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Abstract

Context Soil resource heterogeneity drives plant
species diversity patterns at local and landscape
scales. In drylands, biocrusts are patchily distributed
and contribute to soil resource heterogeneity impor-
tant for plant establishment and growth. Yet, we have
a limited understanding of how such heterogeneity
may relate to patterns of plant diversity and commu-
nity structure.

Objectives We explored relationships between
biocrust-associated soil cover heterogeneity and plant
diversity patterns in a cool desert ecosystem. We
asked: (1) does biocrust-associated soil cover hetero-
geneity predict plant diversity and community com-
position? and (2) can we use high-resolution remote
sensing data to calculate soil cover heterogeneity met-
rics that could be used to extrapolate these patterns
across landscapes?

Methods We tested associations among field-
based measures of plant diversity and soil cover

Supplementary Information The online version
contains supplementary material available at https://doi.
org/10.1007/s10980-024-01986-x.

C. A. Havrilla (<)

Department of Forest and Rangeland Stewardship,
Colorado State University, Fort Collins, CO 80523, USA
e-mail: caroline.havrilla@colostate.edu

M. L. Villarreal
U.S. Geological Survey, Western Geographic Science
Center, P.O. Box 158, Moffett Field, CO 94035, USA

heterogeneity. We then used a Support Vector
Machine classification to map soil, plant and biocrust
cover from sub-centimeter resolution Unoccupied
Aerial System (UAS) imagery and compared the
mapped results to field-based measures.

Results Field-based soil cover heterogeneity and
biocrust cover were positively associated with plant
diversity and predicted community composition. The
accuracy of UAS-mapped soil cover classes varied
across sites due to variation in timing and quality
of image collections, but the overall results suggest
that UAS are a promising data source for generating
detailed, spatially explicit soil cover heterogeneity
metrics.

Conclusions Results improve understanding of rela-
tionships between biocrust-associated soil cover het-
erogeneity and plant diversity and highlight the prom-
ise of high-resolution UAS data to extrapolate these
patterns over larger landscapes which could improve
conservation planning and predictions of dryland
responses to soil degradation under global change.

Keywords Biocrust - Soil heterogeneity - Plant
diversity - Unoccupied Aerial Systems - Unoccupied
Aerial Vehicles

Introduction

Environmental heterogeneity is often an impor-
tant driver of biological diversity within ecological
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communities at local scales (Wiens 1976; Turner
& Chapin 2005; Stein et al. 2014). Soil heterogene-
ity, broadly defined as the variability in soil proper-
ties and/or soil taxonomic classes within a given area
(McBratney and Minasny 2007), is widely predicted
to increase local plant community diversity (or alpha
diversity; Whittaker 1960) by promoting plant coex-
istence through niche differentiation (Hutchinson
1957; Levine & HilleRisLambers 2009; Williams
& Houseman 2014). Experiments testing the role
of soil heterogeneity in plant diversity have often
manipulated soil physical properties and nutrient lev-
els. These studies have generated inconsistent results
(e.g., Stevens & Carson 2002; Wijesinghe et al. 2005;
Reynolds et al. 2007; Williams & Houseman 2014).
Our understanding of this relationship remains lim-
ited due to the contradiction between theory and
small-scale experiments, and variability in the rela-
tionship across spatial scales (Tamme et al. 2010).

In Earth’s arid and semiarid (dryland) ecosystems,
soil resources (i.e., water, nutrients) are heterogene-
ously distributed in space and time through patch
and pulse dynamics (Schlesinger et al. 1996; Garcia-
Palacios et al. 2011; Collins et al. 2014) in which
biological activity occurs in “pulses” following wet-
ting events that punctuate intermediary periods of
inactivity when soil water is scarce (Noy-Mier 1973).
Dryland soil resource heterogeneity is further modi-
fied by biotic patterns and processes. Biological soil
crusts (biocrusts)—surface-dwelling soil biotic com-
munities comprised of cyanobacteria, algae, fungi,
lichens, bryophytes (Weber et al. 2022)—occur in
patchy mosaics on the soil surface and play critical
roles in determining dryland soil resource hetero-
geneity at local scales (Belnap 2003; Concostrina-
Zubiri et al. 2013). For example, biocrusts substan-
tially modify soil hydrology (Eldridge et al. 2020),
and relative to bare soil, generally increase soil stabil-
ity, microtopography (Caster et al. 2021), and mois-
ture (Eldridge et al. 2020), and promote soil nutrient
availability by fixing atmospheric nitrogen (Barger
et al. 2016) and carbon (Mastre et al. 2013), excreting
organic compounds and chelate mineral elements into
the soil surface (Harper & Pendleton 1993), and trap-
ping nutrient-rich fine dust particles (e.g., Martinez
et al. 2006; Delgado-Baquerizo et al. 2010).

Due to the patchy distribution of biocrusts within
drylands (Kozar et al. 2024), and the diversity and
spatial organization of organisms within biocrust
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communities (Weber et al. 2022), biocrusts directly
generate soil cover heterogeneity with implications
for soil functioning. Yet, despite such contributions
to soil cover heterogeneity (Concostrina-Zubiri et al.
2013; Bowker et al. 2014), biocrusts have histori-
cally been examined as single units within ecosys-
tems rather than as biologically and spatially com-
plex communities (Maestre et al. 2005). Nonetheless,
exploring biocrust contributions to spatial soil cover
and associated resource heterogeneity may be fun-
damental to understanding dryland ecosystem func-
tioning and diversity patterns at local to landscape
scales (Maestre et al. 2005) including biocrust inter-
actions with plants and broader ecosystem patterns
and processes. Biocrust-mediated soil cover hetero-
geneity may have important implications for vascu-
lar plant community composition and distribution.
Biocrusts can have multifaceted yet variable impacts
on plant recruitment, growth, and survival (Havrilla
et al. 2019), and as such, may have important filter-
ing effects on plant assemblages (Bowker et al. 2022;
Havrilla et al. 2019; Luzuriaga et al. 2012; Oritz et al.
2023). Plant responses to biocrusts vary depending on
plant species and functional traits and biocrust com-
munity composition (Havrilla et al. 2019; Oritz et al.
2023). Plant species differ in their ability to establish
alongside biocrust patches, thus creating preferential
niches and diverse biogenic communities (Hutchin-
son 1957). Though, the few studies that have exam-
ined the effects of biocrusts on plant diversity and
community composition have generated mixed results
whereby biocrusts have been shown to have positive
(Kleiner & Harper 1977; Jeffries & Klopatek 1987;
Luzuriaga et al. 2012; Scott & Morgan 2012) or nega-
tive (Peralta et al. 2016; Miller & Damschen 2017)
effects on plant diversity patterns. Overall, the poten-
tial of biocrust-associated soil cover heterogeneity to
explain patterns in plant diversity at patch and land-
scape scales remains underexplored.

