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Abstract

Context Unoccupied aerial systems/vehicles (UAS/
UAYV, ak.a. drones) have become an increasingly
popular tool for ecological research. But much of
the recent research is concerned with developing
mapping and detection approaches, with few stud-
ies attempting to link UAS data to ecosystem pro-
cesses and function. Landscape ecologists have long
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used high resolution imagery and spatial analyses
to address ecological questions and are therefore
uniquely positioned to advance UAS research for eco-
logical applications.

Objectives The review objectives are to: (1) provide
background on how UAS are used in landscape eco-
logical studies, (2) identify major advancements and
research gaps, and (3) discuss ways to better facilitate
the use of UAS in landscape ecology research.
Methods We conducted a systematic review based
on PRISMA guidelines using key search terms
that are unique to landscape ecology research. We
reviewed only papers that applied UAS data to
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investigate questions about ecological patterns, pro-
cesses, or function.

Results We summarize metadata from 161 papers
that fit our review criteria. We highlight and discuss
major research themes and applications, sensors and
data collection techniques, image processing, feature
extraction and spatial analysis, image fusion and sat-
ellite scaling, and open data and software.

Conclusion We observed a diversity of UAS meth-
ods, applications, and creative spatial modeling and
analysis approaches. Key aspects of UAS research in
landscape ecology include modeling wildlife micro-
habitats, scaling of ecosystem functions, landscape
and geomorphic change detection, integrating UAS
with historical aerial and satellite imagery, and novel
applications of spatial statistics.

Keywords UAS - UAV - Drone - Ecosystems -
Wildlife - Land change science - Landscape - Remote
sensing

Abbreviations

AGB Above ground biomass

API Application programming interface

CACTI Cacti index

CHM Canopy height model

CNN Convolutional neural networks

DEM Digital elevation model

DLC Disturbance and land change

DG Direct georeferencing

DoD DEMs of Difference

DUVES Dune vegetation state

EM Electromagnetic

EVI2 2-Band enhanced vegetation index

FAA Federal Aviation Administration

GCC Green chromatic coordinate

GCP Ground control points

GNDVI  Green Normalized Difference Vegetation
Index
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GSD Ground sampling distance
GNSS Global navigation satellite system
GPP Gross primary productivity
GUI Graphical user interface
IG Indirect georeferencing
LAI Leaf Area Index
LAD Leaf Area Density
LCI Leaf Chlorophyll Index
Lidar Light detection and ranging
minLoD  Minimum level of detection
MODIS  Moderate Resolution Imaging
Spectroradiometer
MSAVI  Modified soil adjusted vegetation index
NDRE Normalized difference red edge index
NDVI Normalized difference vegetation index

NIR Near infrared

OBIA Object Based Image Analysis

OSAVI Optimized Soil Adjusted Vegetation
Index

PRISMA Preferred Items for Systematic reviews
and Meta-Analyses

PRI Photochemical reflectivity index
PPK Post processing kinematic
RMSE Root mean square error

RGB Red, blue, green bands

RTK Real time kinematic

SIF Solar induced fluorescence

StM Structure from Motion

STAC SpatioTemporal Asset Catalogs

SWIR Shortwave infrared index
SVM Support vector machine
TIR Thermal infrared

UAS Unoccupied Aerial Systems
UAV Unoccupied Aerial Vehicles
VIS Visible band

VNIR Visible-near infrared

WPE Woody plant encroachment

Introduction

Remote sensing data are a fundamental information
source for landscape ecology research (Foody 2023).
Early ideas about landscape patterns and spatial het-
erogeneity in ecology were informed by interpretation
of aerial photography (Troll 1971), and many foun-
dational papers showed the utility of high resolution
(0.5-2 m) aerial photography for evaluating landscape
patterns, fragmentation and historical land change



Landsc Ecol (2025) 40:43

Page30f32 43

(O’Neill et al. 1988; Swetnam et al. 1999; Morgan
et al. 2010). In the late twentieth century, medium res-
olution satellite data (30-50 m) became more widely
available and used, offering several advantages for
land cover mapping and change detection, namely
increased spectral bands optimized for land cover and
vegetation mapping, large footprints, and repeated
observations over time (Rogan and Chen 2004). High
resolution (1-3 m) multispectral aerial and satellite
imagery have remained important data sources for
characterizing landscape patterns and change (Ellis
et al. 2006), and understanding how observed patterns
are influenced by measurement scale (Wickham and
Riitters 2019). More recently, ultra-high resolution
(mm-cm resolution) imagery collected from small
unoccupied aerial systems/vehicles (UAS/UAYV; col-
loquially known as drones) has grown in popularity
for use in environmental applications.

UAS have become an important tool in the envi-
ronmental sciences allowing researchers to collect
data on demand at very high resolution and with
various sensors, at generally low costs and effort.
Whereas satellite pixels are at a fixed resolution, the
flexibility of UAS allow researchers to collect and
analyze data at ecologically relevant units. UAS are
capable of providing spectral and structural data at
the scale of individual plants (Cunliffe et al. 2016;
Sankey et al. 2017; Madsen et al. 2020) and at a
scale suitable for improved wildlife detection and
fine-scale species distribution models (Christie et al.
2016; Habel et al. 2018a). This resolution facilitates
new research into plant and animal demographics,
fine-scale impacts of natural disturbances, and link-
ing landscape pattern and ecosystem function across
scales.

Despite a rich history investigating landscape pat-
terns and ecological processes from orbital satellite
and aerial photography, landscape ecologists have
been relatively slow to embrace UAS technologies.
Over a decade ago Anderson and Gaston (2013)
detailed the potential of UAS to revolutionize spatial
ecology by allowing researchers to control and define
the spatial, spectral and temporal characteristics of
their remote sensing in ways that traditional satellite
and aerial missions cannot. A rapid increase of UAS
research has been observed in many fields related to
landscape ecology, with recent systematic reviews
in forestry (Guimardes et al. 2020), range manage-
ment (Lyu et al. 2022), hydrology (Vélez-Nicolas

et al. 2021), plant ecology (Sun et al. 2021), wildlife
population monitoring and conservation (Christie
et al. 2016; Elmore et al. 2023), earth and environ-
mental sciences (Manfreda et al. 2018; Singh and
Frazier 2018; Andresen and Schultz-Fellenz 2023)
and biodiversity conservation (Nowak et al. 2019;
Libran-Embid et al. 2020). However, the reasons for
not observing similar growth of UAS research and
applications in landscape ecology are unclear. One
possible reason is a mismatch in spatial scales: land-
scape ecology studies tend to cover large geographi-
cal extents (1-100,000 km?; Mayer and Cameron
2003), whereas UAS data collections often cover
smaller areas (i.e., 1-100 hectares) due to constraints
in flight distance, visual line of sight regulations and
battery life. However, landscape ecologists have long
explored patterns and ecological function at smaller
spatial scales to study organism or ecological pro-
cesses (Wiens and Milne 1989; Turner 2005), and
there is continued interest in cross-scale inference of
pattern and process (Wiersma and Schneider 2022).
Small footprint UAS also provide sampling data at an
intermediate scale, which help link field-based meas-
urements with satellite data, increasing the opportuni-
ties for new landscape-scale ecological studies (Alva-
rez-Vanhard et al. 2021).

UAS remote sensing is still partially in the research
and development phase, which may be another factor
limiting widespread adoption for landscape ecology
research. Yao et al. (2019) noted research practices
are often developed through a “learn-by-doing” pro-
cess, that signifies a lack of scientific consensus and
standards for typical UAS remote sensing tasks like
vegetation cover classification and change detection.
A recent review of the UAS literature in plant ecol-
ogy showed that much of the research output is gen-
erated by remote sensing scientists concerned with
methodological questions about image classification,
mapping and model accuracy, with few studies actu-
ally applying these approaches to address ecological
questions (Sun et al. 2021). Sun et al. (2021) also
identified few landscape-scale UAS studies and sug-
gested that satellite data are more suitable for land-
scape research given the challenges of collecting and
processing UAS data over large areas. However, there
are signs that landscape ecologists are overcoming
these challenges and integrating UAS technology into
their studies. At the time of writing there were only
11 UAS papers published in the journal Landscape
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Ecology, and 10 of these were published in the
2 years prior to this review (2022-2023). Perhaps
we are now entering a phase where UAS data, image
processing and modeling approaches are established
enough to support widespread use in landscape-scale
ecosystem science. Landscape ecologists, with a tra-
dition of using high resolution remote sensing data to
address ecological questions and a well-tested toolbox
of spatial analysis techniques, are uniquely positioned
to advance the science of UAS within an ecological
framework.

