless transmission can affect AV
teleoperation significantly, and even a 0.5 s delay can highly
deteriorate the lateral and longitudinal control performance of
the remote teleoperator [5]. Hence, it is vital to reduce latency
and provide accurate intermediate visual updates to the
teleoperator. This section describes the PD system aimed at
enhancing AV teleoperation by recreating the 3D
environment around the vehicle using delayed camera and
Lidar data and updating this image based on state estimates of
the Ego vehicle. The given PD system relies on GPS and IMU
sensors for state estimation and the front camera and Lidar for
3D reconstruction. Furthermore, image inpainting has also
been used to improve the quality of the generated images.

A. State Estimation of Ego Vehicle

The accurate position and yaw angle of the ego vehicle are
critical variables for accurately transforming the delayed
camera images. Hence, ego-vehicle state estimation is an
integral part of the PD system.

In this work the inertial position of the ego vehicle is
estimated which requires the use of Inertial and Ego frames.



The Inertial Frame {I} is a global fixed frame which is
stationary and hence has no linear or angular rates. The GPS
readings as well as the state vector are defined with respect to
this frame. The origin of the Inertial Frame is located at O;
and the basis vectors are given by x;,y; and z; as shown in
Fig. 1. The Ego Frame {E} is located on the center of mass
(CoM) of the ego vehicle and moves with the ego vehicle. The
IMU readings are defined with respect to this frame. The
origin of the Ego Frame is located at Oy and the basis vectors
are given by xg, ¥g and zg. The position of the CoM of the
ego vehicle in the inertial frame is given by x and y and the
yaw angle is given by 1. Let, the state vector X be,

X=[x y x y ¢ O]
where x and y are the velocity of the CoM of the ego vehicle
in the inertial frame. The IMU provides the acceleration and

the yaw rate of the CoM of the ego vehicles and its
measurements are given as follows,

u=lay a, 9| 2)
where, the accelerometer reading about the x; and yg axis is
given by a, and a,, respectively, and the yaw rate provided
by the gyroscope is given by 1. Due to the presence of biases
the IMU reading differs from that of the true accelerations and
rotational rates and the noisy and biased measurements are
given as follows,

ax ax ax ax

Ay =% | + % +|% (3)
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where, [ ]; are the true readings, [ ], are the constant biases
and [ ],, are zero mean noise signals with constant standard

deviation. The various frames of reference as well as IMU
inputs are shown in Fig. 1.

n

Fig. 1. Inertial and Ego Frames for state estimation

The state dynamics for the ego vehicle are as follows,
[ x ]
y
X = ‘ax cos(¥) —a, Sin(lp)‘ = f(X,w) @)
lax sin() + a, COS(I/J)J
¥

The state dynamics is nonlinear in nature and due to the
presence of biases in the measured IMU signals, direct use of
the dynamic model will result in a drift error over time.
Hence, there is a need to use additional GNSS measurements
for accurate ego vehicle localization. In Lidar or camera based

odometry methods there is a large bandwidth requirement
which adds further delays to state estimation these are thus
infeasible to use in teleoperation. On the other hand, GNSS
has very low data size and is thus a feasible option for
teleoperation. In this work, real-world data which uses GNSS
with a specified accuracy of 10 cm has been used. The
measurement equation used for estimating the state vectors is
given as follows,

y=[kx y ¥"+v )
where, v is zero mean gaussian white noise. The measurement
of the yaw angle can be obtained from a dual antenna GPS
device or for small slip angles can be approximated to be
equal to the heading angle of the wvehicle. Accurate
measurement of GPS and yaw angle for both KITTI and
nuScenes dataset were available and were used for accurate
state estimation. Given the nonlinear state dynamics of (4)
and the measurements of (5), the Extended Kalman Filter
(EKF) was used for state estimation of the ego vehicle [21].
The EKF performs prediction and correction to obtain
accurate state estimates. In the prediction step the apriori state
estimates X, are obtained using the system’s nonlinear
dynamics along with the apriori state covariance matrix Pj, as
follows,

X = f (-1, Use-1) (6)
P = Fyoa P Fioq + Qin @)
Where, Fk—l = 15 + TAk—l'

af
Apq = P (x,j_l,uk_l) =

0 01 0 0
[0 0 0 1 0
0 0 0 0 =—aysin(xs)— aycos (xs)]|,
lO 0 0 0 aycos(xs)— aysin (xs) ‘
0 00O 0

where, I5 is 5 X 5 identity matrix, T is the time step and Q_4
is the process noise covariance matrix.

In the correction step the apriori estimates and state
covariance are corrected using the measurements y, and the
Kalman gain K, to obtain aposterior estimates ¥; and state
covariance P} as follows,

Ky = P Hi (H P Hy + R )™ (®)

X =X + K (yie — HieXi) ©)

P¢ = (s — KieH )Py (10)
1 0 0 0O

where, H, =10 1 0 0 Ofand Ry is the measurement
0 00 01

noise covariance matrix. It has been assumed that there is no
latency in the transmission of GPS and IMU data due to their
much lower data size compared to camera and Lidar data.