Given the significant contributions of biocrusts
to spatial heterogeneity and ecological processes in
drylands, it is important to understand their distribu-
tion and abundance at landscape scales (Rodriguez-
Caballero et al. 2015; Ferrenberg et al. 2017; Smith
et al. 2019). Yet, biocrusts are susceptible to local dis-
turbances such as trampling by animals and humans
(Zaady et al. 2016). Consequently, using ground-
based monitoring techniques to survey and map
biocrusts can be destructive to biocrust communities.
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However, since biocrust biomass and biological activ-
ity is generally concentrated and visible in the upper-
most millimeters of the soil surface (Garcia-Pichel
et al. 2003), remote sensing provides alternative
opportunities to detect and characterize biocrust com-
munities without physical soil disturbance.

Remote sensing has proven an effective tool for
characterizing and scaling biocrust patterns and
assessing their ecological function (Read et al. 2016;
Rodriguez-Caballero et al. 2015; Weber and Hill
2016). Recent advances in biocrust remote sens-
ing using small Unoccupied Aerial Systems (UAS)
show potential for characterizing biocrust cover,
patch dynamics, and heterogeneity at ecologically rel-
evant scales (Havrilla et al. 2019; Kozar et al. 2024)
and may thus present promising tools for explor-
ing relationships between biocrust-mediated ground
cover and ecosystem patterns including plant diver-
sity. UAS can provide mapping at scales between
field studies and satellite imagery and may provide
an optimal spatial resolution for detecting biocrusts
and characterizing their spatial patterns (Havrilla
et al. 2019). Biocrusts can vary widely in appearance
and spectral reflectance, making it difficult to apply
spectral training data across sites. New deep learning
approaches have shown promise for accurate segmen-
tation and classification of biocrusts from very high-
resolution photography (Herdy et al. 2024) and show
promise for cross-site image models. To date, most
of the UAS-based remote sensing of biocrusts have
used true-color RGB imagery (Havrilla et al. 2019;
Collier et al. 2022; Kozar et al. 2024) exploiting dif-
ferences in image brightness and texture between
biocrusts, soil and vegetation cover, with some inves-
tigations into thermal-IR and hyperspectral imaging
(Smith et al. 2019; Blanco-Sacristdn et al. 2021).
UAS remote sensing has been generally underutilized
in landscape ecology research (see Villarreal et al.
2024) but has proven effective for assessing plant and
soil dynamics and spatial patterns (Getzin et al. 2022;
Rodriguez-Lozano et al. 2023), predicting local-scale
plant diversity (Polley et al. 2019) and for linking
structure and function across sites and landscapes
(Cunliffe et al. 2022).

To investigate potential relationships between
soil cover heterogeneity associated with biocrusts
and herbaceous plant diversity, we conducted an
observational field study in a cool desert ecosystem
within the Colorado Plateau ecoregion of the western

United States using field-based surveys and UAS-
based remote sensing. We hypothesized that biocrusts
increase local plant alpha diversity (i.e., species rich-
ness, Shannon diversity) by increasing fine-scale
spatial soil heterogeneity and promoting plant coex-
istence through niche differentiation. We addressed
the research questions: (1) is biocrust-associated soil
cover heterogeneity associated with local plant diver-
sity and/or community composition? and (2) can we
use high-resolution remote sensing data to calculate
soil cover heterogeneity metrics that could be used to
extrapolate these patterns across larger landscapes?
Rather than being conducted under heavily controlled
experimental conditions like many soil heterogeneity-
plant diversity studies, this study was conducted in an
area where active livestock grazing contributes to pat-
terns of soil cover heterogeneity, biocrust cover, and
plant diversity on the landscape. Such an approach
is valuable for determining soil cover heterogeneity-
plant diversity patterns in situ in the context of land
use and global change.

Materials and methods
Study site

The study area is located in Beef Basin in Southeast-
ern Utah, USA, within the Colorado Plateau Ecore-
gion (Lat 37° 58’ N, Lon 109° 56 W). Beef Basin
is located within the Bureau of Land Management’s
(BLM) Indian Creek grazing allotment that borders
Canyonlands National Park to the south and south-
east (Fig. 1). Regional climate of the study area is
semiarid with a mean annual precipitation of 335 mm
(range = 142—-474 mm/year), and a mean annual tem-
perature of 11.6 °C (PRISM Climate Group 2014;
30-year average, 1981-2010). Mean site elevation is
1882 m, and soils are characterized taxonomically as
Loamy, mixed, superactive, mesic Lithic Haplocam-
bid (Leanto fine sandy loam; Web Soil Survey 2018).
The main land uses of the area are cattle grazing
(November—May) and recreation. We focused our
survey on Semidesert Shallow Loam (Black Sage-
brush/Indian Ricegrass) ecological sites within the
study area dominated by Artemisia nova (A. Nelson;
black sagebrush) and perennial grasses Achnatherum
hymenoides (Roem. & Schult.; Indian ricegrass),
Pleuraphis jamesii (Torr.; James’ galleta), and
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Fig. 1 A Map of the Beef Basin study area in southeastern
Utah, USA. B UAS data were collected at three, 50X 50-m
plots in the study area (red rectangles) and field data were col-
lected at five plots total, including UAS plots (Sage A, D, and
E) and two plots (Sage B and F) without UAS (blue rectan-

Bouteloua gracilis (Willd. and Kunth; Blue grama;
Web Soil Survey 2018).

In June 2018, we established five, 50X 50-m
(0.25 ha) observational field plots. Within each,
we established eight, nested subplots (hereafter
“patches”) to measure cover and community com-
position of biocrusts (0.5-m?) and herbaceous plants
(1-m?) for a total of 40 patches. Patches were posi-
tioned randomly in open areas within plots (i.e.,
areas not covered by shrub or tree canopies) but at
least five meters apart and represented a gradient of
biocrust cover. We focused our investigations on the
herbaceous plant community (rather than herbaceous
and woody because herbaceous plant species, in gen-
eral, have shallow root systems and shorter lifespans
than woody plants and thus may be more sensitive
to biocrust-mediated soil resource variation at the
soil surface (Kidron & Aloni 2018). Woody plants
also influence nutrient distributions that can affect
biocrust and plant distributions (Ravi and D’Ordorico
2009; Ju et al. 2021). We assigned a qualitative met-
ric of grazing level (i.e., low, medium, high) to each
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plot based on field estimates of the average observed
number of hoofprints present within a five randomly
selected 10-m? areas within each plot (0-5=Ilow,
5-10=medium, > 11 =high) in an effort to character-
ize differences in livestock utilization across plots.

