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Predictive modeling of clinical time series data is challenging due to various
factors. One such difficulty is the existence of missing values, which leads
to irregular data. Another challenge is capturing correlations across multiple
dimensions in order to achieve accurate predictions. Additionally, it is essential
to take into account the temporal structure, which includes both short-term
and long-term recurrent patterns, to gain a comprehensive understanding
of disease progression and to make accurate predictions for personalized
healthcare. In critical situations, models that can make multi-step ahead
predictions are essential for early detection. This review emphasizes the need for
forecasting models that can effectively address the aforementioned challenges.
The selection of models must also take into account the data-related constraints
during the modeling process. Time series models can be divided into statistical,
machine learning, and deep learning models. This review concentrates on the
main models within these categories, discussing their capability to tackle the
mentioned challenges. Furthermore, this paper provides a brief overview of a
technique aimed at mitigating the limitations of a specific model to enhance
its suitability for clinical prediction. It also explores ensemble forecasting
methods designed to merge the strengths of various models while reducing
their respective weaknesses, and finally discusses hierarchical models. Apart
from the technical details provided in this document, there are certain aspects
in predictive modeling research that have arisen as possible obstacles in
implementing models using biomedical data. These obstacles are discussed
leading to the future prospects of model building with artificial intelligence in
healthcare domain.

biomedical temporal data, biomedical data challenges, forecasting, clinical predictive
modeling, temporal data modeling problems, statistical time-series models, temporal
machine learning models, deep temporal models
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1 Introduction
1.1 Biomedical time series data

Clinical or biomedical data advances medical research by
providing insights into patient health, disease progression, and
treatment efficacy. It underpins new diagnostics, therapies, and
personalized medicine, improving outcomes and understanding
complex conditions. In predictive modeling, biomedical
data is categorized as spatial, temporal, and spatio-temporal
(Khalique et al., 2020; Veneri etal., 2012). Temporal data is key,
capturing health evolution over time and offering insights into
disease progression and treatment effectiveness. Time series data,
collected at successive time points, shows complex patterns with
short- and long-term dependencies, crucial for forecasting and
analysis (Zou et al., 2019; Lai et al., 2018). Properly harnessed, this
data advances personalized medicine and treatment optimization,

making it essential in contemporary research.

1.2 Applications of predictive modeling in
biomedical time series analysis

Predictive modeling with artificial intelligence (AI) has
gained significant traction across various domains, including
manufacturing  (Altarazietal, 2019), heat transfer (Al-
Hindawi et al.,, 2023; 2024), energy systems (Huang et al., 2024),
and notably, the biomedical field (Cai et al., 2023; Patharkar et al.,
2024). Predictive modeling in biomedical time series data
involves various approaches for specific predictions and data
characteristics. Forecasting models predict future outcomes
based on historical data, such as forecasting blood glucose levels
for diabetic patients using past measurements, insulin doses,
and dietary information (Plis et al., 2014). Classification models
predict categorical outcomes, like detecting cardiac arrhythmias
from ECG data by classifying segments into categories such as
normal, atrial fibrillation, or other arrhythmias, aiding in early
diagnosis and treatment (Daydulo etal., 2023; Zhou et al., 2019;
Chuah and Fu, 2007). Anomaly detection in biomedical time
series identifies outliers or abnormal patterns, signifying unusual
events or conditions. For example, monitoring ICU patients’
vital signs can detect early signs of sepsis (Mollura et al., 2021;
Shashikumar et al., 2017; Mitra and Ashraf, 2018), enabling timely
intervention.

Table 1 summarizes the example applications of these models
within the context of biomedical time series.

1.3 Challenges in biomedical time series
data

Regardless of the particular medical application or predictive
model type used, models that manage biomedical time series
data must tackle the intrinsic challenges posed by clinical
and biomedical data. This includes various categories, such as
electronic health records (EHRs), administrative data, claims data,
patient/disease registries, health surveys, and clinical trials data.
As illustrated in Table 2, each biomedical data category presents
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distinct challenges regarding quality, privacy, and completeness.
During predictive modeling, further challenges arise. Specifically,
we will investigate problems associated with missing data and
imputation methods, the intricate nature of high-dimensional
temporal relationships, and factors concerning the size of the
dataset. Addressing these issues is crucial for developing strong
and accurate predictive models in medical research.

