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used high resolution imagery and spatial analyses 
to address ecological questions and are therefore 
uniquely positioned to advance UAS research for eco-
logical applications.
Objectives  The review objectives are to: (1) provide 
background on how UAS are used in landscape eco-
logical studies, (2) identify major advancements and 
research gaps, and (3) discuss ways to better facilitate 
the use of UAS in landscape ecology research.
Methods  We conducted a systematic review based 
on PRISMA guidelines using key search terms 
that are unique to landscape ecology research. We 
reviewed only papers that applied UAS data to 

Abstract 
Context  Unoccupied aerial systems/vehicles (UAS/
UAV, a.k.a. drones) have become an increasingly 
popular tool for ecological research. But much of 
the recent research is concerned with developing 
mapping and detection approaches, with few stud-
ies attempting to link UAS data to ecosystem pro-
cesses and function. Landscape ecologists have long 
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investigate questions about ecological patterns, pro-
cesses, or function.
Results  We summarize metadata from 161 papers 
that fit our review criteria. We highlight and discuss 
major research themes and applications, sensors and 
data collection techniques, image processing, feature 
extraction and spatial analysis, image fusion and sat-
ellite scaling, and open data and software.
Conclusion  We observed a diversity of UAS meth-
ods,  applications, and creative spatial modeling and 
analysis approaches. Key aspects of UAS research in 
landscape ecology include modeling wildlife micro-
habitats, scaling of ecosystem functions, landscape 
and geomorphic change detection, integrating UAS 
with historical aerial and satellite imagery, and novel 
applications of spatial statistics.

Keywords  UAS · UAV · Drone · Ecosystems · 
Wildlife · Land change science · Landscape · Remote 
sensing

Abbreviations 
AGB	� Above ground biomass
API	� Application programming interface
CACTI	� Cacti index
CHM	� Canopy height model
CNN	� Convolutional neural networks
DEM	� Digital elevation model
DLC	� Disturbance and land change
DG	� Direct georeferencing
DoD	� DEMs of Difference
DUVES	� Dune vegetation state
EM	� Electromagnetic
EVI2	� 2-Band enhanced vegetation index
FAA	� Federal Aviation Administration
GCC​	� Green chromatic coordinate
GCP	� Ground control points
GNDVI	� Green Normalized Difference Vegetation 

Index

GSD	� Ground sampling distance
GNSS	� Global navigation satellite system
GPP	� Gross primary productivity
GUI	� Graphical user interface
IG	� Indirect georeferencing
LAI	� Leaf Area Index
LAD	� Leaf Area Density
LCI	� Leaf Chlorophyll Index
Lidar	� Light detection and ranging
minLoD	� Minimum level of detection
MODIS	� Moderate Resolution Imaging 

Spectroradiometer
MSAVI	� Modified soil adjusted vegetation index
NDRE	� Normalized difference red edge index
NDVI	� Normalized difference vegetation index
NIR	� Near infrared
OBIA	� Object Based Image Analysis
OSAVI	� Optimized Soil Adjusted Vegetation 

Index
PRISMA	� Preferred Items for Systematic reviews 

and Meta-Analyses
PRI	� Photochemical reflectivity index
PPK	� Post processing kinematic
RMSE	� Root mean square error
RGB	� Red, blue, green bands
RTK	� Real time kinematic
SIF	� Solar induced fluorescence
SfM	� Structure from Motion
STAC​	� SpatioTemporal Asset Catalogs
SWIR	� Shortwave infrared index
SVM	� Support vector machine
TIR	� Thermal infrared
UAS	� Unoccupied Aerial Systems
UAV	� Unoccupied Aerial Vehicles
VIS	� Visible band
VNIR	� Visible-near infrared
WPE	� Woody plant encroachment

Introduction

Remote sensing data are a fundamental information 
source for landscape ecology research (Foody 2023). 
Early ideas about landscape patterns and spatial het-
erogeneity in ecology were informed by interpretation 
of aerial photography (Troll 1971), and many foun-
dational papers showed the utility of high resolution 
(0.5–2 m) aerial photography for evaluating landscape 
patterns, fragmentation and historical land change 
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(O’Neill et  al. 1988; Swetnam et  al. 1999; Morgan 
et al. 2010). In the late twentieth century, medium res-
olution satellite data (30–50 m) became more widely 
available and used, offering several advantages for 
land cover mapping and change detection, namely 
increased spectral bands optimized for land cover and 
vegetation mapping, large footprints, and repeated 
observations over time (Rogan and Chen 2004). High 
resolution (1–3  m) multispectral aerial and satellite 
imagery have remained important data sources for 
characterizing landscape patterns and change (Ellis 
et al. 2006), and understanding how observed patterns 
are influenced by measurement scale (Wickham and 
Riitters 2019). More recently, ultra-high resolution 
(mm-cm resolution) imagery collected from small 
unoccupied aerial systems/vehicles (UAS/UAV; col-
loquially known as drones) has grown in popularity 
for use in environmental applications.

UAS have become an important tool in the envi-
ronmental sciences allowing researchers to collect 
data on demand at very high resolution and with 
various sensors, at generally low costs and effort. 
Whereas satellite pixels are at a fixed resolution, the 
flexibility of UAS allow researchers to collect and 
analyze data at ecologically relevant units. UAS are 
capable of providing spectral and structural data at 
the scale of individual plants (Cunliffe et  al. 2016; 
Sankey et  al. 2017; Madsen et  al. 2020) and at a 
scale suitable for improved wildlife detection and 
fine-scale species distribution models (Christie et al. 
2016; Habel et al. 2018a). This resolution facilitates 
new research into plant and animal demographics, 
fine-scale impacts of natural disturbances, and link-
ing landscape pattern and ecosystem function across 
scales.

Despite a rich history investigating landscape pat-
terns and ecological processes from orbital satellite 
and aerial photography, landscape ecologists have 
been relatively slow to embrace UAS technologies. 
Over a decade ago Anderson and Gaston (2013) 
detailed the potential of UAS to revolutionize spatial 
ecology by allowing researchers to control and define 
the spatial, spectral and temporal characteristics of 
their remote sensing in ways that traditional satellite 
and aerial missions cannot. A rapid increase of UAS 
research has been observed in many fields related to 
landscape ecology, with recent systematic reviews 
in forestry (Guimarães et  al. 2020), range manage-
ment (Lyu et  al. 2022), hydrology (Vélez-Nicolás 

et al. 2021), plant ecology (Sun et al. 2021), wildlife 
population monitoring and conservation (Christie 
et  al. 2016; Elmore et  al. 2023), earth and environ-
mental sciences (Manfreda et  al. 2018; Singh and 
Frazier 2018; Andresen and Schultz-Fellenz 2023) 
and biodiversity conservation (Nowak et  al. 2019; 
Librán-Embid et al. 2020). However, the reasons for 
not observing similar growth of UAS research and 
applications in landscape ecology are unclear. One 
possible reason is a mismatch in spatial scales: land-
scape ecology studies tend to cover large geographi-
cal extents (1–100,000  km2; Mayer and Cameron 
2003), whereas UAS data collections often cover 
smaller areas (i.e., 1–100 hectares) due to constraints 
in flight distance, visual line of sight regulations and 
battery life. However, landscape ecologists have long 
explored patterns and ecological function at smaller 
spatial scales to study organism or ecological pro-
cesses (Wiens and Milne 1989; Turner 2005), and 
there is continued interest in cross-scale inference of 
pattern and process (Wiersma and Schneider 2022). 
Small footprint UAS also provide sampling data at an 
intermediate scale, which help link field-based meas-
urements with satellite data, increasing the opportuni-
ties for new landscape-scale ecological studies (Alva-
rez-Vanhard et al. 2021).

UAS remote sensing is still partially in the research 
and development phase, which may be another factor 
limiting widespread adoption for landscape ecology 
research. Yao et  al. (2019) noted research practices 
are often developed through a “learn-by-doing” pro-
cess, that signifies a lack of scientific consensus and 
standards for typical UAS remote sensing tasks like 
vegetation cover classification and change detection. 
A recent review of the UAS literature in plant ecol-
ogy showed that much of the research output is gen-
erated by remote sensing scientists concerned with 
methodological questions about image classification, 
mapping and model accuracy, with few studies actu-
ally applying these approaches to address ecological 
questions (Sun et  al. 2021). Sun et  al. (2021) also 
identified few landscape-scale UAS studies and sug-
gested that satellite data are more suitable for land-
scape research given the challenges of collecting and 
processing UAS data over large areas. However, there 
are signs that landscape ecologists are overcoming 
these challenges and integrating UAS technology into 
their studies. At the time of writing there were only 
11 UAS papers published in the journal Landscape 
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Ecology, and 10 of these were published in the 
2  years prior to this review (2022–2023). Perhaps 
we are now entering a phase where UAS data, image 
processing and modeling approaches are established 
enough to support widespread use in landscape-scale 
ecosystem science. Landscape ecologists, with a tra-
dition of using high resolution remote sensing data to 
address ecological questions and a well-tested toolbox 
of spatial analysis techniques, are uniquely positioned 
to advance the science of UAS within an ecological 
framework.