Field-based soil cover and soil heterogeneity
measures

In each patch, we used a 0.5-m? quadrat with 100
intersects to measure the percent cover of soil cover
classes (Table 1, Fig. 2). Soil data from each patch
were analyzed using a multi-metric approach to
describe soil heterogeneity. First, we calculated the
percent cover of all soil cover classes. Then, using
these soil cover data, we used land cover heteroge-
neity metrics commonly used in larger-scale spa-
tial landscape analyses: Land Cover Richness, Land
Cover Diversity to quantify metrics of fine-scale soil
cover heterogeneity at the patch level: (1) soil cover
richness (SCR): the total number of different soil
cover classes present within the sampling area; and
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Table 1 Descriptions of soil predictor variables: field-based soil cover classes, metrics of soil heterogeneity (e.g.,SCH), and other

patch characteristics

Variable Description

Soil cover classes
Bare soil cover (%)
Dark biocrust cover (%)
Light biocrust cover (%)

Non-photosynthetic vegetation
(NPV) cover (%)

Soil heterogeneity metrics

Soil cover richness (SCR)

Soil cover heterogeneity (SCH)
Other plot characteristics

Soil depth (cm)

Plot elevation(m) Mean plot elevation(m)

Grazing intensity

Soil without biocrust organisms present (i.e., bare soil, physical soil crust, and/or rock or gravel)
Biocrusts dominated by cyanobacteria, mosses, and lichens—dark in coloration

Biocrust dominated by cyanobacteria*—light in coloration

Non-photosynthetic vegetation materials on the soil surface (e.g., litter, duff, and wood)

Number of soil cover classes present within the patch (range: 1-4)

Shannon diversity (H) of soil cover classes present within the patch

Depth of soil to the top of the C horizon taken outside top right corner of the patch (cm)

Plot grazing intensity (low, medium, high)

Cover of soil classes determined using quadrat sampling methods in 0.5-m? soil patches. *Whether ground cover was classified as
“Bare Soil” or “Light biocrust” was determined by taking a small sample of soil adjacent to the sampling quadrat. Soils that fell apart
immediately with no visible cyanobacterial filaments were labeled “Bare Soil,” and soils that stuck together, with visible cyanobacte-
rial filaments present (but without dark pigmentation or accompanying mosses and/or lichens) were labeled “Light Biocrust.”

(2) soil cover heterogeneity (SCH): calculated using
the Shannon—Wiener diversity index (H=— ZPi(InPi);
Shannon & Weaver 1949) where p; is the proportion
of each soil cover class (see Table 1) within the plot.
These metrics were chosen due to their widespread
use in spatial landscape analysis and effectiveness
in quantifying environmental spatial patterns (Peng
et al. 2010; Plexida et al. 2014).

Field-based herbaceous plant cover and plant species
diversity

For all patches, we also quantified herbaceous
plant community composition using 1-m* vegeta-
tion quadrats. We used a 1-m” quadrat with 100
intersects to measure percent cover and abundance
of herbaceous plant species by dropping a pin flag
and recording all plant canopies down to the soil
level. Herbaceous plant species identified in Beef
Basin study plots are provided in Table S1 (USDA
NRCS 2024). Plant species that could not be iden-
tified in the field were collected and identified in
the herbarium at the University of Colorado Boul-
der. Fewer than 5% of unknown species specimens
encountered could not be identified due to pheno-
logical stage or missing floral parts. In these cases,
plants were identified to the genus level and treated

as individual species. Then, plant census data were
used to calculate herbaceous plant richness and
diversity.

Remotely sensed measures of soil cover heterogeneity

Three band true-color (red, green, blue; RGB)
image data were collected on June 2, 2018, using a
Ricoh GR II camera (18.3 mm lens) mounted on a
3DR Solo quad-rotor aerial vehicle. We processed
data for three plots covering approximately 0.25 ha
each (Fig. 1). Flights were conducted at 11:15,
15:15 and 15:45 MDT at altitudes ranging from 13.6
to 22.4 m, resulting in ground sampling distance of
0.47, 0.33, and0.56 cm for plots Sage A, D and E
respectively. Details on image processing and other
metadata can be found in Havrilla et al. (2019). Two
UAS orthomosaics collected at sagebrush sites and
included in Havrilla et al. (2019) were not used in
this study due to image inconsistencies in the mosa-
icked products that might have affected pixel-based
supervised classifications based on limited train-
ing samples. All image data and derived products
used for this study can be found in Villarreal and
Havrilla (2024).
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Fig. 2 Field photograph of
patch-level 0.5-m? quadrat
(top left) used to measure
soil cover classes, next
to UAS image of same
plot (top right) showing
approximate locations of
100 intersects (labeled as
white circles in top figure)
that were used to measure
the cover of soil cover
classes in the field. Corners
of patches were labeled and
marked to be visible in the
aerial imagery (top right).
We used the 100 intersect
markings to extract % cover
information from the classi-
fied images (bottom) and to
evaluate the image products
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Support vector machines image classification

We used support vector machines (SVMs), a super-
vised, non-parametric classifier to classify the sub-
centimeter 3-band RGB imagery into the following
classes: dark biocrust, light biocrust, bare soil, dark
rock, light rock, green vegetation, non-photosynthetic
vegetation (NPV), and shadow. For each image area
we selected 25-35 training regions of interest (ROIs)
per class, which were manually digitized over the
orthoimagery. ROI selection was aided by geolocated
ground photographs collected in June 2018 during
the field and UAS campaigns. Previous research on
very high resolution biocrust mapping in these plots
(Havrilla et al. 2019) applied an object-based map-
ping approach with SVM classification, but we chose
a pixel-based SVM here in order to capture the fine-
scale variation in soil cover types that were measured
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within the 1-m? field subplots (~100-point intercept
records). SVM models used a Radial Basis Function
kernel (non-linear), selecting 0.333 Gamma, based on
number of bands, 0.75 penalty parameter (i.e., trade-
off between complexity and the number of non-sepa-
rable points) and classification probability threshold
(i.e., probability required to classify a pixel) =90.

Remotely sensed soil cover heterogeneity

We calculated remotely sensed soil cover heteroge-
neity (SCH_RS) on rasters reclassed to represent the
three main soil cover classes: bare soil/rock, light
biocrust, and dark biocrust. Other classes include
vegetation, NPV and shadow. Shannon diversity (i.e.,
SCH_RS) was calculated with a moving window

(0.5x%0.5 m) using the Focal Diversity Python tool in
ArcGIS Pro (version 2.9.2).
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Data analyses

Effects of field-based soil cover and heterogeneity
on plant diversity patterns

We used a four-step approach to evaluate relation-
ships between field-based soil cover and SCH and
plant diversity and community composition: (1) First,
we performed preliminary data exploration with Pear-
son correlation and boosted regression tree analyses
(BRT) to test for potential relationships among can-
didate soil predictor variables (Table 1) to inform
model selection. (2), Then, we used linear mixed
effects models to investigate relationships between
soil predictor variables and variation in patch plant
diversity. (3) Next, we examined evidence of possible
mechanisms driving plant diversity responses to SCH
using analyses to explore species sorting (i.e., indica-
tor species analysis; Dufréne & Legendre 1997), spa-
tial turnover, and density-richness relationships. (4)
Finally, we used permutational multivariate analysis
of variance (PERMANOVA) to test whether patch
soil cover and SCH structured plant community com-
position. All statistical analyses were conducted in R
version 4.3.2 (R Core Team 2023). Alpha=0.05 was
used to determine significance level for all statistical
analyses.