1.3.1 Challenges in handling missing values and
imputation methods in biomedical time series

Clinical data is often confronted with the issue of missing
values, which can be caused by irregular data collection schedules
or unexpected events (Xuetal, 2020). Medical measurements,
recorded variably and at different times, may be absent, not
documented, or affected by recording errors (Mulyadi et al., 2022),
which makes the data irregular. Dealing with missing values in
data sets usually involves either directly modeling data sets with
missing values or filling in the missing values (a.k.a. imputation)
to complete datasets for traditional analysis methods using data
imputation techniques.

Current imputation techniques can be divided into four
categories: case deletion, basic statistical imputation, machine
learning-based imputation (Luoetal, 2018), and aggregating
irregularly sampled data into discrete time periods (Ghaderi et al.,
2023). Each of these methods comes with specific challenges in
the context of handling biomedical temporal data. The deletion or
omission of cases may lead to the loss of important information,
particularly when the rate of missingness is high, which is critical
in sensitive applications such as biomedical predictive modeling,
where data is scarce and human lives are at risk. However, in certain
cases, it is possible to do data omission without any potential risk to
the outcome of the study. For instance, (Pinto et al., 2022), employs
interrupted time series analysis to assess the impact of the “Syphilis
No!” initiative in reducing congenital syphilis rates in Brazil. The
results indicate significant declines in priority municipalities after
the intervention. The study showcases the efficacy of public health
interventions in modifying disease trends using statistical analysis of
temporal data. Data collection needed to be conducted consistently
over time and at evenly spaced intervals for proper analysis. To
prevent bias due to the COVID-19 pandemic, December 2019 was
set as the final data collection point, encompassing 20 months before
the intervention (September 2016 to April 2018) and 20 months
after the intervention (May 2018 to December 2019). This approach
illustrates how the author addressed potential issues of irregular data
or missing values in this context.

Contrary to data omission, statistical imputation techniques,
such as mean or median imputation offer an alternative that
reduces the effect of missing data, however, such methods do
not take into account the temporal information but rather offer
a summarized statistical imputation that often does not provide
accurate replacement of the missing data. This could be critical
in biomedical applications with scarce datasets, where the weight
of a single data point could heavily affect the predictive power
of the model. The use of machine learning-based imputation
methods, such as Maximum Likelihood Expectation-Maximization,
k-Nearest Neighbors, and Matrix Factorization, might offer a
more accurate imputation that takes into account the specificity
of the data point contrary to statistical aggregation methods,
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TABLE 1 Overview of predictive modeling techniques for biomedical time series and their example applications across healthcare scenarios.

Model type Description

Forecasting Predicts a continuous value based on historical data

Bio-medical application example

Predicting blood glucose levels for diabetic patients using past glucose
measurements, insulin doses, and dietary information to forecast
potential hypo- or hyperglycemic events (Plis et al., 2014)

Classification Predicts categorical outcomes based on temporal data

Detecting cardiac arrhythmias (such as normal, atrial fibrillation, or
other arrhythmias) (Daydulo et al., 2023; Zhou et al., 2019; Chuah and
Fu, 2007)

Anomaly Detection Identifies outliers or abnormal patterns within time series data

Sepsis detection. (Mollura et al., 2021; Shashikumar et al., 2017; Mitra
and Ashraf, 2018)

TABLE 2 Overview of clinical data types and challenges. This table lists the main types of clinical and biomedical data, their definitions, and key

challenges.

DEYTERAY o) Definition

and outcomes

Challenges

Electronic Health Records (EHRs) Digital records of patients medical history, treatments, « Data Standardization: Different formats across

providers

Data Quality: Missing, incomplete, or inaccurate data

Privacy and Security: Ensuring compliance with

regulations like HIPAA

« Interoperability: Difficulties in data exchange
between systems

Administrative Data Data related to healthcare administration, such as
hospital admissions and discharge records

Limited Clinical Detail: Lack of in-depth clinical
information

Data Timeliness: Potential delays in data availability
« Standardization Issues: Variability in recording and

categorization
« Privacy Concerns: Maintaining patient
confidentiality

reimbursement

Claims Data Data from insurance claims used for billing and

Purpose and Detail: Primarily for billing, may lack
clinical details

« Lag Time: Delays between care and data availability
« Coding Errors: Inaccuracies in coding (e.g., ICD
codes)