However, there are instances where GPS data may have
poor accuracy or may be completely lost. For example, in
urban areas tall buildings and other structures can block the
line of sight to GPS satellites resulting in loss of GPS signals.
In such cases it is important to use the EKF based filter with
other localization techniques like visual SLAM or Lidar
SLAM.



In the context of teleoperation, the SLAM based
localization algorithm cannot run on the teleoperation station
due to huge delay in image and Lidar data. Therefore, such
methods must be able to run on the remote vehicle and the
localization data (which includes the positions and the yaw
angle) can then be transmitted to the teleoperation station.
This localization data can essentially replace the measurement
given by Eq. (5) for the EKF thus allowing for improved
localization even in GPS denied regions. Compared to
monocular camera-based SLAM, Lidar based SLAM are
more suitable for outdoor environment [22] and hence, in this
work two well-known methods are used. The first one is
KISS-ICP [23] which is a simple, accurate and robust Lidar
odometry and the second one is FAST-LIO [24] which is a
robust and computationally efficient for Lidar-inertial
odometry which integrates IMU data along with Lidar data.
Both the methods has reduced computational load such that
both can easily run at 10 Hz. Thus, the new measurement
equation for the EKF becomes,

_ x v ¥ gps

y { GPS available
x v Y lszam

GPS outage (i

One of the benefits of this integrated localization filter is
that the measurement model is independent of the SLAM
algorithm and hence can accommodate any kind of future
SLAM based algorithms which may provide more accurate
and real-time measurements.

B. 3D Reconstruction

Updating the delayed camera images requires the current
ego state estimates as well as an accurate 3D representation
of the environment around the ego vehicle to generate new
images based on the estimated position of the ego vehicle. The
point cloud obtained from the delayed Lidar data is used to
create a 3D mesh for the environment around the ego vehicle
and the image synthesis is done based on this mesh.

In this paper, the images generated from a monocular
camera are considered (i.e. from the front camera) along with
the 360° point cloud data from Lidar. The image synthesis
pipeline has four major key processes:

1. Point cloud filtering

2. Mesh creation

3. Raycasting

4. Camera motion using state estimation

In the first process the 360° point cloud is reduced to just
the points in the field of view of the camera. This allows for
decreasing the size of the point cloud data thus decreasing the
delay as well as speeding up 3D reconstruction. The points in
the Lidar frame were first transformed to the camera frame.
The Lidar points which were behind the camera were
removed and only those points which were in the front of the
camera were projected onto the image plane. Among these
points, those points whose pixels were outside the image were
removed and the Lidar points corresponding to the pixels
inside the image were obtained and the normal vectors for
each of these points were computed using Open3D. These

v (é_) -Lidar point cloud (b) Filtered Lidar points

Fig. 2. Lidar point cloud and filtered points

points, which are called filtered points were then used for
generating the 3D mesh. The Lidar point cloud and the filtered
points for a sample nuScenes dataset are shown in Fig. 2.

In the second process two different methods were explored
to create a 3D mesh for the filtered points. The first method
used was Poisson Surface Reconstruction (PSR) which is a
classical method relying on mathematical and algorithmic
techniques to generate a surface from point cloud data [25]. It
aims to fit a watertight, triangulated mesh for a given input of
points and the normal of each point. In this algorithm an
indicator function y which has a value less than 1 outside the
mesh and greater than 1 inside, is computed by solving the
Poisson problem given as follows,

Viy=V.V (12)
where, V is the vector field for the surface normal. PSR is
aimed at generating closed surfaces, and in many test cases it
created unnatural closure like an artificial "lid" over the scene,
closing off the open environment in an unnatural way.
Because of this closed mesh it was not possible to perform
accurate image synthesis. This problem will be further
explained in Section IV.

Neural Kernal Surface Reconstruction (NKSR) was then
employed to counter this disadvantage of PSR. NKSR
employs neural networks and kernel methods to capture
complex surface details and model intricate geometries and
fine details. Unlike PSR, which forces a closed surface,
NKSR can handle open structures more naturally, which is
particularly beneficial for outdoor scenes where open
boundaries and partial structures are common.

NKSR is trained on the data from a CARLA simulator and
the trained model has been successfully used in real outdoor
environment also [26]. Although NKSR is able to handle open
boundaries, often it produces black patches in the image due
to non-meshed regions.

In the third process, raycasting using Open3D was
employed to cast rays from the camera (of the delayed camera
image) onto the mesh to obtain the corresponding colors of
the triangles on the mesh. Raycasting requires the input of the
camera intrinsic matrix K and the transformation matrix from
the Lidar frame to the Camera frame. Given the pixel triangle
correspondence, ecach triangle was assigned the color
according to its pixel correspondence. Those triangles that
spanned multiple pixels were assigned the same color, which
was the mean for all the pixels to which it corresponded.