Correlation analysis and boosted regression tree data
exploration

Before developing predictive models for plant diver-
sity metrics, we explored relationships among varia-
bles. We first tested all variables for multicollinearity
(Neter et al. 1996) by examining cross-correlations
(Pearson correlation coefficients, r) between variables
using the Hmisc package (Harrell & Harrell 2019).
When the correlation coefficient between two soil
predictor variables was Irl>0.65 (Taylor 1990), one of
the two variables was discarded prior to subsequent
analyses. We then used boosted regression tree (BRT)
analysis with forward stepwise multiple regression to
identify influential soil predictor variables and elimi-
nate non-significant predictor variables from models
using the ‘gbm.step’ function in the gbm (Ridgeway
2013) and dismo packages (Hijmans et al. 2017) as
in Elith & Leathwick (2017). Models were simplified
using the ‘gbm.simplify’ function suggested by Elith
and Leathwick (2017). Simplified BRT models for

each analysis included the most influential modera-
tors and ranked them according to their relative con-
tributions (which are scaled to sum to 100% within
each model—i.e., the predictor variable explains X %
of the variation explained by the fitted BRT) to the
explanation of variation in the response variable. Rel-
ative variable influences were derived as an average
of variable influence in all trees in each BRT model
(Friedman & Meulman 2003). Potential interactions
between predictor variables in final BRT models were
explored using the ‘gbm.interaction’ function (Elith
& Leathwick 2017).

Mixed effects models: relationships between soil
heterogeneity and plant diversity

Following the selection of influential candidate soil
predictor variables to be retained in predictive mod-
els, we fit linear mixed models (LMEs) using the
‘lmer’ function in the /me4 package (Bates et al.
2010) to test for relationships between plant Shan-
non diversity and soil predictor variables. We tested
LMEs for assumptions of normality and heterosce-
dasticity using Shapiro—Wilk and Levene’s tests (via
the ‘car’ package; Fox et al. 2012) respectively. We
used Akaiki’s Information Criterion (AIC) adjusted
for small sample size (AIC;; Burnham & Ander-
son (2002)) to select final models for each response
variable from the set of candidate LMEs developed.
We used the ‘r2’ function in the performance pack-
age (Liidecke et al. 2021) to calculate marginal and
conditional R? values associated with fixed and ran-
dom effects in final models. For fixed effect variables
that were found to be significant in the final model,
we used univariate regression to explore relationships
between plant H and influential predictor variables
(e.g., SCH, percent dark biocrust cover).

Species sorting, spatial turnover,

and density-richness relationships in patches
with different levels of soil cover heterogeneity
and biocrust cover

We tested for evidence of species sorting and among
patches with low, medium, and high SCH and biocrust
cover. We used indicator species analysis using the
‘multipatt’ function in the indicspecies package (De
Caceres et al. 2016) to test for species affinities for
a priori defined patch types (SCH: low=1.75-2.50,
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medium=2.51-3.25, high=3.26-4.00; biocrust
cover: low=>25%, medium = <25%-50%,
high= >50%-75%). Species were identified as being
sorted when a significant indicator value among soil
predictor levels was detected based on 999 randomi-
zations. We also separately explored relationships
between predictor variables and the cover of different
plant functional groups (i.e., annual grasses, annual
forbs, perennial grasses, perennial forbs) using uni-
variate linear regression. Then, we used the ‘beta.
multi’ function in the betapart package (Baselga et al.
2010) to calculate overall species turnover (Simpson’s
index for dissimilarity) and spatial turnover (Sgrensen
index for dissimilarity) for SCH patch types (Baselga
2010). To examine the potential relative importance
of niche versus neutral processes in driving plant
community Shannon diversity in patches with differ-
ent levels of soil heterogeneity (Doncaster 2009), we
also tested the strength of density-richness relation-
ships among patches within low, medium, and high
SCH.

PERMANOVA: relationships among plant community
composition, soil cover, and soil cover heterogeneity

We separately tested for relationships among SCH,
cover of soil cover classes, and plant community
composition using PERMANOVA (permutation-
based multivariate analysis of variance), with 9999
permutations and relativized Bray—Curtis dissimilar-
ity (package ‘vegan’; Oksanen & Blanchet 2016). To
perform PERMANOVA model selection, we used the
‘AICcPermanova’ package (Corcoran & Corcoran
2023), which we used to generate all possible noncol-
linear models for our set of candidate predictor vari-
ables (Table 1), calculate associated AICc values, and
select top candidate models.

Associations between UAS and field-based soil cover
heterogeneity metrics

To validate how well UAS classifications represented
individual soil cover types, we used linear regres-
sions on the field patch point intercepts for (1) bare
soil, (2) light biocrust, (3) dark biocrust and (4) total
biocrust cover. Regressions were calculated individu-
ally for each 0.25 ha plot (n=3), and each plot con-
tained 8 subplots consisting of 100-point intercept
data points each (Fig. 2). We tested relationships
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between the percent area of each class in a 0.5-m?
quadrat compared to a fishnet grid of 100 points
that roughly approximated the locations of the point
intercept data (Fig. 2) and found strong relationships
between the two (bare soil: R*=0.91, light biocrust:
R?=0.96, dark biocrust: R2=0.86, and total biocrust:
R%2=0.98). We therefore used the 0.5-m? areal esti-
mates of percent cover in further regression analyses.

Associations between UAS soil cover heterogeneity
and plant diversity

We used linear regression to explore associations
between UAS soil cover heterogeneity (SCH_RS) and
field-based plant Shannon diversity at the patch level.
Mean (SCH_RS_avg) and maximum (SCH_RS_max)
values were extracted from the rasters based on poly-
gons outlining the 0.5-m? soil quadrats.

Results

Plot characteristics: groundcover, climate, and
livestock grazing

Average plant cover within study plots was 45.0
(stdev=16.8%). Mean plant species richness
was 3.60, stdev=1.60 species (Sage A=3.43,
stdev=0.49; Sage D=3.13, stdev=0.83; Sage
E=4.13, stdev=1.73). Mean plant Shannon diversity
was 2.4 (stdev=0.90) (Sage A=2.62, stdev=0.65,
Sage D=2.61, stdev=1.31, Sage E=2.06,
stdev=0.49). Mean bare soil cover within plots was
23.6+16.9%, light cyanobacterial biocrust cover was
24.2 +15.7%, and dark biocrust cover was 7.6 +8.9%.
Overall, Sage_A had a high cover of bare soil and
light cyanobacterial biocrust cover, whereas Sage_D
and Sage_E had more mixed cover of bare soil, light
cyanobacterial biocrust, and dark biocrust cover.
Plant cover in Sage_A was typically dominated by
perennial and annual grasses (especially B. fectorum),
while Sage_D and Sage_E had higher cover of peren-
nial grasses and some forbs. There was a substantial
drought during the 2018 growing season. Precipita-
tion in the 12 months leading up to our field survey in
June 2018 was 58.9% lower (Fig. S1) and mean tem-
perature was 1.4 °C higher (+11.2%) than the 30-year
long-term averages during this time period (Fig. S1).
Based on field estimations, qualitatively assessed
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grazing levels were variable in plots ranging from low
to high.

