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Abstract— Teleoperation of a vehicle requires displaying the
road environment of the remote vehicle accurately on a
teleoperation station, so that a human teleoperator can use the
display to control the vehicle safely and efficiently. Limited
bandwidth and latencies in wireless communication may prevent
transmission of camera images and Lidar data at a sufficiently
high frequency for rapid updates of the display. This paper
describes how frequent transmission of just GPS and IMU data
can enable accurate vehicle position and orientation estimation
with which realistic intermediate updates of the remote vehicle
environment can be provided. A nonlinear dynamic motion
model and an extended Kalman filter are utilized for estimating
vehicle position and orientation. A study with 5 human subjects
is used to compare steering control of a remote vehicle with and
without intermediate position updates. Experimental data show
that a 0.5 second delay in real-time display makes it extremely
difficult for a human teleoperator to control the vehicle to stay
in its lane on curved roads. However, using an estimation-based
predictive display system to update the vehicle position and
orientation with respect to the road environment enables safe
remote vehicle control with almost as accurate a performance as
the delay-free case.

I. INTRODUCTION

Teleoperation is currently used effectively for controlling
delivery robots on many campuses and in limited urban
locations [1]. Such teleoperation could similarly play a role in
the future in enabling remote take-over of an autonomous
vehicle when such human intervention is found to be
necessary. Some examples of situations where human
intervention may be needed are the presence of snow cover
on the road making the lane markers invisible, active
snow/rain precipitation, the presence of construction zones on
road, and the failure of critical sensors, actuators or other
components on the vehicle. Currently, such human
intervention is provided by using backup safety drivers who
are almost always present as a part of autonomous vehicles
during testing. Instead, a remote teleoperator could be used
to step in and get the car past whatever hazard might be too
hard for the vehicle to handle by itself in an autonomous
fashion.

Teleoperation requires strong wireless connectivity
between the autonomous vehicle and a teleoperation station.
Camera images and data from the car can then be transmitted
to the teleoperation to recreate the road environment of the
remote vehicle for the human teleoperator. Due to the large
data streams associated with camera and Lidar measurements,
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frequent transmission of such data at rapid update rates is a
challenge.

Delayed perception during teleoperated driving
significantly increases the effort of the human, and the
operator has to take care of the task and the monitoring of the
environment with more intensive effort [2,3]. This paper
proposes to develop an estimation based predictive display
system that estimates trajectories of the ego vehicle to
perform realistic intermediate updates of the vehicle with
respect to its remote environment to compensate for delayed
camera data.

Previous researchers have studied several approaches to
the display of predicted ego-vehicle position on the
teleoperator screen. Approaches studied include the use of a
semitransparent vehicle [4], a rectangular frame and tracks [5]
or a pointing line [6] on the display screen to indicate the
predicted position of the vehicle. However, they just assumed
the ego-vehicle position was known and did not study how the
remote vehicle position could actually be estimated. Other
researchers have used open-loop predictions of future motion
to predict ego vehicle position, based on assumptions such as
clothoid trajectories [7,8] and predictors for the vehicle
motion [9]. Finally, researchers have also used zooming and
sliding (or image transformation) on the display based on data
from real-time throttle/brake/steering inputs of the
teleoperator [10,11]. However, none of the authors described
above have used model-based estimation algorithms for
prediction of ego-vehicle position.

This paper utilizes a nonlinear dynamic model of the
vehicle motion and an extended Kalman filter to estimate the
remote vehicle’s position and orientation. It is assumed that
the vehicle is able to transmit GNSS and IMU data frequently
at an update of 100 Hz, while camera images from the vehicle
arrive with a time-delay of 0.5 seconds. Position and
orientation estimated using GNSS/IMU measurements are
then used to provide intermediate updates of the display for
the teleoperator. An experimental study involving 5 human
subjects is then undertaken to compare steering control
performance with and without the intermediate estimation-
based display updates on curved roads. Subsequent to the
submission of this preliminary conference paper, an extended
version of the paper involving teleoperation with both
steering control and throttle/brake control in the presence of
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other vehicles was completed, and the results are available in
a journal paper that has been accepted for publication [12].

The primary contributions of this conference paper are as
follows:

1) The paper presents a teleoperation platform using
MATLAB’s Automated Driving Toolbox that provides a
co-simulation environment for experimental human-in-
the-loop teleoperation studies.

