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heterogeneity. We then used a Support Vector 
Machine classification to map soil, plant and biocrust 
cover from sub-centimeter resolution Unoccupied 
Aerial System (UAS) imagery and compared the 
mapped results to field-based measures.
Results  Field-based soil cover heterogeneity and 
biocrust cover were positively associated with plant 
diversity and predicted community composition. The 
accuracy of UAS-mapped soil cover classes varied 
across sites due to variation in timing and quality 
of image collections, but the overall results suggest 
that UAS are a promising data source for generating 
detailed, spatially explicit soil cover heterogeneity 
metrics.
Conclusions  Results improve understanding of rela-
tionships between biocrust-associated soil cover het-
erogeneity and plant diversity and highlight the prom-
ise of high-resolution UAS data to extrapolate these 
patterns over larger landscapes which could improve 
conservation planning and predictions of dryland 
responses to soil degradation under global change.

Keywords  Biocrust · Soil heterogeneity · Plant 
diversity · Unoccupied Aerial Systems · Unoccupied 
Aerial Vehicles

Introduction

Environmental heterogeneity is often an impor-
tant driver of biological diversity within ecological 

Abstract 
Context  Soil resource heterogeneity drives plant 
species diversity patterns at local and landscape 
scales. In drylands, biocrusts are patchily distributed 
and contribute to soil resource heterogeneity impor-
tant for plant establishment and growth. Yet, we have 
a limited understanding of how such heterogeneity 
may relate to patterns of plant diversity and commu-
nity structure.
Objectives  We explored relationships between 
biocrust-associated soil cover heterogeneity and plant 
diversity patterns in a cool desert ecosystem. We 
asked: (1) does biocrust-associated soil cover hetero-
geneity predict plant diversity and community com-
position? and (2) can we use high-resolution remote 
sensing data to calculate soil cover heterogeneity met-
rics that could be used to extrapolate these patterns 
across landscapes?
Methods  We tested associations among field-
based measures of plant diversity and soil cover 
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communities at local scales (Wiens 1976; Turner 
& Chapin 2005; Stein et  al. 2014). Soil heterogene-
ity, broadly defined as the variability in soil proper-
ties and/or soil taxonomic classes within a given area 
(McBratney and Minasny 2007), is widely predicted 
to increase local plant community diversity (or alpha 
diversity; Whittaker 1960) by promoting plant coex-
istence through niche differentiation (Hutchinson 
1957; Levine & HilleRisLambers 2009; Williams 
& Houseman 2014). Experiments testing the role 
of soil heterogeneity in plant diversity have often 
manipulated soil physical properties and nutrient lev-
els. These studies have generated inconsistent results 
(e.g., Stevens & Carson 2002; Wijesinghe et al. 2005; 
Reynolds et  al. 2007; Williams & Houseman 2014). 
Our understanding of this relationship remains lim-
ited due to the contradiction between theory and 
small-scale experiments, and variability in the rela-
tionship across spatial scales (Tamme et al. 2010).

In Earth’s arid and semiarid (dryland) ecosystems, 
soil resources (i.e., water, nutrients) are heterogene-
ously distributed in space and time through patch 
and pulse dynamics (Schlesinger et al. 1996; García-
Palacios et  al. 2011; Collins et  al. 2014) in which 
biological activity occurs in “pulses” following wet-
ting events that punctuate intermediary periods of 
inactivity when soil water is scarce (Noy-Mier 1973). 
Dryland soil resource heterogeneity is further modi-
fied by biotic patterns and processes. Biological soil 
crusts (biocrusts)—surface-dwelling soil biotic com-
munities comprised of cyanobacteria, algae, fungi, 
lichens, bryophytes (Weber et  al. 2022)—occur in 
patchy mosaics on the soil surface and play critical 
roles in determining dryland soil resource hetero-
geneity at local scales (Belnap 2003; Concostrina-
Zubiri et  al. 2013). For example, biocrusts substan-
tially modify soil hydrology (Eldridge et  al. 2020), 
and relative to bare soil, generally increase soil stabil-
ity, microtopography (Caster et  al. 2021), and mois-
ture (Eldridge et al. 2020), and promote soil nutrient 
availability by fixing atmospheric nitrogen (Barger 
et al. 2016) and carbon (Mastre et al. 2013), excreting 
organic compounds and chelate mineral elements into 
the soil surface (Harper & Pendleton 1993), and trap-
ping nutrient-rich fine dust particles (e.g., Martínez 
et al. 2006; Delgado-Baquerizo et al. 2010).

Due to the patchy distribution of biocrusts within 
drylands (Kozar et  al. 2024), and the diversity and 
spatial organization of organisms within biocrust 

communities (Weber et  al. 2022), biocrusts directly 
generate soil cover heterogeneity with implications 
for soil functioning. Yet, despite such contributions 
to soil cover heterogeneity (Concostrina-Zubiri et al. 
2013; Bowker et  al. 2014), biocrusts have histori-
cally been examined as single units within ecosys-
tems rather than as biologically and spatially com-
plex communities (Maestre et al. 2005). Nonetheless, 
exploring biocrust contributions to spatial soil cover 
and associated resource heterogeneity may be fun-
damental to understanding dryland ecosystem func-
tioning and diversity patterns at local to landscape 
scales (Maestre et al. 2005) including biocrust inter-
actions with plants and broader ecosystem patterns 
and processes. Biocrust-mediated soil cover hetero-
geneity may have important implications for vascu-
lar plant community composition and distribution. 
Biocrusts can have multifaceted yet variable impacts 
on plant recruitment, growth, and survival (Havrilla 
et  al. 2019), and as such, may have important filter-
ing effects on plant assemblages (Bowker et al. 2022; 
Havrilla et al. 2019; Luzuriaga et al. 2012; Oritz et al. 
2023). Plant responses to biocrusts vary depending on 
plant species and functional traits and biocrust com-
munity composition (Havrilla et al. 2019; Oritz et al. 
2023). Plant species differ in their ability to establish 
alongside biocrust patches, thus creating preferential 
niches and diverse biogenic communities (Hutchin-
son 1957). Though, the few studies that have exam-
ined the effects of biocrusts on plant diversity and 
community composition have generated mixed results 
whereby biocrusts have been shown to have positive 
(Kleiner & Harper 1977; Jeffries & Klopatek 1987; 
Luzuriaga et al. 2012; Scott & Morgan 2012) or nega-
tive (Peralta et  al. 2016; Miller & Damschen 2017) 
effects on plant diversity patterns. Overall, the poten-
tial of biocrust-associated soil cover heterogeneity to 
explain patterns in plant diversity at patch and land-
scape scales remains underexplored.

Given the significant contributions of biocrusts 
to spatial heterogeneity and ecological processes in 
drylands, it is important to understand their distribu-
tion and abundance at landscape scales (Rodríguez-
Caballero et  al. 2015; Ferrenberg et  al. 2017; Smith 
et al. 2019). Yet, biocrusts are susceptible to local dis-
turbances such as trampling by animals and humans 
(Zaady et  al. 2016). Consequently, using ground-
based monitoring techniques to survey and map 
biocrusts can be destructive to biocrust communities. 
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However, since biocrust biomass and biological activ-
ity is generally concentrated and visible in the upper-
most millimeters of the soil surface (Garcia-Pichel 
et  al. 2003), remote sensing provides alternative 
opportunities to detect and characterize biocrust com-
munities without physical soil disturbance.