The purposes of this review are to: (1) provide
background on how UAS data are used in landscape
ecological studies and the questions being addressed,
(2) identify major advancements and research gaps,
and (3) provide ideas and discussion to help better
facilitate the use of UAS technologies in landscape
ecology research. To systematically review and quan-
tify recent trends and applications of UAS in land-
scape ecology literature, we formulated the following
questions and sub-questions:

1. How have UAS data been applied to address key
questions in landscape ecology regarding land-
scape structure and heterogeneity, and ecological
patterns and processes?

a.  What are the major applications within the
field?
What types of data are used?

c.  What types of ecosystems are being stud-
ied?
What types of models are used?

e. Is there a commitment to open data and
standardization?

2. Where are the major advancements and research
gaps?

Methods

We conducted a systematic review following the Pre-
ferred Reporting Items for Systematic reviews and
Meta-Analyses (PRISMA; Page et al. 2021) proto-
col phases: (1) search terms and inclusion criteria;
(2) screening titles and abstracts; and (3) analyzing
and synthesizing eligible articles. We used Scopus
(https://www.elsevier.com/products/scopus) as our

@ Springer

primary search database and Google Scholar (https://
scholar.google.com/) as a secondary search. We com-
pleted additional targeted searches within the follow-
ing individual journals: Landscape Ecology, Ecosys-
tems, Land, Landscape and Ecological Engineering,
Ecological Applications, and Current Landscape
Ecology Reports.

Search terms

Search terms included "UAV" OR "UAS" OR "sUAS"
OR "drone" OR “aerial vehicle” OR “aerial systems”
plus the following key terms: "landscape ecology"
OR "landscape pattern" OR “landscape change” OR
“landscape structure” OR “landscape dynamics™;
"landscape metric*" OR “patch metrics”; “spatial
ecology” OR “ecological pattern*” OR “ecological
process” OR “ecological analysis”; "landscape frag-
mentation” OR "spatial heterogeneity”" OR "habitat
connectivity".

Landscape ecology is an interdisciplinary and
inclusive field that shares many concepts with geog-
raphy, plant and wildlife ecology, biogeography, geo-
morphology, and hydrology. Our search criteria were
narrowly focused on keywords that set landscape
ecology apart from these other fields, by highlighting
the key concepts of landscape heterogeneity, spatial
patterns and scale. We acknowledge that we likely
excluded some important landscape ecology-adjacent
research papers because of this narrow search criteria.

Criteria for inclusion

Our main criteria for inclusion were a clear “land-
scape” or ‘“ecological” research application that
included analysis of ecological patterns, processes, or
function. In other words, the UAS data had to be ana-
lyzed in a way that attempted to provide insight into
a species, ecosystem, or landscape and their func-
tion, patterns and processes. We filtered out papers
concerned primarily with mapping techniques and
methods as well as papers where the primary research
questions were about the UAS technology itself rather
than ecosystems or landscapes. We excluded any
strictly urban or agricultural applications (i.e., crop
mapping), with exception for studies of agropasto-
ral landscapes or wildlife habitat studies in agricul-
tural or urban landscapes. We only included papers
published in peer reviewed journals (no theses,
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dissertations, or conference papers). The papers could
be published any year up to our search period through
August of 2023.

Metadata recorded

In addition to basic publication metadata (authors,
title, year, journal, keywords), we collected informa-
tion on study geography and spatial extent, aircraft
and sensor details, flight details, derived image prod-
ucts and modeling approaches, use of satellite data,
in-situ field methods, validation metrics and product
accuracy, open-source code and data, and general
application categories (Table 1). We classified the
papers according to three general applications: veg-
etation (V), disturbance and land change (DLC), and
wildlife (W) studies. Where applicable we also noted
more specific landscape ecology applications, includ-
ing land/vegetation change, spatial patterns, wildlife
habitat modeling and distributions, plant demograph-
ics, ecosystem function and processes (i.e., phenol-
ogy, evapotranspiration), restoration, and invasive
species.

Data analysis and interpretation

We present the results of the literature review organ-
ized into the following sections: (1) Overall Results,
where we provide descriptive statistics on the publica-
tion metadata, study geography, general type of UAS
data use, (2) UAS Technology, where we describe
trends in aircraft, sensors and geomatics, (3) Tech-
niques and Methods, where we review derived prod-
ucts, modeling and spatial analyses, (4) Data Fusion,
where we review and discuss image fusion and scal-
ing with UAS, and (5) Open Data and Standards,
where we review and discuss open science protocols.

Results and discussion

Of the 539 records returned in our initial search, we
identified 161 papers that fit our criteria for review.
These papers ranged in date from 2013-2023, with
a large increase in the number of publications begin-
ning around 2019 (Fig. 1). Papers were published
across 78 different journals with the most common
being Remote Sensing MDPI (20), Ecological Indica-
tors (13), Landscape Ecology (11), Remote Sensing

of Environment (8), Remote Sensing in Ecology and
Conservation (7), and Science of the Total Environ-
ment (7).

Study locations were distributed across all con-
tinents, but were more densely clustered in Asia,
North America, and Europe (Fig. 2). Studies were
conducted in 45 different countries, and most were
in China (33), followed by the United States (28),
Australia (14), and Spain (8). The studies were gener-
ally well distributed across biomes, but with a higher
tendency toward moderately dry and warm biomes
like woodland/shrubland, temperate seasonal forest
and tropical seasonal forest/savanna (Fig. 1). Study
landscapes imaged using UAS ranged in size from
0.12 ha to 6,710 ha, with an average size of 192 ha
(median=10 ha); however, the spatial extent imaged
was not reported in many of the papers reviewed. The
number of study sites or distinct areas imaged with
UAS per study ranged from 1-96, median=1 and
mean=>5. Nineteen of the 161 studies (about 12 per-
cent) included more than 10 image sites.

We found that 75% of the studies reviewed used
true color RGB (red, blue, green bands) cameras and
true-color imagery, 15% visible-near infrared (VNIR)
multispectral, 5% lidar, 3% thermal, 3% hyperspec-
tral, and 1 used solar induced fluorescence (SIF).
Twenty-four studies used more than one UAS sen-
sor in their research (often a combination of RGB
and multispectral), and 77 studies applied some type
of fusion or scaling with satellite data. Seventy-one
studies tracked landscape changes over time using
multi-temporal UAS, and/or aerial photography and
satellite data. Of the satellite data used for fusion or
multitemporal analysis, Landsat satellites were the
most popular (20) followed by Sentinel satellites (12),
PlanetScope (6) and MODIS (5). Fifteen studies com-
bined UAS with high resolution (<2 m) aerial and
satellite data.

Landscape ecology applications and themes

More than 50% of the papers reviewed had a distur-
bance and landscape change (DLC) application, and
many of these papers investigated vegetation and
morphological landscape changes in response to dis-
turbances like wildfire (Fraser et al. 2017; Talucci
et al. 2020; Viedma et al. 2020; Dashpurev et al.
2021; Reilly et al. 2021; Marsh et al. 2022; DaSilva
et al. 2023), climate change (van der Sluijs et al. 2018;

@ Springer
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Table 1 Table of metadata and data collected from papers reviewed, including the broad category, parameter and description of each

Category Parameter Description

Publication metadata Authors Populated from search database
Title Populated from search database
Year Populated from search database
Journal Populated from search database

Geography

UAS details

Image products

Multitemporal and fusion

Field data and validation

Open science

Application

Source database

Country

Latitude/longitude

Biome or ecosystem

Spatial extent of UAS data collection
Number of UAS image areas
Platform

Sensor 1 name

Sensor 1 spectral

Sensor 1 altitude

Sensor 1 wind speed

Sensor 1 GSD/resolution

Sensor 1 overlap
Sensor 1 calibration or normalization

Sensor 1 georeferencing
Sensor 1 image products

Sensor 1 modeling/classification
Sensor 2,3,4, etc
Multitemporal? (Y/N)
Multitemporal info

Data fusion or satellite scaling? (Y/N)
Satellite data used

Structure from Motion (SfM), Canopy Height
Model (CHM), or Digital Surface Model
(DSM)?

Point cloud density

In situ field measures

Field-based study design
UAS products validated?
Validation metric

Reported accuracy

Software UAS image processing
Open-source software used?

Data availability/open data or code?
Primary research application

Populated from search database

Country of study location

Geographical location and coordinates of study area
Biome or ecosystem type reported in study area section
Total size of UAS image collections

Number of distinct sites with UAS image collections
Aircraft or platform make and model

Make and model of sensor

Sensor type (i.e., RGB, multispectral, lidar)
Reported altitude

Reported wind speed

Reported pixel resolution or ground sampling distance
(GSD)

Percent overlap reported
Calibration or normalization methods if reported

If documented include details including RMSE, else
"none"

Main products derived from UAS i.e., orthomosaic,
NDVI

Methods used to process image data
Repeat the above if multiple UAS sensors
Did the study contain multitemporal data? Yes or No

Details about the time periods and number of repeat
flights

Yes or No
Satellite data used (i.e., Sentinel-2, Landsat 8)
Note which one was generated, else "none"

points/m2

Field data collected (i.e., plant height, area, volume and
count)

Study design (i.e., 12 1 X 1 m quadrats)

Yes or No

How were the UAS products validated (i.e., regression,
kappa)

Reported accuracy values (i.e., R?, RMSE)

Software types used (i.e., Metashape, Pix4d)

Open-source software types used

Are data available and hosted on website?