2) This paper presents an estimation-based predictive display
system which uses ego state estimation to provide
intermediate updates of the vehicle position with respect
to its environment for improvement of teleoperator
steering performance.

3) This paper presents an experimental human subjects study
to evaluate the effectiveness of using the estimation-based
display system to compensate for the degradation caused
by delay. The benefits of the ego state estimation system
for enhancing steering control are studied.

The outline of the rest of the paper is as follows. In section

II, the MATLAB based teleoperation simulator is described.

Section III describes the estimation-based predictive display

system where state estimation of the ego vehicle is described.

Section IV describes the results from a human subjects study

and proves the efficacy of using estimated ego position

updates to improve steering control. Section V contains the
conclusions.

II. TELEOPERATION SIMULATOR DESIGN

This section describes the teleoperator station and its
components, which include a control input device that
provides throttle, brakes, and steering wheel inputs from a
human teleoperator, a virtual driving environment, delay
control units, accurate vehicle dynamics, and realistic visual
feedback of the remote vehicle environment to the human
user. The MATLAB Automated Driving Toolbox has been
used for developing the testing environment for human-in-
the-loop teleoperation simulations and the driving scenario
for the simulations has been implemented using MATLAB’s

Fig. 1. Teleoperation Station

Driving Scenario Designer. Fig. 1 shows the teleoperation
station used in the current work along with the computer and
monitor. The monitor is a Samsung 49” Odyssey G29. The
computer has 24 cores with 64 GB RAM, an Intel i9
processor, and a NVIDIA RTX 4090 24 GB graphics card.

A. Control Input Device and Vehicle Dynamics
The Logitech G29 racing wheel along with external brake

and throttle is used to provide the control inputs which are
steering angle, brake, and throttle commands. The racing
wheel has 900-degree lock-to-lock rotation like a real racing
wheel and provides dual-motor force feedback for accurately
simulating force effects. The nonlinear brake pedal mimics
the characteristics of a pressure sensitive brake system. The
Joystick Input block is used as a software interface between
the Simulink environment and the control commands
provided by the user.

A based 34-DOF vehicle dynamic simulator based on
Simulink/MATLAB which includes nonlinear tire force
models has been used to simulate the actual vehicle dynamics
for the ego vehicle. Using such an accurate vehicle dynamics
algorithm allows simulating real-world driving while utilizing
the experimental control inputs provided by the user.

B. Delay Control Unit

The delay in the transmission of the remote vehicle
environment over a wireless communication network results
in latency which affects teleoperation. In particular, large size
data streams which include camera images and Lidar data are
more likely to be delayed during wireless transmission. The
delay block in Simulink has been used to simulate this latency
and thus delay the display to the teleoperator. This block can
delay the display signal based on a set delay duration.
Additionally, it can accommodate variable delay lengths
determined by the characteristics of the local wireless
network characteristics. A constant delay has been used in the
current simulations.

C. Simulink-Unreal Engine Co-simulation Environment

The MATLAB Automated Driving Toolbox's co-
simulation environment employs Simulink to simulate the
lateral and longitudinal positions and orientation of ego
vehicle. The Unreal Engine, which is a 3D creation tool for
photorealistic visualization has been used to visualize the
scene in the 3D simulation environment thus acting as the
visual display for the teleoperator. The vehicle dynamics uses
the real time control commands of the teleoperator as inputs
to provide the trajectory of the ego vehicle. This trajectory is
subsequently utilized by the Scenario Reader to obtain real-
time lane boundary information. The trajectory of the ego
vehicle is then fed to a Simulation 3D Vehicle with Ground
Following block. This block provides the position and yaw
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Fig. 2. Block diagram of visual display for without delay and delayed cases



angle data in the inertial frame to the Simulation 3D Scene
Configuration block. In turn, the Simulation 3D Scene
Configuration block renders the 3D simulation environment
within Unreal Engine, providing the teleoperator with
photorealistic visual feedback.

The latency in teleoperation is simulated by delaying the
display of the trajectory using a delay block. The delayed
trajectory is then fed to the Unreal Engine. Fig. 2 shows the
block diagram of the teleoperation simulator platform for both
without delay and with delay cases.