Remote sensing has proven an effective tool for 
characterizing and scaling biocrust patterns and 
assessing their ecological function (Read et al. 2016; 
Rodríguez-Caballero et  al. 2015; Weber and Hill 
2016). Recent advances in biocrust remote sens-
ing using small Unoccupied Aerial Systems (UAS) 
show potential for characterizing biocrust cover, 
patch dynamics, and heterogeneity at ecologically rel-
evant scales (Havrilla et al. 2019; Kozar et al. 2024) 
and may thus present promising tools for explor-
ing relationships between biocrust-mediated ground 
cover and ecosystem patterns including plant diver-
sity. UAS can provide mapping at scales between 
field studies and satellite imagery and may provide 
an optimal spatial resolution for detecting biocrusts 
and characterizing their spatial patterns (Havrilla 
et al. 2019). Biocrusts can vary widely in appearance 
and spectral reflectance, making it difficult to apply 
spectral training data across sites. New deep learning 
approaches have shown promise for accurate segmen-
tation and classification of biocrusts from very high-
resolution photography (Herdy et al. 2024) and show 
promise for cross-site image models. To date, most 
of the UAS-based remote sensing of biocrusts have 
used true-color RGB imagery (Havrilla et  al. 2019; 
Collier et al. 2022; Kozar et al. 2024) exploiting dif-
ferences in image brightness and texture between 
biocrusts, soil and vegetation cover, with some inves-
tigations into thermal-IR and hyperspectral imaging 
(Smith et  al. 2019; Blanco‐Sacristán et  al. 2021). 
UAS remote sensing has been generally underutilized 
in landscape ecology research (see Villarreal et  al. 
2024) but has proven effective for assessing plant and 
soil dynamics and spatial patterns (Getzin et al. 2022; 
Rodríguez‑Lozano et al. 2023), predicting local-scale 
plant diversity (Polley et  al. 2019) and for linking 
structure and function across sites and landscapes 
(Cunliffe et al. 2022).

To investigate potential relationships between 
soil cover heterogeneity associated with biocrusts 
and herbaceous plant diversity, we conducted an 
observational field study in a cool desert ecosystem 
within the Colorado Plateau ecoregion of the western 

United States using field-based surveys and UAS-
based remote sensing. We hypothesized that biocrusts 
increase local plant alpha diversity (i.e., species rich-
ness, Shannon diversity) by increasing fine-scale 
spatial soil heterogeneity and promoting plant coex-
istence through niche differentiation. We addressed 
the research questions: (1) is biocrust-associated soil 
cover heterogeneity associated with local plant diver-
sity and/or community composition? and (2) can we 
use high-resolution remote sensing data to calculate 
soil cover heterogeneity metrics that could be used to 
extrapolate these patterns across larger landscapes? 
Rather than being conducted under heavily controlled 
experimental conditions like many soil heterogeneity-
plant diversity studies, this study was conducted in an 
area where active livestock grazing contributes to pat-
terns of soil cover heterogeneity, biocrust cover, and 
plant diversity on the landscape. Such an approach 
is valuable for determining soil cover heterogeneity-
plant diversity patterns in situ in the context of land 
use and global change.

Materials and methods

Study site

The study area is located in Beef Basin in Southeast-
ern Utah, USA, within the Colorado Plateau Ecore-
gion (Lat 37° 58’ N, Lon 109° 56’ W). Beef Basin 
is located within the Bureau of Land Management’s 
(BLM) Indian Creek grazing allotment that borders 
Canyonlands National Park to the south and south-
east (Fig.  1). Regional climate of the study area is 
semiarid with a mean annual precipitation of 335 mm 
(range = 142–474 mm/year), and a mean annual tem-
perature of 11.6  °C (PRISM Climate Group 2014; 
30-year average, 1981–2010). Mean site elevation is 
1882 m, and soils are characterized taxonomically as 
Loamy, mixed, superactive, mesic Lithic Haplocam-
bid (Leanto fine sandy loam; Web Soil Survey 2018). 
The main land uses of the area are cattle grazing 
(November—May) and recreation. We focused our 
survey on Semidesert Shallow Loam (Black Sage-
brush/Indian Ricegrass) ecological sites within the 
study area dominated by Artemisia nova (A. Nelson; 
black sagebrush) and perennial grasses Achnatherum 
hymenoides (Roem. & Schult.; Indian ricegrass), 
Pleuraphis jamesii (Torr.; James’ galleta), and 
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Bouteloua gracilis (Willd. and Kunth; Blue grama; 
Web Soil Survey 2018).

In June 2018, we established five, 50 × 50-m 
(0.25  ha) observational field plots. Within each, 
we established eight, nested subplots (hereafter 
“patches”) to measure cover and community com-
position of biocrusts (0.5-m2) and herbaceous plants 
(1-m2) for a total of 40 patches. Patches were posi-
tioned randomly in open areas within plots (i.e., 
areas not covered by shrub or tree canopies) but at 
least five meters apart and represented a gradient of 
biocrust cover. We focused our investigations on the 
herbaceous plant community (rather than herbaceous 
and woody because herbaceous plant species, in gen-
eral, have shallow root systems and shorter lifespans 
than woody plants and thus may be more sensitive 
to biocrust-mediated soil resource variation at the 
soil surface (Kidron & Aloni 2018). Woody plants 
also influence nutrient distributions that can affect 
biocrust and plant distributions (Ravi and D’Ordorico 
2009; Ju et al. 2021). We assigned a qualitative met-
ric of grazing level (i.e., low, medium, high) to each 

plot based on field estimates of the average observed 
number of hoofprints present within a five randomly 
selected 10-m2 areas within each plot (0–5 = low, 
5–10 = medium, > 11 = high) in an effort to character-
ize differences in livestock utilization across plots.

Field‑based soil cover and soil heterogeneity 
measures

In each patch, we used a 0.5-m2 quadrat with 100 
intersects to measure the percent cover of soil cover 
classes (Table  1, Fig.  2). Soil data from each patch 
were analyzed using a multi-metric approach to 
describe soil heterogeneity. First, we calculated the 
percent cover of all soil cover classes. Then, using 
these soil cover data, we used land cover heteroge-
neity metrics commonly used in larger-scale spa-
tial landscape analyses: Land Cover Richness, Land 
Cover Diversity to quantify metrics of fine-scale soil 
cover heterogeneity at the patch level: (1) soil cover 
richness (SCR): the total number of different soil 
cover classes present within the sampling area; and 

Fig. 1   A Map of the Beef Basin study area in southeastern 
Utah, USA. B UAS data were collected at three, 50 × 50-m 
plots in the study area (red rectangles) and field data were col-
lected at five plots total, including UAS plots (Sage A, D, and 
E) and two plots (Sage B and F) without UAS (blue rectan-

gles). C Example layout of field patches (white) within a plot, 
and D zoom of individual patch and 1-m2 vegetation quadrats 
outlined in white and 0.5-m2 soil quadrats (“patches”) hatched 
in white
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(2) soil cover heterogeneity (SCH): calculated using 
the Shannon–Wiener diversity index (H = − ΣPi(lnPi); 
Shannon & Weaver 1949) where pi is the proportion 
of each soil cover class (see Table 1) within the plot. 
These metrics were chosen due to their widespread 
use in spatial landscape analysis and effectiveness 
in quantifying environmental spatial patterns (Peng 
et al. 2010; Plexida et al. 2014).