The purposes of this review are to: (1) provide 
background on how UAS data are used in landscape 
ecological studies and the questions being addressed, 
(2) identify major advancements and research gaps, 
and (3) provide ideas and discussion to help better 
facilitate the use of UAS technologies in landscape 
ecology research. To systematically review and quan-
tify recent trends and applications of UAS in land-
scape ecology literature, we formulated the following 
questions and sub-questions:

1.	 How have UAS data been applied to address key 
questions in landscape ecology regarding land-
scape structure and heterogeneity, and ecological 
patterns and processes?

a.	 What are the major applications within the 
field?

b.	 What types of data are used?
c.	 What types of ecosystems are being stud-

ied?
d.	 What types of models are used?
e.	 Is there a commitment to open data and 

standardization?

2.	 Where are the major advancements and research 
gaps?

Methods

We conducted a systematic review following the Pre-
ferred Reporting Items for Systematic reviews and 
Meta-Analyses (PRISMA; Page et  al. 2021) proto-
col phases: (1) search terms and inclusion criteria; 
(2) screening titles and abstracts; and (3) analyzing 
and synthesizing eligible articles. We used Scopus 
(https://​www.​elsev​ier.​com/​produ​cts/​scopus) as our 

primary search database and Google Scholar (https://​
schol​ar.​google.​com/) as a secondary search. We com-
pleted additional targeted searches within the follow-
ing individual journals: Landscape Ecology, Ecosys-
tems, Land, Landscape and Ecological Engineering, 
Ecological Applications, and Current Landscape 
Ecology Reports.

Search terms

Search terms included "UAV" OR "UAS" OR "sUAS" 
OR "drone" OR “aerial vehicle” OR “aerial systems” 
plus the following key terms: "landscape ecology" 
OR "landscape pattern" OR “landscape change” OR 
“landscape structure” OR “landscape dynamics”; 
"landscape metric*" OR “patch metrics”; “spatial 
ecology” OR “ecological pattern*” OR “ecological 
process” OR “ecological analysis”; "landscape frag-
mentation" OR "spatial heterogeneity" OR "habitat 
connectivity".

Landscape ecology is an interdisciplinary and 
inclusive field that shares many concepts with geog-
raphy, plant and wildlife ecology, biogeography, geo-
morphology, and hydrology. Our search criteria were 
narrowly focused on keywords that set landscape 
ecology apart from these other fields, by highlighting 
the key concepts of landscape heterogeneity, spatial 
patterns and scale. We acknowledge that we likely 
excluded some important landscape ecology-adjacent 
research papers because of this narrow search criteria.

Criteria for inclusion

Our main criteria for inclusion were a clear “land-
scape” or “ecological” research application that 
included analysis of ecological patterns, processes, or 
function. In other words, the UAS data had to be ana-
lyzed in a way that attempted to provide insight into 
a species, ecosystem, or landscape and their func-
tion, patterns and processes. We filtered out papers 
concerned primarily with mapping techniques and 
methods as well as papers where the primary research 
questions were about the UAS technology itself rather 
than ecosystems or landscapes. We excluded any 
strictly urban or agricultural applications (i.e., crop 
mapping), with exception for studies of agropasto-
ral landscapes or wildlife habitat studies in agricul-
tural or urban landscapes. We only included papers 
published in peer reviewed journals (no theses, 

https://www.elsevier.com/products/scopus
https://scholar.google.com/
https://scholar.google.com/
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dissertations, or conference papers). The papers could 
be published any year up to our search period through 
August of 2023.

Metadata recorded

In addition to basic publication metadata (authors, 
title, year, journal, keywords), we collected informa-
tion on study geography and spatial extent, aircraft 
and sensor details, flight details, derived image prod-
ucts and modeling approaches, use of satellite data, 
in-situ field methods, validation metrics and product 
accuracy, open-source code and data, and general 
application categories (Table  1). We classified the 
papers according to three general applications: veg-
etation (V), disturbance and land change (DLC), and 
wildlife (W) studies. Where applicable we also noted 
more specific landscape ecology applications, includ-
ing land/vegetation change, spatial patterns, wildlife 
habitat modeling and distributions, plant demograph-
ics, ecosystem function and processes (i.e., phenol-
ogy, evapotranspiration), restoration, and invasive 
species.

Data analysis and interpretation

We present the results of the literature review organ-
ized into the following sections: (1) Overall Results, 
where we provide descriptive statistics on the publica-
tion metadata, study geography, general type of UAS 
data use, (2) UAS Technology, where we describe 
trends in aircraft, sensors and geomatics, (3) Tech-
niques and Methods, where we review derived prod-
ucts, modeling and spatial analyses, (4) Data Fusion, 
where we review and discuss image fusion and scal-
ing with UAS, and (5) Open Data and Standards, 
where we review and discuss open science protocols.

Results and discussion

Of the 539 records returned in our initial search, we 
identified 161 papers that fit our criteria for review. 
These papers ranged in date from 2013–2023, with 
a large increase in the number of publications begin-
ning around 2019 (Fig.  1). Papers were published 
across 78 different journals with the most common 
being Remote Sensing MDPI (20), Ecological Indica-
tors (13), Landscape Ecology (11), Remote Sensing 

of Environment (8), Remote Sensing in Ecology and 
Conservation (7), and Science of the Total Environ-
ment (7).

Study locations were distributed across all con-
tinents, but were more densely clustered in Asia, 
North America, and Europe (Fig.  2). Studies were 
conducted in 45 different countries, and most were 
in China (33), followed by the United States (28), 
Australia (14), and Spain (8). The studies were gener-
ally well distributed across biomes, but with a higher 
tendency toward moderately dry and warm biomes 
like woodland/shrubland, temperate seasonal forest 
and tropical seasonal forest/savanna (Fig.  1). Study 
landscapes imaged using UAS ranged in size from 
0.12 ha to 6,710 ha, with an average size of 192 ha 
(median = 10 ha); however, the spatial extent imaged 
was not reported in many of the papers reviewed. The 
number of study sites or distinct areas imaged with 
UAS per study ranged from 1–96, median = 1 and 
mean = 5. Nineteen of the 161 studies (about 12 per-
cent) included more than 10 image sites.

We found that 75% of the studies reviewed used 
true color RGB (red, blue, green bands) cameras and 
true-color imagery, 15% visible-near infrared (VNIR) 
multispectral, 5% lidar, 3% thermal, 3% hyperspec-
tral, and 1 used solar induced fluorescence (SIF). 
Twenty-four studies used more than one UAS sen-
sor in their research (often a combination of RGB 
and multispectral), and 77 studies applied some type 
of fusion or scaling with satellite data. Seventy-one 
studies tracked landscape changes over time using 
multi-temporal UAS, and/or aerial photography and 
satellite data. Of the satellite data used for fusion or 
multitemporal analysis, Landsat satellites were the 
most popular (20) followed by Sentinel satellites (12), 
PlanetScope (6) and MODIS (5). Fifteen studies com-
bined UAS with high resolution (< 2  m) aerial and 
satellite data.

Landscape ecology applications and themes

More than 50% of the papers reviewed had a distur-
bance and landscape change (DLC) application, and 
many of these papers investigated vegetation and 
morphological landscape changes in response to dis-
turbances like wildfire (Fraser et  al. 2017; Talucci 
et  al. 2020; Viedma et  al. 2020; Dashpurev et  al. 
2021; Reilly et al. 2021; Marsh et al. 2022; DaSilva 
et al. 2023), climate change (van der Sluijs et al. 2018; 
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Table 1   Table of metadata and data collected from papers reviewed, including the broad category, parameter and description of each

Category Parameter Description

Publication metadata Authors Populated from search database
Title Populated from search database
Year Populated from search database
Journal Populated from search database
Source database Populated from search database

Geography Country Country of study location
Latitude/longitude Geographical location and coordinates of study area
Biome or ecosystem Biome or ecosystem type reported in study area section
Spatial extent of UAS data collection Total size of UAS image collections
Number of UAS image areas Number of distinct sites with UAS image collections

UAS details Platform Aircraft or platform make and model
Sensor 1 name Make and model of sensor
Sensor 1 spectral Sensor type (i.e., RGB, multispectral, lidar)
Sensor 1 altitude Reported altitude
Sensor 1 wind speed Reported wind speed
Sensor 1 GSD/resolution Reported pixel resolution or ground sampling distance 

(GSD)
Sensor 1 overlap Percent overlap reported
Sensor 1 calibration or normalization Calibration or normalization methods if reported
Sensor 1 georeferencing If documented include details including RMSE, else 

"none"
Image products Sensor 1 image products Main products derived from UAS i.e., orthomosaic, 

NDVI
Sensor 1 modeling/classification Methods used to process image data
Sensor 2,3,4, etc Repeat the above if multiple UAS sensors

Multitemporal and fusion Multitemporal? (Y/N) Did the study contain multitemporal data? Yes or No
Multitemporal info Details about the time periods and number of repeat 

flights
Data fusion or satellite scaling? (Y/N) Yes or No
Satellite data used Satellite data used (i.e., Sentinel-2, Landsat 8)
Structure from Motion (SfM), Canopy Height 

Model (CHM), or Digital Surface Model 
(DSM)?

