
  

  

Abstract— Teleoperation of a vehicle requires displaying the 

road environment of the remote vehicle accurately on a 

teleoperation station, so that a human teleoperator can use the 

display to control the vehicle safely and efficiently. Limited 

bandwidth and latencies in wireless communication may prevent 

transmission of camera images and Lidar data at a sufficiently 

high frequency for rapid updates of the display. This paper 

describes how frequent transmission of just GPS and IMU data 

can enable accurate vehicle position and orientation estimation 

with which realistic intermediate updates of the remote vehicle 

environment can be provided. A nonlinear dynamic motion 

model and an extended Kalman filter are utilized for estimating 

vehicle position and orientation.  A study with 5 human subjects 

is used to compare steering control of a remote vehicle with and 

without intermediate position updates. Experimental data show 

that a 0.5 second delay in real-time display makes it extremely 

difficult for a human teleoperator to control the vehicle to stay 

in its lane on curved roads. However, using an estimation-based 

predictive display system to update the vehicle position and 

orientation with respect to the road environment enables safe 

remote vehicle control with almost as accurate a performance as 

the delay-free case. 

I. INTRODUCTION 

Teleoperation is currently used effectively for controlling 

delivery robots on many campuses and in limited urban 

locations [1]. Such teleoperation could similarly play a role in 

the future in enabling remote take-over of an autonomous 

vehicle when such human intervention is found to be 

necessary. Some examples of situations where human 

intervention may be needed are the presence of snow cover 

on the road making the lane markers invisible, active 

snow/rain precipitation, the presence of construction zones on 

road, and the failure of critical sensors, actuators or other 

components on the vehicle. Currently, such human 

intervention is provided by using backup safety drivers who 

are almost always present as a part of autonomous vehicles 

during testing.   Instead, a remote teleoperator could be used 

to step in and get the car past whatever hazard might be too 

hard for the vehicle to handle by itself in an autonomous 

fashion. 

Teleoperation requires strong wireless connectivity 

between the autonomous vehicle and a teleoperation station.  

Camera images and data from the car can then be transmitted 

to the teleoperation to recreate the road environment of the 

remote vehicle for the human teleoperator.  Due to the large 

data streams associated with camera and Lidar measurements, 
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frequent transmission of such data at rapid update rates is a 

challenge.  

Delayed perception during teleoperated driving 

significantly increases the effort of the human, and the 

operator has to take care of the task and the monitoring of the 

environment with more intensive effort [2,3]. This paper 

proposes to develop an estimation based predictive display 

system that estimates trajectories of the ego vehicle to 

perform realistic intermediate updates of the vehicle with 

respect to its remote environment to compensate for delayed 

camera data.  

Previous researchers have studied several approaches to 

the display of predicted ego-vehicle position on the 

teleoperator screen.  Approaches studied include the use of a 

semitransparent vehicle [4], a rectangular frame and tracks [5] 

or a pointing line [6] on the display screen to indicate the 

predicted position of the vehicle. However, they just assumed 

the ego-vehicle position was known and did not study how the 

remote vehicle position could actually be estimated. Other 

researchers have used open-loop predictions of future motion 

to predict ego vehicle position, based on assumptions such as 

clothoid trajectories [7,8] and predictors for the vehicle 

motion [9]. Finally, researchers have also used zooming and 

sliding (or image transformation) on the display based on data 

from real-time throttle/brake/steering inputs of the 

teleoperator [10,11]. However, none of the authors described 

above have used model-based estimation algorithms for 

prediction of ego-vehicle position.  

This paper utilizes a nonlinear dynamic model of the 

vehicle motion and an extended Kalman filter to estimate the 

remote vehicle’s position and orientation. It is assumed that 

the vehicle is able to transmit GNSS and IMU data frequently 

at an update of 100 Hz, while camera images from the vehicle 

arrive with a time-delay of 0.5 seconds. Position and 

orientation estimated using GNSS/IMU measurements are 

then used to provide intermediate updates of the display for 

the teleoperator. An experimental study involving 5 human 

subjects is then undertaken to compare steering control 

performance with and without the intermediate estimation-

based display updates on curved roads. Subsequent to the 

submission of this preliminary conference paper, an extended 

version of the paper involving teleoperation with both 

steering control and throttle/brake control in the presence of 
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other vehicles was completed, and the results are available in 

a journal paper that has been accepted for publication [12]. 