III. STATE ESTIMATION OF EGO VEHICLE

The performance of the teleoperator is drastically
affected by latency in the display of the remote vehicle
environment and even a 0.17 s delay degrades control
performance significantly. Hence there is a need to develop a
solution to this problem. The estimation-based predictive
display system developed in this paper modifies the visual
feedback to the teleoperator based on intermediate updates of
the state estimates of the ego-vehicle. This method offers an
attractive option to enhance teleoperation. This section
describes the state estimation of the ego vehicle used.

Consider an inertial frame (0;, x;, y;) whose x and y axis
are given by x;,y; and origin is located at 0;. The ego frame
(Og, x5, Yg) is located at the center of mass (CoM) of the ego
vehicle Oy and x and y are chosen to be the x and y position
of the CoM of ego vehicle which is expressed in the Inertial
frame. Let, the state vector X be,

X=[xzg yp % ye Ye]" =[x xs]" (1)
where, X; and yy are the rate of change of x; and yg,
respectively and 1 is the yaw angle of the ego vehicle.

In this paper it is assumed that the ego vehicle has an IMU
which is located at its CoM and provides the following
measurements that can be used as inputs by the observer,
ay wg]T =[u; u; uz]’ ?2)

where a, and a,, are the accelerations of the ego vehicle about

u= [ax

xp and yp axis respectively and wg is the yaw rate of ego
vehicle. The ego vehicle with respect to (w.r.t.) the Inertial
frame, the states vector, and the inputs provided by IMU are
shown in Fig. 3.
The state dynamics for ego motion is as follows,
X3
X4
X = [uy cos(xs) —ug sin(xs) | = f(X,w) (3)
uy sin(xg) + u, cos(xg)
Us
The inputs from the IMU are used in Eq. (3) to compute the
state derivatives which can be integrated to obtain the desired
states. The IMU suffers from the problem of drift which is a
result of unknown bias and the increases the error over time.
Therefore, there is a need to use other position sensor
measurements to compensate for the drift in IMU. Examples
of position sensors include camera, Lidar and GPS. Although
camera and Lidar based odometry methods can be highly
accurate but their practicality in teleoperation is limited. Such

Fig. 3. Ego Vehicle w.r.t. Inertial Frame

methods consume large bandwidth due to increased data size
and thus adds delay in state estimation. GPS on the other
hand, has low data size and hence is a feasible option for
teleoperation. However, regular GPS has low accuracy of the
order of 1.5 m but when RTK corrections are used the
accuracy can increase to the order of 1-10 cm. The Mn-CORS
network operated by MnDOT provides RTK-corrected GPS
with accuracy of 10 cm throughout the state of Minnesota.
Therefore, in this work RTK corrected GPS measurements
from the Mn-CORS type network has been used.

The noisy and biased measured IMU readings are related
to the true signals as follows,

Ay = Ay + Aype + Ay pn @
Ay = Ay, + Ay pt + Ayn (5)
Wg = Wt + Wgpe + Wgp (6)

where, ay, a,,; and wg; are the true readings, ay p, Gy, p; and
wgpe are the constant accelerometer and gyro bias
respectively and a,p,,a,, and wg, are zero mean white
noise.
The measurement equation for the GPS is as follows,
y=[xg ye]"+v (7
where, v~N(0, Ry,s) is the measurement noise with error
covariance matrix Rgps. Although the state is observable
using the measurement in (7), but it is important to estimate
yaw angle with high accuracy to improve the accuracy of the
predictive display system. Hence, it is very important to use
measurements of yaw angle. In literature [13], various
methods have been described to compute heading which
includes, using angular velocity of earth, magnetic field,
vision, dual antenna GNSS, acceleration and velocity
heading. Using angular velocity of earth requires costly
sensors and the use of magnetic field is infeasible in AVs due
to the presence of many local magnetic materials. Using
vision will add latency to state estimation hence it is also not
feasible. A dual antenna GPS provides accurate
measurements for heading but requires a large baseline.
Heading computation using velocities from GPS is a viable
option as it is low cost and suitable for teleoperation.
Acceleration based methods for computing heading require
the differentiating velocities obtained from GPS and are thus
prone to errors at low acceleration. Hence, velocities
computed using GPS have been used to measure the yaw



angle.
The velocity of the ego vehicle in the inertial frame (X% and
yk) are related to those in the ego frame as follows,