Note which one was generated, else "none"

Point cloud density points/m2
Field data and validation In situ field measures Field data collected (i.e., plant height, area, volume and 

count)
Field-based study design Study design (i.e., 12 1 × 1 m quadrats)
UAS products validated? Yes or No
Validation metric How were the UAS products validated (i.e., regression, 

kappa)
Reported accuracy Reported accuracy values (i.e., R2, RMSE)

Open science Software UAS image processing Software types used (i.e., Metashape, Pix4d)
Open-source software used? Open-source software types used
Data availability/open data or code? Are data available and hosted on website?

Application Primary research application Vegetation (V), wildlife (W), disturbance and land 
change (DLC)
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Orndahl et al. 2022; Steenvoorden et al. 2022; Tanguy 
et al. 2023) or anthropogenic land uses (Bregoli et al. 
2019; Fenger-Nielsen et al. 2019; Iijima et al. 2021). 
Several studies used UAS data to evaluate vegetation 
and landscape change in response to restoration treat-
ments (Laporte-Fauret et  al. 2020, 2021; Broussard 
et  al. 2022; Jiang et  al. 2022; Peterson et  al. 2023; 
Qiu et al. 2023; van Proosdij et al. 2023). Many of the 
DLC studies were also classified as Vegetation (V) 
application (62 classified as both DLC and V). Stud-
ies with vegetation applications that were not DLC 
were most often concerned with factors contribut-
ing to invasive species distributions (Zhu et al. 2019; 
Hensel et al. 2021; Chang et al. 2022; Nascente et al. 
2022; Bishop and Errigo 2023; Zhou et  al. 2023), 
ecosystem process and function (Faye et  al. 2016; 
Klosterman et al. 2018; Ahongshangbam et al. 2020; 
Dixon et  al. 2021; Simpson et  al. 2022), and plant 
spatial patterns and landscape fragmentation (Fynn 
and Campbell 2019; Charton et  al. 2021; Doughty 
et  al. 2021; Wu et  al. 2021; Blanchard et  al. 2023). 
We reviewed 27 studies with wildlife applications, 
many with a sub-focus on detection of species and/
or specific habitat components (Evans et  al. 2016; 
Oosthuizen et  al. 2020; Saqib et  al. 2020; Hensel 
et al. 2021; Oleksyn et al. 2021; Thaker et al. 2022), 
and habitat and species distribution modeling (Habel 
et al. 2018a; Bao and Yang 2022; Barbosa et al. 2022; 
Shokirov et al. 2023).

Eleven UAS studies were published in the journal 
Landscape Ecology between 2016 and September 

2023. These papers were broadly concerned with 
plant and wildlife ecology, specifically: (1) wildlife 
habitat suitability and species distribution modeling, 
and (2) linking vegetation spatial patterns to eco-
system processes. UAS data were used in wildlife 
research to define micro-habitat features important 
for butterfly larvae (Habel et al. 2016, 2022), aquatic 
insect distributions (Gerber et  al. 2023), and marine 
species distributions in coastal habitats and their eco-
system functions (Schenone and Thrush 2022). UAS 
imagery was used for characterizing forest patterns to 
help explain genetic variation of rodents (Borja-Mar-
tínez et al. 2022), and for mapping phytochemicals of 
individual plants that serve as wildlife food sources 
(Olsoy et al. 2020).

Many of the UAS studies published in the jour-
nal Landscape Ecology explored spatial patterns 
of vegetation and vegetation changes, and the fac-
tors driving these patterns. These include analysis 
of vegetation and bare soil spatial patterns with 
RGB and lidar (Getzin et  al. 2022), the influence 
of ungulates and livestock on vegetation productiv-
ity generated high resolution normalized difference 
vegetation index (NDVI) images (Velamazán et  al. 
2023), forest edge effects on structure and function 
(Blanchard et  al. 2023), and analysis of vegetation 
patterns from interactions between lithology, arid-
ity and soil water availability (Rodríguez-Lozano 
et  al. 2023). Three papers were concerned with 
vegetation change from wildfire: Van Blerk et  al. 
(2022) combined field and multispectral UAS 

Fig. 1   Number of UAS 
papers in landscape ecol-
ogy applications published 
per year. Papers published 
in the journal Landscape 
Ecology are in pink, and 
those published in all other 
journals are in turquoise. 
Note due to the timing of 
the literature search, 2023 
only represents papers that 
were published through 
August 31, 2023. We 
projected the number of 
papers in 2023 (grey bar) 
using an exponential model 
(y = 2.19e0.45x) fit with the 
data from 2016–2022



	 Landsc Ecol (2025) 40:4343  Page 8 of 32

Vol:. (1234567890)

measurements over three years to monitor post-fire 
shrubland recovery in response to altered rainfall 
seasonality at an experimental site. Bowman et  al. 
(2023) used canopy height models (CHM) gener-
ated from lidar to define contemporary forest-sedge-
land boundaries, and historical aerial photography 

to quantify past forest expansion and the effects of 
fire on vegetation dynamics. Sankey et  al. (2024) 
used UAS multispectral data and Sentinel images 
to map wildfire severity and forest thinning impacts 
and quantify post-fire flood-driven sedimentation.

Fig. 2   Distribution of study locations across Whittaker biomes (top; Whittaker 1975) and globally (bottom)
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Aircraft, sensors and technology

Sensors and aircraft

When planning for data collection using UAS, it is 
imperative to begin by clearly defining the scientific 
questions to be answered and identifying the data 
needed to address these inquiries. Key considerations 
in determining the data requirements and appropri-
ate sensor include recognizing the appropriate range 
of electromagnetic (EM) spectra, the minimum and 
maximum resolution needed for data products, fre-
quency and timing of data collection, and data preci-
sion. UAS used in landscape ecology can be equipped 
with various sensors, having spectral sensitivity 
throughout the electromagnetic spectrum including 
RGB or visible spectrum cameras, thermal infrared, 
lidar, multispectral, hyperspectral, radar/radio wave, 
and gamma ray sensors, to name a few (Fig. 3). The 
data collected by these sensors can include imagery, 
elevation data, and spectral information, providing 
detailed insights into landscapes and ecosystems at 

scales from individual plants to entire biomes. Sen-
sors can be active (such as lidar) or passive with fine 
spatial and temporal resolution which enables appli-
cations such as mapping, monitoring, surveying, and 
tracking.

Once a sensor is chosen, a suitable airframe is 
required to position the sensor near or over the tar-
get of interest. Knowing how much area needs to be 
covered helps determine whether a fixed-wing or 
rotary-wing is the most appropriate platform for the 
intended mission (Fig.  4). Quadcopters, or 4-rotor 
UAS, are extremely popular because they are inex-
pensive and easy to transport but are less stable in 
windy conditions compared to larger 6- or 8-rotor 
vehicles (Ahmed et  al. 2022). These hexacopter and 
octocopter vehicles can support heavier payloads and 
are more stable in the air, although at the expense of 
battery life and smaller image areas. Fixed-wing UAS 
can traverse longer distances and cover larger areas 
than their rotary-wing counterparts before needing 
to be refueled or recharged, which may be preferred 
for landscape-scale research. Fixed-wing platforms 

Fig. 3   A representative reflectance A and radiance B spec-
tra for a healthy leaf and dry soil. Highlights show common 
UAS spectral bands blue (~ 475  nm; blue shading), green 
(~ 560 nm; green shading), red (~ 668 nm; light red shading), 
red edge (~ 717  nm; red shading), near infrared (~ 842  nm; 
dark red shading), and thermal infrared (8–14 μm; purple shad-

ing). Common SIF retrieval windows (680 nm and 760 nm) are 
shown as vertical dashed red lines. Common lidar emission 
wavelength (905 nm) is shown as a vertical dashed black line. 
Figure inspired by (Pierrat et al., 2025) and adapted to focus on 
unoccupied aerial systems applications
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generally fly faster and are not as easy to maneuver 
compared to the more easily flown and transported 
rotary-wing UAS. Most of the studies reviewed used 
rotary-wing UAS in the form of quadcopters (4 rotors; 
104 studies) hexacopters (6 rotors; 10 studies), and 
octocopters (8 rotors; 18 studies). Twenty-four studies 
used fixed-wing aircraft. Other UAS of note include 
kite (Madurapperuma et  al. 2020) and blimp (Ruiz-
García et al. 2020), both of which provide alternatives 
to motorized vehicles in areas where regulations pro-
hibit them, or when UAS noise might impact wildlife.

Calibration and normalization

Landscape ecologists who seek to study patterns 
and processes across space, time, and remote sens-
ing platforms require data with consistent scales 
and unit systems that can be quantitatively com-
pared with one another (Moody and Woodcock 
1995; Vogelmann et  al. 2001; Padró et  al. 2019). 
Normalization is the process of converting data to 

a common scale or range, eliminating differences 
in units, and calibration is the process of convert-
ing raw data from arbitrary values to physical units 
(e.g., radiance, reflectance, or temperature) and 
removing systematic bias that make the data useful 
for further scientific analysis (Sampath et al. 2023). 
Unlike the rigorous, well-documented calibration 
and validation standards for satellite and airborne 
remote sensing systems such as Landsat (Markham 
and Helder 2012) and Sentinel (Gascon et al. 2017), 
most UAS remote sensing places the responsibility 
of ensuring data quality into the hands of individ-
ual UAS manufacturers and customers, which can 
require substantial additional resources and post-
processing workloads for users (Wyngaard et  al. 
2019; Tmušić et al. 2020). The ecological commu-
nity continues to share and compare best practices, 
workflows, and recommendations towards the estab-
lishment of feasible and reliable calibration proto-
cols (Cao et al. 2019; Koontz et al. 2022; Sampath 
et al. 2023).