Vegetation (V), wildlife (W), disturbance and land
change (DLC)

@ Springer
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Fig. 1 Number of UAS

papers in landscape ecol-

ogy applications published

per year. Papers published 501
in the journal Landscape

Ecology are in pink, and

those published in all other

journals are in turquoise.

Note due to the timing of 40
the literature search, 2023

only represents papers that

were published through

August 31, 2023. We

Other journals Landscape Ecology journal D Projected 2023

projected the number of 207
papers in 2023 (grey bar)
using an exponential model
(y=2.19¢>%") fit with the
data from 2016-2022 0
£ S p°

Orndahl et al. 2022; Steenvoorden et al. 2022; Tanguy
et al. 2023) or anthropogenic land uses (Bregoli et al.
2019; Fenger-Nielsen et al. 2019; Iijima et al. 2021).
Several studies used UAS data to evaluate vegetation
and landscape change in response to restoration treat-
ments (Laporte-Fauret et al. 2020, 2021; Broussard
et al. 2022; Jiang et al. 2022; Peterson et al. 2023;
Qiu et al. 2023; van Proosdij et al. 2023). Many of the
DLC studies were also classified as Vegetation (V)
application (62 classified as both DLC and V). Stud-
ies with vegetation applications that were not DLC
were most often concerned with factors contribut-
ing to invasive species distributions (Zhu et al. 2019;
Hensel et al. 2021; Chang et al. 2022; Nascente et al.
2022; Bishop and Errigo 2023; Zhou et al. 2023),
ecosystem process and function (Faye et al. 2016;
Klosterman et al. 2018; Ahongshangbam et al. 2020;
Dixon et al. 2021; Simpson et al. 2022), and plant
spatial patterns and landscape fragmentation (Fynn
and Campbell 2019; Charton et al. 2021; Doughty
et al. 2021; Wu et al. 2021; Blanchard et al. 2023).
We reviewed 27 studies with wildlife applications,
many with a sub-focus on detection of species and/
or specific habitat components (Evans et al. 2016;
Oosthuizen et al. 2020; Saqib et al. 2020; Hensel
et al. 2021; Oleksyn et al. 2021; Thaker et al. 2022),
and habitat and species distribution modeling (Habel
et al. 2018a; Bao and Yang 2022; Barbosa et al. 2022;
Shokirov et al. 2023).

Eleven UAS studies were published in the journal
Landscape Ecology between 2016 and September

S g g P @ g P
Year

2023. These papers were broadly concerned with
plant and wildlife ecology, specifically: (1) wildlife
habitat suitability and species distribution modeling,
and (2) linking vegetation spatial patterns to eco-
system processes. UAS data were used in wildlife
research to define micro-habitat features important
for butterfly larvae (Habel et al. 2016, 2022), aquatic
insect distributions (Gerber et al. 2023), and marine
species distributions in coastal habitats and their eco-
system functions (Schenone and Thrush 2022). UAS
imagery was used for characterizing forest patterns to
help explain genetic variation of rodents (Borja-Mar-
tinez et al. 2022), and for mapping phytochemicals of
individual plants that serve as wildlife food sources
(Olsoy et al. 2020).

Many of the UAS studies published in the jour-
nal Landscape Ecology explored spatial patterns
of vegetation and vegetation changes, and the fac-
tors driving these patterns. These include analysis
of vegetation and bare soil spatial patterns with
RGB and lidar (Getzin et al. 2022), the influence
of ungulates and livestock on vegetation productiv-
ity generated high resolution normalized difference
vegetation index (NDVI) images (Velamazan et al.
2023), forest edge effects on structure and function
(Blanchard et al. 2023), and analysis of vegetation
patterns from interactions between lithology, arid-
ity and soil water availability (Rodriguez-Lozano
et al. 2023). Three papers were concerned with
vegetation change from wildfire: Van Blerk et al.
(2022) combined field and multispectral UAS

@ Springer
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Fig. 2 Distribution of study locations across Whittaker biomes (top; Whittaker 1975) and globally (bottom)

measurements over three years to monitor post-fire
shrubland recovery in response to altered rainfall
seasonality at an experimental site. Bowman et al.
(2023) used canopy height models (CHM) gener-
ated from lidar to define contemporary forest-sedge-
land boundaries, and historical aerial photography

@ Springer

to quantify past forest expansion and the effects of
fire on vegetation dynamics. Sankey et al. (2024)
used UAS multispectral data and Sentinel images
to map wildfire severity and forest thinning impacts
and quantify post-fire flood-driven sedimentation.
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Aircraft, sensors and technology
Sensors and aircraft

When planning for data collection using UAS, it is
imperative to begin by clearly defining the scientific
questions to be answered and identifying the data
needed to address these inquiries. Key considerations
in determining the data requirements and appropri-
ate sensor include recognizing the appropriate range
of electromagnetic (EM) spectra, the minimum and
maximum resolution needed for data products, fre-
quency and timing of data collection, and data preci-
sion. UAS used in landscape ecology can be equipped
with various sensors, having spectral sensitivity
throughout the electromagnetic spectrum including
RGB or visible spectrum cameras, thermal infrared,
lidar, multispectral, hyperspectral, radar/radio wave,
and gamma ray sensors, to name a few (Fig. 3). The
data collected by these sensors can include imagery,
elevation data, and spectral information, providing
detailed insights into landscapes and ecosystems at

A.

scales from individual plants to entire biomes. Sen-
sors can be active (such as lidar) or passive with fine
spatial and temporal resolution which enables appli-
cations such as mapping, monitoring, surveying, and
tracking.

Once a sensor is chosen, a suitable airframe is
required to position the sensor near or over the tar-
get of interest. Knowing how much area needs to be
covered helps determine whether a fixed-wing or
rotary-wing is the most appropriate platform for the
intended mission (Fig. 4). Quadcopters, or 4-rotor
UAS, are extremely popular because they are inex-
pensive and easy to transport but are less stable in
windy conditions compared to larger 6- or 8-rotor
vehicles (Ahmed et al. 2022). These hexacopter and
octocopter vehicles can support heavier payloads and
are more stable in the air, although at the expense of
battery life and smaller image areas. Fixed-wing UAS
can traverse longer distances and cover larger areas
than their rotary-wing counterparts before needing
to be refueled or recharged, which may be preferred
for landscape-scale research. Fixed-wing platforms
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Fig. 3 A representative reflectance A and radiance B spec-
tra for a healthy leaf and dry soil. Highlights show common
UAS spectral bands blue (~475 nm; blue shading), green
(~560 nm; green shading), red (~668 nm; light red shading),
red edge (~717 nm; red shading), near infrared (~842 nm;
dark red shading), and thermal infrared (8—14 pm; purple shad-
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ing). Common SIF retrieval windows (680 nm and 760 nm) are
shown as vertical dashed red lines. Common lidar emission
wavelength (905 nm) is shown as a vertical dashed black line.
Figure inspired by (Pierrat et al., 2025) and adapted to focus on
unoccupied aerial systems applications
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Fig. 4 Examples of various UAS platforms, sensors, and envi-
ronments for collecting remote sensing data for scientific appli-
cations. These include but are not limited to fixed-wing A, C

generally fly faster and are not as easy to maneuver
compared to the more easily flown and transported
rotary-wing UAS. Most of the studies reviewed used
rotary-wing UAS in the form of quadcopters (4 rotors;
104 studies) hexacopters (6 rotors; 10 studies), and
octocopters (8 rotors; 18 studies). Twenty-four studies
used fixed-wing aircraft. Other UAS of note include
kite (Madurapperuma et al. 2020) and blimp (Ruiz-
Garcia et al. 2020), both of which provide alternatives
to motorized vehicles in areas where regulations pro-
hibit them, or when UAS noise might impact wildlife.