The transformation matrix of frame {B} with respect to
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Fig. 3. Image synthesis pipeline for estimation-based PD using 3D reconstruction

frame {A} is given by TZ € R*** and this convention is
followed throughout this paper. Consider the Lidar and
camera frame at time t to be {L,} and {C;}. The delayed image
and Lidar data is obtained for time t; and the image is
synthesized for time t, = t; + At. To synthesize this image,

. . C .
it is required to know TL:Z which can be computed as follows,
1

(13)

Le,
and TEtl are computed based on
i

TCtZ _ TCtZ TEtZ TEt1

. Ct
where, the matrices TEtl
i

sensor locations and are fixed V t;. The transformation matrix
from the ego frame at time t; to the ego frame at time ¢, TEEt ':12
is given as follows,
Ez _ (I "Ll
TEtl - (TEtz) TEtl (14)
The transformation matrix from the Ego frame at time t; to

the Inertial Frame can be obtained from the state estimates of
the ego vehicle and is given by,

cos((ty)) —sin(¥(t,)) 0 x(&y)
Th{ — sin((ty))  cos((ty)) 0 y(ty) (15)
0 0 1 0

t1
0 0 0 1
Using (14), the expression T,ft tlz can be obtained as follows,

cos(AYg) —sin(AYg) 0 t,

TEe _ sin(Ayg) cos(Ayg) O ty (16)
Eta 0 0 1 0
0 0 0 1

where, g = P(t1) — P(t2),
ty = cosP(ty) (x(tr) — x(t2)) +sin(t;) (W(t1) — ¥(t2))
ty = cosyp(tz) (y(t) — y(t;)) + sinh(¢,) (x(t1) — x(¢2))
From (15), it can be observed that image synthesis requires
the knowledge of both the delayed time t; and the time delay
At (which gives t, =t; + At). Once these variables are
known image synthesis can be performed for both constant
delay as well as variable delay cases.
Furthermore, the PD system can also be used to handle
cases when the camera and Lidar data are not synchronized.
Consider the case when the Lidar data is received at time t,’

and the camera data is received at time t;, in such a case the
point cloud obtained at time ¢, can be transformed to time t,

as follows,

p(t,) = TELf (17)
where, p(t;) is the filtered point cloud at time t;. This
transformed point cloud is then used to create the mesh and
then (12) can be used to synthesize images. Since the GPS and
IMU have very small data size, hence it is assumed that they
have negligible delay and hence the use of the estimation-
based PD can counter the effects of high constant delay,
variable delay and even asynchronized sensor use.

Given the new transformation of Lidar frame {L;,} w.r.t
new camera {C,} in (12), another raycasting was performed

LTI T (8

1 Etqy! " Leqgs

. . .o . Ct. .
using camera intrinsic matrix K and TLt % to obtain the new
1

triangles corresponding to the pixels at the new camera pose.
Thus, an image based on the estimated position of the ego
vehicle was generated. The entire image synthesis pipeline
using 3D reconstruction is shown in Fig. 3. From the figure
one can observe that the mesh created via NKSR has many
open spaces (white regions in the mesh) which results in many
black patches in the image due to the presence of unmeshed
regions. Also, due to the presence of uncolored triangles in
the mesh, moving the camera in the 3D environment further
creates more black regions in the synthesized image.

It was observed that if the size of triangles in the mesh is
large, then blurry images are generated due to the
correspondence of many pixels with one triangle, thus
creating an image having effects similar to Gaussian blurring.
Hence, after constructing the 3D mesh, the triangles were
subdivided into smaller triangles to synthesize sharp and more
realistic images. However, as the size of the triangles
decreases, there are many uncolored triangles, which results
in even more black patches (apart from unmeshed regions) in
the synthesized image. Image inpainting was done to fill up
these black patches, which will be described in the following
subsection.

C. Image Inpainting
The image obtained after the second raycasting in the



NKSR/PSR mesh contains three kinds of black patches:

1. Large black patches are present due to the presence of
unmeshed regions generated due to NKSR meshing.

2. Small black patches which are present due to the
presence of unmeshed regions generated due to NKSR
meshing.

3. Small black patches which are present due to the
presence of uncolored triangles in the mesh.

The three kinds of black patches are shown in Fig. 4
where the green region represents the first kind of black patch
which is always obtained on the top part or side part of the
synthesized image and is a result of lack of Lidar points in
such areas. The blue regions represent the second kind of
black patches which are a result of unmeshed regions in the
environment generated due to sparse Lidar points in the data.
The red regions represent the third kind of black patch which

8 Unmeshed large black patch
Il Unmeshed small black patches
I Uncolored small black patches

Fig. 4. Three kinds of black patches for image inpainting

are generated due to uncolored triangles in the mesh generated
due to moving the camera in the 3D environment.

To improve the quality of the synthesized image it is very
important to fill these black patches and hence for this purpose
image inpainting is used. The first kind of black patches are
bound to appear in regions when the top part of the camera
(such as the sky) is not captured at all by the Lidar point cloud.
Such black patches present an outpainting problem rather than
an inpainting problem. When these regions are very far away
and do not change much with ego motion, they can be
replaced with the corresponding parts of the delayed image,
and this is what is being done in this work. Otherwise, it is
very important to utilize deep learning-based image
outpainting to fill these regions. However, this is out of the
scope for this paper and is a topic for further research.