Fig. 4   Examples of various UAS platforms, sensors, and envi-
ronments for collecting remote sensing data for scientific appli-
cations. These include but are not limited to fixed-wing A, C 

and rotary-wing UAS such as hexacopter B and quadcopter D, 
E platforms (Photos A, B, D, E by Mark Bauer, USGS; Photo 
C by Keith Williams, Wingtra, used with permission)
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The choice to calibrate or normalize UAS-derived 
data and the level of detail describing these methods 
is highly variable across landscape ecology litera-
ture. Post-processing workflows include camera lens 
calibration corrections to reduce geometric distor-
tions such as fisheye distortions for improved vegeta-
tion mapping and habitat reconstruction (Habel et al. 
2016; Dashpurev et al. 2021). Gray Card and Color-
Checker reference materials may be used to color-
balance or white-balance RGB imagery (Klosterman 
et al. 2018). Multispectral imagery is often radiomet-
rically calibrated to physical units such as reflectance 
using reference panels and/or downwelling irradiance 
sensors. Radiometric calibration of multispectral data 
can enable the calculation of vegetation indices, land 
cover classification using published spectral libraries, 
and comparison with satellite-derived surface reflec-
tance datasets (Doughty et al. 2021; Siewert and Olof-
sson 2021; Villoslada Peciña et al. 2021; Fernández-
Guisuraga et al. 2022). Thermal infrared data can be 
calibrated to units of temperature which can inform 
permafrost terrain dynamics (van der Sluijs et  al. 
2018) and ecosystem respiration and evapotranspira-
tion models (Kelly et al. 2021; Simpson et al. 2022). 
Hyperspectral data is typically calibrated to units of 
radiance or reflectance using lab-based measure-
ments, atmospheric correction algorithms, and field-
based reference materials to yield input features for 
models such as leaf area index and biomass (Räsänen 
et  al. 2020), and species-level vegetation classifica-
tion (Sankey et al. 2021c). Other studies reviewed had 
no mention of UAS data calibration.

Geolocation and georeference

Ecological processes are often measured using field 
observations combined with remote sensing data 
ranging from very-high (~ 1  cm) to coarse (~ 1  km) 
resolutions (Kerr and Ostrovsky 2003). Positional 
accuracy is important when comparing across scales 
and pixel resolutions, and for ensuring field-collected 
data are well registered with UAS imagery. For 
medium to low resolution satellite data, positional 
accuracy of half a pixel is commonly accepted (Con-
galton 2005; Storey et al. 2014; Pandžic et al. 2016). 
This criterion can be challenging to meet using 
very-high resolution UAS data where the pixel reso-
lution is finer than potential global navigation satel-
lite system (GNSS) positional errors. However, high 

resolution data does not always require high posi-
tional accuracy, and therefore, the level of accuracy 
is up to the researcher based on their objective and 
the UAS products (ASPRS 2024). Our review results 
indicate a wide range of georeferencing methods used 
to obtain and report on positional accuracy: 42.2% 
did not include any information on how the UAS data 
was georeferenced, 37.3% of the studies used ground 
control points (GCPs) and 20.5% of the studies used 
direct georeferencing (DG) with 6% of those apply-
ing post processing kinematic (PPK) and 4% applying 
real time kinematic (RTK).

The UAS GNSS provides DG assignment to the 
collected imagery. Consumer grade GNSS has an 
estimated low accuracy of ~ 5  m, making it suitable 
for projects using planimetric data and for scaling to 
medium to coarse resolution satellite imagery like 
Sentinel-2 or Landsat TM (Colomina and Molina 
2014). PPK and RTK rely on higher precision satel-
lite corrections from a multi-frequency static base 
station, which are then applied to the UAS GNSS 
data by matching observation timestamps, improv-
ing the accuracy to within centimeters (Padró et  al. 
2019; Syetiawan et  al. 2020; Famiglietti et  al. 2021; 
Zeybek 2021; Nesbit et al. 2022). Of the 15 reviewed 
studies that used PPK/RTK, 8 were lidar collections, 
3 were multispectral collections, and 4 were RGB 
collections. Research indicates adding at least one 
GCP with a PPK/RTK solution could greatly improve 
RMSE under certain topography (Iizuka et al. 2022); 
however, Nesbit et al. (2022) found that 3 GCP’s were 
recommended in addition to DG for their study within 
steep terrain.

The more traditional GCP, or indirect georeferenc-
ing (IG), continues to be the industry standard for 
high positional accuracy; however, the number and 
spatial distribution of GCPs is still debated among 
best practices (Singh and Frazier 2018). Our results 
showed a range in GCP distribution and geolocation 
methods, from 3 GCPs located with a low accuracy 
handheld GPS receiver over 0.1 hectare to around 50 
GCPs located with an RTK rover over 15 hectares.

Techniques & methods

Landscape ecology papers reviewed used a wide 
array of image processing and modeling techniques to 
extract information from various UAS data sources. 
Of the papers reviewed, 47 studies used image 
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classification algorithms to extract feature infor-
mation, and these papers were nearly evenly split 
between pixel-based supervised classifications (23) 
and object-based image classifications (22), with the 
remaining 2 applying unsupervised classifications. 
Thirty-three studies relied on visual interpretation 
to manually extract information on features from 
the imagery. Thirty studies used lidar or SfM point 
cloud data as a primary product, 25 studies used an 
image derivative (spectral indices) as primary source 
of information, and 20 papers used custom modeling 
approaches.

True color, multispectral, hyperspectral, and thermal 
data and applications

UAS based products can be derived from a single 
image or an orthomosaic, a photogrammetrically 
orthorectified and mosaicked collection of images. 
Orthomosaics cover larger areas by stitching overlap-
ping images and removing distortions for a seamless 
larger image. RGB digital cameras and multispectral 
instruments that include near infrared sensors con-
tinue to be widely used for vegetation classification 
mapping (Havrilla et  al. 2020), ecosystem function 
modeling (Doughty et  al. 2021), and characterizing 
ecosystem heterogeneity (Siewert and Olofsson 2021; 
Getzin et  al. 2022) (Fig.  5). Havrilla et  al. (2020) 
provided a novel application of UAS-based RGB 
data in the mapping of fine-spatial-scale variability 
in biocrust functional types and demonstrated that 
high spatial resolution observations alone were ade-
quate to identify vascular plants, mineral soil, and 
multiple biocrust functional types within a complex 

ecosystem. Many studies have demonstrated that 
image derivatives and vegetation indices calculated 
from RGB imagery can be used to accurately map 
surface features, including the red green–blue veg-
etation index, the excess greenness Index and mean 
image brightness (Qian et  al. 2021), the normalized 
difference greenness index, perpendicular vegetation 
index and normalized RGB band ratios; Laslier et al. 
2019). Klosterman et al. (2018) tracked seasonal veg-
etation phenology using the green chromatic coordi-
nate (GCC) calculated from multi-date RGB imagery. 
Image texture metrics calculated from single bands, 
indices or point clouds can also provide information 
on vegetation types and canopy structure (Olsoy et al. 
2020; Räsänen et al. 2020; Bourgoin et al. 2020; Qian 
et al. 2021).

Multispectral sensors that include NIR and red 
edge bands tailored to measure vegetation proper-
ties like chlorophyll, biomass, canopy cover, and 
productivity, can help improve classification and 
characterization of green vegetation (Wang et  al. 
2022; Gano et  al. 2024). With the addition of an 
NIR band, the most widely used spectral index 
remains NDVI, which provides an estimate of the 
greenness of individual plants and is commonly 
applied as a proxy for photosynthetic potential 
(Fig.  5; Polley et  al. 2019; Belmonte et  al. 2020; 
Charton et  al. 2021; Doughty et  al. 2021; Siewert 
and Olofsson 2021; Getzin et  al. 2022; Pompa-
García et al. 2022). For instance, Siewert and Olof-
sson (2021) used repeated UAS photography to 
reveal fine scale yet strong rodent impacts on Arctic 
ecosystem vegetation dynamics by using NDVI as 
a proxy for vegetation gross primary productivity 

Fig. 5   Natural-color imagery captured using a Skydio X2D 
(Left), false-color composite of MicaSense Altum-PT mul-
tispectral images where pink indicates bright near infra-
red reflectance (Center), and MicaSense Altum-PT thermal 

imagery (Right) where blue indicates areas with cooler tem-
peratures and red indicates areas with warmer temperatures at 
a dryland site mapped in May 2023 near Moab, Utah, USA
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(GPP) and above ground biomass (AGB) within a 
change detection assessment. Additional derived 
indices from multispectral imagery have been 
explored to assess vegetation dynamics. Villoslada 
Peciña et  al. (2021) used several indices including 
modified soil adjusted vegetation index (MSAVI) 
and a 2-Band enhanced vegetation index (EVI2) 
to estimate occurrence of plant community types, 
AGB, and topsoil moisture to assess the control of 
reindeers on woody plant encroachment (WPE). 
Bergmüller and Vanderwel (2022) used additional 
indices such as the normalized difference red edge 
index (NDRE) to predict tree mortality within a 
random forest model. In addition to NDVI And 
NDRE, Gallardo-Salazar et al. (2022) explored the 
Green Normalized Difference Vegetation Index 
(GNDVI), Leaf Chlorophyll Index (LCI) and Opti-
mized Soil Adjusted Vegetation Index (OSAVI) to 
evaluate plant health based on field-measured den-
droecological variables.