Complexity: Requires specialized knowledge for
interpretation

or diseases

Patient/Disease Registries Databases that track patients with specific conditions

Data Completeness: Ensuring all relevant data is
captured

Data Standardization: Different definitions and
methods across registries

Funding and Maintenance: Need for consistent

.

resources

Privacy Issues: Protecting patient confidentiality

questionnaires

Health Surveys Data collected from health-related surveys and

Response Bias: Non-response or inaccurate
self-reporting

« Sampling Issues: Ensuring representative samples
Data Quality: Depends on survey design and
execution

Timeliness: Time-consuming design, conduct, and
analysis

Clinical Trials Data Data from controlled trials testing the efficacy of
treatments or interventions

Complexity and Cost: Expensive and logistically
complex

Regulatory Hurdles: Compliance with regulatory
requirements

Data Sharing: Balancing patient confidentiality and

proprietary interests

Generalizability: Trial participants may not represent
the broader population
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however, many of them still do not consider temporal relations
between observations (Luo et al., 2018; Jun et al., 2019), and they
usually are computationally expensive. Furthermore, without
incorporating domain knowledge, these approaches can introduce
bias and lead to invalid conclusions. Both machine learning
and statistical techniques may not consider data distribution or
variable relationships and may fail to capture complex patterns
in multivariate time-series data due to the neglect of correlated
variables, potentially resulting in underestimated or overestimated
imputed values (Jun et al,, 2019). Additionally, in real-time clinical
decision support systems, timely and accurate data is crucial, as
delays or errors in imputation can lead to incorrect decisions that
directly affect patient outcomes. These systems demand high-
speed processing, requiring imputation algorithms to be both
computationally efficient and accurate. Moreover, the dynamic
nature of clinical environments, where patient conditions can
change rapidly, necessitates imputation methods that can adapt
quickly to evolving data.

Aggregating measurements into discrete time periods can
address irregular intervals, but it may lead to a loss of granular
information (Ghaderietal., 2023). Additionally, in time series
prediction, missing values and their patterns are often correlated
with target labels, referred to as informative missingness (Che et al.,
2018). These limitations make it ill-advised to ignore, impute, or
aggregate these values when handling biomedical time series data,
but rather employ a model that is capable of handling the sparsity
and the irregularity of clinical time series data.

1.3.2 Complexities of high-dimensional temporal
dependencies in biomedical data

Besides missing data challenges, hospitalized patients have a
wide range of clinical events that are recorded in their electronic
health records (EHRs). EHRs contain two different kinds of data:
structured information, like diagnoses, treatments, medication
prescriptions, vital signs, and laboratory tests, and unstructured
data, like clinical notes and physiological signals (Xie et al., 2022;
Lee and Hauskrecht, 2021), making them multivariate or high-
dimensional (Niu et al., 2022).

The complexity of the relationships existing in such high-
dimensional multivariate time series data can be difficult to capture
and analyze. Analysts often try to predict future outcomes based on
past data, and the accuracy of these predictions depends on how
well the interdependencies between the various series are modeled
(Shih et al., 2019). It is often beneficial to consider all relevant
variables together rather than focusing on individual variables
to build a prediction model, as this provides a comprehensive
understanding of correlations in multivariate time series (MTS)
data (Du et al., 2020). It thus becomes a requirement for predictive
models employed in biomedical applications to take into account
correlations among multiple dimensions and make predictions
accordingly. It is equally crucial to ensure that only the features
with a direct impact on the outcome are considered in the analysis.
For instance, the study by Barreto etal. (2023) investigates the
deployment of machine learning and deep learning models to
forecast patient outcomes and allocate beds efficiently during the
COVID-19 crisis in Rio Grande do Norte, Brazil. Out of 20 available
features, nine were chosen based on their clinical importance
and their correlation with patient outcomes, selected through
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discussions with clinical experts to guarantee the model’s accuracy
and interpretability.