The second and third kind of black patches can be filled by
applying image inpainting. One of the simplest methods to
inpaint is to use the color of the nearest colored triangle and
this method in this paper is being referred to as nearest inpaint.
With this method one can fill up smaller black patches but it
becomes very difficult to fill up larger regions. Hence for this
purpose the state-of-the-art large hole inpainting Mask-Aware
Transformer (MAT) is being used [27]. This deep learning
network utilizes the merits of transformers and convolutions
to efficiently process high-resolution images. MAT is
provided with the synthesized image and the mask for the

black patches and it inpaints the black regions, thus improving
the quality image quality which is then displayed to the
teleoperator.

Furthermore, during situations involving turning of the
vehicle the delayed image from the center front camera is not
able to capture the entire scene. In such cases the delayed
camera feed from side cameras can be utilized along with the
NKSR method to fill the otherwise black regions encountered
during the turning of the ego vehicle. When the ego vehicle is
turning (determined using the yaw rate), the point cloud
projected on the side camera along with the a part of the image
from the side camera (one fourth of the camera image) can be
sent to the teleoperator. Using these two as inputs, the NKSR
pipeline shown in Fig. 3 is applied to synthesize side camera
image at the new ego position which can be effectively used
to inpaint the side large black patches during the turning of
the ego vehicle. Hence the use of additional camera
measurements effectively inpaints the unknown black regions
and increases the system’s effectiveness to handle turns where
even the state-of-the-art deep learning methods fails. The
entire image inpainting pipeline is shown in Fig. 5. Algorithm
1 describes the estimation-based PD system utilizing state
estimation, NKSR and image inpainting.

Algorithm 1: Estimation-based PD with image inpainting
Require: Predictive Display « f(Camera Matrix P, IMU, GPS, Lidar
point cloud X;, Camera image /., Current time t,, Delayed time t;, TECt ’11
L
and TE::)
1. while The system runs do
3D Reconstruction:
Filtered Point Cloud, X, € {X,| x = P(TfX¢) front € Ic}
mesh, S = NKSR(X,)
Colored triangles, S, = RayCasting(S, P, TLC::)
T = StateEstimation(IMU (t,), GPS(t1))
T2 = StateEstimation(IMU (t,), GPS(t))
Tf: = TECttzz TIEtZ Tbl'n TLE;T
9. New triangles, S', = RayCasting(S, P, TLCt‘lz)
10.  Predicted image, I'c = {S'.| S'c € S.}
11. >Image Inpainting:
12.  Mask for uncoloured small black patch, M; = {S'.| S'. & S.}
13.  Mask for other patches, M = {I'¢|I'c — M, € (0,0,0)}
14. Mask for unmeshed large black patch, M, = {M|M has largest
area}
15.  Mask for unmeshed small black patch, M5 = {I'¢|l'c — M; —
M, € (0,0,0)}
16.  Inpainted Image, I" .=MAT(I}, My, M3) + {I;|I; € M;}
17. end while
18. Result: PD using state estimation of ego vehicle.

S BRSO A

III. NEwW IMAGE COMPARISON METRIC FOR
TELEOPERATION STUDIES

In the context of evaluating the generated image quality,
various pixel comparison metrics like Peak Signal to Noise
ratio (PSNR), Structural Similarity Index (SSIM), Multi-
Scale Structural Similarity Index (MS-SSIM) and Feature
Similarity Index (FSIM) can be used. However, such metrics
suffer from the problem of lack of contextual understanding
and cannot differentiate between important and unimportant
parts of image regions for teleoperation. Furthermore, they do
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not consider high-level semantics, such as the presence of
objects and their relationships to the ego vehicle, which are
crucial for human perception and teleoperation. These
existing metrics can provide some insights into image quality,
but their limitations make them less than ideal for the specific
needs of autonomous vehicles (for example, teleoperation).

Deep learning metrics like LPIPS are generally used to
compare the perceptual similarity between images, often in
generative models, image compression, or style transfer.
However, for AV applications (especially teleoperation), the
primary focus is on accurate nearby object detection and
localization. High LPIPS scores indicate good perceptual
quality but do not guarantee improved detection performance.
The primary concern for AV systems is the accuracy and
reliability of object detection, not just image quality. Also, the
effectiveness of LPIPS depends on the specific pre-trained
neural network used. The quality assessment might be less
reliable if the pre-trained model does not generalize well to
the diverse scenarios AV systems encounter. Hence, a new
metric must be developed to evaluate the performance of PD
algorithms.