Calibration and normalization

Landscape ecologists who seek to study patterns
and processes across space, time, and remote sens-
ing platforms require data with consistent scales
and unit systems that can be quantitatively com-
pared with one another (Moody and Woodcock
1995; Vogelmann et al. 2001; Padr6 et al. 2019).
Normalization is the process of converting data to
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and rotary-wing UAS such as hexacopter B and quadcopter D,
E platforms (Photos A, B, D, E by Mark Bauer, USGS; Photo
C by Keith Williams, Wingtra, used with permission)

a common scale or range, eliminating differences
in units, and calibration is the process of convert-
ing raw data from arbitrary values to physical units
(e.g., radiance, reflectance, or temperature) and
removing systematic bias that make the data useful
for further scientific analysis (Sampath et al. 2023).
Unlike the rigorous, well-documented calibration
and validation standards for satellite and airborne
remote sensing systems such as Landsat (Markham
and Helder 2012) and Sentinel (Gascon et al. 2017),
most UAS remote sensing places the responsibility
of ensuring data quality into the hands of individ-
ual UAS manufacturers and customers, which can
require substantial additional resources and post-
processing workloads for users (Wyngaard et al.
2019; Tmusi¢ et al. 2020). The ecological commu-
nity continues to share and compare best practices,
workflows, and recommendations towards the estab-
lishment of feasible and reliable calibration proto-
cols (Cao et al. 2019; Koontz et al. 2022; Sampath
et al. 2023).
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The choice to calibrate or normalize UAS-derived
data and the level of detail describing these methods
is highly variable across landscape ecology litera-
ture. Post-processing workflows include camera lens
calibration corrections to reduce geometric distor-
tions such as fisheye distortions for improved vegeta-
tion mapping and habitat reconstruction (Habel et al.
2016; Dashpurev et al. 2021). Gray Card and Color-
Checker reference materials may be used to color-
balance or white-balance RGB imagery (Klosterman
et al. 2018). Multispectral imagery is often radiomet-
rically calibrated to physical units such as reflectance
using reference panels and/or downwelling irradiance
sensors. Radiometric calibration of multispectral data
can enable the calculation of vegetation indices, land
cover classification using published spectral libraries,
and comparison with satellite-derived surface reflec-
tance datasets (Doughty et al. 2021; Siewert and Olof-
sson 2021; Villoslada Pecifa et al. 2021; Fernandez-
Guisuraga et al. 2022). Thermal infrared data can be
calibrated to units of temperature which can inform
permafrost terrain dynamics (van der Sluijs et al.
2018) and ecosystem respiration and evapotranspira-
tion models (Kelly et al. 2021; Simpson et al. 2022).
Hyperspectral data is typically calibrated to units of
radiance or reflectance using lab-based measure-
ments, atmospheric correction algorithms, and field-
based reference materials to yield input features for
models such as leaf area index and biomass (Résidnen
et al. 2020), and species-level vegetation classifica-
tion (Sankey et al. 2021c). Other studies reviewed had
no mention of UAS data calibration.

Geolocation and georeference

Ecological processes are often measured using field
observations combined with remote sensing data
ranging from very-high (~1 cm) to coarse (~1 km)
resolutions (Kerr and Ostrovsky 2003). Positional
accuracy is important when comparing across scales
and pixel resolutions, and for ensuring field-collected
data are well registered with UAS imagery. For
medium to low resolution satellite data, positional
accuracy of half a pixel is commonly accepted (Con-
galton 2005; Storey et al. 2014; PandZic et al. 2016).
This criterion can be challenging to meet using
very-high resolution UAS data where the pixel reso-
lution is finer than potential global navigation satel-
lite system (GNSS) positional errors. However, high

resolution data does not always require high posi-
tional accuracy, and therefore, the level of accuracy
is up to the researcher based on their objective and
the UAS products (ASPRS 2024). Our review results
indicate a wide range of georeferencing methods used
to obtain and report on positional accuracy: 42.2%
did not include any information on how the UAS data
was georeferenced, 37.3% of the studies used ground
control points (GCPs) and 20.5% of the studies used
direct georeferencing (DG) with 6% of those apply-
ing post processing kinematic (PPK) and 4% applying
real time kinematic (RTK).

The UAS GNSS provides DG assignment to the
collected imagery. Consumer grade GNSS has an
estimated low accuracy of ~5 m, making it suitable
for projects using planimetric data and for scaling to
medium to coarse resolution satellite imagery like
Sentinel-2 or Landsat TM (Colomina and Molina
2014). PPK and RTK rely on higher precision satel-
lite corrections from a multi-frequency static base
station, which are then applied to the UAS GNSS
data by matching observation timestamps, improv-
ing the accuracy to within centimeters (Padr6 et al.
2019; Syetiawan et al. 2020; Famiglietti et al. 2021;
Zeybek 2021; Nesbit et al. 2022). Of the 15 reviewed
studies that used PPK/RTK, 8 were lidar collections,
3 were multispectral collections, and 4 were RGB
collections. Research indicates adding at least one
GCP with a PPK/RTK solution could greatly improve
RMSE under certain topography (lizuka et al. 2022);
however, Nesbit et al. (2022) found that 3 GCP’s were
recommended in addition to DG for their study within
steep terrain.

The more traditional GCP, or indirect georeferenc-
ing (IG), continues to be the industry standard for
high positional accuracy; however, the number and
spatial distribution of GCPs is still debated among
best practices (Singh and Frazier 2018). Our results
showed a range in GCP distribution and geolocation
methods, from 3 GCPs located with a low accuracy
handheld GPS receiver over 0.1 hectare to around 50
GCPs located with an RTK rover over 15 hectares.

Techniques & methods
Landscape ecology papers reviewed used a wide
array of image processing and modeling techniques to

extract information from various UAS data sources.
Of the papers reviewed, 47 studies used image
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classification algorithms to extract feature infor-
mation, and these papers were nearly evenly split
between pixel-based supervised classifications (23)
and object-based image classifications (22), with the
remaining 2 applying unsupervised classifications.
Thirty-three studies relied on visual interpretation
to manually extract information on features from
the imagery. Thirty studies used lidar or SfM point
cloud data as a primary product, 25 studies used an
image derivative (spectral indices) as primary source
of information, and 20 papers used custom modeling
approaches.

True color, multispectral, hyperspectral, and thermal
data and applications

UAS based products can be derived from a single
image or an orthomosaic, a photogrammetrically
orthorectified and mosaicked collection of images.
Orthomosaics cover larger areas by stitching overlap-
ping images and removing distortions for a seamless
larger image. RGB digital cameras and multispectral
instruments that include near infrared sensors con-
tinue to be widely used for vegetation classification
mapping (Havrilla et al. 2020), ecosystem function
modeling (Doughty et al. 2021), and characterizing
ecosystem heterogeneity (Siewert and Olofsson 2021;
Getzin et al. 2022) (Fig. 5). Havrilla et al. (2020)
provided a novel application of UAS-based RGB
data in the mapping of fine-spatial-scale variability
in biocrust functional types and demonstrated that
high spatial resolution observations alone were ade-
quate to identify vascular plants, mineral soil, and
multiple biocrust functional types within a complex

Fig. 5 Natural-color imagery captured using a Skydio X2D
(Left), false-color composite of MicaSense Altum-PT mul-
tispectral images where pink indicates bright near infra-
red reflectance (Center), and MicaSense Altum-PT thermal
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ecosystem. Many studies have demonstrated that
image derivatives and vegetation indices calculated
from RGB imagery can be used to accurately map
surface features, including the red green—blue veg-
etation index, the excess greenness Index and mean
image brightness (Qian et al. 2021), the normalized
difference greenness index, perpendicular vegetation
index and normalized RGB band ratios; Laslier et al.
2019). Klosterman et al. (2018) tracked seasonal veg-
etation phenology using the green chromatic coordi-
nate (GCC) calculated from multi-date RGB imagery.
Image texture metrics calculated from single bands,
indices or point clouds can also provide information
on vegetation types and canopy structure (Olsoy et al.
2020; Risinen et al. 2020; Bourgoin et al. 2020; Qian
et al. 2021).

Multispectral sensors that include NIR and red
edge bands tailored to measure vegetation proper-
ties like chlorophyll, biomass, canopy cover, and
productivity, can help improve classification and
characterization of green vegetation (Wang et al.
2022; Gano et al. 2024). With the addition of an
NIR band, the most widely used spectral index
remains NDVI, which provides an estimate of the
greenness of individual plants and is commonly
applied as a proxy for photosynthetic potential
(Fig. 5; Polley et al. 2019; Belmonte et al. 2020;
Charton et al. 2021; Doughty et al. 2021; Siewert
and Olofsson 2021; Getzin et al. 2022; Pompa-
Garcia et al. 2022). For instance, Siewert and Olof-
sson (2021) used repeated UAS photography to
reveal fine scale yet strong rodent impacts on Arctic
ecosystem vegetation dynamics by using NDVI as
a proxy for vegetation gross primary productivity

.

imagery (Right) where blue indicates areas with cooler tem-
peratures and red indicates areas with warmer temperatures at
a dryland site mapped in May 2023 near Moab, Utah, USA
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(GPP) and above ground biomass (AGB) within a
change detection assessment. Additional derived
indices from multispectral imagery have been
explored to assess vegetation dynamics. Villoslada
Pecifia et al. (2021) used several indices including
modified soil adjusted vegetation index (MSAVI)
and a 2-Band enhanced vegetation index (EVI2)
to estimate occurrence of plant community types,
AGB, and topsoil moisture to assess the control of
reindeers on woody plant encroachment (WPE).
Bergmiiller and Vanderwel (2022) used additional
indices such as the normalized difference red edge
index (NDRE) to predict tree mortality within a
random forest model. In addition to NDVI And
NDRE, Gallardo-Salazar et al. (2022) explored the
Green Normalized Difference Vegetation Index
(GNDVI), Leaf Chlorophyll Index (LCI) and Opti-
mized Soil Adjusted Vegetation Index (OSAVI) to
evaluate plant health based on field-measured den-
droecological variables.