Field‑based herbaceous plant cover and plant species 
diversity

For all patches, we also quantified herbaceous 
plant community composition using 1-m2 vegeta-
tion quadrats. We used a 1-m2 quadrat with 100 
intersects to measure percent cover and abundance 
of herbaceous plant species by dropping a pin flag 
and recording all plant canopies down to the soil 
level. Herbaceous plant species identified in Beef 
Basin study plots are provided in Table S1 (USDA 
NRCS 2024). Plant species that could not be iden-
tified in the field were collected and identified in 
the herbarium at the University of Colorado Boul-
der. Fewer than 5% of unknown species specimens 
encountered could not be identified due to pheno-
logical stage or missing floral parts. In these cases, 
plants were identified to the genus level and treated 

as individual species. Then, plant census data were 
used to calculate herbaceous plant richness and 
diversity.

Remotely sensed measures of soil cover heterogeneity

Three band true-color (red, green, blue; RGB) 
image data were collected on June 2, 2018, using a 
Ricoh GR II camera (18.3 mm lens) mounted on a 
3DR Solo quad-rotor aerial vehicle. We processed 
data for three plots covering approximately 0.25 ha 
each (Fig.  1). Flights were conducted at 11:15, 
15:15 and 15:45 MDT at altitudes ranging from 13.6 
to 22.4 m, resulting in ground sampling distance of 
0.47, 0.33, and0.56  cm for plots Sage A, D and E 
respectively. Details on image processing and other 
metadata can be found in Havrilla et al. (2019). Two 
UAS orthomosaics collected at sagebrush sites and 
included in Havrilla et  al. (2019) were not used in 
this study due to image inconsistencies in the mosa-
icked products that might have affected pixel-based 
supervised classifications based on limited train-
ing samples. All image data and derived products 
used for this study can be found in Villarreal and 
Havrilla (2024).

Table 1   Descriptions of soil predictor variables: field-based soil cover classes, metrics of soil heterogeneity (e.g.,SCH), and other 
patch characteristics

Cover of soil classes determined using quadrat sampling methods in 0.5-m2 soil patches. *Whether ground cover was classified as 
“Bare Soil” or “Light biocrust” was determined by taking a small sample of soil adjacent to the sampling quadrat. Soils that fell apart 
immediately with no visible cyanobacterial filaments were labeled “Bare Soil,” and soils that stuck together, with visible cyanobacte-
rial filaments present (but without dark pigmentation or accompanying mosses and/or lichens) were labeled “Light Biocrust.”

Variable Description

Soil cover classes
 Bare soil cover (%) Soil without biocrust organisms present (i.e., bare soil, physical soil crust, and/or rock or gravel)
 Dark biocrust cover (%) Biocrusts dominated by cyanobacteria, mosses, and lichens—dark in coloration
 Light biocrust cover (%) Biocrust dominated by cyanobacteria*—light in coloration
 Non-photosynthetic vegetation 

(NPV) cover (%)
Non-photosynthetic vegetation materials on the soil surface (e.g., litter, duff, and wood)

Soil heterogeneity metrics
 Soil cover richness (SCR) Number of soil cover classes present within the patch (range: 1–4)
 Soil cover heterogeneity (SCH) Shannon diversity (H) of soil cover classes present within the patch

Other plot characteristics
 Soil depth (cm) Depth of soil to the top of the C horizon taken outside top right corner of the patch (cm)
 Plot elevation(m) Mean plot elevation(m)
 Grazing intensity Plot grazing intensity (low, medium, high)
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Support vector machines image classification

We used support vector machines (SVMs), a super-
vised, non-parametric classifier to classify the sub-
centimeter 3-band RGB imagery into the following 
classes: dark biocrust, light biocrust, bare soil, dark 
rock, light rock, green vegetation, non-photosynthetic 
vegetation (NPV), and shadow. For each image area 
we selected 25–35 training regions of interest (ROIs) 
per class, which were manually digitized over the 
orthoimagery. ROI selection was aided by geolocated 
ground photographs collected in June 2018 during 
the field and UAS campaigns. Previous research on 
very high resolution biocrust mapping in these plots 
(Havrilla et  al. 2019) applied an object-based map-
ping approach with SVM classification, but we chose 
a pixel-based SVM here in order to capture the fine-
scale variation in soil cover types that were measured 

within the 1-m2 field subplots (~100-point intercept 
records). SVM models used a Radial Basis Function 
kernel (non-linear), selecting 0.333 Gamma, based on 
number of bands, 0.75 penalty parameter (i.e., trade-
off between complexity and the number of non-sepa-
rable points) and classification probability threshold 
(i.e., probability required to classify a pixel) = 90.

Remotely sensed soil cover heterogeneity

We calculated remotely sensed soil cover heteroge-
neity (SCH_RS) on rasters reclassed to represent the 
three main soil cover classes: bare soil/rock, light 
biocrust, and dark biocrust. Other classes include 
vegetation, NPV and shadow. Shannon diversity (i.e., 
SCH_RS) was calculated with a moving window 
(0.5 × 0.5 m) using the Focal Diversity Python tool in 
ArcGIS Pro (version 2.9.2).

Fig. 2   Field photograph of 
patch-level 0.5-m2 quadrat 
(top left) used to measure 
soil cover classes, next 
to UAS image of same 
plot (top right) showing 
approximate locations of 
100 intersects (labeled as 
white circles in top figure) 
that were used to measure 
the cover of soil cover 
classes in the field. Corners 
of patches were labeled and 
marked to be visible in the 
aerial imagery (top right). 
We used the 100 intersect 
markings to extract % cover 
information from the classi-
fied images (bottom) and to 
evaluate the image products
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Data analyses

Effects of field‑based soil cover and heterogeneity 
on plant diversity patterns

We used a four-step approach to evaluate relation-
ships between field-based soil cover and SCH and 
plant diversity and community composition: (1) First, 
we performed preliminary data exploration with Pear-
son correlation and boosted regression tree analyses 
(BRT) to test for potential relationships among can-
didate soil predictor variables (Table  1) to inform 
model selection. (2), Then, we used linear mixed 
effects models to investigate relationships between 
soil predictor variables and variation in patch plant 
diversity. (3) Next, we examined evidence of possible 
mechanisms driving plant diversity responses to SCH 
using analyses to explore species sorting (i.e., indica-
tor species analysis; Dufrêne & Legendre 1997), spa-
tial turnover, and density-richness relationships. (4) 
Finally, we used permutational multivariate analysis 
of variance (PERMANOVA) to test whether patch 
soil cover and SCH structured plant community com-
position. All statistical analyses were conducted in R 
version 4.3.2 (R Core Team 2023). Alpha = 0.05 was 
used to determine significance level for all statistical 
analyses.