One of the most critical requirements to teleoperate a
vehicle successfully is to accurately know the position of
various objects in the environment. Hence, accurate object
detection is a key ingredient for successful teleoperation, and
the synthesized images from a PD algorithm must be able to
cater to this need. Deep learning-based object detection
algorithms like YOLO can detect various objects like vehicles
and pedestrians in undelayed images. However, when
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multiple such objects are present, finding them and comparing
their overlap in a test image is important. This test image can
be either the delayed image or the image synthesized using
PD. The proposed new Teleoperation Object Location Metric
(TOLM) is aimed at this task. This new metric relies on
accurately detecting and comparing objects from undelayed
and test images, matching the corresponding boxes and
computing the Intersection Over Union (IoU) for the two
boxes. The computation of the TOLM metric can be divided
into three parts:

1. Object detection.

2. Feature Matching

3. ToU computation

For detecting various objects in the undelayed and test
image, YOLO v8 [28] is being used. Ultralytics YOLO v8 is
the latest version of a well-known real-time object detection
and image segmentation model and offers good performance
in terms of speed and accuracy.

Once the bounding boxes for the various objects in the
undelayed and test image are obtained, each of the bounding
boxes in the undelayed image is then compared to all the
bounding boxes obtained from the test image using SIFT
feature matching. This step aims to obtain the correspondence
of each bounding box in the undelayed image with a box in
the test image for accurate object localization. SIFT identifies
invariant features across scale, rotation, and translations and
can hence be used for robust feature detection and matching.
For each bounding box in the undelayed image, a region of
interest (Rol) is obtained (based on the dimension of the
bounding box) for which key points are located using SIFT,
and a descriptor for each key point is also obtained. The same
is done for all the Rol in the test images, and the descriptors
are compared using ratio test. The correspondence between
the two boxes is established when the number of good
matches is greater than four. Each corresponding bounding
box in the undelayed and test image IoU is computed which
is an indicator of object localization in the image. An loU of
1 corresponds to a complete overlap of the two bounding
boxes, and an IoU of 0 corresponds to no overlap. IoU for
each of the bounding boxes in the undelayed image is
computed and the TOLM is obtained as follows,

Z?=1 IOUi

TOLM = (18)

where, n is the number of bounding boxes present in the
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Fig. 6. Pipeline for TOLM



undelayed image. The complete pipeline for this new image
comparison metric is given in Fig. 6.

IV. RESULTS

To evaluate the performance of the estimation-based PD
system on real world experimental data, two open-source
datasets KITTI and nuScenes have been used. This section
describes the various results obtained on these two datasets.
The results obtained from estimation-based PD using 3D
reconstruction are compared with those obtained from the
delayed display feed using image comparison metrics like
PSNR, SSIM, FSIM and MS-SSIM. Furthermore, the results
are also compared using TOLM to evaluate the performance
of PD for object detection and localization.

TABLE 1. SENSOR SPECIFICATION OF EGO VEHICLE
Sensor Specification KITTI nuScenes
GPS rate (Hz) 5 50
IMU rate (Hz) 10 100
Camera display rate (FPS) 10 12
Image size (pixels) 1242x375 1600x900
Lidar rate (Hz) 10 12
Lidar vertical field of view (deg) 26.8 41.33
Lidar accuracy (cm) 2 2

A. Sensor Rates and State Estimation

The details of the various sensors for both KITTI and
nuScenes datasets that were used for estimation-based PD is
given in Table I. From the table it can be observed that the
GPS and IMU sensor rates for the KITTI dataset are lower
than the nuScenes dataset, which allows the evaluation of the
state estimation algorithm on varied datasets. Furthermore,
the camera and Lidar rates for both datasets are almost
similar. However, the image size and Lidar vertical field of
view are different for both datasets, which allows effective
evaluation of PD for assorted datasets.

B. PSR Vs NKSR

The image synthesized using PD depends on the accuracy
of the state estimates and the quality of the mesh generated
using 3D reconstruction. Two methods, PSR and NKSR, were
implemented to create a mesh and will be analyzed in this
subsection. Often, the mesh generated by PSR is such that
there is an artificial lid over the scene, blocking the viewpoint
because of which the synthesized image is completely black.
Sometimes, the mesh in PSR bulges up, which also partially
blocks the viewpoints. Fig 7 shows the artificial lid that was
generated in the KITTI dataset, thus creating a completely
black image at around 0.2 s. On the other hand, the image
synthesized using NKSR is consistent over the whole time
period for both KITTI and nuScenes data.

Artificial lid
blocking th
viewpoint

\

Lidar origin

Fig. 7. Artificial lid generated using PSR for KITTI dataset

TABLE III. NKSR AND PSR COMPARISION
Metric KITTI nuScenes
PSR NKSR PSR NKSR
u g u g u a u g
PSNR | 10.54 | 2.00 | 10.54 | 0.7 11.60 | 2.00 | 10.40 | 0.67
SSIM | 0.20 | 0.07 | 0.19 0.03 0.23 0.08 | 0.25 |0.04
FSIM | 0.49 0.04 | 0.49 0.04 0.57 0.04 | 0.58 |0.02
MS-
SSIM 0.26 0.07 | 0.29 0.06 0.34 0.06 | 0.33 [0.04

TABLE II. EGO-VEHICLE STATE ESTIMATION RESULTS
Error KITTI nuScenes
RMSE | Max error | RMSE | Max error
X (m) 0.03 0.11 0.029 0.145
¥ (m) 0.03 0.14 0.042 0.146
P (deg) | 0.22 0.67 0.13 0.59

The state estimation results for the two datasets are
provided in Table I where %, § and 1) is the error in estimated
position and yaw angle. From the table, it can be observed that
for both datasets, the RMSE for position is less than 4 cm, and
for yaw angle, it is less than 0.25 deg. The maximum error for
the position is less than 15 cm, and that of the yaw angle is
less than 0.7 deg. Hence, state estimation based on GNSS can
provide accurate estimates for both position and yaw angle for
image synthesis using 3D reconstruction.