Hyperspectral  instruments include cover-
age of the full solar spectrum from the vis-
ible (~350-750 nm; VIS) to the near infrared
(~750-1400 nm; NIR) to the shortwave infrared
(~ 1400 to 2500 nm; SWIR) (Fig. 3). The recent
expansion of UAS-based hyperspectral instruments
has driven the development of a remarkable variety
of spectral traits used to characterize state and func-
tional traits of individual species to entire ecosys-
tems. Emerging spectral traits are moving beyond
greenness to focus on functional traits such as nutri-
ent status (e.g., foliar nitrogen content; Zhao et al.
2021), water content (e.g., canopy water index;
Zhao et al. 2021), and pigment concentrations (e.g.,
carotenoids to chlorophyll content; Javadian et al.
2022; Zhao et al. 2021). A multitude of additional
indices have been developed from multispectral and
hyperspectral instruments to isolate species-specific
structural or functional features, such as the dune
vegetation state (DUVES; Talavera et al. 2022),
burn severity index (Fraser et al. 2017), photo-
chemical reflectivity index (PRI; e.g., Javadian et al.
2022), succulent delineation with the Cacti index
(CACTI, Hartfield et al. 2022), and shortwave infra-
red index (SWIR; Norton et al. 2022). High spec-
tral resolution instruments (spectral bands < 0.5 nm)
centered around known atmospheric features (e.g.,
the oxygen A band at 760 nm; Fig. 3) are ena-
bling additional novel applications, such as the

measurement of solar-induced fluorescence (SIF),
a direct measure of the light emitted by plants dur-
ing photosynthesis, and thus a more direct proxy for
plant physiological function (Zhang et al. 2022).

Thermal instruments measure longwave radia-
tion emitted from surface materials at wavelengths
directly proportional to their temperature (Figs. 3
and 5), and have been used on UAS platforms for
a wide variety of applications, including to meas-
ure the surface temperatures of components of the
surface soil (van der Sluijs et al. 2018; Zhang et al.
2020; Kelly et al. 2021), components of aquatic
ecosystems (Dugdale et al. 2019; Casas-Mulet et al.
2020), and components of vegetation and plant can-
opies (Faye et al. 2016; Webster et al. 2018; Wang
et al. 2019; Javadian et al. 2022; Simpson et al.
2022). Javadian et al. (2022) used UAS thermal
images to show that taller and more clumped trees
remained cooler and potentially less water stressed
during periods of summer drought in a ponderosa
pine-dominated forest. Sankey et al. (2021a) docu-
mented that UAS thermal images can be used to
detect genetic trait-based differences in canopy tem-
perature and evaporative cooling demand among
genotypes of single cottonwood tree species. When
combined with structure from motion (SfM, see
Sect. "Lidar and structure-from-motion (SfM) point
cloud applications") or lidar data, UAS-based ther-
mal imagery has the capacity to provide informa-
tion on three-dimensional patterns of heat within
plant canopies. For example, Olsoy et al. (2023)
combined high-resolution thermal imagery with
SfM to model thermal emittance at the leaf-level
and demonstrated that taller leaves had significantly
cooler temperatures. These studies highlight the
potential of UAS to overcome the time and expense
limitations of on-the-ground measurements in the
study of rapid changes in plant physiological func-
tion. Thermal UAS can be directly related to plant
physiological function (e.g., stomatal conductance;
Olsoy et al. 2024), with potential to upscale plant
physiology measurements to spatial extents that
match environmental gradients and management
units. There has also been an expansion of high-
resolution thermal imaging for characterization of
surface temperature heterogeneity with implica-
tions for ecotherm niche modeling (Faye et al. 2016;
Duffy et al. 2021).
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Object based image segmentation and classification
and regression

Object Based Image Analysis (OBIA) and segmenta-
tion are commonly used approaches for classification
of high-resolution images (Blaschke 2010; Hossain
and Chen 2019). OBIA approaches are well suited
for UAS imagery because the segmentation exploits
spectral, spatial and textural features, often allowing
the extraction of ecologically meaningful objects like
individual plant canopies and species (Fig. 6; Lalib-
erte et al. 2011). For example, Olsoy et al. (2020)
classified sagebrush canopies using structural features
of shrubs with object-based image analysis and the
support vector machine. The most appropriate scale
for OBIA and segmentation remains a challenge, as
a segmented feature at one scale can be homogene-
ous but heterogeneous when viewed at a different
scale (Fig. 6; Hossain and Chen 2019). Small seg-
ment sizes result in large objects, including shrubs
and trees, being segmented into multiple sub-objects
(Fig. 6C). When segment size was too large, small
objects including biocrusts, grass and bare soil were
mixed in segments (Havrilla et al. 2020; Roser et al.
2022). Although it is feasible to use OBIA methods
for change detection (St. Clair and Bishop 2019; Fal-
lati et al. 2020), the size and shape of objects can be
heavily influenced by image-specific properties (i.e.,
lighting angle, pixel size and radiometric resolution)
which can create challenges for direct comparison
across time. If the magnitude of change is small, a
pixel-based change detection approach may be pre-
ferred (Siewert and Olofsson 2021).

Several machine-learning algorithms have been
proposed for UAS image classification that can be
applied both on individual pixels and segmented
image objects. These include supervised classifica-
tion models like decision trees (Sankey et al. 2019),
and support vector machine (SVM) algorithms
(Evans et al. 2022) to classify plant species and land
cover types. When the target is a continuous variable
(i.e., leaf area, vegetation fractional cover, biomass)
machine learning regression models, such as sup-
port vector regression and gradient-boosting decision
trees, can be applied to UAS images (e.g. Liu et al.
2021). Villoslada Pecifia et al. (2021) used a ran-
dom forest model to accurately predict above ground
biomass from RGB, multispectral and SfM data-
sets, and random forest models to both classify plant
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communities and to predict soil organic carbon from
multispectral vegetation indices and high resolution
DSMs have been used ((Villoslada et al. 2022). Deep
learning convolutional neural networks (CNNs) are
emerging as a highly accurate classification approach
suitable for ultra-high resolution imagery (Kattenborn
et al. 2020; Schenone et al. 2021).

The large number of studies (33) that relied on vis-
ual interpretation for feature extraction was a surpris-
ing result. Visual interpretation and digitization from
aerial imagery can be subjective and highly influ-
enced by individual observers (Hearn et al. 2011).
The choice of visual interpretation instead of more
complex classification algorithms may be preferred
when the sheer number and variety of features being
mapped over a small area makes the time investment
in machine-learning training less than ideal (Tanguy
et al. 2023). The spatial detail of UAS imagery is
appropriate for visual mapping based on color, texture
and shape, and in some circumstances these maps are
more accurate than automated classifications (Hamyl-
ton et al. 2020), however these approaches can be
time consuming when mapping over large areas.