Correlation analysis and boosted regression tree data 
exploration

Before developing predictive models for plant diver-
sity metrics, we explored relationships among varia-
bles. We first tested all variables for multicollinearity 
(Neter et  al. 1996) by examining cross-correlations 
(Pearson correlation coefficients, r) between variables 
using the Hmisc package (Harrell & Harrell 2019). 
When the correlation coefficient between two soil 
predictor variables was |r|≥ 0.65 (Taylor 1990), one of 
the two variables was discarded prior to subsequent 
analyses. We then used boosted regression tree (BRT) 
analysis with forward stepwise multiple regression to 
identify influential soil predictor variables and elimi-
nate non-significant predictor variables from models 
using the ‘gbm.step’ function in the gbm (Ridgeway 
2013) and dismo packages (Hijmans et  al. 2017) as 
in Elith & Leathwick (2017). Models were simplified 
using the ‘gbm.simplify’ function suggested by Elith 
and Leathwick (2017). Simplified BRT models for 

each analysis included the most influential modera-
tors and ranked them according to their relative con-
tributions (which are scaled to sum to 100% within 
each model—i.e., the predictor variable explains X % 
of the variation explained by the fitted BRT) to the 
explanation of variation in the response variable. Rel-
ative variable influences were derived as an average 
of variable influence in all trees in each BRT model 
(Friedman & Meulman 2003). Potential interactions 
between predictor variables in final BRT models were 
explored using the ‘gbm.interaction’ function (Elith 
& Leathwick 2017).

Mixed effects models: relationships between soil 
heterogeneity and plant diversity

Following the selection of influential candidate soil 
predictor variables to be retained in predictive mod-
els, we fit linear mixed models (LMEs) using the 
‘lmer’ function in the lme4 package (Bates et  al. 
2010) to test for relationships between plant Shan-
non diversity and soil predictor variables. We tested 
LMEs for assumptions of normality and heterosce-
dasticity using Shapiro–Wilk and Levene’s tests (via 
the ‘car’ package; Fox et  al. 2012) respectively. We 
used Akaiki’s Information Criterion (AIC) adjusted 
for small sample size (AICc; Burnham & Ander-
son (2002)) to select final models for each response 
variable from the set of candidate LMEs developed. 
We used the ‘r2’ function in the performance pack-
age (Lüdecke et  al. 2021) to calculate marginal and 
conditional R2 values associated with fixed and ran-
dom effects in final models. For fixed effect variables 
that were found to be significant in the final model, 
we used univariate regression to explore relationships 
between plant H and influential predictor variables 
(e.g., SCH, percent dark biocrust cover).

Species sorting, spatial turnover, 
and density‑richness relationships in patches 
with different levels of soil cover heterogeneity 
and biocrust cover

We tested for evidence of species sorting and among 
patches with low, medium, and high SCH and biocrust 
cover. We used indicator species analysis using the 
‘multipatt’ function in the indicspecies package (De 
Caceres et  al. 2016) to test for species affinities for 
a priori defined patch types (SCH: low = 1.75–2.50, 
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medium = 2.51–3.25, high = 3.26–4.00; biocrust 
cover: low =  > 25%, medium =  < 25%-50%, 
high =  > 50%-75%). Species were identified as being 
sorted when a significant indicator value among soil 
predictor levels was detected based on 999 randomi-
zations. We also separately explored relationships 
between predictor variables and the cover of different 
plant functional groups (i.e., annual grasses, annual 
forbs, perennial grasses, perennial forbs) using uni-
variate linear regression. Then, we used the ‘beta.
multi’ function in the betapart package (Baselga et al. 
2010) to calculate overall species turnover (Simpson’s 
index for dissimilarity) and spatial turnover (Sørensen 
index for dissimilarity) for SCH patch types (Baselga 
2010). To examine the potential relative importance 
of niche versus neutral processes in driving plant 
community Shannon diversity in patches with differ-
ent levels of soil heterogeneity (Doncaster 2009), we 
also tested the strength of density-richness relation-
ships among patches within low, medium, and high 
SCH.

PERMANOVA: relationships among plant community 
composition, soil cover, and soil cover heterogeneity

We separately tested for relationships among SCH, 
cover of soil cover classes, and plant community 
composition using PERMANOVA (permutation-
based multivariate analysis of variance), with 9999 
permutations and relativized Bray–Curtis dissimilar-
ity (package ‘vegan’; Oksanen & Blanchet 2016). To 
perform PERMANOVA model selection, we used the 
‘AICcPermanova’ package (Corcoran & Corcoran 
2023), which we used to generate all possible noncol-
linear models for our set of candidate predictor vari-
ables (Table 1), calculate associated AICc values, and 
select top candidate models.

Associations between UAS and field‑based soil cover 
heterogeneity metrics

To validate how well UAS classifications represented 
individual soil cover types, we used linear regres-
sions on the field patch point intercepts for (1) bare 
soil, (2) light biocrust, (3) dark biocrust and (4) total 
biocrust cover. Regressions were calculated individu-
ally for each 0.25 ha plot (n = 3), and each plot con-
tained 8 subplots consisting of 100-point intercept 
data points each (Fig.  2). We tested relationships 

between the percent area of each class in a 0.5-m2 
quadrat compared to a fishnet grid of 100 points 
that roughly approximated the locations of the point 
intercept data (Fig. 2) and found strong relationships 
between the two (bare soil: R2 = 0.91, light biocrust: 
R2 = 0.96, dark biocrust: R2 = 0.86, and total biocrust: 
R2 = 0.98). We therefore used the 0.5-m2 areal esti-
mates of percent cover in further regression analyses.

Associations between UAS soil cover heterogeneity 
and plant diversity

We used linear regression to explore associations 
between UAS soil cover heterogeneity (SCH_RS) and 
field-based plant Shannon diversity at the patch level. 
Mean (SCH_RS_avg) and maximum (SCH_RS_max) 
values were extracted from the rasters based on poly-
gons outlining the 0.5-m2 soil quadrats.

Results

Plot characteristics: groundcover, climate, and 
livestock grazing

Average plant cover within study plots was 45.0 
(stdev = 16.8%). Mean plant species richness 
was 3.60, stdev = 1.60 species (Sage A = 3.43, 
stdev = 0.49; Sage D = 3.13, stdev = 0.83; Sage 
E = 4.13, stdev = 1.73). Mean plant Shannon diversity 
was 2.4 (stdev = 0.90) (Sage A = 2.62, stdev = 0.65, 
Sage D = 2.61, stdev = 1.31, Sage E = 2.06, 
stdev = 0.49). Mean bare soil cover within plots was 
23.6 ± 16.9%, light cyanobacterial biocrust cover was 
24.2 ± 15.7%, and dark biocrust cover was 7.6 ± 8.9%. 
Overall, Sage_A had a high cover of bare soil and 
light cyanobacterial biocrust cover, whereas Sage_D 
and Sage_E had more mixed cover of bare soil, light 
cyanobacterial biocrust, and dark biocrust cover. 
Plant cover in Sage_A was typically dominated by 
perennial and annual grasses (especially B. tectorum), 
while Sage_D and Sage_E had higher cover of peren-
nial grasses and some forbs. There was a substantial 
drought during the 2018 growing season. Precipita-
tion in the 12 months leading up to our field survey in 
June 2018 was 58.9% lower (Fig. S1) and mean tem-
perature was 1.4 °C higher (+ 11.2%) than the 30-year 
long-term averages during this time period (Fig. S1). 
Based on field estimations, qualitatively assessed 
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grazing levels were variable in plots ranging from low 
to high.