Table I1I shows the numeric comparison of PSR and NKSR
results for the two data sets. In this table u and o refers to the
mean and standard deviation for a given image metric. It can
be observed that although the mean value of PSR and NKSR
are almost same, PSR has larger standard deviation thus
indicating the variability of the results obtained from PSR.

C. Image Inpainting

The use of NKSR for image synthesis leads to many black
patches in the image. To fill these, image inpainting using
MAT has been used. The results obtained are for three delay
cases: 0.5s, 1 s,and 0.7 s/0.75 s for both KITTI and nuScenes
datasets. For the KITTI dataset, 0.7 s delay was considered,
and for nuScenes, 0.75 s delay was considered. In all the
subsequent plots and tables, ‘NKSR’ and ‘Inpainted’ refer to
the inpainting of image synthesized using NKSR with the
nearest inpaint and with MAT, respectively.

The box plot for various metrics for KITTI and nuScenes
data for 0.5 s delay is shown in Fig. 8. The plot shows the
PSNR values (greater than 1) on the left y-axis and other
metrics values (ranging from 0 to 1) on the right y-axis. From
the plot, it is clear that image synthesis using NKSR is greater
for almost all the metrics as compared to delay cases. Also,



!:l Delayed D Delayed
[ | NKSR ) 1 [CJNKsR 1
T Inpainted ! = % Inpainted =
6| Hi..8 Y 2
: I 0.8 [—1 sl | 0.8 &1
14! 1 - = @ i | =
I "1 | n
& | & ; ! {06 o 18 : L ! ! n.a%
o L ' i 1 0.4 < 2 14 i 04 o
10 : ! I X E‘ E i i 1 ' E
T 8 é é 1 . £ 12 Q — H T Z
gl 1 S 1 024 1Y P02
i i 7 0f 1 1 @
1 | w0 1 5]
1 do L L .l
S S & S B & > S > &
N SN N 2
Q%é .,f‘ Q‘-:J @b.;v ‘@\) ,Q":‘\t\ & Q"} @0%‘5\ (@\)
(a) KITTI dataset (b) nuScenes dataset
Fig. 8. Box plot for 0.5 s delay
TABLE IV. IMAGE METRIC COMPARISION FOR KITTI DATASET
Metric PSNR T SSIM T FSIM T MS-SSIM T TOLM T
Delay 0.5s 0.7s 1.0s 0.5s 0.7s 1.0s 0.5s 0.7s 1.0s 0.5s 0.7s 1.0s 0.5s 0.7s 1.0s
Delayed 10.39 9.84 9.29 0.25 0.23 0.22 0.58 0.56 0.55 0.26 0.23 0.20 0.25 0.17 0.10
NKSR 12.28 11.56 10.82 0.29 0.27 0.25 0.58 0.57 0.55 0.36 0.32 0.28 0.26 0.18 0.14
Inpainted 12.35 11.53 10.74 0.30 0.28 0.26 0.60 0.58 0.57 0.38 0.33 0.29 0.33 0.25 0.20
TABLE V. IMAGE METRIC COMPARISION FOR NUSCENES DATASET
Metric PSNR T SSIM T FSIM 1T MS-SSIM T TOLM T
Delay 0.5s 0.75s 1.0s 0.5s | 0.75s 1.0s | 0.5s | 0.75s 1.0s | 0.5s | 0.75s 1.0s | 0.5s | 0.75s 1.0s
Delayed 15.22 14.56 14.03 | 0.38 0.36 0.35 0.65 0.64 0.63 0.41 0.39 0.37 0.26 0.19 0.15
NKSR 11.67 11.40 11.16 | 0.44 0.39 0.37 0.65 0.63 0.62 0.50 0.46 0.43 0.41 0.30 0.24
Inpainted | 16.37 15.29 14.66 | 0.47 0.43 0.40 0.70 0.66 0.64 0.51 0.46 0.43 0.48 0.36 0.29

image synthesis using NKSR inpainted with MAT gives
better results for all metrics than delayed image and NKSR. It
can be easily observed that the TOLM metric is higher for
inpainted images, indicating that deep learning-based
inpainting methods improve object detection and localization
accuracy. The improvement in PSNR shows less noise in the
synthesized image, while that in SSIM indicates better
structural similarity of synthesized with ground truth.
Increased MS-SSIM for inpainted synthesized images
indicates better similarity with ground truth over multiple
resolutions. Improvement in the FSIM metric indicates that
the synthesized image has better perceived quality, especially
in terms of edges and textures, which are significant for
human visual perception.