Data exploration: relationships between measures
of soil cover heterogeneity and plant diversity

Pearson correlation analyses showed that plant rich-
ness and plant Shannon diversity (H) were highly
correlated (r=0.87, p<0.001; Fig. S2) and were
similarly correlated to candidate predictor variables.
As such, we made the decision to proceed with sub-
sequent analyses only for plant diversity. Plant diver-
sity was positively correlated with SCH (r=0.40,
p=0.011; Fig. S2), and soil depth (r=0.49, p=0.002;
Fig. S2), and marginally, with dark biocrust cover
(r=0.41, p=0.053; Fig. S2). Boosted regression tree
(BRT) data exploration showed that the candidate soil
predictor variables with significant explanatory power
in predicting plant diversity were SCH, dark biocrust
cover, bare soil cover, and soil depth.

Predictive linear mixed effects models of herbaceous
plant diversity

Using influential candidate soil predictor variables
identified by correlation and BRT analyses, we gen-
erated predictive linear mixed effects models for
plant Shannon diversity. The best model included
SCH, percent dark biocrust cover, and their inter-
action as fixed effects. Soil depth and grazing were
included as random effects. Plant diversity was
positively associated with both SCH (X?=4.298,
p=0.038; Table 2) and the interaction between
SCH and percent dark biocrust cover (X>=6.610,
p=0.010; Table 2). Univariate regression on sig-
nificant variables showed that plant diversity
increased with increasing SCH (¢r=2.68, p=0.010;
Fig. 3) and soil depth (r=3.43, p=0.001; Fig. 3),
and marginally, with dark biocrust cover (t=2.01,
p=0.052; Fig. 3).

Table 2 Linear mixed

Predictor Est SE t-value LME Wald Type
effects (LME) model 11 ChiS-
results for herbe}ceous plant quare
Shannon diversity 3 2 y
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Species sorting, spatial turnover,
and density-richness relationships

Indicator Species Analysis identified plant species
associated with different soil patch types with respect
to patch soil cover heterogeneity and biocrust cover.
Perennial grasses Elymus elymoides (squirreltail) and
Achnatherum hymenoides (Indian ricegrass) were
found at greater abundance in patches with high SCH
relative to other SCH patch types (IndVal=0.632;
p=0.005 and IndVal=0.237; p=0.050 respectively).
We also identified species as sorting with respect to
levels of patch dark biocrust biocrust cover. Elymus
elymoides (IndVal=0.555, p=0.014) and annual forb
Plantago patagonica (wooly plantain; Indval=0.365;
p=0.043) were associated with high biocrust cover,
Sclerocactus whipplei (Whipple’s fishhook cactus;
Invdal =0.474; p=0.098) was marginally associated
with medium biocrust patches, and invasive annual
grass Bromus tectorum (cheatgrass) was associated
with low biocrust patches (Indval =0.739; p=0.029).

Regression analyses between SCH variables and
cover of plant functional groups showed that while
patch total plant cover was negatively associated with
total biocrust cover within patches overall (r=-0.57;
p<0.001; Fig. S2), this relationship was not consist-
ent across plant functional types. In similarity to ISA
results, annual grass cover decreased with increasing
total biocrust cover (p=0.003; Fig. S3a). The annual
grass category was almost entirely composed of the

invasive exotic grass species B. tectorum, indicating
biocrust cover was negatively associated with B. tec-
torum cover at the patch scale. In contrast, we found
a small but significant increase in annual forb cover
with increasing total biocrust cover (p=0.034; Fig.
S3c). While we found evidence of species sorting
by SCH levels and biocrust cover, analysis of spe-
cies turnover showed communities in patches with
high SCH (heterogeneous) did not differ significantly
in their spatial turnover compared to medium or low
SCH (homogeneous) patches (all p>0.05, Table S2).
Species rarefaction curves indicated high SCH
patches accumulated more species over standardized
densities than patches with lower heterogeneity (Fig.
S4). Analysis of density-richness relationships among
patches with low, medium, and high SCH showed
that density-richness relationships were relatively
weak, with no significant density-richness relation-
ships among SCH patch types (all p > 0.05; Fig. S5).

PERMANOVA: plant community composition

The final PERMANOVA model included SCH, per-
cent total biocrust cover, percent bare soil cover and
their interactions (Table 3). Results showed that plant
community composition varied marginally related
to patch soil cover heterogeneity (SCH; p=0.059),
and significantly by percent bare soil (p=0.003)
and the interaction between SCH and bare soil cover
(p=0.013, Table 3).

Table 3 Relationships among SCH, soil cover and herbaceous plant community composition

Predictor variable df SS R? Pseudo-F P value
Soil cover heterogeneity (SCH) 1 0.369 0.046 2.126 0.059
Total biocrust cover (%) 1 0.244 0.031 1.404 0.204
Bare soil cover (%) 1 0.689 0.087 3.971 0.003**
SCH x Total biocrust cover (%) 1 0.177 0.022 1.021 0.393
SCH x Bare soil cover (%) 1 0.516 0.065 2.971 0.023*
Total biocrust X Bare soil cover (%) 1 0.129 0.016 1.633 0.170
SCH X Total biocrust X Bare soil cover (%) 1 0.129 0.016 0.746 0.577
Residuals 32 5.555 0.698

Total 39 7.964 1.000

Results for PERMANOVA analysis of relativized Bray—Curtis dissimilarities for herbaceous plant community structure in relation to
soil cover heterogeneity (SCH), total biocrust cover (%), grazing level, and their interactions

df degrees of freedom; SS sum of squares, Pseudo-F F value by permutation

Bold face indicates statistical significance (P <0.05); P-values are based on 9999 permutations (i.e., the lowest possible P-value is
0.0001). Significance codes: <0.001 “****° < (.01 “**’,<0.05 ‘*’,<0.1 *’
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UAS validation and classification results

Our comparison between field-based data measured
within 0.5-m? quadrats to UAS estimates of percent
cover yielded mixed results that varied consider-
ably by 0.25 ha plot. Dark biocrust had the highest
overall R? (0.50), ranging from 0.84-0.06 at the plot
level (Fig. 4). Light biocrust ranged from R?>=0.34 to
0.14 but had no significant relationship across plots
(Fig. 4). Bare soil had high correlations at one plot
(Sage E, R2:0.81), but weak correlations at two
other plots (Fig. 4). Much of the error and variabil-
ity observed was related to confusion between bare
soil and light biocrust, and similarly between dark
biocrust and shadows. While this quantitative com-
parison offers some estimation of the accuracy of our
UAS SVM image classifications, it should be noted
that geolocating the exact spots where field point
intercept measurements were made on sub-centimeter

Fig. 4 Scatterplots show-
ing the relationship between

(a) Bare Soil (%)

imagery is challenging and slight positional differ-
ences between the two data sets can cause misalign-
ment of validation data (Fig. 2). Given the ultra-high
pixel resolution UAS imagery, visual comparison of
classified UAS imagery vs. the UAS RGB orthoim-
ages and field photographs (Fig. 2) provide additional
subjective evidence of map quality; The classified
maps produced for this project do well to represent
the observed patterns of soil, biocrust and vegetation
represented in the images (Fig. 5), despite the expres-
sion of error quantified using field methods at the
patch scale (Fig. 4).