Data exploration: relationships between measures 
of soil cover heterogeneity and plant diversity

Pearson correlation analyses showed that plant rich-
ness and plant Shannon diversity (H) were highly 
correlated (r = 0.87, p < 0.001; Fig. S2) and were 
similarly correlated to candidate predictor variables. 
As such, we made the decision to proceed with sub-
sequent analyses only for plant diversity. Plant diver-
sity was positively correlated with SCH (r = 0.40, 
p = 0.011; Fig. S2), and soil depth (r = 0.49, p = 0.002; 
Fig. S2), and marginally, with dark biocrust cover 
(r = 0.41, p = 0.053; Fig. S2). Boosted regression tree 
(BRT) data exploration showed that the candidate soil 
predictor variables with significant explanatory power 
in predicting plant diversity were SCH, dark biocrust 
cover, bare soil cover, and soil depth.

Predictive linear mixed effects models of herbaceous 
plant diversity

Using influential candidate soil predictor variables 
identified by correlation and BRT analyses, we gen-
erated predictive linear mixed effects models for 
plant Shannon diversity. The best model included 
SCH, percent dark biocrust cover, and their inter-
action as fixed effects. Soil depth and grazing were 
included as random effects. Plant diversity was 
positively associated with both SCH (X2 = 4.298, 
p = 0.038; Table  2) and the interaction between 
SCH and percent dark biocrust cover (X2 = 6.610, 
p = 0.010; Table  2). Univariate regression on sig-
nificant variables showed that plant diversity 
increased with increasing SCH (t = 2.68, p = 0.010; 
Fig.  3) and soil depth (t = 3.43, p = 0.001; Fig.  3), 
and marginally, with dark biocrust cover (t = 2.01, 
p = 0.052; Fig. 3).

Table 2   Linear mixed 
effects (LME) model 
results for herbaceous plant 
Shannon diversity

LME and Wald Type 
II ChiSquare analysis 
of deviance test results 
showing significance in 
fixed effects. Soil depth 
(1|Soil_Depth) and (1| 
Grazing) were included as 
random effects

Predictor Est SE t-value LME Wald Type 
II ChiS-
quare

R2m R2c df X2 P-value

Plant Shannon Diversity
 (Intercept) 2.413 1.108 2.178 0.32 0.71
 Soil cover heterogeneity
(SCH)

− 0.124 0.418 − 0.297 1 4.298 0.038*

 Dark biocrust cover (%) − 0.242 0.102 − 2.382 1 0.735 0.391
 SCH * Dark biocrust (%) 0.086 0.034 2.571 1 6.610 0.010**

Fig. 3   Univariate rela-
tionships between plant 
Shannon diversity and soil 
variables included in the 
LME (soil cover heteroge-
neity (SCH), and soil depth 
(cm)
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Species sorting, spatial turnover, 
and density‑richness relationships

Indicator Species Analysis identified plant species 
associated with different soil patch types with respect 
to patch soil cover heterogeneity and biocrust cover. 
Perennial grasses Elymus elymoides (squirreltail) and 
Achnatherum hymenoides (Indian ricegrass) were 
found at greater abundance in patches with high SCH 
relative to other SCH patch types (IndVal = 0.632; 
p = 0.005 and IndVal = 0.237; p = 0.050 respectively). 
We also identified species as sorting with respect to 
levels of patch dark biocrust biocrust cover. Elymus 
elymoides (IndVal = 0.555, p = 0.014) and annual forb 
Plantago patagonica (wooly plantain; Indval = 0.365; 
p = 0.043) were associated with high biocrust cover, 
Sclerocactus whipplei (Whipple’s fishhook cactus; 
Invdal = 0.474; p = 0.098) was marginally associated 
with medium biocrust patches, and invasive annual 
grass Bromus tectorum (cheatgrass) was associated 
with low biocrust patches (Indval = 0.739; p = 0.029).

Regression analyses between SCH variables and 
cover of plant functional groups showed that while 
patch total plant cover was negatively associated with 
total biocrust cover within patches overall (r = -0.57; 
p < 0.001; Fig. S2), this relationship was not consist-
ent across plant functional types. In similarity to ISA 
results, annual grass cover decreased with increasing 
total biocrust cover (p = 0.003; Fig. S3a). The annual 
grass category was almost entirely composed of the 

invasive exotic grass species B. tectorum, indicating 
biocrust cover was negatively associated with B. tec‑
torum cover at the patch scale. In contrast, we found 
a small but significant increase in annual forb cover 
with increasing total biocrust cover (p = 0.034; Fig. 
S3c). While we found evidence of species sorting 
by SCH levels and biocrust cover, analysis of spe-
cies turnover showed communities in patches with 
high SCH (heterogeneous) did not differ significantly 
in their spatial turnover compared to medium or low 
SCH (homogeneous) patches (all p > 0.05, Table S2). 
Species rarefaction curves indicated high SCH 
patches accumulated more species over standardized 
densities than patches with lower heterogeneity (Fig. 
S4). Analysis of density-richness relationships among 
patches with low, medium, and high SCH showed 
that density-richness relationships were relatively 
weak, with no significant density-richness relation-
ships among SCH patch types (all p > 0.05; Fig. S5).

PERMANOVA: plant community composition

The final PERMANOVA model included SCH, per-
cent total biocrust cover, percent bare soil cover and 
their interactions (Table 3). Results showed that plant 
community composition varied marginally related 
to patch soil cover heterogeneity (SCH; p = 0.059), 
and significantly by percent bare soil (p = 0.003) 
and the interaction between SCH and bare soil cover 
(p = 0.013, Table 3).

Table 3   Relationships among SCH, soil cover and herbaceous plant community composition

Results for PERMANOVA analysis of relativized Bray–Curtis dissimilarities for herbaceous plant community structure in relation to 
soil cover heterogeneity (SCH), total biocrust cover (%), grazing level, and their interactions
df degrees of freedom; SS sum of squares, Pseudo-F F value by permutation
Bold face indicates statistical significance (P < 0.05); P-values are based on 9999 permutations (i.e., the lowest possible P-value is 
0.0001). Significance codes: < 0.001 ‘****’, < 0.01 ‘**’, < 0.05 ‘*’, < 0.1 ‘.’