Tables IV and V show the Image metrics and TOLM
comparison for KITTI and nuScenes datasets for various
delay cases. The tables show the mean value of the various
metrics over the whole-time interval. From the table, it is clear
that in almost all the metrics, the performance of inpainted
image synthesis is the best. The only exception is the PSNR
values in Table IV for 0.7 s and 1 s delay cases, where the
performance of NKSR is better.

It is very important to note that the value of the TOLM
index for inpainted image synthesis is about double that of
delayed image feed, which clearly indicates that the
estimation-based PD system with image inpainting is able to
increase the object detection and localization performance by
50 % as compared to delayed cases. The same trend is
observed for both datasets, which proves the generality of the
algorithm over various driving conditions.

D. Qualitative Results

The qualitative result for a sample time for both scenes and
KITTI dataset for 0.5 s delay is shown in Fig. 9. From the
figure, it is clear that the estimation-based PD can recreate
images that match the ground truth. For the nuScenese
dataset, the black Sedan on the right is partially visible in the
ground truth, NKSR, and inpainted but fully visible in the
delayed image. In the KITTI dataset, a black car is visible in
the delayed image but not in ground truth, NKSR, and
inpainted images. This fact points out that using delayed
images for teleoperation results in incorrect perception of
reality, and the estimation-based PD algorithm with deep
learning-based image inpainting is able to create realistic
images, which compensates for teleoperation delay. However,
it can be observed that PD cannot capture the high-frequency
components (for example the logs in the wooden fence as
shown in Fig. 9 for KITTI dataset) in the image due to
limitations on the mesh quality and raycasting, although it can
accurately capture nearby buildings and vehicles on the road.

The qualitative results for the TOLM metric are shown in
Fig. 10 for a sample time in the KITTI dataset. The results are
for the 0.5 s delay case where the figure shows the delayed
image, ground truth, NKSR results, and inpainted results.
From the figure, it is clear that the car in the delayed image is
far away from the ego vehicle compared to the ground truth,
which is why the bounding box for the delayed image is
smaller than the ground truth bounding box. On the other
hand, for NKSR and inpainted cases, the bounding boxes for
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(a) nuScenes Dataset
Fig. 9. Qualitative results on nuScenes and KITTI datasets

the car are similar to that in the ground truth image. However,
due to the artifacts created using the nearest inpainted method
in NKSR, there is an additional bounding box for a person in
the image. But using deep-learning-based inpainting methods,
no such artifacts are present in the inpainted image, thus
allowing for a more realistic image synthesis of the ground
truth. For this sample time, the TOLM index for the delayed
image was 0.3, while for NKSR and inpainted, it was 0.8 and
0.87, respectively, which proves the significant superiority of
estimation-based PD and that of inpainting using deep
learning.

(b) KITTI Dataset

E. Robustness against Variable Time Delays

In this subsection the estimation-based PD system is
validated against real-time transmission issues like delays in
sending GPS and IMU data and the occurrence of variable
time delays for sending camera data. Due to certain network,
constraints sometimes the transmission of even the GPS and
IMU data may encounter brief delays of the order of 100
milliseconds. Hence, the performance of the PD system in
such cases is evaluated. Table VI presents the perk of the PD
system when there is a delay of 10 ms and 100 ms in the

NKSR

Ground Truth

Inpainted

Fig. 10. Qualitative results for TOLM metric



transmission of GPS and IMU data for the nuScenes dataset.
From the table it can be observed that the PD system has
comparable performance to the no delay case although there
is a slight increase in error and a slight decrease in PSNR.
Although the metrics decrease a bit, the system is largely at
par with the no delay case.

TABLE VI. EFFECT OF DELAY ON GPS AND IMU
Delay (ms) % (m) 7 (m) P (deg) PSNR
0 0.029 0.042 0.13 16.37
10 0.045 0.06 0.28 16.3
100 0.34 0.33 1.5 15.73

Furthermore, the effects of variable time delay in the
camera data along with a 10 ms and 100 ms delay in GPS and
IMU data on the PD system are illustrated using Table VII,
where the performance of the PD system is compared with
that of the constant delay case.

TABLE VII.  EFFECT OF VARIABLE DELAY IN CAMERA DATA
Delay in GPS and |  Average delay i Variabilit
ge delay in
IMU data (ms) camera image(s) y () PSNR FSIM
10 0.5 0 16.3 0.67
10 0.4583 0.0417 16.34 0.68
100 0.4583 0.0417 15.82 0.65

From Table VII, it can be observed that the image metrics
for the case of variable time delay are actually higher than that
of average delay case, this is due to the fact that the average
value for the variable time delay is less as compared to the
constant delay case. Thus, it can be concluded that the system
is able to perform adequately even in the case of delay in GPS
and IMU signals and variable time delay in camera and Lidar
data.