Lidar and structure-from-motion (SfM) point cloud
applications

On-board UAS sensors such as digital cameras or
more recent laser scanners have made earth system
modeling for studies within agriculture, forestry, geo-
morphology and hydrology easier with the production
of point cloud products (Liao et al. 2021). There are
two main methods to generate point cloud 3D struc-
tures: (a) through the use of photogrammetric struc-
ture from motion (SfM) algorithms on overlapping
digital images (e.g. Belmonte et al. 2021; Fernan-
dez-Guisuraga et al. 2022; Over et al. 2021) and (b)
through light detection and ranging (lidar) laser scan-
ning techniques (Kellner et al. 2019; de Almeida et al.
2020; Wallace et al. 2016). Details found within 3D
structures provide novel datasets to derive landscape
and vegetation characteristics from digital elevation
models (DEM) and CHM, to above ground biomass
(ABG) from point clouds (Dugdale et al. 2019; San-
key et al. 2021c; Cunliffe et al. 2022; Blanchard et al.
2023). Datasets derived from 3D point clouds provide
the unique opportunity to assess spatially detailed,
accurate shape information and standard geometries
for landscape measurements (Fig. 7). Common uses
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Fig. 6 Examples of a pixel-based classification compared to image segmentation. Original 0.5 cm RGB orthoimage A, classified
0.5 cm image B, segmented image with small objects C and segmented image with large objects D

of point cloud data include forest structure estimates
and mapping geomorphological characteristics such
as terrain ( et al. 2020; de Almeida et al. 2020; Reilly
et al. 2021; Chen et al. 2022). These derived data-
sets provide ways to collect monitoring inventory

measurements, characterize plant canopy and con-
duct various assessments including geomorphological
movement or vegetation change detection, and distur-
bance impacts on canopy height, biomass, biodiver-
sity and carbon storage (Rasédnen et al. 2020; Sagang
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Fig. 7 Examples of three
dimensional (3D) UAS lidar
collected over a woodland/
forest A, UAS SfM in
ecotone B and UAS SfM in
grassland C. Adapted from
Sankey et al. (2017)

et al. 2022; Singh et al. 2023). Metrics such as crown
area volume or crown surface area can be estimated
for each canopy within the plot (Ahongshangbam
et al. 2020), and repeated UAS lidar collections can
be used to quantify monthly canopy height growth
(Tang et al. 2023). Viedma et al. (2020) used lidar
derived CHMs and various additional metrics such
Leaf Area Index (LAI), Leaf Area Density (LAD)
and crown volume to assess tree structure diver-
sity within various burn severities and found areas
with low burned severities had more diverse tree
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structures compared to moderate and high severity
burns. Fernandez-Guisuraga et al. (2022) instead used
StM to assess ecological competition and found that
increased cover and height of surrounding shrub spe-
cies impact pine sapling growth.

Hydrologic and geomorphic systems have long
been a focus of landscape ecology research because
they are highly dynamic in space and time and pro-
vide connectivity and movement of resources across
ecosystems and landscapes (Butler 2001; Wiens
2002). Lidar and SfM enable the acquisition of
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high-resolution topography data (Passalacqua et al.
2015) suitable for precise spatial (<cm) geomorphic
and land change analyses that can be measured at
various temporal intervals (Andresen and Schultz-
Fellenz 2023). These data support geomorphic fea-
ture extraction and morphological change detection
between repeat SfM surveys (Wheaton et al. 2010;
Milan et al. 2011; Passalacqua et al. 2015; Williams
et al. 2020) across diverse environments and appli-
cations, including arctic landforms (Kartoziia 2019;
Tanguy et al. 2023), tidal channels (Chen et al. 2022),
coastal dunes (Hilgendorf et al. 2021; Laporte-Fauret
et al. 2021), reef habitats (Jackson-Bué et al. 2021),
riverscapes (Bertalan et al. 2018; Bregoli et al. 2019;
Ikeda et al. 2020; Evans et al. 2022), and dune fields
(Solazzo et al. 2018). These applications underscore
the versatility of UAS technology in advancing our
understanding of dynamic landscapes and their intri-
cate changes over time.

UAS terrain change detection studies reviewed
here primarily relied on raster DEMs of Difference
(DoD) to model surface elevation changes (e.g.,
New DEM—OId DEM), generated from repeat StM
surveys (van der Sluijs et al. 2018; Hamshaw et al.
2019; Hilgendorf et al. 2021; Jackson-Bué et al.
2021; Evans et al. 2022). To address DEM uncertain-
ties, error thresholds are typically employed during
DEM differencing to filter reliable elevation change
‘signals’ from model ‘noise’ related to positional
(e.g., registration) or surface representation errors
(Wheaton et al. 2010; Passalacqua et al. 2015). The
most common method for filtering propagated DEM
errors was the minimum level of detection (minLoD)
threshold, which can be applied uniformly across all
cell values or determined probabilistically on a cell-
by-cell basis (Wheaton et al. 2010; Brasington et al.
2012; van der Sluijs et al. 2018). Many UAS appli-
cations now use a cloud-based approach, specifi-
cally designed for 3D topographic change quantifica-
tion between SfM point clouds (Backes et al. 2020;
Andresen and Schultz-Fellenz 2023; DaSilva et al.
2023).

Spatial analyses and landscape pattern methods

Spatial pattern analyses, such as edge, patch den-
sity, and core area metrics, have been at the core of
landscape ecology for decades (McGarigal et al.
2002). Historically, analyses of landscape- and

patch-level metrics have used medium-resolution sat-
ellite imagery or aerial photography to define habitat
patches (Saura 2004; Morgan and Gergel 2010; Haire
and McGarigal 2010; Chambers et al. 2022). UAS
provides the capacity to analyze spatial patterns of
individual plants within landscapes, rather than of
arbitrary pixels. A number of reviewed studies used
landscape metrics to characterize vegetation and soil
patterns from classified UAS imagery (Havrilla et al.
2020; Olsoy et al. 2020; Qian et al. 2021; Zhang
and Zhang 2021; Villoslada Pecifia et al. 2021;
Singh et al. 2023; Velamazén et al. 2023), landscape
change and habitat fragmentation (Fynn and Camp-
bell 2019; Picone and Chemello 2023) and restora-
tion impacts (Qiu et al. 2023). Spatial point pattern
analysis, including extensions from points to poly-
gons (Wiegand et al. 2006), is well-suited to analyze
output from UAS-based OBIA (Xu et al. 2019). Such
analyses have relevance for quantifying habitat struc-
ture and quality and present opportunities to connect
spatial patterns to plant population and community
dynamics. For example, environmental gradients can
influence whether neighboring plants compete with or
facilitate one another, ultimately determining levels
of spatial dispersion in plant communities (Xu et al.
2015; Getzin et al. 2022). UAS-based approaches
have the capacity to detect these patterns at the level
of individual plants, enabling inference on feedbacks
between plant spatial patterns and biotic and abiotic
processes.

Field approaches/methods and validation methods

Various field-based measurements were used to
validate UAS classifications across a variety of eco-
logical applications. For example, in studies using
UAS for vegetation and soil monitoring and clas-
sification (64.4% of studies), common field-based
measurements included quadrat-and transect-based
sampling of plant density and identity for herba-
ceous (Orndahl et al. 2022), and woody plant spe-
cies (Bagaram et al. 2018; Talucci et al. 2020), as
well as other plant biophysical measures including
photosynthesis and stomatal conductance. Zhao
et al. (2021), for example, collected ground-based
leaf spectral data to validate UAS-derived hyper-
spectral classifications of leaf physiological traits
in grassland monocultures. UAS applications for
wildlife monitoring (20.0% of studies) commonly
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used ground-based animal surveys and capture. For
example, Shokirov et al. (2023) used bird surveys
to validate UAS lidar models for avian species rich-
ness and abundance in a restored woodland, and
Habel et al. (2018b) used butterfly netting to col-
lect ground data to validate UAS-based mapping
of microhabitats of grassland butterflies in temper-
ate grassland agricultural landscapes. Because most
studies of disturbance and land use change (15.6%
of studies) generally also focused on characteriz-
ing changes in vegetation and wildlife occurrence
and distribution in response to change, field-based
measurements were similar as in vegetation and
wildlife studies (e.g., ground-based transects and
surveys).

Metrics used for validation of UAS classifica-
tions ranged widely across studies. Of the 161
papers reviewed, 38.5% neither reported specific
validation metrics nor included accuracy measures.
Of the 61.5% of studies that reported validation
metrics, 35.4% used regression and/or correlation
analyses, 22.2% used ground control points and/or
visual interpretation of imagery, 19.2% used confu-
sion matrices and associated analyses (e.g., Kappa,
overall accuracy), while 23.2% of studies reported
use of various other methods.