Predictor variable df SS R2 Pseudo-F P value

Soil cover heterogeneity (SCH) 1 0.369 0.046 2.126 0.059
Total biocrust cover (%) 1 0.244 0.031 1.404 0.204
Bare soil cover (%) 1 0.689 0.087 3.971 0.003**
SCH × Total biocrust cover (%) 1 0.177 0.022 1.021 0.393
SCH × Bare soil cover (%) 1 0.516 0.065 2.971 0.023*
Total biocrust × Bare soil cover (%) 1 0.129 0.016 1.633 0.170
SCH × Total biocrust × Bare soil cover (%) 1 0.129 0.016 0.746 0.577
Residuals 32 5.555 0.698
Total 39 7.964 1.000
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UAS validation and classification results

Our comparison between field-based data measured 
within 0.5-m2 quadrats to UAS estimates of percent 
cover yielded mixed results that varied consider-
ably by 0.25  ha plot. Dark biocrust had the highest 
overall R2 (0.50), ranging from 0.84–0.06 at the plot 
level (Fig. 4). Light biocrust ranged from R2 = 0.34 to 
0.14 but had no significant relationship across plots 
(Fig.  4). Bare soil had high correlations at one plot 
(Sage E, R2 = 0.81), but weak correlations at two 
other plots (Fig.  4). Much of the error and variabil-
ity observed was related to confusion between bare 
soil and light biocrust, and similarly between dark 
biocrust and shadows. While this quantitative com-
parison offers some estimation of the accuracy of our 
UAS SVM image classifications, it should be noted 
that geolocating the exact spots where field point 
intercept measurements were made on sub-centimeter 

imagery is challenging and slight positional differ-
ences between the two data sets can cause misalign-
ment of validation data (Fig. 2). Given the ultra-high 
pixel resolution UAS imagery, visual comparison of 
classified UAS imagery vs. the UAS RGB orthoim-
ages and field photographs (Fig. 2) provide additional 
subjective evidence of map quality; The classified 
maps produced for this project do well to represent 
the observed patterns of soil, biocrust and vegetation 
represented in the images (Fig. 5), despite the expres-
sion of error quantified using field methods at the 
patch scale (Fig. 4).

UAS distribution of soil cover classes and soil cover 
heterogeneity across plots

The classified images of the larger 50-m plots showed 
variation in the amount and distribution of vegeta-
tion, biocrusts, and soils. Sage A was dominated by 

Fig. 4   Scatterplots show-
ing the relationship between 
percent cover of field meas-
ured soil cover classes and 
percent cover of classified 
UAS imagery for 24, 0.5-m2 
quadrats measured across 
three study plots in Beef 
Basin, UT
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non-photosynthetic vegetation (NPV; 60.3%) which 
was mostly in the form of senescent bunchgrasses, 
with 30.7% light biocrust, 4.21% dark biocrust 
and < 1% bare soil. Sage D had a more even mix of 
cover types with 19.6% NPV, 15.7% light biocrust, 
15.9% dark biocrust and 19.2% bare soil. Sage E 
had the greatest total biocrust cover with 28.1% light 
biocrust, 18.0% dark biocrust, 16.4% NPV and 5.2% 
bare soil. Green vegetation represented a small pro-
portion of cover in each plot and ranged from 3.7% 
(Sage A) to 11.3% (Sage E). Plot-level soil cover 
heterogeneity was highest at Sage D (mean SCH_
RS = 1.14, stdev = 0.23) followed by Sage E (mean 

SCH_RS = 1.00, stdev = 0.25). Sage A had low aver-
age plot soil cover diversity (mean SCH_RS = 0.64, 
stdev = 0.26). SCH_RS varied spatially across indi-
vidual plots, and visual comparison shows cross-site 
differences in spatial patterns, with considerable 
heterogeneity in Sage A and homogeneity in Sage E 
(Fig. 6).

Relationships between remotely sensed soil cover het‑
erogeneity and  ground‑based plant diversity  Plot-
level SCH_RS patterns (where Sage D > Sage 
E > Sage A) did not align to observed patterns of field-
based plant diversity (Sage A > Sage D > Sage E). 

Fig. 5   Plot-scale map (row A) and zoomed details (1:66 and 
1:17 respectively) of original high resolution (0.3  cm) RGB 
orthomosaic images, support vector machine (SVM) image 

classifications (row B) and remotely sensed soil cover hetero-
geneity (RS_SCH_RS) (row C). Red and blue boxes indicate 
the area of detail of the images to the right
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Similarly, at the patch-level, linear regression showed 
no significant associations between average or maxi-
mum SCH_RS and plant Shannon diversity (p > 0.05). 
Though, within Sage D and Sage E plots, field-based 
plant diversity trended higher with higher maximum 
SCH_RS (Fig. S6).

Discussion

We used field-based soil and plant surveys and high-
resolution UAS remote sensing to explore co-occur-
rence patterns between biocrust-associated soil cover 
heterogeneity (SCH) and local plant diversity in a 
cool-desert ecosystem in the Colorado Plateau Ecore-
gion, USA. Further, we tested whether remote sens-
ing data could be used to calculate robust SCH met-
rics that could be used to extrapolate these patterns 
across larger landscapes. We found that (1) biocrust-
associated SCH predicted local plant diversity and 
community composition patterns at the patch scale. 
Specifically, plant Shannon diversity increased with 

increasing SCH and dark biocrust cover, and SCH 
predicted plant community diversity patterns with 
evidence of species sorting into patches with different 
levels of SCH. (2) Second, we found that while the 
accuracy of UAS-mapped soil cover classes varied 
across sites due to variation in timing and quality of 
image collections, UAS are a promising data source 
for generating highly detailed, spatially explicit SCH 
metrics. These findings improve understanding of co-
occurrence patterns between biocrusts, soil cover het-
erogeneity and plant diversity in drylands and high-
light the potential of UAS to map and scale metrics of 
soil cover heterogeneity.

Soil cover heterogeneity and biocrust cover predicted 
plant diversity and community composition

Overall, field-based, biocrust-associated SCH was 
positively associated with plant diversity (H) at 
the patch scale. This finding aligns with results of 
past studies that have shown positive relationships 
between soil heterogeneity and plant alpha diversity 

Fig. 6   Plot-scale SCH_RS 
maps of three sites, Sage A 
(A), Sage D (B) and Sage E 
(C) generated from support 
vector machine (SVM) clas-
sifications
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patterns (e.g., Wijesinghe et  al. 2005; Williams & 
Houseman 2014) and could have several possible 
explanations. First, differences in total plant density 
among patches could explain differing levels of plant 
diversity among patches. Community theory predicts 
a strong relationship between plant species richness 
and plant density and often suggests neutral-type 
assembly processes (a sampling effect) where sto-
chastic colonization and extinction generate richness 
patterns that are largely dependent on total plant den-
sity (Hubbell 2005). However, we found no strong 
differences between density-richness relationships 
among patches with different levels of SCH (Fig. S5). 
Further, species rarefaction curves suggested that 
high SCH patches accumulated more species over 
standardized densities than patches with lower hetero-
geneity (Fig. S4). That more species accumulated in 
patches with greater soil surface heterogeneity (i.e., 
higher SCH) is consistent with theoretical predictions 
that plant community assembly is driven by niche 
type processes in harsh environments like drylands 
(Trexler et al. 2005; Chase 2010), and, here, may be 
mediated in part by soil cover heterogeneity. Since 
we found no evidence of density-dependent drivers of 
plant diversity among SCH patch types, a second pos-
sibility is that plant species diversity is higher in more 
heterogeneous patches because of differential species 
sorting which can generate differences in spatial turn-
over among patch types (Hutchinson 1957; Chase & 
Leibold 2009). Though there were no detectable dif-
ferences in species turnover among SCH patch types 
(Table  S2), we did find evidence of species sorting 
of indicator species into patches with different levels 
of SCH. This result, along with observed increases 
in local plant diversity in patches with higher SCH 
(Fig.  3), aligns with predictions that soil cover het-
erogeneity may increase plant diversity by promot-
ing coexistence through niche differentiation. Though 
it is also possible that alternatively, plant diversity 
could also in part drive patterns of SCH.