Hyperspectral instruments include cover-
age of the full solar spectrum from the vis-
ible (~ 350–750  nm; VIS) to the near infrared 
(~ 750–1400  nm; NIR) to the shortwave infrared 
(~ 1400 to 2500  nm; SWIR) (Fig.  3). The recent 
expansion of UAS-based hyperspectral instruments 
has driven the development of a remarkable variety 
of spectral traits used to characterize state and func-
tional traits of individual species to entire ecosys-
tems. Emerging spectral traits are moving beyond 
greenness to focus on functional traits such as nutri-
ent status (e.g., foliar nitrogen content; Zhao et  al. 
2021), water content (e.g., canopy water index; 
Zhao et al. 2021), and pigment concentrations (e.g., 
carotenoids to chlorophyll content; Javadian et  al. 
2022; Zhao et  al. 2021). A multitude of additional 
indices have been developed from multispectral and 
hyperspectral instruments to isolate species-specific 
structural or functional features, such as the dune 
vegetation state (DUVES; Talavera et  al. 2022), 
burn severity index (Fraser et  al. 2017), photo-
chemical reflectivity index (PRI; e.g., Javadian et al. 
2022), succulent delineation with the Cacti index 
(CACTI, Hartfield et al. 2022), and shortwave infra-
red index (SWIR; Norton et  al. 2022). High spec-
tral resolution instruments (spectral bands < 0.5 nm) 
centered around known atmospheric features (e.g., 
the oxygen A band at 760  nm; Fig.  3) are ena-
bling additional novel applications, such as the 

measurement of solar-induced fluorescence (SIF), 
a direct measure of the light emitted by plants dur-
ing photosynthesis, and thus a more direct proxy for 
plant physiological function (Zhang et al. 2022).

Thermal instruments measure longwave radia-
tion emitted from surface materials at wavelengths 
directly proportional to their temperature (Figs.  3 
and 5), and have been used on UAS platforms for 
a wide variety of applications, including to meas-
ure the surface temperatures of components of the 
surface soil (van der Sluijs et al. 2018; Zhang et al. 
2020; Kelly et  al. 2021), components of aquatic 
ecosystems (Dugdale et al. 2019; Casas-Mulet et al. 
2020), and components of vegetation and plant can-
opies (Faye et al. 2016; Webster et al. 2018; Wang 
et  al. 2019; Javadian et  al. 2022; Simpson et  al. 
2022). Javadian et  al. (2022) used UAS thermal 
images to show that taller and more clumped trees 
remained cooler and potentially less water stressed 
during periods of summer drought in a ponderosa 
pine-dominated forest. Sankey et  al. (2021a) docu-
mented that UAS thermal images can be used to 
detect genetic trait-based differences in canopy tem-
perature and evaporative cooling demand among 
genotypes of single cottonwood tree species. When 
combined with structure from motion (SfM, see 
Sect. "Lidar and structure-from-motion (SfM) point 
cloud applications") or lidar data, UAS-based ther-
mal imagery has the capacity to provide informa-
tion on three-dimensional patterns of heat within 
plant canopies. For example, Olsoy et  al. (2023) 
combined high-resolution thermal imagery with 
SfM to model thermal emittance at the leaf-level 
and demonstrated that taller leaves had significantly 
cooler temperatures. These studies highlight the 
potential of UAS to overcome the time and expense 
limitations of on-the-ground measurements in the 
study of rapid changes in plant physiological func-
tion. Thermal UAS can be directly related to plant 
physiological function (e.g., stomatal conductance; 
Olsoy et  al. 2024), with potential to upscale plant 
physiology measurements to spatial extents that 
match environmental gradients and management 
units. There has also been an expansion of high-
resolution thermal imaging for characterization of 
surface temperature heterogeneity with implica-
tions for ecotherm niche modeling (Faye et al. 2016; 
Duffy et al. 2021).
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Object based image segmentation and classification 
and regression

Object Based Image Analysis (OBIA) and segmenta-
tion are commonly used approaches for classification 
of high-resolution images (Blaschke 2010; Hossain 
and Chen 2019). OBIA approaches are well suited 
for UAS imagery because the segmentation exploits 
spectral, spatial and textural features, often allowing 
the extraction of ecologically meaningful objects like 
individual plant canopies and species (Fig. 6; Lalib-
erte et  al. 2011). For example, Olsoy et  al. (2020) 
classified sagebrush canopies using structural features 
of shrubs with object-based image analysis and the 
support vector machine. The most appropriate scale 
for OBIA and segmentation remains a challenge, as 
a segmented feature at one scale can be homogene-
ous but heterogeneous when viewed at a different 
scale (Fig.  6; Hossain and Chen 2019). Small seg-
ment sizes result in large objects, including shrubs 
and trees, being segmented into multiple sub-objects 
(Fig.  6C). When segment size was too large, small 
objects including biocrusts, grass and bare soil were 
mixed in segments (Havrilla et al. 2020; Roser et al. 
2022). Although it is feasible to use OBIA methods 
for change detection (St. Clair and Bishop 2019; Fal-
lati et al. 2020), the size and shape of objects can be 
heavily influenced by image-specific properties (i.e., 
lighting angle, pixel size and radiometric resolution) 
which can create challenges for direct comparison 
across time. If the magnitude of change is small, a 
pixel-based change detection approach may be pre-
ferred (Siewert and Olofsson 2021).

Several machine-learning algorithms have been 
proposed for UAS image classification that can be 
applied both on individual pixels and segmented 
image objects. These include supervised classifica-
tion models like decision trees (Sankey et al. 2019), 
and support vector machine (SVM) algorithms 
(Evans et al. 2022) to classify plant species and land 
cover types. When the target is a continuous variable 
(i.e., leaf area, vegetation fractional cover, biomass) 
machine learning regression models, such as sup-
port vector regression and gradient-boosting decision 
trees, can be applied to UAS images (e.g. Liu et  al. 
2021). Villoslada Peciña et  al. (2021) used a ran-
dom forest model to accurately predict above ground 
biomass from RGB, multispectral and SfM data-
sets, and random forest models to both classify plant 

communities and to predict soil organic carbon from 
multispectral vegetation indices and high resolution 
DSMs have been used ((Villoslada et al. 2022). Deep 
learning convolutional neural networks (CNNs) are 
emerging as a highly accurate classification approach 
suitable for ultra-high resolution imagery (Kattenborn 
et al. 2020; Schenone et al. 2021).

The large number of studies (33) that relied on vis-
ual interpretation for feature extraction was a surpris-
ing result. Visual interpretation and digitization from 
aerial imagery can be subjective and highly influ-
enced by individual observers (Hearn et  al. 2011). 
The choice of visual interpretation instead of more 
complex classification algorithms may be preferred 
when the sheer number and variety of features being 
mapped over a small area makes the time investment 
in machine-learning training less than ideal (Tanguy 
et  al. 2023). The spatial detail of UAS imagery is 
appropriate for visual mapping based on color, texture 
and shape, and in some circumstances these maps are 
more accurate than automated classifications (Hamyl-
ton et  al. 2020), however these approaches can be 
time consuming when mapping over large areas.