As UAS classification approaches are increas-
ingly used to quantify cover and to replicate eco-
logical field measurements (e.g., abundance of rare
plant species; Rominger and Meyer 2019), address-
ing measurement error in UAS imagery will become
increasingly necessary. Some degree of error in
UAS imagery is inescapable, from atmospheric con-
ditions to overlapping canopies or incorrect classifi-
cation (Brack et al. 2018). Wildlife ecologists have
long grappled with these errors, including in counts
of animals from UAS imagery, and have developed
statistical methods that can disentangle measure-
ment error from ecological information (Mar-
tin et al. 2012; Delisle et al. 2023). For example,
Edwards et al. (2021) applied capture-mark-recap-
ture models to count wintering Florida manatees
(Trichechus manatus latirostris) in UAS imagery.
Outside of wildlife ecology, models for imperfect
detection remain underutilized in UAS analyses.
Broader implementation of statistical approaches
that acknowledge uncertainty in UAS imagery
would likely improve the quality of ecological infer-
ence from these imperfect data.
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Data fusion—scaling and integration

Of the 161 papers reviewed, 34 papers combined
two or more datasets. Their primary objectives were
to: (1) improve detection capabilities of individual
and small objects (e.g., trees, graminoid biomass),
(2) increase classification accuracies and subsequent
model estimates, and (3) increase the temporal fre-
quency of available images by leveraging two or more
datasets. The data fusion studies most commonly
combine UAS RGB images with SfM data or existing
DEMs created from other data sources. Publicly avail-
able elevation data, such as the 10 m or 1 m resolution
DEMs (USGS 2023), were commonly leveraged in
UAS multispectral image processing and RGB image-
derived classifications of target cover types. Less
commonly fused datasets are UAS RGB images com-
bined with manned airborne lidar or terrestrial lidar
point cloud data, and subsequent lidar-derived vegeta-
tion CHM (Reilly et al. 2021). This is likely because
of the increasingly common use of UAS RGB/multi-
spectral image-derived SfM data, which can be used
to generate DEMs and CHMs (Mayr et al. 2018;
Shin et al. 2018; Sankey et al. 2019; et al. 2020,
2021; Bourgoin et al. 2020; Reilly et al. 2021; Evans
et al. 2022). Even less common are UAS hyperspec-
tral images fused with UAS lidar data (Sankey et al.
2017) and UAS lidar data combined with terrestrial
lidar data (Swetnam et al. 2018; Sankey et al. 2021a;
Shokirov et al. 2023). The data fusion studies typi-
cally report 5-20% increases in classification accura-
cies, although only a few studies quantitatively report
the specific accuracy increases from data fusion (e.g.,
Sankey et al. 2017, 2019, 2021b).

The most common application of UAS data fusion
is observed in vegetation analysis including forest
cover changes, fragmentation, post-disturbance recov-
ery, phenology, aboveground biomass, canopy tem-
perature and physiological traits. Another common
application of UAS data fusion has leveraged topo-
graphic and biophysical variables derived from vari-
ous remote sensing data sources. For example, Iijima
et al. (2021) leveraged a combination of InSAR and
UAS data in detecting thermokarst landscapes and
subsidence, whereas van der Sluijs et al. (2018) com-
bined UAS photogrammetry and thermal imaging for
examining permafrost terrain dynamics, thawing, and
subsidence. Similarly, Luo et al. (2019) merged sev-
eral types of remote sensing data (Landsat, ASTER,
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UAS, Radarsat-2) to derive predictor variables for
soil moisture estimates. Casas-Mulet et al. (2020)
combined UAS thermal and RGB images to detect
cold-water patches in a river, whereas Sankey and
Tatum (2022) fused UAS thermal images with UAS
SfM data to extract tree canopy temperatures. In
contrast, a few fusion studies have focused on urban
landscapes, culturally important archeological sites,
socio-ecological topics, and public health (Fang et al.
2021; Qin et al. 2022). An equally small fraction
of the UAS studies leverage data fusion in wildlife,
habitat, and food webs (Oosthuizen et al. 2020; Has-
selerharm et al. 2021; Siewert and Olofsson 2021;
Vinton and Larsen 2022; Krishnan et al. 2023). This
leaves opportunities for further development of fusion
methods and applications in these disciplines and
subdisciplines.

Several studies across disciplines leverage UAS
data to extend the temporal scales of change detection
analysis. For example, Chmielewski et al. (2020) and
Bertalan et al. (2018) combine contemporary UAS
data with historical manned aerial images. Despite
the differences in spatial and spectral resolution,
such combinations of multi-temporal datasets enable
riparian, geomorphic, vegetation, and urban change
detection over decadal time scales, often revealing
finer-scale change processes that would not be possi-
ble to derive from satellite remote sensing. Because
UAS technology and sensors became available only
recently, multi-temporal UAS image analysis and
change detection studies have been rare and typically
cover shorter time scales (Evans et al. 2022; Sankey
et al. 2024), but UAS data fusion with historical aer-
ial images extend the temporal scales enabling much
longer-term change detection.

Another observed trend is the spatial extension
or scaling of analysis and image classification from
smaller-extent UAS data to larger-extent satellite
images (Fig. 8; Zhu et al. 2018; Marx and McFar-
lane 2019; Miranda et al. 2020; Alvarez-Vanhard
et al. 2021). These studies, however, typically do not
directly fuse the UAS data with satellite images or
satellite-derived data products. There are numerous
approaches to scale high resolution data to satellite
(Markham et al. 2023), from direct scaling between
UAS map data to satellite spectral indices (Siewert
and Olofsson 2021; von Nonn et al. 2024) to sub-
pixel fractional estimates (Riihiméki et al. 2019;
Yang et al. 2021), and via training satellite image

classifications. For example, by training coarser-reso-
lution WorldView-2 satellite images with 15-cm reso-
lution UAS multispectral images, Elkind et al. (2019)
enabled invasive species detection over a much larger
area than was imaged by the UAS multispectral sen-
sor. Similarly, Solazzo et al. (2018) used smaller area
UAS hyperspectral and multispectral images to train
coarser-resolution WorldView-2 satellite data for 3D
estimates of sand dune volume and sediment weight,
and Page et al. (2022) used UAS RGB images and
SfM-derived mesquite canopy height estimates to
train a Sentinel-2A multispectral image classification
via a random forest classification model. UAS data
have been much more commonly linked with high
resolution satellite data (WorldView-2, — 3, Planet-
Scope, Pleiades, Quickbird, and Sentinel-2A), than
moderate resolution satellite images (i.e., Landsat,
MODIS).

Open data and standards

Open data and open-source software can facili-
tate reproducibility of remote sensing data analysis,
allowing potential reviewers to access data and test
the codes being used in science, and remove depend-
encies on expensive, proprietary software (Rocchini
et al. 2017). Freely accessible satellite imagery (i.e.,
Landsat, Sentinel) has led to rapid advances in remote
sensing science in recent years; likewise access to
freely available UAS imagery and associated ecologi-
cal field data will likely facilitate new and innovative
investigations and research applications. Open UAS
data have been used to compare vegetation modeling
approaches across different sites (Agapiou 2020)
and are a potential source of training and validation
data for broad-scale satellite-based machine learning
models (Kattenborn et al. 2019; Schiefer et al. 2023).
One way to maximize open UAS data is to use clear,
standardized reporting of image collection and pro-
cessing parameters documented via robust metadata.
Likewise, implementing standardized data collection
and analysis protocols can facilitate synthesis studies
across different ecosystems and environmental condi-
tions (Cunliffe et al. 2022).

In examining the prevalence of open science prac-
tices within the review, we focused on three primary
questions: (1) How common is the use of open-
source software? (2) Are researchers sharing raw and/
or processed data? and (3) Are researchers sharing
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«Fig. 8 Illustration of different pixel resolutions and scales
of UAS imagery and satellite imagery. The top row shows
an RGB UAS image at 0.5 cm resolution displayed at scales
ranging from tree crown to landscape (left to right), followed
by a 4 cm resolution visible near infrared (VNIR) UAS image
displayed as a false color composite (vegetation is red), a
1.5 m resolution Worldview2 (Maxar Technologies) false color
composite satellite image and a 10 m resolution Sentinel 2A
false color composite

analysis code that can be reproduced? We found that
roughly half of the studies used some form of open-
source software to analyze imagery. Most common
open-source software is the R language (R core team
2021) and QGIS (QGIS.org 2024) (29.2% and 14.3%
respectively). Other software used were CloudCom-
pare (Girardeau-Montaut 2016; www.cloudcompare.
org) (6.8%), Python (Van Rossum and Drake 1995)
(4.3%), Google Earth Engine (Gorelick et al. 2017)
(2.5%), and Orfeo ToolBox (Grizonnet et al. 2017).
Only 2 of the studies used OpenDroneMap (ODM;
WebODM Authors), an open-source photogrammetry
toolkit to generate and process SfM data (Fig. 9).

Our findings indicate a low level of data shar-
ing among the 161 studies analyzed (Fig. 9). Only
3 of 161 studies (1.8%) made their raw data avail-
able for download. Ten of 161 studies (6.2%) shared
their UAS data products (e.g., orthomosaics, point
clouds). Only 5 of 161 studies (3.1%) provided data
that were derived from UAS data (e.g., NDVI values)
in CSV format. Although some repositories such as
Pangaea, Figshare, Zenodo, Oak Ridge Laboratory,
and USGS ScienceBase were used for data sharing,
a common approach was offering data "upon reason-
able request." Privacy concerns were cited by a few
authors as a reason for not posting data openly.