In addition to the inherent high dimensionality of biomedical
data sourced from diverse platforms such as EHRs, wearable
devices monitoring neurophysiological functions, and intensive
care units tracking disease progression through physiological
measurements (Allam et al., 2021), also display a natural temporal
ordering. This temporal structure demands a specialized analytical
approach distinct from that applied to non-temporal datasets
(Zouetal, 2019). The temporal dependency adds significant
complexity to modeling due to the presence of two distinct recurring
patterns: short-term and long-term. For instance, short-term
patterns may repeat daily, whereas long-term patterns might span
quarterly or yearly intervals within the time series (Lai et al., 2018).
Biomedical data often exhibit long-term dependencies, such as
those seen in biosignals like electroencephalograms (EEGs) and
electrocardiograms (ECGs), which may span tens of thousands
of time steps or involve specific medical conditions such as acute
kidney injury (AKI) leading to subsequent dialysis (Sun et al., 2021;
Lee and Hauskrecht, 2021). Concurrently, short-term dependencies
can manifest in immediate physiological responses to medical
interventions, such as the administration of norepinephrine and
subsequent changes in blood pressure (Lee and Hauskrecht,
2021). Another instance is presented by Valentim etal. (2022),
who have created a model to forecast congenital syphilis (CS)
cases in Brazil based on maternal syphilis (MS) incidences. The
model takes into account the probability of proper diagnosis
and treatment during prenatal care. It integrates short-term
dependencies by assessing the immediate effects of prenatal care
on birth outcomes, and long-term dependencies by analyzing
syphilis case trends over a 10-year period. This strategy aids
in enhancing public health decision-making and syphilis
prevention planning.

Analyzing these recurrent patterns and longitudinal structures
in biomedical data is essential to facilitate the creation of time-based
patient trajectory representations of health events that facilitate
more precise disease progression modeling and personalized
treatment predictions (Allam etal., 2021; Xieetal, 2022). By
incorporating both short-term fluctuations and long-term trends,
robust predictive models can uncover hidden patterns in patient
health records, advancing our understanding and application of
digital medicine. Failing to consider these recurrent patterns can
undermine the accuracy of time series forecasting in biomedical
contexts such as digital medicine, which involves continuous
recording of health events over time.

Additionally, early detection of diseases is of paramount
importance. This can be achieved by utilizing existing biomarkers
along with advanced predictive modeling techniques, or by
introducing new biomarkers or devices aimed at early disease
detection. For instance, early diagnosis of osteoporosis is
essential to mitigate the significant socioeconomic impacts
of fractures and hospitalizations. The novel device, Osseus,
as cited by Albuquerque etal. (2023), addresses this by offering a
cost-effective, portable screening method that uses electromagnetic
waves. Osseus measures signal attenuation through the patient's
middle finger to predict changes in bone mineral density with the
assistance of machine learning models. The advantages of using
Osseus include enhanced accessibility to osteoporosis screening,
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reduced healthcare costs, and improved patient quality of life
through timely intervention.

1.3.3 Dataset size considerations

The quantity of data available in a given dataset must be carefully
considered, as it significantly influences model selection and overall
analytical approach. For instance, when patients are admitted for
brief periods, the clinical sequences generated are often fewer than
50 data points (Liu, 2016). Similarly, the number of data points for
specific tests, such as mean corpuscular hemoglobin concentration
(MCHC) lab results, can be limited due to the high cost of these
tests, often resulting in less than 50 data points (Liu and Hauskrecht,
2015). Such limited data points pose challenges for predictive
modeling, as models must be robust enough to derive meaningful
insights from small samples without overfitting.

Conversely, some datasets may have a moderate sample length,
ranging from 55 to 100 data points, such as the Physionet sepsis
dataset (Reyna etal.,, 2019; 2020; Goldberger et al., 2000). These
moderate-sized datasets offer a balanced scenario where the data
is sufficient to train more complex models, but still requires careful
handling to avoid overfitting and ensure generalizability.

In other cases, datasets can be extensive, particularly when
long-span time series data is collected via sensor devices. These
devices continuously monitor physiological parameters, resulting
in large datasets with thousands of time steps (Liu, 2016). For
example, wearable devices tracking neurophysiological functions or
intensive care unit monitors can generate vast amounts of data,
providing a rich source of information for predictive modeling.
However, handling such large datasets demands models that
are computationally efficient and capable of capturing long-term
dependencies and complex patterns within the data.