The primary contributions of this conference paper are as 

follows: 

1) The paper presents a teleoperation platform using 

MATLAB’s Automated Driving Toolbox that provides a 

co-simulation environment for experimental human-in-

the-loop teleoperation studies. 

2) This paper presents an estimation-based predictive display 

system which uses ego state estimation to provide 

intermediate updates of the vehicle position with respect 

to its environment for improvement of teleoperator 

steering performance.  

3) This paper presents an experimental human subjects study 

to evaluate the effectiveness of using the estimation-based 

display system to compensate for the degradation caused 

by delay. The benefits of the ego state estimation system 

for enhancing steering control are studied. 
The outline of the rest of the paper is as follows. In section 

II, the MATLAB based teleoperation simulator is described. 
Section III describes the estimation-based predictive display 
system where state estimation of the ego vehicle is described. 
Section IV describes the results from a human subjects study 
and proves the efficacy of using estimated ego position 
updates to improve steering control. Section V contains the 
conclusions. 

II. TELEOPERATION SIMULATOR DESIGN 

This section describes the teleoperator station and its 

components, which include a control input device that 

provides throttle, brakes, and steering wheel inputs from a 

human teleoperator, a virtual driving environment, delay 

control units, accurate vehicle dynamics, and realistic visual 

feedback of the remote vehicle environment to the human 

user. The MATLAB Automated Driving Toolbox has been 

used for developing the testing environment for human-in-

the-loop teleoperation simulations and the driving scenario 

for the simulations has been implemented using MATLAB’s 

Driving Scenario Designer. Fig. 1 shows the teleoperation 

station used in the current work along with the computer and 

monitor. The monitor is a Samsung 49” Odyssey G29. The 

computer has 24 cores with 64 GB RAM, an Intel i9 

processor, and a NVIDIA RTX 4090 24 GB graphics card.  

A. Control Input Device and Vehicle Dynamics 

The Logitech G29 racing wheel along with external brake 

and throttle is used to provide the control inputs which are 

steering angle, brake, and throttle commands. The racing 

wheel has 900-degree lock-to-lock rotation like a real racing 

wheel and provides dual-motor force feedback for accurately 

simulating force effects. The nonlinear brake pedal mimics 

the characteristics of a pressure sensitive brake system. The 

Joystick Input block is used as a software interface between 

the Simulink environment and the control commands 

provided by the user. 

A based 34-DOF vehicle dynamic simulator based on 

Simulink/MATLAB which includes nonlinear tire force 

models has been used to simulate the actual vehicle dynamics 

for the ego vehicle. Using such an accurate vehicle dynamics 

algorithm allows simulating real-world driving while utilizing 

the experimental control inputs provided by the user. 

B. Delay Control Unit 

The delay in the transmission of the remote vehicle 

environment over a wireless communication network results 

in latency which affects teleoperation. In particular, large size 

data streams which include camera images and Lidar data are 

more likely to be delayed during wireless transmission. The 

delay block in Simulink has been used to simulate this latency 

and thus delay the display to the teleoperator. This block can 

delay the display signal based on a set delay duration. 

Additionally, it can accommodate variable delay lengths 

determined by the characteristics of the local wireless 

network characteristics. A constant delay has been used in the 

current simulations. 

C. Simulink-Unreal Engine Co-simulation Environment 

The MATLAB Automated Driving Toolbox's co-

simulation environment employs Simulink to simulate the 

lateral and longitudinal positions and orientation of ego 

vehicle. The Unreal Engine, which is a 3D creation tool for 

photorealistic visualization has been used to visualize the 

scene in the 3D simulation environment thus acting as the 

visual display for the teleoperator. The vehicle dynamics uses 

the real time control commands of the teleoperator as inputs 

to provide the trajectory of the ego vehicle. This trajectory is 

subsequently utilized by the Scenario Reader to obtain real-

time lane boundary information. The trajectory of the ego 

vehicle is then fed to a Simulation 3D Vehicle with Ground 

Following block. This block provides the position and yaw 
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Fig. 2. Block diagram of visual display for without delay and delayed cases  



  

angle data in the inertial frame to the Simulation 3D Scene 

Configuration block. In turn, the Simulation 3D Scene 

Configuration block renders the 3D simulation environment 

within Unreal Engine, providing the teleoperator with 

photorealistic visual feedback.  