X Uy CgVy — SV

[Yﬂ = Re [”y] - [CEvy + sEvﬂ ®)
where, v, and v, is the velocity of ego vehicle along the ego
frame axis, ¢ and sg are cos (Y ¢) and sin (1) respectively,
and Ry, is the rotation matrix of ego frame w.r.t. inertial frame
given by,

cg —S
Re=[g o] ©)

If v, > v, then (8) reduces to,

Xg] _ [CEVx
el = ew] 10
Hence,
Py =tan™?! (}i> (11)
Xg

GPS can be used to provide x; and yp with sufficient
accuracy [14] and hence this method can be used to measure
the yaw angle. However, the measurements are prone to error
when the lateral velocity is high (i.e., high slip angle). Hence
the new measurement equation becomes,

y=1[x y& ¥e]"+v (12)

Given these with the IMU inputs, an Extended Kalman

Filter (EKF) has been used for state estimation. The
prediction equations for the EKF are as follows,

Xier1 = f (g, wie) (13)

Py = P+ Qy (14)

where, Fj, = I5 + AtAg, A, = Z—i(i{,uk) and Py and Qy, are

the state covariance matrix and process noise covariance
matrix respectively. The correction equations for the EKF are
as follows,

Ki+1 = PepaHios (Hygp1 Py Hiyg + Rip) ™ (15)
f}:-+1 = X1 + Kiew1 Vksr — Hier1Xk41) (16)
Pk++1 = - Kk+1Hk+1)Pk_+1 (17)
1 0 0 0 O
where, Hpyq=|0 1 0 0 0| and Rp,q; is the
0 0 0 0 1

measurement noise covariance matrix. Due to low size of
GPS and IMU data, it has been assumed that the latency in the
transmission of these data is negligible and the state
estimation is being done on the teleoperator side.

Given the estimates of ego vehicle, the estimated vehicles
were displayed to the teleoperator using the position and yaw
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Fig. 4. Block diagram for estimation-based predictive display

angles of the vehicles. The complete flow chart of the
predictive display system using state estimates is shown in
Fig. 4.

It should be noted that the vehicle dynamic model used for
the ego vehicle motion is nonlinear and hence an extended
Kalman filter has been utilized for state estimation in this
paper. It is also possible to use nonlinear observers for such
state estimation tasks [15,16], although that has not been
pursued in this paper.

IV. RESULTS AND DISCUSSION

To evaluate the performance of the estimation-based
predictive display system, a human subjects study has been
conducted. In this study the data of five teleoperator
participants was analyzed to evaluate the degradation caused
due to latency delay and the effectiveness of the predictive
display system. For the human subject study, a curved road
scenario was used.

The curved road extends from -200 m to 1600 m in y
direction and 1400 m to 200 m in x direction as shown in Fig.
5 and has 4 lanes of width 3.85 m each. Fig. 6 shows the real-
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Fig. 5. Curved road scenario

Fig. 6. Real-time display to the teleoperator

time display to the teleoperator which includes the speed
display (in miles per hour) along with the cockpit of the ego
vehicle.

Each participant underwent three driving tests with the
vehicle. In the initial test, participants operated the vehicle
without any delay, while in the second test, they experienced
a 0.5 second delay. The third test involved estimation-based
predictive display. Each test lasted for about 6.67 mins during



which the participants were instructed to maintain the ego
vehicle in the same lane and drive at speeds ranging from 30
to 35 mph. Table I provides the sensor specifications of the
ego vehicle which includes IMU, GPS and camera.

TABLE L. SENSOR SPECIFICATIONS OF EGO VEHICLE
Sensor Specification Value
GPS position accuracy (m) 0.1
GPS velocity accuracy (m/s) 0.1
Accelerometer initial bias (m/s?) 0.0141
Accelerometer VRW (mg) 0.2
Gyroscope initial bias (deg/s) 0.0573
Gyroscope ARW (deg/v/Hr ) 0.21
GPS, IMU rate (Hz) 100
Camera field of view horizontal (deg) 56.72
Camera field of view vertical (deg) 87.66
Camera frame rate (FPS) 100