UAS distribution of soil cover classes and soil cover
heterogeneity across plots

The classified images of the larger 50-m plots showed

variation in the amount and distribution of vegeta-
tion, biocrusts, and soils. Sage A was dominated by

(b) Light Biocrust (%)
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0.75

Land cover classes

Bare soil = Dark rock

== |_ight cyanobacteria
== Dark biocrust

Light rock == Shadow

Fig. 5 Plot-scale map (row A) and zoomed details (1:66 and
1:17 respectively) of original high resolution (0.3 cm) RGB
orthomosaic images, support vector machine (SVM) image

non-photosynthetic vegetation (NPV; 60.3%) which
was mostly in the form of senescent bunchgrasses,
with 30.7% light biocrust, 4.21% dark biocrust
and < 1% bare soil. Sage D had a more even mix of
cover types with 19.6% NPV, 15.7% light biocrust,
15.9% dark biocrust and 19.2% bare soil. Sage E
had the greatest total biocrust cover with 28.1% light
biocrust, 18.0% dark biocrust, 16.4% NPV and 5.2%
bare soil. Green vegetation represented a small pro-
portion of cover in each plot and ranged from 3.7%
(Sage A) to 11.3% (Sage E). Plot-level soil cover
heterogeneity was highest at Sage D (mean SCH_
RS =1.14, stdev=0.23) followed by Sage E (mean
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== Non-photosynthetic vegetation
= Green vegetation

Soil cover heterogeneity
1.5

classifications (row B) and remotely sensed soil cover hetero-
geneity (RS_SCH_RS) (row C). Red and blue boxes indicate
the area of detail of the images to the right

SCH_RS =1.00, stdev=0.25). Sage A had low aver-
age plot soil cover diversity (mean SCH_RS=0.64,
stdev=0.26). SCH_RS varied spatially across indi-
vidual plots, and visual comparison shows cross-site
differences in spatial patterns, with considerable
heterogeneity in Sage A and homogeneity in Sage E
(Fig. 6).

Relationships between remotely sensed soil cover het-
erogeneity and ground-based plant diversity Plot-
level SCH_RS patterns (where Sage D> Sage
E > Sage A) did not align to observed patterns of field-
based plant diversity (Sage A>Sage D>Sage E).
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Fig. 6 Plot-scale SCH_RS

maps of three sites, Sage A

(A), Sage D (B) and Sage E
(C) generated from support

vector machine (SVM) clas-
sifications

Similarly, at the patch-level, linear regression showed
no significant associations between average or maxi-
mum SCH_RS and plant Shannon diversity (p > 0.05).
Though, within Sage D and Sage E plots, field-based
plant diversity trended higher with higher maximum
SCH_RS (Fig. S6).

Discussion

We used field-based soil and plant surveys and high-
resolution UAS remote sensing to explore co-occur-
rence patterns between biocrust-associated soil cover
heterogeneity (SCH) and local plant diversity in a
cool-desert ecosystem in the Colorado Plateau Ecore-
gion, USA. Further, we tested whether remote sens-
ing data could be used to calculate robust SCH met-
rics that could be used to extrapolate these patterns
across larger landscapes. We found that (1) biocrust-
associated SCH predicted local plant diversity and
community composition patterns at the patch scale.
Specifically, plant Shannon diversity increased with

Soil cover heterogeneity
1.5

.0

increasing SCH and dark biocrust cover, and SCH
predicted plant community diversity patterns with
evidence of species sorting into patches with different
levels of SCH. (2) Second, we found that while the
accuracy of UAS-mapped soil cover classes varied
across sites due to variation in timing and quality of
image collections, UAS are a promising data source
for generating highly detailed, spatially explicit SCH
metrics. These findings improve understanding of co-
occurrence patterns between biocrusts, soil cover het-
erogeneity and plant diversity in drylands and high-
light the potential of UAS to map and scale metrics of
soil cover heterogeneity.

Soil cover heterogeneity and biocrust cover predicted
plant diversity and community composition

Overall, field-based, biocrust-associated SCH was
positively associated with plant diversity (H) at
the patch scale. This finding aligns with results of
past studies that have shown positive relationships
between soil heterogeneity and plant alpha diversity
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patterns (e.g., Wijesinghe et al. 2005; Williams &
Houseman 2014) and could have several possible
explanations. First, differences in total plant density
among patches could explain differing levels of plant
diversity among patches. Community theory predicts
a strong relationship between plant species richness
and plant density and often suggests neutral-type
assembly processes (a sampling effect) where sto-
chastic colonization and extinction generate richness
patterns that are largely dependent on total plant den-
sity (Hubbell 2005). However, we found no strong
differences between density-richness relationships
among patches with different levels of SCH (Fig. S5).
Further, species rarefaction curves suggested that
high SCH patches accumulated more species over
standardized densities than patches with lower hetero-
geneity (Fig. S4). That more species accumulated in
patches with greater soil surface heterogeneity (i.e.,
higher SCH) is consistent with theoretical predictions
that plant community assembly is driven by niche
type processes in harsh environments like drylands
(Trexler et al. 2005; Chase 2010), and, here, may be
mediated in part by soil cover heterogeneity. Since
we found no evidence of density-dependent drivers of
plant diversity among SCH patch types, a second pos-
sibility is that plant species diversity is higher in more
heterogeneous patches because of differential species
sorting which can generate differences in spatial turn-
over among patch types (Hutchinson 1957; Chase &
Leibold 2009). Though there were no detectable dif-
ferences in species turnover among SCH patch types
(Table S2), we did find evidence of species sorting
of indicator species into patches with different levels
of SCH. This result, along with observed increases
in local plant diversity in patches with higher SCH
(Fig. 3), aligns with predictions that soil cover het-
erogeneity may increase plant diversity by promot-
ing coexistence through niche differentiation. Though
it is also possible that alternatively, plant diversity
could also in part drive patterns of SCH.