The latency in teleoperation is simulated by delaying the 

display of the trajectory using a delay block. The delayed 

trajectory is then fed to the Unreal Engine. Fig. 2 shows the 

block diagram of the teleoperation simulator platform for both 

without delay and with delay cases. 

III. STATE ESTIMATION OF EGO VEHICLE 

The performance of the teleoperator is drastically 

affected by latency in the display of the remote vehicle 

environment and even a 0.17 s delay degrades control 

performance significantly. Hence there is a need to develop a 

solution to this problem. The estimation-based predictive 

display system developed in this paper modifies the visual 

feedback to the teleoperator based on intermediate updates of 

the state estimates of the ego-vehicle. This method offers an 

attractive option to enhance teleoperation. This section 

describes the state estimation of the ego vehicle used. 

Consider an inertial frame (𝑂𝐼 , 𝑥𝐼 , 𝑦𝐼) whose 𝑥 and 𝑦 axis 

are given by 𝑥𝐼,𝑦𝐼 and origin is located at 𝑂𝐼. The ego frame 

(𝑂𝐸 , 𝑥𝐸 , 𝑦𝐸) is located at the center of mass (CoM) of the ego 

vehicle 𝑂𝐸 and 𝑥𝐸 and 𝑦𝐸 are chosen to be the 𝑥 and 𝑦 position 

of the CoM of ego vehicle which is expressed in the Inertial 

frame. Let, the state vector 𝑋 be, 

 𝑋 = [𝑥𝐸 𝑦𝐸 𝑥̇𝐸 𝑦̇𝐸 𝜓𝐸]𝑇 = [𝑥1 … 𝑥5]𝑇 (1) 

where, 𝑥̇𝐸 and 𝑦̇𝐸 are the rate of change of 𝑥𝐸 and 𝑦𝐸, 

respectively and 𝜓𝐸 is the yaw angle of the ego vehicle.  

In this paper it is assumed that the ego vehicle has an IMU 

which is located at its CoM and provides the following 

measurements that can be used as inputs by the observer, 

 𝑢 = [𝑎𝑥 𝑎𝑦 𝜔𝐸]𝑇 = [𝑢1 𝑢2 𝑢3]𝑇 (2) 

where 𝑎𝑥 and 𝑎𝑦 are the accelerations of the ego vehicle about 

𝑥𝐸 and 𝑦𝐸 axis respectively and 𝜔𝐸 is the yaw rate of ego 

vehicle. The ego vehicle with respect to (w.r.t.) the Inertial 

frame, the states vector, and the inputs provided by IMU are 

shown in Fig. 3. 

The state dynamics for ego motion is as follows, 

 

𝑋̇ =

[
 
 
 
 

𝑥3

𝑥4

𝑢1 cos(𝑥5) − 𝑢2 sin(𝑥5)

𝑢1 sin(𝑥5) + 𝑢2 cos(𝑥5)
𝑢3 ]

 
 
 
 

= 𝑓(𝑋, 𝑢) (3) 

The inputs from the IMU are used in Eq. (3) to compute the 

state derivatives which can be integrated to obtain the desired 

states. The IMU suffers from the problem of drift which is a 

result of unknown bias and the increases the error over time. 

Therefore, there is a need to use other position sensor 

measurements to compensate for the drift in IMU. Examples 

of position sensors include camera, Lidar and GPS. Although 

camera and Lidar based odometry methods can be highly 

accurate but their practicality in teleoperation is limited. Such 

methods consume large bandwidth due to increased data size 

and thus adds delay in state estimation. GPS on the other 

hand, has low data size and hence is a feasible option for 

teleoperation. However, regular GPS has low accuracy of the 

order of 1.5 m but when RTK corrections are used the 

accuracy can increase to the order of 1-10 cm. The Mn-CORS 

network operated by MnDOT provides RTK-corrected GPS 

with accuracy of 10 cm throughout the state of Minnesota. 

Therefore, in this work RTK corrected GPS measurements 

from the Mn-CORS type network has been used. 