Biocrust cover was also associated with plant 
diversity. Plant diversity increased with increasing 
dark biocrust cover (i.e., cover of biocrusts domi-
nated by dark cyanobacteria, mosses, and/or lichens). 
This result is consistent with studies that have found 
positive correlations between biocrust cover and 
plant diversity (Kleiner & Harper 1977; Jeffries & 
Klopatek 1987; Luzuriaga et al. 2012; Scott & Mor-
gan 2012) and may suggest that biocrusts support 

plant diversity by promoting increases and/or greater 
heterogeneity in soil resource availability in space 
and/or time (Concostrina-Zubiri et al. 2013), thereby 
promoting plant coexistence through niche differen-
tiation. Species sorting into patches with low vs high 
biocrust cover observed in our study supports this 
assumption. For example, that perennial C3 grass spe-
cies Elymus elymoides (squirreltail) and Achnatherum 
hymenoides (Indian ricegrass) showed greater abun-
dance in patches with high dark biocrust cover could 
suggest affinity for recruitment and/or higher fitness 
of these species in biocrust microsites. Conversely, 
higher occurrence of invasive annual grass Bromus 
tectorum (cheatgrass) in low biocrust cover patches is 
consistent with the results of a global meta-analysis 
by Havrilla et  al., (2019) found that biocrusts tend 
to inhibit recruitment of non-native plant species. 
Nonetheless, such species co-occurrence patterns 
could be associated with patch disturbance legacies 
(see Livestock grazing section below) or low sample 
size. Though the mechanisms underlying these pat-
terns remain uncertain, results indicate that patterns 
of biocrust-associated soil cover heterogeneity can be 
used to predict plant diversity patterns.

UAS are a promising data source for generating 
highly detailed, spatially explicit soil cover 
heterogeneity metrics

We demonstrated that UAS-based land cover classifi-
cations can in some cases adequately capture spatial 
distribution of soil cover types at very high resolution, 
and maps of soil cover heterogeneity (i.e., remotely 
sensed soil cover heterogeneity; SCH_RS) generated 
from classified UAS imagery can provide a means 
to visualize and assess landscape-scale patterns. We 
observed considerably different patterns of SCH 
at the plot scale (Fig.  6), driven by the composition 
and distribution of land cover classes, including the 
abundance of vegetation and non-photosynthetic veg-
etation. The two plots (Sage D and Sage E) with an 
even mix of land cover types, low non-photosynthetic 
vegetation, and high proportion of dark biocrust, dis-
played highest SCH_RS associated with greater plant 
diversity. At these two plots, patch-level SCH_RS 
metrics generally corresponded with field-measured 
plant diversity (Fig. S6), suggesting that UAS data 
are useful for characterizing and modeling diversity 
at both the patch and the plot scales. However, in the 
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remote sensing models the lowest plot and patch SCH 
was observed at Sage A, and these findings did not 
agree with the field-based measures. Validation of 
UAS-classified soil cover with field-measured point-
intercept data showed low correlations of bare ground 
and dark crust in the Sage A plot, which contributed 
to a low estimate of SCH_RS and weak relationships 
to field-measured plant diversity.

The variability in the accuracy of the UAS classi-
fications among plots made direct comparison to the 
patch- and plot-level plant diversity data challenging. 
Inconsistencies in modeled data arising from use of 
different UAS image sets flown at different locations, 
times and under different conditions can complicate 
landscape-scale studies. Even while employing stand-
ardized image collection protocols, variable environ-
mental conditions like wind and ambient lighting can 
impact the quality and radiometric consistency of 
different image collections, impacting classification 
results and making cross-plot comparisons difficult. 
Problems with UAS data collections often do not 
become obvious until the data are processed in the 
days or weeks after field campaigns. These obstacles, 
and the need for potential redundancy in UAS and 
field collections, should be recognized when design-
ing studies that seek to integrate field and UAS data 
collections that represent variability over landscape 
gradients.

Furthermore, the challenge of aligning sub-cen-
timeter resolution UAS data with sub-plot scale field 
measurements is an issue vexing ecologists who are 
working to integrate the two (Buters et al. 2019; van 
Blerk et al. 2022). In our case, it was difficult to con-
fidently locate the field-measured intercept points at 
an exact location on UAS maps that were meant to 
capture pixel-level soil cover heterogeneity. This 
type of positional error can be overcome with use of 
object-based image classification methods that group 
similar pixels into larger objects (as were applied in 
our previous study, see Havrilla et  al. 2019). This 
approach may be desirable in UAS rangeland moni-
toring applications where soil cover heterogeneity is 
not of interest and where pixel-based classifications 
may introduce noise into vegetation cover classifica-
tions (Gillan et al. 2020), but in our case the soil and 
biocrust signals would be lost by grouping pixels into 
larger “objects.” Based on our experience attempt-
ing to characterize fine-scale patterns within a 0.5-
m2 quadrat from UAS imagery, we suggest collecting 

field-photographs at multiple elevations, angles and 
zooms of the plot and surrounding area during the 
data collection effort. High quality field photos can 
act as additional reference sources when needed 
(Fig. 2).

Despite these challenges, high resolution UAS 
images remain a promising source of data for cap-
turing spatial patterns of soil surface microbial com-
munities, and maps of biocrust types, abundance and 
distribution can provide insight into ecosystem func-
tion at local to landscape scales (Havrilla et al. 2019; 
Blanco‐Sacristán et  al. 2021; Kozar et  al. 2024). 
It may be possible to further scale UAS-mapped 
biocrust observations using high- and moderate-reso-
lution satellites through spectral unmixing (Riihimäki 
et  al. 2019), opening additional opportunities to 
investigate biocrust-plant relationships across larger 
landscapes and environmental gradients. Recent 
research estimating biocrust fractional cover from 
moderate-resolution satellite imagery (Rodríguez-
Caballero et  al. 2014; Poitras et  al. 2018; Enterkine 
et  al. 2024) shows promise for quantifying the het-
erogeneity of biocrusts, vegetation and soils within 
pixels and over large landscapes. But unlike green 
vegetation that display distinctive spectral signatures 
in the visible and infrared wavelengths, dry biocrusts 
often display spectral responses similar to bare soil 
(Rozenstein and Adamowski 2017) and non-photo-
synthetic vegetation/plant litter, creating challenges 
for remote detection at any pixel resolution. Because 
of these challenges and because biocrust appearances 
can vary considerably in different environments and 
geographies, biocrust remote sensing remains an 
active research topic. Airborne hyperspectral imaging 
of biocrusts shows considerable promise for differen-
tiating biocrusts from soils, especially when image 
collection campaigns are timed to exploit photosyn-
thetic activity during and after precipitation (Rod-
ríguez-Caballero et al. 2017).

Study limitations, future directions, and broader 
applications

Field data from our study provides preliminary sup-
port for the hypothesis that biocrust-associated SCH 
is positively associated with plant alpha diversity and 
that patterns of SCH can be more broadly assessed 
through calculation of remotely sensed metrics 
of SCH. However, observed mismatches between 



	 Landsc Ecol (2024) 39:187187  Page 16 of 21

Vol:. (1234567890)

UAS-derived SCH metrics and field-based plant 
diversity in our study highlight challenges that remain 
in using this approach to assess these patch-level pat-
terns at multiple scales. Considerations of these limi-
tations allow us to identify future study directions and 
broader applications of our findings.