Lidar and structure‑from‑motion (SfM) point cloud 
applications

On-board UAS sensors such as digital cameras or 
more recent laser scanners have made earth system 
modeling for studies within agriculture, forestry, geo-
morphology and hydrology easier with the production 
of point cloud products (Liao et al. 2021). There are 
two main methods to generate point cloud 3D struc-
tures: (a) through the use of photogrammetric struc-
ture from motion (SfM) algorithms on overlapping 
digital images (e.g. Belmonte et  al. 2021; Fernán-
dez-Guisuraga et al. 2022; Over et al. 2021) and (b) 
through light detection and ranging (lidar) laser scan-
ning techniques (Kellner et al. 2019; de Almeida et al. 
2020; Wallace et al. 2016). Details found within 3D 
structures provide novel datasets to derive landscape 
and vegetation characteristics from digital elevation 
models (DEM) and CHM, to above ground biomass 
(ABG) from point clouds (Dugdale et al. 2019; San-
key et al. 2021c; Cunliffe et al. 2022; Blanchard et al. 
2023). Datasets derived from 3D point clouds provide 
the unique opportunity to assess spatially detailed, 
accurate shape information and standard geometries 
for landscape measurements (Fig.  7). Common uses 
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of point cloud data include forest structure estimates 
and mapping geomorphological characteristics such 
as terrain ( et al. 2020; de Almeida et al. 2020; Reilly 
et  al. 2021; Chen et  al. 2022). These derived data-
sets provide ways to collect monitoring inventory 

measurements, characterize plant canopy and con-
duct various assessments including geomorphological 
movement or vegetation change detection, and distur-
bance impacts on canopy height, biomass, biodiver-
sity and carbon storage (Räsänen et al. 2020; Sagang 

Fig. 6   Examples of a pixel-based classification compared to image segmentation. Original 0.5 cm RGB orthoimage A, classified 
0.5 cm image B, segmented image with small objects C and segmented image with large objects D 
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et al. 2022; Singh et al. 2023). Metrics such as crown 
area volume or crown surface area can be estimated 
for each canopy within the plot (Ahongshangbam 
et  al. 2020), and repeated UAS lidar collections can 
be used to quantify monthly canopy height growth 
(Tang et  al. 2023). Viedma et  al. (2020) used lidar 
derived CHMs and various additional metrics such 
Leaf Area Index (LAI), Leaf Area Density (LAD) 
and crown volume to assess tree structure diver-
sity within various burn severities and found areas 
with low burned severities had more diverse tree 

structures compared to moderate and high severity 
burns. Fernández-Guisuraga et al. (2022) instead used 
SfM to assess ecological competition and found that 
increased cover and height of surrounding shrub spe-
cies impact pine sapling growth.

Hydrologic and geomorphic systems have long 
been a focus of landscape ecology research because 
they are highly dynamic in space and time and pro-
vide connectivity and movement of resources across 
ecosystems and landscapes (Butler 2001; Wiens 
2002). Lidar and SfM enable the acquisition of 

Fig. 7   Examples of three 
dimensional (3D) UAS lidar 
collected over a woodland/
forest A, UAS SfM in 
ecotone B and UAS SfM in 
grassland C. Adapted from 
Sankey et al. (2017)
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high-resolution topography data (Passalacqua et  al. 
2015) suitable for precise spatial (< cm) geomorphic 
and land change analyses that can be measured at 
various temporal intervals (Andresen and Schultz-
Fellenz 2023). These data support geomorphic fea-
ture extraction and morphological change detection 
between repeat SfM surveys (Wheaton et  al. 2010; 
Milan et al. 2011; Passalacqua et al. 2015; Williams 
et  al. 2020) across diverse environments and appli-
cations, including arctic landforms (Kartoziia 2019; 
Tanguy et al. 2023), tidal channels (Chen et al. 2022), 
coastal dunes (Hilgendorf et al. 2021; Laporte-Fauret 
et  al. 2021), reef habitats (Jackson-Bué et  al. 2021), 
riverscapes (Bertalan et al. 2018; Bregoli et al. 2019; 
Ikeda et al. 2020; Evans et al. 2022), and dune fields 
(Solazzo et  al. 2018). These applications underscore 
the versatility of UAS technology in advancing our 
understanding of dynamic landscapes and their intri-
cate changes over time.

UAS terrain change detection studies reviewed 
here primarily relied on raster DEMs of Difference 
(DoD) to model surface elevation changes (e.g., 
New DEM—Old DEM), generated from repeat SfM 
surveys (van der Sluijs et  al. 2018; Hamshaw et  al. 
2019; Hilgendorf et  al. 2021; Jackson-Bué et  al. 
2021; Evans et al. 2022). To address DEM uncertain-
ties, error thresholds are typically employed during 
DEM differencing to filter reliable elevation change 
‘signals’ from model ‘noise’ related to positional 
(e.g., registration) or surface representation errors 
(Wheaton et  al. 2010; Passalacqua et  al. 2015). The 
most common method for filtering propagated DEM 
errors was the minimum level of detection (minLoD) 
threshold, which can be applied uniformly across all 
cell values or determined probabilistically on a cell-
by-cell basis (Wheaton et al. 2010; Brasington et al. 
2012; van der Sluijs et  al. 2018). Many UAS appli-
cations now use a cloud-based approach, specifi-
cally designed for 3D topographic change quantifica-
tion between SfM point clouds (Backes et  al. 2020; 
Andresen and Schultz-Fellenz 2023; DaSilva et  al. 
2023).

Spatial analyses and landscape pattern methods

Spatial pattern analyses, such as edge, patch den-
sity, and core area metrics, have been at the core of 
landscape ecology for decades (McGarigal et  al. 
2002). Historically, analyses of landscape- and 

patch-level metrics have used medium-resolution sat-
ellite imagery or aerial photography to define habitat 
patches (Saura 2004; Morgan and Gergel 2010; Haire 
and McGarigal 2010; Chambers et  al. 2022). UAS 
provides the capacity to analyze spatial patterns of 
individual plants within landscapes, rather than of 
arbitrary pixels. A number of reviewed studies used 
landscape metrics to characterize vegetation and soil 
patterns from classified UAS imagery (Havrilla et al. 
2020; Olsoy et  al. 2020; Qian et  al. 2021; Zhang 
and Zhang 2021; Villoslada Peciña et  al. 2021; 
Singh et al. 2023; Velamazán et al. 2023), landscape 
change and habitat fragmentation (Fynn and Camp-
bell 2019; Picone and Chemello 2023) and restora-
tion impacts (Qiu et  al. 2023). Spatial point pattern 
analysis, including extensions from points to poly-
gons (Wiegand et al. 2006), is well-suited to analyze 
output from UAS-based OBIA (Xu et al. 2019). Such 
analyses have relevance for quantifying habitat struc-
ture and quality and present opportunities to connect 
spatial patterns to plant population and community 
dynamics. For example, environmental gradients can 
influence whether neighboring plants compete with or 
facilitate one another, ultimately determining levels 
of spatial dispersion in plant communities (Xu et al. 
2015; Getzin et  al. 2022). UAS-based approaches 
have the capacity to detect these patterns at the level 
of individual plants, enabling inference on feedbacks 
between plant spatial patterns and biotic and abiotic 
processes.

Field approaches/methods and validation methods

Various field-based measurements were used to 
validate UAS classifications across a variety of eco-
logical applications. For example, in studies using 
UAS for vegetation and soil monitoring and clas-
sification (64.4% of studies), common field-based 
measurements included quadrat-and transect-based 
sampling of plant density and identity for herba-
ceous (Orndahl et  al. 2022), and woody plant spe-
cies (Bagaram et  al. 2018; Talucci et  al. 2020), as 
well as other plant biophysical measures including 
photosynthesis and stomatal conductance. Zhao 
et  al. (2021), for example, collected ground-based 
leaf spectral data to validate UAS-derived hyper-
spectral classifications of leaf physiological traits 
in grassland monocultures. UAS applications for 
wildlife monitoring (20.0% of studies) commonly 
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used ground-based animal surveys and capture. For 
example, Shokirov et  al. (2023) used bird surveys 
to validate UAS lidar models for avian species rich-
ness and abundance in a restored woodland, and 
Habel et  al. (2018b) used butterfly netting to col-
lect ground data to validate UAS-based mapping 
of microhabitats of grassland butterflies in temper-
ate grassland agricultural landscapes. Because most 
studies of disturbance and land use change (15.6% 
of studies) generally also focused on characteriz-
ing changes in vegetation and wildlife occurrence 
and distribution in response to change, field-based 
measurements were similar as in vegetation and 
wildlife studies (e.g., ground-based transects and 
surveys).

Metrics used for validation of UAS classifica-
tions ranged widely across studies. Of the 161 
papers reviewed, 38.5% neither reported specific 
validation metrics nor included accuracy measures. 
Of the 61.5% of studies that reported validation 
metrics, 35.4% used regression and/or correlation 
analyses, 22.2% used ground control points and/or 
visual interpretation of imagery, 19.2% used confu-
sion matrices and associated analyses (e.g., Kappa, 
overall accuracy), while 23.2% of studies reported 
use of various other methods.

As UAS classification approaches are increas-
ingly used to quantify cover and to replicate eco-
logical field measurements (e.g., abundance of rare 
plant species; Rominger and Meyer 2019), address-
ing measurement error in UAS imagery will become 
increasingly necessary. Some degree of error in 
UAS imagery is inescapable, from atmospheric con-
ditions to overlapping canopies or incorrect classifi-
cation (Brack et al. 2018). Wildlife ecologists have 
long grappled with these errors, including in counts 
of animals from UAS imagery, and have developed 
statistical methods that can disentangle measure-
ment error from ecological information (Mar-
tin et  al. 2012; Delisle et  al. 2023). For example, 
Edwards et  al. (2021) applied capture-mark-recap-
ture models to count wintering Florida manatees 
(Trichechus manatus latirostris) in UAS imagery. 
Outside of wildlife ecology, models for imperfect 
detection remain underutilized in UAS analyses. 
Broader implementation of statistical approaches 
that acknowledge uncertainty in UAS imagery 
would likely improve the quality of ecological infer-
ence from these imperfect data.