The noisy and biased measured IMU readings are related 

to the true signals as follows, 

 𝑎𝑥 = 𝑎𝑥,𝑡 + 𝑎𝑥,𝑏𝑡 + 𝑎𝑥,𝑛 (4) 

 𝑎𝑦 = 𝑎𝑦,𝑡 + 𝑎𝑦,𝑏𝑡 + 𝑎𝑦,𝑛 (5) 

 𝜔𝐸 = 𝜔𝐸,𝑡 + 𝜔𝐸,𝑏𝑡 + 𝜔𝐸,𝑛 (6) 

where, 𝑎𝑥,𝑡 , 𝑎𝑦,𝑡 and 𝜔𝐸,𝑡 are the true readings, 𝑎𝑥,𝑏𝑡 , 𝑎𝑦,𝑏𝑡 and 

𝜔𝐸,𝑏𝑡 are the constant accelerometer and gyro bias 

respectively and 𝑎𝑥,𝑛, 𝑎𝑦,𝑛 and 𝜔𝐸,𝑛 are zero mean white 

noise. 

The measurement equation for the GPS is as follows, 

 𝑦 =  [𝑥𝐸  𝑦𝐸]𝑇 + 𝑣 (7) 

where, 𝑣~𝑁(0, 𝑅𝑔𝑝𝑠) is the measurement noise with error 

covariance matrix 𝑅𝑔𝑝𝑠. Although the state is observable 

using the measurement in (7), but it is important to estimate 

yaw angle with high accuracy to improve the accuracy of the 

predictive display system. Hence, it is very important to use 

measurements of yaw angle. In literature [13], various 

methods have been described to compute heading which 

includes, using angular velocity of earth, magnetic field, 

vision, dual antenna GNSS, acceleration and velocity 

heading. Using angular velocity of earth requires costly 

sensors and the use of magnetic field is infeasible in AVs due 

to the presence of many local magnetic materials. Using 

vision will add latency to state estimation hence it is also not 

feasible. A dual antenna GPS provides accurate 

measurements for heading but requires a large baseline. 

Heading computation using velocities from GPS is a viable 

option as it is low cost and suitable for teleoperation. 

Acceleration based methods for computing heading require 

the differentiating velocities obtained from GPS and are thus 

prone to errors at low acceleration. Hence, velocities 

computed using GPS have been used to measure the yaw 
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angle.  

The velocity of the ego vehicle in the inertial frame (𝑥̇𝐸
𝐼  and 

𝑦̇𝐸
𝐼 ) are related to those in the ego frame as follows, 

 
[
𝑥̇𝐸

𝑦̇𝐸
] = 𝑅𝐸 [

𝑣𝑥

𝑣𝑦
] = [

𝑐𝐸𝑣𝑥 − 𝑠𝐸𝑣𝑦

𝑐𝐸𝑣𝑦 + 𝑠𝐸𝑣𝑥
] (8) 

where, 𝑣𝑥 and 𝑣𝑦 is the velocity of ego vehicle along the ego 

frame axis, 𝑐𝐸 and 𝑠𝐸 are cos (𝜓𝐸) and sin (𝜓𝐸) respectively, 

and 𝑅𝐸 is the rotation matrix of ego frame w.r.t. inertial frame 

given by, 

 𝑅𝐸 = [
𝑐𝐸 −𝑠𝐸

𝑠𝐸 𝑐𝐸
] (9) 

If 𝑣𝑥 ≫ 𝑣𝑦, then (8) reduces to, 

 
[
𝑥̇𝐸

𝑦̇𝐸
] = [

𝑐𝐸𝑣𝑥

𝑠𝐸𝑣𝑥
] (10) 

Hence,  

 
𝜓𝐸 = tan−1 (

𝑦̇𝐸

𝑥̇𝐸
) (11) 

GPS can be used to provide 𝑥̇𝐸 and 𝑦̇𝐸 with sufficient 

accuracy [14] and hence this method can be used to measure 

the yaw angle. However, the measurements are prone to error 

when the lateral velocity is high (i.e., high slip angle). Hence 

the new measurement equation becomes, 

𝑦 =  [𝑥𝐸 𝑦𝐸 𝜓𝐸]𝑇 + 𝑣 (12) 

 Given these with the IMU inputs, an Extended Kalman 

Filter (EKF) has been used for state estimation. The 

prediction equations for the EKF are as follows,  

 𝑥̅𝑘+1
− = 𝑓(𝑥̅𝑘

+, 𝑢𝑘) (13) 