Interpreting soil cover heterogeneity‑plant diversity 
relationships in the context of broader environmental 
and disturbance gradients

Investigating soil cover heterogeneity-plant diversity 
relationships in  situ is challenging because soil het-
erogeneity can rarely be measured in the absence of 
other potentially confounding environmental and/or 
disturbance gradients in natural systems. Similarly, 
in our study, several environmental factors may have 
contributed to the observed patterns in local plant 
alpha diversity patterns across gradients of biocrust 
cover and SCH.

Livestock grazing—First, cattle grazing likely 
contributed to observed soil cover patterns through 
direct effects on both plant diversity and soil cover. 
In dryland landscapes, livestock grazing is often a 
geologically novel disturbance (Asner et  al. 2004) 
that can decrease plant diversity (Hanke et al. 2014; 
Herrero‐Jáuregui & Oesterheld 2018) and biocrust 
cover as a result of physical disturbance via trampling 
(Zaady et  al. 2016). In some drylands, grazing can 
impose an ecological filter that screens out all but a 
few plant species and functional groups, constrain-
ing diversity (Temperton et al. 2004). As such, while 
we might have expected that we would consistently 
find the highest plant diversity in patches with lower 
grazing pressure, we found no significant relation-
ships between patch grazing level and plant diversity 
or community composition. Alternatively, grazing 
may have indirectly contributed to increased SCH 
within patches by fragmenting late-successional dark 
biocrust patches into diverse mosaics containing dif-
ferent biocrust successional stages and bare soil. Such 
small-scale disturbances can increase soil heterogene-
ity and species coexistence (Questad & Foster 2008). 
However, given Concostrina-Zubiri et  al. (2013) 
showed high grazing intensity negatively impacts 
biocrust-mediated soil cover heterogeneity, heavier 
grazing might presumably diminish these effects.

Soil depth—Soil depth also differed across patches 
and was positively associated with plant diversity as 

has been shown in past studies (e.g., Dornbush & 
Wilsey 2010). Since plant diversity was positively 
associated with both SCH and soil depth, we are una-
ble to parse apart the effects of soil cover heteroge-
neity and soil depth individually. Soil depth can vary 
with geomorphic conditions and soil composition, 
which may also drive patterns of SCH. To explicitly 
disentangle the effects of biocrust-mediated SCH, 
soil depth, and grazing on local plant diversity, future 
studies should attempt to quantify these effects in the 
absence of differences in soil depth and grazing, or 
across planned gradients in these variables in situ.

Climatic variability and drought—This study 
took place during a single growing season in which 
the community experiences a significant drought. 
Drought acts as a primary abiotic filter on annual 
plant community assembly in drylands (Luzuriaga 
et al. 2012) and can strengthen the dominance niche-
type processes in determining plant community 
assembly (e.g., Chase 2010). As such, future research 
should explore whether biocrust-plant diversity pat-
terns (particularly in the annual plant community) 
shift depending on interannual variability in precipi-
tation and/or temperature across time.

Exploring heterogeneity‑diversity relationships 
across multiple spatial scales

Environmental heterogeneity-species diversity rela-
tionships can be highly dependent on the spatial scale 
at which plant species diversity is quantified (Tamme 
et al. 2010). For example, while heterogeneity-diver-
sity relationships are thought to be more variable 
at smaller spatial scales, at large scales (e.g., land-
scape level), different vegetation communities may 
coexist, promoting large regional species pool size 
and resulting in more consistently positive hetero-
geneity-diversity relationships (Tamme et  al. 2010). 
As such, future work should evaluate relationships 
among biocrust cover, soil cover heterogeneity and 
plant diversity patterns across multiple spatial scales. 
Advances in remote sensing of plant biodiversity, par-
ticularly at species (reviewed in Chavan & Kulkarni 
2023) and functional (Ustin & Gammon 2010) lev-
els, combined with emerging techniques to remotely 
sense biocrust-associated soil cover heterogeneity 
demonstrated here, could provide opportunities to 
map and analyze patterns between SCH and plant 
diversity across larger landscapes.
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Broader applications in landscape ecology, 
management, and conservation

Results from our study also indicate that similar 
approaches could be used for other applications in 
landscape ecology, management, and conservation. 
Biocrusts are microcosms that can be used as a 
model system for understanding the contributions of 
biodiversity and spatial patterning for maintaining 
ecosystem multifunctionality (Bowker et  al. 2014). 
The relationships and methods demonstrated in 
our study open new possibilities for observational 
studies and experiments that explore the role of 
biocrust spatial patterns in determining ecosystem 
processes across larger spatial scales. As UAS sen-
sors and classification models improve, so will our 
ability to accurately discern spatial distribution of 
plants, soils and biocrusts patterns at high resolu-
tions. Ultra-high resolution UAS remote sensing is 
opening avenues of study into soil–plant dynamics 
that are less reliant on traditional field methods, and 
that can be more consistently measured and scaled 
over landscapes. These UAS techniques have appli-
cations beyond assessing biocrusts function in dry-
lands: for example, von Nonn et al., (2024) similarly 
mapped spatial distribution of soil properties in 
post-fire environments, where abundance and distri-
bution of different colored soils, charred soils, veg-
etation, and rock/cobble mapped from UAS can be 
used to predict post-fire erosion and sedimentation 
(von Nonn et  al. 2024). Likewise, our understand-
ing of wind erosion and dust production in drylands 
(Zhang et al. 2021) might be improved through the 
estimation of soil surface heterogeneity and micro-
topography using UAS data. Finally, novel applica-
tions of UAS imagery for modeling species micro-
habitats has been a major new advancement in the 
landscape ecology literature (Habel et  al. 2016; 
Schenone et  al. 2021; 2022; Gerber et  al. 2023) 
and researchers are using these fine-scale data to 
develop habitat covariates at scales that are rel-
evant to animals and insects. Like plant diversity, 
biocrusts are known to influence insect diversity 
(Li et al. 2006), and SCH and biocrust maps could 
serve as habitat variables for understanding habitat 
relations across larger areas though improvements 
are still needed to match field and remote sensing 
observations.

Conclusions: soil cover heterogeneity associated 
with biocrusts shows promise to predict local plant 
diversity patterns

Results from this study demonstrate positive co-
occurrence patterns between biocrust-mediated soil 
cover heterogeneity and plant diversity and offer 
provisional support for the hypothesis that biocrusts 
may play a role in supporting local plant diversity 
by increasing SCH and niche differentiation for 
plant taxa with diverse resource requirements. UASs 
are a promising data source for generating highly 
detailed, spatially explicit soil cover heterogene-
ity metrics and developing methods show poten-
tial for investigation of these patterns across larger 
landscapes as well as other related applications. In 
the next several decades, biocrusts are expected to 
experience significant declines and compositional 
shifts worldwide in response to global change (Fer-
renberg et  al. 2015; Reed et  al. 2016; Rodriguez-
Caballero et al. 2018). Consequently, drylands may 
experience increased soil habitat homogenization. 
Increasing our understanding of how biocrusts, by 
contributing to soil cover heterogeneity, may drive 
plant community diversity and structure thus has 
important implications for predicting how drylands 
will respond to global change and may have appli-
cations for conservation and restoration planning 
across dryland landscapes.
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