The sharing of processing and/or analysis code
was slightly more common, but still limited. Twelve
of 161 studies (7.4%) shared some kind of computer
code (Fig. 9). No studies shared code for photogram-
metric processing, indicating a reliance on graphical
user interface (GUIs) based methods over program-
matic approaches. Code was shared on web platforms
like Github (https://github.com/), Figshare (https:/
figshare.com/), Zenodo (https://zenodo.org/), and
directly from publishers. Many studies included soft-
ware settings in their methods section (e.g., DaSilva
et al. 2023), theoretically allowing for the reproduc-
tion of analysis, but without directly sharing execut-
able code.

Standardization and accessibility for UAS data

Findings from this review suggest that there is sub-
stantial room for improvement in open science prac-
tices. The low rates of data and code sharing limit the
potential for reproducibility, building upon previous
work, and conducting synthesis studies. The low rate
of data sharing is not surprising given the large size
of raw data and processed products. This makes these
data challenging to host in web repositories. Besides
the data repositories mentioned in the literature, other
UAS data repositories for data discovery and access
include Open Aerial Map (https://openaerialmap.
org/), GeoNadir (https://geonadir.com/), and Open-
Topography (https://opentopography.org/). However,
no single online repository has become more widely
used compared to others. Spatiolemporal Asset Cata-
logs (STACS; https://stacspec.org/), are a json-based
metadata specifications for describing any type of
geospatial data. STACs specify a standard for meta-
data catalogs and data APIs. UAS data described
using STAC could be stored in distributed cloud stor-
age anywhere in the world and would be discoverable
and accessible through the STAC browser (https://
radiantearth.github.io/stac-browser) or standard API
calls (Simoes et al. 2021).

In the larger UAS scientific world, common prac-
tices around data management are forming to facili-
tate data sharing. Wyngaard et al. (2019) discussed
how to move from isolated and ad hoc efforts toward
standardization of practice around data management.
They identified 8 opportunities for standardization of
UAS data collection and management that are rele-
vant to the landscape ecology UAS community. These
opportunities include: (i) Sensor use procedures, (ii)
Operational practices, (iii) Analytics and Error cor-
rection procedures, (iv) Data and metadata data for-
mats, (v) Data and metadata provenance practices,
(vi) Data product levels, (vii) Data management and
analytics tools, (viii) Data management education.
Other efforts have focused on metadata and reporting
recommendations for UAS data (Barbieri et al. 2023;
Fremand 2023). The landscape ecology community
could examine these initiatives and where applicable
could implement and build upon them.

Policy, regulatory, and legal issues surrounding
UAS operations may be a limitation for accessibility
and use in certain areas. Development of UAS use in
the military has led to serious security concerns with
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Fig. 9 Percentage of studies reviewed that shared data and code, or used open source software for image processing and analysis

data within military contexts (Cummings et al. 2007).
It was not until the early 2000s that the US Federal
Aviation Administration (FAA) started issuing cer-
tificates for use in a commercial setting. The policy
and regulations are important for safe implementa-
tion of UAS in research (Rango and Laliberte 2010),
although much of the legislation has lagged behind
the rapid increase in technological advancements
with UAS development (Stocker et al. 2017). Many
suggestions have been made for increased clarity in
policy and security frameworks (Thangavelu et al.
2020; Robinson et al. 2022) but the current regula-
tory environment remains a challenge for more wide-
spread implementation of UAS for landscape ecology
research.

Summary of research trends and future
opportunities
The current UAS literature is dominated by research

papers seeking to advance remote sensing methods
for feature detection, mapping, image classification
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and machine learning (Osco et al. 2021). Sun et al.
(2021) noted a preponderance of UAS studies devel-
oping and testing methods for retrieving ecological
parameters, with few attempting to answer ecologi-
cal questions. We observed this imbalance in many
papers that passed our initial keyword queries, but we
were able to focus our review on the diverse and crea-
tive ways UAS data and analysis methods are being
applied in ecological research. Many of the papers
followed a tradition in landscape ecology of extract-
ing information from remote sensing data to assess
patterns and processes. As UAS mapping approaches
mature we expect to see rapid growth in ecosystem
science applications, and landscape ecologists are
well positioned to inform research questions and anal-
ysis methods.

Several major themes and applications emerged
from our review that define the state of UAS land-
scape ecology research. These include modeling wild-
life micro-habitats, landscape and geomorphic change
detection, integrating UAS with historical aerial and
satellite imagery, and novel applications of spatial
statistics for high-resolution imagery and scaling of
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ecosystem functions. The reviewed research covered
a range of subjects from biodiversity conservation,
vegetation succession, wildfire impacts, invasive spe-
cies, range management, restoration, climate change
impacts, habitat loss, and fragmentation.

Micro-habitat modeling with UAS demonstrates
how high-resolution UAS data can often surpass field
measurements (Wood et al. 2019) to provide impor-
tant insights into species distributions and habitat
spatial patterns at scales relevant to smaller animals
and insects. Many of the concepts and approaches
from macroecology are being explored with high
resolution UAS data, including species thermal refu-
gia (Milling et al. 2018), spectral heterogeneity and
biodiversity (Polley et al. 2019), and UAS are useful
for linking micro-habitats with mesoscale landscape
structures (Barbosa et al. 2022).

Land change is identified as one of the most press-
ing environmental and policy issues being addressed
by landscape ecologists (Mayer et al. 2016), espe-
cially global change type impacts of land use and
climate. Half of the UAS studies reviewed addressed
issues related to natural disturbances and land change
at local-to-landscape scales. Terrestrial vegetation-
related land change studies often integrated UAS with
satellite data to evaluate impacts at landscape scales,
while other studies focused on geomorphic change
in streams, rivers, and wetlands tended to exploit the
very-high resolution UAS data to characterize local-
ized changes that have large ecological impacts.
Change detection using UAS data can be difficult due
to challenges aligning datasets as well as the influ-
ence of variable environmental conditions on mul-
titemporal spectral signals (Yao et al. 2019). More
importantly, given the recent technological devel-
opment in UAS platforms and sensors, longer-term
change detection studies using repeat UAS data have
been rare and are just emerging (Sankey et al. 2024).

Scaling remains an active topic of study in land-
scape ecology (Markham et al. 2023), and ultra-high
resolution UAS data provide new opportunities to
examine scaling relationships. Research on statisti-
cal scaling methods from field-collected data to UAS
(both image and point-based data) and from UAS to
satellite, could help better integrate small-footprint
UAS data into larger landscape-scale study designs.
Many successful applications of scaling and data
fusion were noted in our review, with some stud-
ies successfully integrating a wide range of remote

sensing data sets, resolutions and scales to examine
long-term landscape dynamics (i.e., Sagang et al.
2022). OBIA and image segmentation approaches
are also widely applied for UAS image analysis, and
OBIA lends itself to questions of scale given the hier-
archical nature of image objects. OBIA can be used to
address interactions between nested objects like indi-
vidual plants, vegetation communities/habitats, and
ecosystems (Hay and Castilla 2008; Barker and King
2012).

Spatial pattern analysis was widely used in UAS
research designs, and many studies demonstrated
that fragmentation and patch pattern metrics com-
monly applied to moderate-resolution satellite data
provide ecological relevant information at much finer
resolution when calculated from high-resolution UAS
images. Spatial pattern analysis drives many research
questions, but we also noted many studies examined
functional roles of vegetation and wildlife from UAS.
Relationships between species micro-habitats/distri-
butions mapped from RGB orthomosaics can be used
to infer multiple ecosystem functions (Shenone et al.
2021). Multispectral, lidar, and thermal-IR sensors
support fine-scale assessment of ecosystem processes
and function across terrestrial systems including
canopy structure and temperature relationships (Web-
ster et al. 2018), water stress (Javadian et al. 2022),
edge effects on microclimates (Blanchard et al. 2023),
evapotranspiration (Wang et al. 2019), and respiration
(Kelly et al. 2021). As hyperspectral, TIR, and lidar
UAS sensors become more accessible, with satellite
data can be linked with UAS sensor data to examine
temporal and spatial variability of ecosystem function
across larger landscapes.

Conclusions

UAS is a rapidly evolving tool that is generating
novel research questions and study designs in the field
of landscape ecology. UAS expands upon the obser-
vation scales defined by satellite grain and extent, and
allows researchers to control the resolution, scale,
spectral information, and timing/frequency of their
remote sensing data. UAS can function either as a
main data source for mapping or modeling an eco-
logical system (i.e., micro-habitat maps), or play an
intermediate role by scaling field measures to satellite
data. Although UAS data collection and processing
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can be technically and computationally challenging,
hardware and software systems are developing rap-
idly and becoming easier to use. Image post-process-
ing and analysis software, supported by cloud com-
puting, could help to increase the performance and
usability across all stages of the research. Thoroughly
reporting of their UAS data collection procedures
and research methods by researchers, and support-
ing of open science practices by sharing code, UAS
imagery, and other data could help facilitate wider
use of UAS for ecological applications.
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