TABLE II. STATE ESTIMATION ERROR FOR EACH PARTICIPANT
Part. % (m) ¥ (m) P (deg)
no.
RMSE Max RMSE Max RMSE Max
error error error
1 0.0114 0.0868 0.0145 | 0.1387 | 0.1169 | 0.6074
2 0.0116 0.0868 0.0148 | 0.1387 | 0.1227 | 0.5389
3 0.0114 0.0868 0.0145 | 0.1387 | 0.1088 | 0.4000
4 0.0115 0.0868 0.0153 | 0.1387 | 0.1867 | 0.8253
5 0.0113 0.0868 0.0141 | 0.1387 | 0.1025 | 0.4722

The state estimation results for a sample participant are
shown in Fig. 7. The state estimation error is é = e — é,
where e is the true value and € is the estimated value. From
the plot it is clear that the error in the position and velocity is
of the order of 5 cm and 5 cm/s. The error in the yaw angle is
less than 0.5° indicating that the filter is able to estimate the
yaw angle accurately. The state estimation error for each
participant are described in Table II. The table clearly
demonstrates that the estimator can achieve an accuracy of
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Predictive Display (PD)

Ega vehicle center

~Ego vehicke right egde
——Ego vehick left edge | ]
Lane boundary

Lane offset (m)

o 50 100 150 200 250 300 350 400

time (s)
(b) With PD

Fig. 9. Lane offset Vs Time



measuring the yaw angle results in even more precise
estimation, with an accuracy of 0.1 degrees. This implies that
(11) serves as a valid approximation for yaw angle
measurement when the slip angle is not high.

The plot of the speed of a sample participant for all the
three cases is shown in Fig. 8. From the plot it is clear that the
speed of the participant for the delayed case is less than that
of the without delay and predictive display cases. Moreover,
the high magnitudes of variation in speeds indicates difficulty
in driving the vehicle in the delayed case. The speed of the
participant for the predictive display case is comparable to
that of the without delay case and is higher than the delayed
case indicating an improved performance in longitudinal
control.

The plot for the lane offset for the ego vehicle for both
delayed and predictive display case for a sample participant is
shown in Fig. 9. From the plot it is clear that the ego vehicle
goes outside the lane many times for the delayed case. But for
the predictive display system the lane keeping performance is
much better than the delayed case, thus predictive display
improves the performance for lateral control.

A summary of the overall results for the human subjects
study is shown in Table III. The metrics are an average over
all the five participants. From the table it can be observed that
both the average speed and distance covered with 0.5 s delay
decreases drastically but when predictive display is used the
performance is much closer to the without delay case. The
table also indicates that the maximum times the vehicle goes
out of lane is much less for predictive display as compared to
the delayed case. The results indicate that the use of predictive
display improves the longitudinal and the lateral control of the
ego vehicle.

TABLE III. RESULTS FROM TELEOPERATION STATION STUDY
Metric Average Values % %
change| change
Without| 0.5s PD due to after
delay delay delay PD
Average speed (m/s) 12.9 11.35 12.94 12 0.3
Distance (km) 5.16 4.54 5.18 12 0.39
Max distance outside | 0.064 2.39 0.084 3634 31.2
lane (m)
Number of times 0.4 52 0.4 1200 0
outside lane

V. CONCLUSION

This paper introduces an estimation-based predictive
display system aimed at enhancing teleoperated steering
control  performance  with  autonomous  vehicles.
Teleoperation of a remote vehicle faces challenges due to
latency in transmitting camera images to the teleoperation
station, which can delay the visual display for the teleoperator
and impact the teleoperator's performance. To assess the
degradation caused in steering control by delays and the

effectiveness of the predictive display in compensating for
these delays, a MATLAB-based human-in-the-loop
teleoperation environment was developed. The position and
yaw angle of the ego vehicle were estimated using a nonlinear
dynamic motion model and an EKF based state estimation
technique. The estimated states were then used in a predictive
display system to synthesize images appropriately using
Matlab’s Unreal Engine. An experimental study involving
human subjects highlighted the detrimental impact of even a
0.5 second delay in visual display on steering control. The
study demonstrated that the use of an estimation-based
predictive display system could effectively compensate for
the delay in camera image transmissions. Steering control
performance almost as good as that of the delay-free case
could be obtained by using such a predictive display system.
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