Data fusion—scaling and integration

Of the 161 papers reviewed, 34 papers combined 
two or more datasets. Their primary objectives were 
to: (1) improve detection capabilities of individual 
and small objects (e.g., trees, graminoid biomass), 
(2) increase classification accuracies and subsequent 
model estimates, and (3) increase the temporal fre-
quency of available images by leveraging two or more 
datasets. The data fusion studies most commonly 
combine UAS RGB images with SfM data or existing 
DEMs created from other data sources. Publicly avail-
able elevation data, such as the 10 m or 1 m resolution 
DEMs (USGS 2023), were commonly leveraged in 
UAS multispectral image processing and RGB image-
derived classifications of target cover types. Less 
commonly fused datasets are UAS RGB images com-
bined with manned airborne lidar or terrestrial lidar 
point cloud data, and subsequent lidar-derived vegeta-
tion CHM (Reilly et al. 2021). This is likely because 
of the increasingly common use of UAS RGB/multi-
spectral image-derived SfM data, which can be used 
to generate DEMs and CHMs (Mayr et  al. 2018; 
Shin et  al. 2018; Sankey et  al. 2019;  et  al. 2020, 
2021; Bourgoin et al. 2020; Reilly et al. 2021; Evans 
et al. 2022). Even less common are UAS hyperspec-
tral images fused with UAS lidar data (Sankey et al. 
2017) and UAS lidar data combined with terrestrial 
lidar data (Swetnam et al. 2018; Sankey et al. 2021a; 
Shokirov et  al. 2023). The data fusion studies typi-
cally report 5–20% increases in classification accura-
cies, although only a few studies quantitatively report 
the specific accuracy increases from data fusion (e.g., 
Sankey et al. 2017, 2019, 2021b).

The most common application of UAS data fusion 
is observed in vegetation analysis including forest 
cover changes, fragmentation, post-disturbance recov-
ery, phenology, aboveground biomass, canopy tem-
perature and physiological traits. Another common 
application of UAS data fusion has leveraged topo-
graphic and biophysical variables derived from vari-
ous remote sensing data sources. For example, Iijima 
et  al. (2021) leveraged a combination of InSAR and 
UAS data in detecting thermokarst landscapes and 
subsidence, whereas van der Sluijs et al. (2018) com-
bined UAS photogrammetry and thermal imaging for 
examining permafrost terrain dynamics, thawing, and 
subsidence. Similarly, Luo et al. (2019) merged sev-
eral types of remote sensing data (Landsat, ASTER, 



Landsc Ecol (2025) 40:43	 Page 19 of 32  43

Vol.: (0123456789)

UAS, Radarsat-2) to derive predictor variables for 
soil moisture estimates. Casas-Mulet et  al. (2020) 
combined UAS thermal and RGB images to detect 
cold-water patches in a river, whereas Sankey and 
Tatum (2022) fused UAS thermal images with UAS 
SfM data to extract tree canopy temperatures. In 
contrast, a few fusion studies have focused on urban 
landscapes, culturally important archeological sites, 
socio-ecological topics, and public health (Fang et al. 
2021; Qin et  al. 2022). An equally small fraction 
of the UAS studies leverage data fusion in wildlife, 
habitat, and food webs (Oosthuizen et al. 2020; Has-
selerharm et  al. 2021; Siewert and Olofsson 2021; 
Vinton and Larsen 2022; Krishnan et al. 2023). This 
leaves opportunities for further development of fusion 
methods and applications in these disciplines and 
subdisciplines.

Several studies across disciplines leverage UAS 
data to extend the temporal scales of change detection 
analysis. For example, Chmielewski et al. (2020) and 
Bertalan et  al. (2018) combine contemporary UAS 
data with historical manned aerial images. Despite 
the differences in spatial and spectral resolution, 
such combinations of multi-temporal datasets enable 
riparian, geomorphic, vegetation, and urban change 
detection over decadal time scales, often revealing 
finer-scale change processes that would not be possi-
ble to derive from satellite remote sensing. Because 
UAS technology and sensors became available only 
recently, multi-temporal UAS image analysis and 
change detection studies have been rare and typically 
cover shorter time scales (Evans et al. 2022; Sankey 
et al. 2024), but UAS data fusion with historical aer-
ial images extend the temporal scales enabling much 
longer-term change detection.

Another observed trend is the spatial extension 
or scaling of analysis and image classification from 
smaller-extent UAS data to larger-extent satellite 
images (Fig.  8; Zhu et  al. 2018; Marx and McFar-
lane 2019; Miranda et  al. 2020; Alvarez-Vanhard 
et al. 2021). These studies, however, typically do not 
directly fuse the UAS data with satellite images or 
satellite-derived data products. There are numerous 
approaches to scale high resolution data to satellite 
(Markham et  al. 2023), from direct scaling between 
UAS map data to satellite spectral indices (Siewert 
and Olofsson 2021; von Nonn et  al. 2024) to sub-
pixel fractional estimates (Riihimäki et  al. 2019; 
Yang et  al. 2021), and via training satellite image 

classifications. For example, by training coarser-reso-
lution WorldView-2 satellite images with 15-cm reso-
lution UAS multispectral images, Elkind et al. (2019) 
enabled invasive species detection over a much larger 
area than was imaged by the UAS multispectral sen-
sor. Similarly, Solazzo et al. (2018) used smaller area 
UAS hyperspectral and multispectral images to train 
coarser-resolution WorldView-2 satellite data for 3D 
estimates of sand dune volume and sediment weight, 
and Page et  al. (2022) used UAS RGB images and 
SfM-derived mesquite canopy height estimates to 
train a Sentinel-2A multispectral image classification 
via a random forest classification model. UAS data 
have been much more commonly linked with high 
resolution satellite data (WorldView-2, −  3, Planet-
Scope, Pleiades, Quickbird, and Sentinel-2A), than 
moderate resolution satellite images (i.e., Landsat, 
MODIS).

Open data and standards

Open data and open-source software can facili-
tate reproducibility of remote sensing data analysis, 
allowing potential reviewers to access data and test 
the codes being used in science, and remove depend-
encies on expensive, proprietary software (Rocchini 
et al. 2017). Freely accessible satellite imagery (i.e., 
Landsat, Sentinel) has led to rapid advances in remote 
sensing science in recent years; likewise access to 
freely available UAS imagery and associated ecologi-
cal field data will likely facilitate new and innovative 
investigations and research applications. Open UAS 
data have been used to compare vegetation modeling 
approaches across different sites (Agapiou 2020) 
and are a potential source of training and validation 
data for broad-scale satellite-based machine learning 
models (Kattenborn et al. 2019; Schiefer et al. 2023). 
One way to maximize open UAS data is to use clear, 
standardized reporting of image collection and pro-
cessing parameters documented via robust metadata. 
Likewise, implementing standardized data collection 
and analysis protocols can facilitate synthesis studies 
across different ecosystems and environmental condi-
tions (Cunliffe et al. 2022).

In examining the prevalence of open science prac-
tices within the review, we focused on three primary 
questions: (1) How common is the use of open-
source software? (2) Are researchers sharing raw and/
or processed data? and (3) Are researchers sharing 
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analysis code that can be reproduced? We found that 
roughly half of the studies used some form of open-
source software to analyze imagery. Most common 
open-source software is the R language (R core team 
2021) and QGIS (QGIS.org 2024) (29.2% and 14.3% 
respectively). Other software used were CloudCom-
pare (Girardeau-Montaut 2016; www.​cloud​compa​re.​
org) (6.8%), Python (Van Rossum and Drake 1995) 
(4.3%), Google Earth Engine (Gorelick et  al. 2017) 
(2.5%), and Orfeo ToolBox (Grizonnet et  al. 2017). 
Only 2 of the studies used OpenDroneMap (ODM; 
WebODM Authors), an open-source photogrammetry 
toolkit to generate and process SfM data (Fig. 9).

Our findings indicate a low level of data shar-
ing among the 161 studies analyzed (Fig.  9). Only 
3 of 161 studies (1.8%) made their raw data avail-
able for download. Ten of 161 studies (6.2%) shared 
their UAS data products (e.g., orthomosaics, point 
clouds). Only 5 of 161 studies (3.1%) provided data 
that were derived from UAS data (e.g., NDVI values) 
in CSV format. Although some repositories such as 
Pangaea, Figshare, Zenodo, Oak Ridge Laboratory, 
and USGS ScienceBase were used for data sharing, 
a common approach was offering data "upon reason-
able request." Privacy concerns were cited by a few 
authors as a reason for not posting data openly.

The sharing of processing and/or analysis code 
was slightly more common, but still limited. Twelve 
of 161 studies (7.4%) shared some kind of computer 
code (Fig. 9). No studies shared code for photogram-
metric processing, indicating a reliance on graphical 
user interface (GUIs) based methods over program-
matic approaches. Code was shared on web platforms 
like Github (https://​github.​com/), Figshare (https://​
figsh​are.​com/), Zenodo (https://​zenodo.​org/), and 
directly from publishers. Many studies included soft-
ware settings in their methods section (e.g., DaSilva 
et  al. 2023), theoretically allowing for the reproduc-
tion of analysis, but without directly sharing execut-
able code.