F. Comparison with Video Prediction Methods

This subsection details the comparison of the estimation-
based PD system with a state-of-art deep learning video
prediction method DMVFN [17] to predict future images
based on delayed images. DMVFN is an advanced video
prediction framework that incorporates dynamic routing
mechanisms alongside multi-scale motion estimation
techniques. Furthermore, the quality of images generated by
DMVEN is claimed to be better than other methods [15,16].
The deep learning network takes two consecutive images at
time t and t — 1 to predict images for time t, = t; + At.
Table VIII shows the average PSNR, SSIM and TOLM metric
for the proposed method (NKSR) and DMVFEN for the
nuScenes dataset for a 0.5 s delay. From the table it is
observed that NKSR is able to perform better than DMVFN
on all the three metrics. It is also important to note that
although DMVEFN is able to produce images, since it doesn’t
utilize any information for the current position of the ego
vehicle, the TOLM metric is indeed very low as compared to
NKSR. The NKSR is able to increase the vehicle detection
and localization accuracy by 96 % compared to DMVFN.

Another important drawback of deep learning networks is
that they fail to capture the complete scene when the ego

vehicle is turning but the estimation-based PD system
alleviates this problem by transforming the delayed images
from both the front and side camera using the same
estimation-based PD system. Fig 11 shows the synthesized
image for both DMVFN and NKSR and it can been seen that
DMVFN is unable to synthesize the white car in the right
portion of the image when the ego vehicle is turning right,
whereas NKSR is able to do so. The slight difference in the
illumination of the white car in NKSR as compared to ground
truth image is due to the fact that the side portion of the NKSR
image was inpainted by synthesizing the new image from the
right-side camera which had an illumination different from
the front camera.

TABLE VIII.  COMPARISION WITH VIDEO PREDICTION METHODS
Method PSNR SSIM | TOLM
DMVFN 20.6 0.56 0.26
NKSR 21 0.58 0.51

NKSR DMVEN

Ground Truth

Fig. 11. Image comparison for DMVFN and NKSR

G. Robustness against GPS outage

This subsection details the robustness of the estimation-based
PD system in cases when there is GPS outage resulting in the
loss of GPS signal. In such cases, Lidar-based localization
methods can be used to obtain the measurements for the EKF.

TABLE IX. EFFECT OF GPS OUTAGE
Case X (m) ¥ (m) P (deg) PSNR
GPS Available 0.017 0.014 0.620 12.01
(EEE_SK%;%EP) 0.270 0.120 | 0.640 12
(Elgliigsfﬁio) 0.200 0.160 1.160 11.98

Two such methods are evaluated. In KISS-ICP, ego-
localization is done using Lidar odometry while in FAST-LIO
it is done by fusing the IMU and Lidar data. Both methods
were operated at 10 Hz on the ego vehicle and the obtained
position and yaw angle of the ego vehicle was then
transmitted to the teleoperation station where they were used



as measurement for the EKF in cases when there was GPS
outage. Consider the case, when a sample trajectory for KITTI
dataset encountered a GPS loss. Table IX shows the
performance of the EKF-based KISS-ICP and FAST-LIO as
compared to the case when GPS measurements are available.
From table IX it can be seen that the accuracy of the EKF
based on KISS-ICP and FAST-LIO SLAM is less as
compared to the case when the GPS readings are available.
Although there is decrease in accuracy yet there is a negligible
decrease in the PSNR values of the generated images. Hence,
the estimation-based PD system with GPS outage is at par
with the case when GPS signals are available.

V. CONCLUSION

In this paper, an estimation-based PD system was designed
based on 3D reconstruction of the environment around the
ego-vehicle using novel sensor fusion of delayed camera and
Lidar data. Two techniques, one based on Poisson
reconstruction (PSR) and the other based on deep learning
(NKSR), were evaluated for creating a mesh representation of
the 3D environment. Raycasting was then performed to
synthesize images based on the estimated non-delayed
position and orientation of the ego vehicle obtained through
ego vehicle state estimation. Although the synthesized images
were better than the delayed image feed, they had many black
patches due to unmeshed regions and uncolored triangles.
Hence, deep learning-based image inpainting was applied to
the generated images to fill the black patches and generate
realistic images for AV teleoperation. Furthermore, a new
metric for evaluating the performance of PD algorithms for
object detection and localization (TOLM) was developed.
The developed PD algorithm was then applied to real-world
experimental data from KITTI and nuScenes datasets. The
results indicated the superior performance of estimation-
based PD algorithms with image inpainting compared to
delayed image feed over various image comparison metrics
like PSNR, SSIM, FSIM, and MS-SSIM. Furthermore, the PD
algorithm was also evaluated on a new TOLM metric, and it
showed an improvement of 50 % over the delayed image feed,
thus proving the effectiveness of PD systems in detecting and
locating other vehicles on the road. This work focused on a
static environment around the ego-vehicle. Future work
would incorporate various dynamic objects like moving
vehicles or pedestrians in the scene.
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