Biocrust cover was also associated with plant
diversity. Plant diversity increased with increasing
dark biocrust cover (i.e., cover of biocrusts domi-
nated by dark cyanobacteria, mosses, and/or lichens).
This result is consistent with studies that have found
positive correlations between biocrust cover and
plant diversity (Kleiner & Harper 1977; Jeffries &
Klopatek 1987; Luzuriaga et al. 2012; Scott & Mor-
gan 2012) and may suggest that biocrusts support
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plant diversity by promoting increases and/or greater
heterogeneity in soil resource availability in space
and/or time (Concostrina-Zubiri et al. 2013), thereby
promoting plant coexistence through niche differen-
tiation. Species sorting into patches with low vs high
biocrust cover observed in our study supports this
assumption. For example, that perennial C3 grass spe-
cies Elymus elymoides (squirreltail) and Achnatherum
hymenoides (Indian ricegrass) showed greater abun-
dance in patches with high dark biocrust cover could
suggest affinity for recruitment and/or higher fitness
of these species in biocrust microsites. Conversely,
higher occurrence of invasive annual grass Bromus
tectorum (cheatgrass) in low biocrust cover patches is
consistent with the results of a global meta-analysis
by Havrilla et al., (2019) found that biocrusts tend
to inhibit recruitment of non-native plant species.
Nonetheless, such species co-occurrence patterns
could be associated with patch disturbance legacies
(see Livestock grazing section below) or low sample
size. Though the mechanisms underlying these pat-
terns remain uncertain, results indicate that patterns
of biocrust-associated soil cover heterogeneity can be
used to predict plant diversity patterns.

UAS are a promising data source for generating
highly detailed, spatially explicit soil cover
heterogeneity metrics

We demonstrated that UAS-based land cover classifi-
cations can in some cases adequately capture spatial
distribution of soil cover types at very high resolution,
and maps of soil cover heterogeneity (i.e., remotely
sensed soil cover heterogeneity; SCH_RS) generated
from classified UAS imagery can provide a means
to visualize and assess landscape-scale patterns. We
observed considerably different patterns of SCH
at the plot scale (Fig. 6), driven by the composition
and distribution of land cover classes, including the
abundance of vegetation and non-photosynthetic veg-
etation. The two plots (Sage D and Sage E) with an
even mix of land cover types, low non-photosynthetic
vegetation, and high proportion of dark biocrust, dis-
played highest SCH_RS associated with greater plant
diversity. At these two plots, patch-level SCH_RS
metrics generally corresponded with field-measured
plant diversity (Fig. S6), suggesting that UAS data
are useful for characterizing and modeling diversity
at both the patch and the plot scales. However, in the
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remote sensing models the lowest plot and patch SCH
was observed at Sage A, and these findings did not
agree with the field-based measures. Validation of
UAS-classified soil cover with field-measured point-
intercept data showed low correlations of bare ground
and dark crust in the Sage A plot, which contributed
to a low estimate of SCH_RS and weak relationships
to field-measured plant diversity.

The variability in the accuracy of the UAS classi-
fications among plots made direct comparison to the
patch- and plot-level plant diversity data challenging.
Inconsistencies in modeled data arising from use of
different UAS image sets flown at different locations,
times and under different conditions can complicate
landscape-scale studies. Even while employing stand-
ardized image collection protocols, variable environ-
mental conditions like wind and ambient lighting can
impact the quality and radiometric consistency of
different image collections, impacting classification
results and making cross-plot comparisons difficult.
Problems with UAS data collections often do not
become obvious until the data are processed in the
days or weeks after field campaigns. These obstacles,
and the need for potential redundancy in UAS and
field collections, should be recognized when design-
ing studies that seek to integrate field and UAS data
collections that represent variability over landscape
gradients.

Furthermore, the challenge of aligning sub-cen-
timeter resolution UAS data with sub-plot scale field
measurements is an issue vexing ecologists who are
working to integrate the two (Buters et al. 2019; van
Blerk et al. 2022). In our case, it was difficult to con-
fidently locate the field-measured intercept points at
an exact location on UAS maps that were meant to
capture pixel-level soil cover heterogeneity. This
type of positional error can be overcome with use of
object-based image classification methods that group
similar pixels into larger objects (as were applied in
our previous study, see Havrilla et al. 2019). This
approach may be desirable in UAS rangeland moni-
toring applications where soil cover heterogeneity is
not of interest and where pixel-based classifications
may introduce noise into vegetation cover classifica-
tions (Gillan et al. 2020), but in our case the soil and
biocrust signals would be lost by grouping pixels into
larger “objects.” Based on our experience attempt-
ing to characterize fine-scale patterns within a 0.5-
m? quadrat from UAS imagery, we suggest collecting

field-photographs at multiple elevations, angles and
zooms of the plot and surrounding area during the
data collection effort. High quality field photos can
act as additional reference sources when needed
(Fig. 2).

Despite these challenges, high resolution UAS
images remain a promising source of data for cap-
turing spatial patterns of soil surface microbial com-
munities, and maps of biocrust types, abundance and
distribution can provide insight into ecosystem func-
tion at local to landscape scales (Havrilla et al. 2019;
Blanco-Sacristan et al. 2021; Kozar et al. 2024).
It may be possible to further scale UAS-mapped
biocrust observations using high- and moderate-reso-
lution satellites through spectral unmixing (Riihiméki
et al. 2019), opening additional opportunities to
investigate biocrust-plant relationships across larger
landscapes and environmental gradients. Recent
research estimating biocrust fractional cover from
moderate-resolution satellite imagery (Rodriguez-
Caballero et al. 2014; Poitras et al. 2018; Enterkine
et al. 2024) shows promise for quantifying the het-
erogeneity of biocrusts, vegetation and soils within
pixels and over large landscapes. But unlike green
vegetation that display distinctive spectral signatures
in the visible and infrared wavelengths, dry biocrusts
often display spectral responses similar to bare soil
(Rozenstein and Adamowski 2017) and non-photo-
synthetic vegetation/plant litter, creating challenges
for remote detection at any pixel resolution. Because
of these challenges and because biocrust appearances
can vary considerably in different environments and
geographies, biocrust remote sensing remains an
active research topic. Airborne hyperspectral imaging
of biocrusts shows considerable promise for differen-
tiating biocrusts from soils, especially when image
collection campaigns are timed to exploit photosyn-
thetic activity during and after precipitation (Rod-
riguez-Caballero et al. 2017).

Study limitations, future directions, and broader
applications

Field data from our study provides preliminary sup-
port for the hypothesis that biocrust-associated SCH
is positively associated with plant alpha diversity and
that patterns of SCH can be more broadly assessed
through calculation of remotely sensed metrics
of SCH. However, observed mismatches between
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UAS-derived SCH metrics and field-based plant
diversity in our study highlight challenges that remain
in using this approach to assess these patch-level pat-
terns at multiple scales. Considerations of these limi-
tations allow us to identify future study directions and
broader applications of our findings.