Standardization and accessibility for UAS data

Findings from this review suggest that there is sub-
stantial room for improvement in open science prac-
tices. The low rates of data and code sharing limit the 
potential for reproducibility, building upon previous 
work, and conducting synthesis studies. The low rate 
of data sharing is not surprising given the large size 
of raw data and processed products. This makes these 
data challenging to host in web repositories. Besides 
the data repositories mentioned in the literature, other 
UAS data repositories for data discovery and access 
include Open Aerial Map (https://​opena​erial​map.​
org/), GeoNadir (https://​geona​dir.​com/), and Open-
Topography (https://​opent​opogr​aphy.​org/). However, 
no single online repository has become more widely 
used compared to others. SpatioTemporal Asset Cata-
logs (STACs; https://​stacs​pec.​org/), are a json-based 
metadata specifications for describing any type of 
geospatial data. STACs specify a standard for meta-
data catalogs and data APIs. UAS data described 
using STAC could be stored in distributed cloud stor-
age anywhere in the world and would be discoverable 
and accessible through the STAC browser (https://​
radia​ntear​th.​github.​io/​stac-​brows​er) or standard API 
calls (Simoes et al. 2021).

In the larger UAS scientific world, common prac-
tices around data management are forming to facili-
tate data sharing. Wyngaard et  al. (2019) discussed 
how to move from isolated and ad hoc efforts toward 
standardization of practice around data management. 
They identified 8 opportunities for standardization of 
UAS data collection and management that are rele-
vant to the landscape ecology UAS community. These 
opportunities include: (i) Sensor use procedures, (ii) 
Operational practices, (iii) Analytics and Error cor-
rection procedures, (iv) Data and metadata data for-
mats, (v) Data and metadata provenance practices, 
(vi) Data product levels, (vii) Data management and 
analytics tools, (viii) Data management education. 
Other efforts have focused on metadata and reporting 
recommendations for UAS data (Barbieri et al. 2023; 
Fremand 2023). The landscape ecology community 
could examine these initiatives and where applicable 
could implement and build upon them.

Policy, regulatory, and legal issues surrounding 
UAS operations may be a limitation for accessibility 
and use in certain areas. Development of UAS use in 
the military has led to serious security concerns with 

Fig. 8   Illustration of different pixel resolutions and scales 
of UAS imagery and satellite imagery. The top row shows 
an RGB UAS image at 0.5  cm resolution displayed at scales 
ranging from tree crown to landscape (left to right), followed 
by a 4 cm resolution visible near infrared (VNIR) UAS image 
displayed as a false color composite (vegetation is red), a 
1.5 m resolution Worldview2 (Maxar Technologies) false color 
composite satellite image and a 10  m resolution Sentinel 2A 
false color composite
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data within military contexts (Cummings et al. 2007). 
It was not until the early 2000s that the US Federal 
Aviation Administration (FAA) started issuing cer-
tificates for use in a commercial setting. The policy 
and regulations are important for safe implementa-
tion of UAS in research (Rango and Laliberte 2010), 
although much of the legislation has lagged behind 
the rapid increase in technological advancements 
with UAS development (Stöcker et  al. 2017). Many 
suggestions have been made for increased clarity in 
policy and security frameworks (Thangavelu et  al. 
2020; Robinson et  al. 2022) but the current regula-
tory environment remains a challenge for more wide-
spread implementation of UAS for landscape ecology 
research.

Summary of research trends and future 
opportunities

The current UAS literature is dominated by research 
papers seeking to advance remote sensing methods 
for feature detection, mapping, image classification 

and machine learning (Osco et  al. 2021). Sun et  al. 
(2021) noted a preponderance of UAS studies devel-
oping and testing methods for retrieving ecological 
parameters, with few attempting to answer ecologi-
cal questions. We observed this imbalance in many 
papers that passed our initial keyword queries, but we 
were able to focus our review on the diverse and crea-
tive ways UAS data and analysis methods are being 
applied in ecological research. Many of the papers 
followed a tradition in landscape ecology of extract-
ing information from remote sensing data to assess 
patterns and processes. As UAS mapping approaches 
mature we expect to see rapid growth in ecosystem 
science applications, and landscape ecologists are 
well positioned to inform research questions and anal-
ysis methods.

Several major themes and applications emerged 
from our review that define the state of UAS land-
scape ecology research. These include modeling wild-
life micro-habitats, landscape and geomorphic change 
detection, integrating UAS with historical aerial and 
satellite imagery, and novel applications of spatial 
statistics for high-resolution imagery and scaling of 

Fig. 9   Percentage of studies reviewed that shared data and code, or used open source software for image processing and analysis
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ecosystem functions. The reviewed research covered 
a range of subjects from biodiversity conservation, 
vegetation succession, wildfire impacts, invasive spe-
cies, range management, restoration, climate change 
impacts, habitat loss, and fragmentation.

Micro-habitat modeling with UAS demonstrates 
how high-resolution UAS data can often surpass field 
measurements (Wood et  al. 2019) to provide impor-
tant insights into species distributions and habitat 
spatial patterns at scales relevant to smaller animals 
and insects. Many of the concepts and approaches 
from macroecology are being explored with high 
resolution UAS data, including species thermal refu-
gia (Milling et  al. 2018), spectral heterogeneity and 
biodiversity (Polley et al. 2019), and UAS are useful 
for linking micro-habitats with mesoscale landscape 
structures (Barbosa et al. 2022).

Land change is identified as one of the most press-
ing environmental and policy issues being addressed 
by landscape ecologists (Mayer et  al. 2016), espe-
cially global change type impacts of land use and 
climate. Half of the UAS studies reviewed addressed 
issues related to natural disturbances and land change 
at local-to-landscape scales. Terrestrial vegetation-
related land change studies often integrated UAS with 
satellite data to evaluate impacts at landscape scales, 
while other studies focused on geomorphic change 
in streams, rivers, and wetlands tended to exploit the 
very-high resolution UAS data to characterize local-
ized changes that have large ecological impacts. 
Change detection using UAS data can be difficult due 
to challenges aligning datasets as well as the influ-
ence of variable environmental conditions on mul-
titemporal spectral signals (Yao et  al. 2019). More 
importantly, given the recent technological devel-
opment in UAS platforms and sensors, longer-term 
change detection studies using repeat UAS data have 
been rare and are just emerging (Sankey et al. 2024).

Scaling remains an active topic of study in land-
scape ecology (Markham et al. 2023), and ultra-high 
resolution UAS data provide new opportunities to 
examine scaling relationships. Research on statisti-
cal scaling methods from field-collected data to UAS 
(both image and point-based data) and from UAS to 
satellite, could help better integrate small-footprint 
UAS data into larger landscape-scale study designs. 
Many successful applications of scaling and data 
fusion were noted in our review, with some stud-
ies successfully integrating a wide range of remote 

sensing data sets, resolutions and scales to examine 
long-term landscape dynamics (i.e., Sagang et  al. 
2022). OBIA and image segmentation approaches 
are also widely applied for UAS image analysis, and 
OBIA lends itself to questions of scale given the hier-
archical nature of image objects. OBIA can be used to 
address interactions between nested objects like indi-
vidual plants, vegetation communities/habitats, and 
ecosystems (Hay and Castilla 2008; Barker and King 
2012).

Spatial pattern analysis was widely used in UAS 
research designs, and many studies demonstrated 
that fragmentation and patch pattern metrics com-
monly applied to moderate-resolution satellite data 
provide ecological relevant information at much finer 
resolution when calculated from high-resolution UAS 
images. Spatial pattern analysis drives many research 
questions, but we also noted many studies examined 
functional roles of vegetation and wildlife from UAS. 
Relationships between species micro-habitats/distri-
butions mapped from RGB orthomosaics can be used 
to infer multiple ecosystem functions (Shenone et al. 
2021). Multispectral, lidar, and thermal-IR sensors 
support fine-scale assessment of ecosystem processes 
and function across terrestrial systems including 
canopy structure and temperature relationships (Web-
ster et  al. 2018), water stress (Javadian et  al. 2022), 
edge effects on microclimates (Blanchard et al. 2023), 
evapotranspiration (Wang et al. 2019), and respiration 
(Kelly et  al. 2021). As hyperspectral, TIR, and lidar 
UAS sensors become more accessible, with satellite 
data can be linked with UAS sensor data to examine 
temporal and spatial variability of ecosystem function 
across larger landscapes.

Conclusions

UAS is a rapidly evolving tool that is generating 
novel research questions and study designs in the field 
of landscape ecology. UAS expands upon the obser-
vation scales defined by satellite grain and extent, and 
allows researchers to control the resolution, scale, 
spectral information, and timing/frequency of their 
remote sensing data. UAS can function either as a 
main data source for mapping or modeling an eco-
logical system (i.e., micro-habitat maps), or play an 
intermediate role by scaling field measures to satellite 
data. Although UAS data collection and processing 
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can be technically and computationally challenging, 
hardware and software systems are developing rap-
idly and becoming easier to use. Image post-process-
ing and analysis software, supported by cloud com-
puting, could help to increase the performance and 
usability across all stages of the research. Thoroughly 
reporting of their UAS data collection procedures 
and research methods by researchers, and support-
ing of open science practices by sharing code, UAS 
imagery, and other data could help facilitate wider 
use of UAS for ecological applications.
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