 𝑃𝑘+1
− = 𝐹𝑘𝑃𝑘

+𝐹𝑘
𝑇 + 𝑄𝑘 (14) 

where, 𝐹𝑘 = 𝐼5 + Δ𝑡𝐴𝑘, 𝐴𝑘 =
𝜕𝑓

𝜕𝑥
(𝑥̅𝑘

+, 𝑢𝑘) and 𝑃𝑘 and 𝑄𝑘 are 

the state covariance matrix and process noise covariance 

matrix respectively. The correction equations for the EKF are 

as follows, 

 𝐾𝑘+1 = 𝑃𝑘+1
− 𝐻𝑘+1

𝑇 (𝐻𝑘+1𝑃𝑘+1
− 𝐻𝑘+1

𝑇 + 𝑅𝑘+1)
−1 (15) 

 𝑥̅𝑘+1
+ = 𝑥̅𝑘+1 + 𝐾𝑘+1(𝑦𝑘+1 − 𝐻𝑘+1𝑥𝑘+1) (16) 

 𝑃𝑘+1
+ = (𝐼 − 𝐾𝑘+1𝐻𝑘+1)𝑃𝑘+1

−  (17) 

where, 𝐻𝑘+1 = [
1 0 0 0 0
0 1 0 0 0
0 0 0 0 1

] and 𝑅𝑘+1  is the 

measurement noise covariance matrix. Due to low size of 

GPS and IMU data, it has been assumed that the latency in the 

transmission of these data is negligible and the state 

estimation is being done on the teleoperator side.  

Given the estimates of ego vehicle, the estimated vehicles 

were displayed to the teleoperator using the position and yaw 

angles of the vehicles. The complete flow chart of the 

predictive display system using state estimates is shown in 

Fig. 4.  

It should be noted that the vehicle dynamic model used for 

the ego vehicle motion is nonlinear and hence an extended 

Kalman filter has been utilized for state estimation in this 

paper.  It is also possible to use nonlinear observers for such 

state estimation tasks [15,16], although that has not been 

pursued in this paper. 

IV. RESULTS AND DISCUSSION 

To evaluate the performance of the estimation-based 

predictive display system, a human subjects study has been 

conducted. In this study the data of five teleoperator 

participants was analyzed to evaluate the degradation caused 

due to latency delay and the effectiveness of the predictive 

display system. For the human subject study, a curved road 

scenario was used.  

The curved road extends from -200 m to 1600 m in y 

direction and 1400 m to 200 m in x direction as shown in Fig. 

5 and has 4 lanes of width 3.85 m each. Fig. 6 shows the real-

time display to the teleoperator which includes the speed 

display (in miles per hour) along with the cockpit of the ego 

vehicle.  

Each participant underwent three driving tests with the 

vehicle. In the initial test, participants operated the vehicle 

without any delay, while in the second test, they experienced 

a 0.5 second delay. The third test involved estimation-based 

predictive display. Each test lasted for about 6.67 mins during 

 
Fig. 4. Block diagram for estimation-based predictive display 

 
Fig. 5. Curved road scenario  

 
Fig. 6. Real-time display to the teleoperator  



  

which the participants were instructed to maintain the ego 

vehicle in the same lane and drive at speeds ranging from 30 

to 35 mph. Table I provides the sensor specifications of the 

ego vehicle which includes IMU, GPS and camera.  

TABLE I.  SENSOR SPECIFICATIONS OF EGO VEHICLE 

Sensor Specification Value 

GPS position accuracy (m) 0.1 

GPS velocity accuracy (m/s) 0.1 

Accelerometer initial bias (m/s2) 0.0141 

Accelerometer VRW (mg) 0.2 

Gyroscope initial bias (deg/s) 0.0573 

Gyroscope ARW (deg/√Hr ) 0.21 

GPS, IMU rate (Hz) 100 

Camera field of view horizontal (deg)  56.72 

Camera field of view vertical (deg)  87.66 

Camera frame rate (FPS) 100 

TABLE II.  STATE ESTIMATION ERROR FOR EACH PARTICIPANT 

Part. 

no. 