Interpreting soil cover heterogeneity-plant diversity
relationships in the context of broader environmental
and disturbance gradients

Investigating soil cover heterogeneity-plant diversity
relationships in situ is challenging because soil het-
erogeneity can rarely be measured in the absence of
other potentially confounding environmental and/or
disturbance gradients in natural systems. Similarly,
in our study, several environmental factors may have
contributed to the observed patterns in local plant
alpha diversity patterns across gradients of biocrust
cover and SCH.

Livestock grazing—First, cattle grazing likely
contributed to observed soil cover patterns through
direct effects on both plant diversity and soil cover.
In dryland landscapes, livestock grazing is often a
geologically novel disturbance (Asner et al. 2004)
that can decrease plant diversity (Hanke et al. 2014;
Herrero-Jauregui & Oesterheld 2018) and biocrust
cover as a result of physical disturbance via trampling
(Zaady et al. 2016). In some drylands, grazing can
impose an ecological filter that screens out all but a
few plant species and functional groups, constrain-
ing diversity (Temperton et al. 2004). As such, while
we might have expected that we would consistently
find the highest plant diversity in patches with lower
grazing pressure, we found no significant relation-
ships between patch grazing level and plant diversity
or community composition. Alternatively, grazing
may have indirectly contributed to increased SCH
within patches by fragmenting late-successional dark
biocrust patches into diverse mosaics containing dif-
ferent biocrust successional stages and bare soil. Such
small-scale disturbances can increase soil heterogene-
ity and species coexistence (Questad & Foster 2008).
However, given Concostrina-Zubiri et al. (2013)
showed high grazing intensity negatively impacts
biocrust-mediated soil cover heterogeneity, heavier
grazing might presumably diminish these effects.

Soil depth—Soil depth also differed across patches
and was positively associated with plant diversity as
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has been shown in past studies (e.g., Dornbush &
Wilsey 2010). Since plant diversity was positively
associated with both SCH and soil depth, we are una-
ble to parse apart the effects of soil cover heteroge-
neity and soil depth individually. Soil depth can vary
with geomorphic conditions and soil composition,
which may also drive patterns of SCH. To explicitly
disentangle the effects of biocrust-mediated SCH,
soil depth, and grazing on local plant diversity, future
studies should attempt to quantify these effects in the
absence of differences in soil depth and grazing, or
across planned gradients in these variables in situ.

Climatic variability and drought—This study
took place during a single growing season in which
the community experiences a significant drought.
Drought acts as a primary abiotic filter on annual
plant community assembly in drylands (Luzuriaga
et al. 2012) and can strengthen the dominance niche-
type processes in determining plant community
assembly (e.g., Chase 2010). As such, future research
should explore whether biocrust-plant diversity pat-
terns (particularly in the annual plant community)
shift depending on interannual variability in precipi-
tation and/or temperature across time.

Exploring heterogeneity-diversity relationships
across multiple spatial scales

Environmental heterogeneity-species diversity rela-
tionships can be highly dependent on the spatial scale
at which plant species diversity is quantified (Tamme
et al. 2010). For example, while heterogeneity-diver-
sity relationships are thought to be more variable
at smaller spatial scales, at large scales (e.g., land-
scape level), different vegetation communities may
coexist, promoting large regional species pool size
and resulting in more consistently positive hetero-
geneity-diversity relationships (Tamme et al. 2010).
As such, future work should evaluate relationships
among biocrust cover, soil cover heterogeneity and
plant diversity patterns across multiple spatial scales.
Advances in remote sensing of plant biodiversity, par-
ticularly at species (reviewed in Chavan & Kulkarni
2023) and functional (Ustin & Gammon 2010) lev-
els, combined with emerging techniques to remotely
sense biocrust-associated soil cover heterogeneity
demonstrated here, could provide opportunities to
map and analyze patterns between SCH and plant
diversity across larger landscapes.
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Broader applications in landscape ecology,
management, and conservation

Results from our study also indicate that similar
approaches could be used for other applications in
landscape ecology, management, and conservation.
Biocrusts are microcosms that can be used as a
model system for understanding the contributions of
biodiversity and spatial patterning for maintaining
ecosystem multifunctionality (Bowker et al. 2014).
The relationships and methods demonstrated in
our study open new possibilities for observational
studies and experiments that explore the role of
biocrust spatial patterns in determining ecosystem
processes across larger spatial scales. As UAS sen-
sors and classification models improve, so will our
ability to accurately discern spatial distribution of
plants, soils and biocrusts patterns at high resolu-
tions. Ultra-high resolution UAS remote sensing is
opening avenues of study into soil-plant dynamics
that are less reliant on traditional field methods, and
that can be more consistently measured and scaled
over landscapes. These UAS techniques have appli-
cations beyond assessing biocrusts function in dry-
lands: for example, von Nonn et al., (2024) similarly
mapped spatial distribution of soil properties in
post-fire environments, where abundance and distri-
bution of different colored soils, charred soils, veg-
etation, and rock/cobble mapped from UAS can be
used to predict post-fire erosion and sedimentation
(von Nonn et al. 2024). Likewise, our understand-
ing of wind erosion and dust production in drylands
(Zhang et al. 2021) might be improved through the
estimation of soil surface heterogeneity and micro-
topography using UAS data. Finally, novel applica-
tions of UAS imagery for modeling species micro-
habitats has been a major new advancement in the
landscape ecology literature (Habel et al. 2016;
Schenone et al. 2021; 2022; Gerber et al. 2023)
and researchers are using these fine-scale data to
develop habitat covariates at scales that are rel-
evant to animals and insects. Like plant diversity,
biocrusts are known to influence insect diversity
(Li et al. 2006), and SCH and biocrust maps could
serve as habitat variables for understanding habitat
relations across larger areas though improvements
are still needed to match field and remote sensing
observations.

Conclusions: soil cover heterogeneity associated
with biocrusts shows promise to predict local plant
diversity patterns

Results from this study demonstrate positive co-
occurrence patterns between biocrust-mediated soil
cover heterogeneity and plant diversity and offer
provisional support for the hypothesis that biocrusts
may play a role in supporting local plant diversity
by increasing SCH and niche differentiation for
plant taxa with diverse resource requirements. UASs
are a promising data source for generating highly
detailed, spatially explicit soil cover heterogene-
ity metrics and developing methods show poten-
tial for investigation of these patterns across larger
landscapes as well as other related applications. In
the next several decades, biocrusts are expected to
experience significant declines and compositional
shifts worldwide in response to global change (Fer-
renberg et al. 2015; Reed et al. 2016; Rodriguez-
Caballero et al. 2018). Consequently, drylands may
experience increased soil habitat homogenization.
Increasing our understanding of how biocrusts, by
contributing to soil cover heterogeneity, may drive
plant community diversity and structure thus has
important implications for predicting how drylands
will respond to global change and may have appli-
cations for conservation and restoration planning
across dryland landscapes.
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