𝒙̃ (m) 𝒚̃ (m) 𝝍̃ (deg) 

 RMSE Max 

error 

RMSE Max 

error 

RMSE Max 

error 

1 0.0114 0.0868 0.0145 0.1387 0.1169 0.6074 

2 0.0116 0.0868 0.0148 0.1387 0.1227 0.5389 

3 0.0114 0.0868 0.0145 0.1387 0.1088 0.4000 

4 0.0115 0.0868 0.0153 0.1387 0.1867 0.8253 

5 0.0113 0.0868 0.0141 0.1387 0.1025 0.4722 

 

The state estimation results for a sample participant are 

shown in Fig. 7. The state estimation error is 𝑒̃ = 𝑒 − 𝑒̂, 

where 𝑒 is the true value and 𝑒̂ is the estimated value. From 

the plot it is clear that the error in the position and velocity is 

of the order of 5 cm and 5 cm/s. The error in the yaw angle is 

less than 0.50 indicating that the filter is able to estimate the 

yaw angle accurately. The state estimation error for each 

participant are described in Table II. The table clearly 

demonstrates that the estimator can achieve an accuracy of 

1.16 cm using the GPS measurements which have an accuracy 

of 10 cm. Additionally, utilizing the heading angle for 
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Fig. 7. Error in state estimation of ego vehicle 
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measuring the yaw angle results in even more precise 

estimation, with an accuracy of 0.1 degrees. This implies that 

(11) serves as a valid approximation for yaw angle 

measurement when the slip angle is not high.  

 The plot of the speed of a sample participant for all the 

three cases is shown in Fig. 8. From the plot it is clear that the 

speed of the participant for the delayed case is less than that 

of the without delay and predictive display cases. Moreover, 

the high magnitudes of variation in speeds indicates difficulty 

in driving the vehicle in the delayed case. The speed of the 

participant for the predictive display case is comparable to 

that of the without delay case and is higher than the delayed 

case indicating an improved performance in longitudinal 

control.  

The plot for the lane offset for the ego vehicle for both 

delayed and predictive display case for a sample participant is 

shown in Fig. 9. From the plot it is clear that the ego vehicle 

goes outside the lane many times for the delayed case. But for 

the predictive display system the lane keeping performance is 

much better than the delayed case, thus predictive display 

improves the performance for lateral control.   

A summary of the overall results for the human subjects 

study is shown in Table III. The metrics are an average over 

all the five participants. From the table it can be observed that 

both the average speed and distance covered with 0.5 s delay 

decreases drastically but when predictive display is used the 

performance is much closer to the without delay case. The 

table also indicates that the maximum times the vehicle goes 

out of lane is much less for predictive display as compared to 

the delayed case. The results indicate that the use of predictive 

display improves the longitudinal and the lateral control of the 

ego vehicle.  

TABLE III.  RESULTS FROM TELEOPERATION STATION STUDY 

Metric Average Values % 

change 

due to 

delay 

% 

change 

after 

PD  

Without 

delay 

0.5 s 

delay 

PD 

Average speed (m/s) 12.9 11.35 12.94 12 0.3 

Distance (km) 5.16 4.54 5.18 12 0.39 

Max distance outside 

lane (m) 

0.064 2.39 0.084 3634 31.2 

Number of times 

outside lane 

0.4 5.2 0.4 1200 0 

V. CONCLUSION 

This paper introduces an estimation-based predictive 

display system aimed at enhancing teleoperated steering 

control performance with autonomous vehicles. 

Teleoperation of a remote vehicle faces challenges due to 

latency in transmitting camera images to the teleoperation 

station, which can delay the visual display for the teleoperator 

and impact the teleoperator's performance. To assess the 

degradation caused in steering control by delays and the 

effectiveness of the predictive display in compensating for 

these delays, a MATLAB-based human-in-the-loop 

teleoperation environment was developed. The position and 

yaw angle of the ego vehicle were estimated using a nonlinear 

dynamic motion model and an EKF based state estimation 

technique.  The estimated states were then used in a predictive 

display system to synthesize images appropriately using 

Matlab’s Unreal Engine. An experimental study involving 

human subjects highlighted the detrimental impact of even a 

0.5 second delay in visual display on steering control.  The 

study demonstrated that the use of an estimation-based 

predictive display system could effectively compensate for 

the delay in camera image transmissions. Steering control 

performance almost as good as that of the delay-free case 

could be obtained by using such a predictive display system. 
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