The amount of data available is a major factor in choosing
the appropriate model. Sparse datasets require models that can
effectively handle limited information, often necessitating advanced
techniques for data augmentation and imputation to make the most
out of available data. Moderate datasets allow for the application
of more sophisticated models, including machine learning and
deep learning techniques, provided they are carefully tuned to
prevent overfitting. Large datasets, on the other hand, enable the
use of highly complex models, such as deep neural networks, which
can leverage the extensive data to uncover intricate patterns and
relationships.

1.4 Strategies in forecasting for biomedical
time series data

While our discussion has generally revolved around the
challenges in predictive modeling of biomedical temporal data,
this review specifically emphasizes forecasting. From the earlier
discourse, it is clear that a forecasting model for clinical or
biomedical temporal data needs to adeptly manage missing,
irregular, sparse, and multivariate data, while also considering its
temporal properties and the capacity to model both short-term and
long-term dependencies. The model should be able to make multi-
step predictions, and the selection of a suitable model is determined
by the amount of data available and the temporal length of the time
series under consideration.
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In this review, we initially examine three main categories
of forecasting models: statistical, machine learning, and deep
learning models. We look closely at the leading models within
each category, assessing their ability to tackle the complexities of
biomedical temporal data, including issues like data irregularity,
sparsity, and the need to capture detailed temporal dependencies,
alongside multi-step predictions. Since each category has its unique
advantages as well as limitations in addressing the specific challenges
of biomedical temporal datasets, other sets of models mentioned
in the literature, known as hierarchical time series forecasting and
combination or ensemble forecasting that merge the benefits of
various forecasting models to produce more accurate forecasts are
also covered.

The rest of the paper is structured as follows: In Section 2,
statistical models are introduced. Section 3 covers machine learning
models, while Section 4 focuses on deep learning models. This is
followed by Section 5, which is a discussion section that summarizes
the findings, discusses ensemble as well as hierarchical models,
and explores future directions for the application of Al in clinical
datasets. Finally, Section 6 concludes the paper.

2 Statistical models

The most popular predictive statistical models for temporal
data are Auto-Regressive Integrated Moving Average (ARIMA)
models, Exponential Weighted Moving Average (EWMA) models,
and Regression models which are reviewed in the following sections.

2.1 Auto-Regressive Integrated Moving
Average models

(Yule, 1927) proposed an autoregressive (AR) model, and
(Wold, 1948) introduced the Moving Averaging (MA) model,
which were later combined by Box and Jenkins into the ARMA
model (Janacek, 2010) for modeling stationary time series. The
ARIMA model, an extension of ARMA, incorporates differencing
to make the time series stationary before forecasting, represented
by ARIMA (p,d,q), where p is the number of autoregressive terms,
d is the degree of differencing, and q is the number of moving
average terms. ARIMA models have been applied in real-world
scenarios, such as predicting COVID-19 cases. Ding et al. (2020)
used an ARIMA (1,1,2) model to forecast COVID-19 in Italy.
In another study, (Bayyurt and Bayyurt, 2020), utilized ARIMA
models for predictions in Italy, Turkey, and Spain, achieving
a Mean Absolute Percentage Error (MAPE) value below 10%.
Similarly, (Tandon et al., 2022), employed an ARIMA (2,2,2) model
to forecast COVID-19 cases in India, reporting a MAPE of 5%, along
with corresponding mean absolute deviation (MAD) and multiple
seasonal decomposition (MSD) values.

When applying ARIMA models to biomedical data, we select
the appropriate model using criteria like Akaike Information
Criterion (AIC) or Bayesian information criterion (BIC), estimate
parameters using tools like R or Python's statsmodels, and validate
the model through residual analysis. ARIMA models are effective
for univariate time series with clear patterns, supported by extensive
documentation and software, but they require stationarity and may
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be less effective for data with complex seasonality. Moreover, if a time
series exhibits long-term memory, ARIMA models may produce
unreliable forecasts (Al Zahrani et al., 2020), signifying that they
are inadequate for capturing long-term dependencies. Additionally,
ARIMA models necessitate a minimum of 50 data points in the
time series to generate accurate forecasts (Montgomery et al., 2015).
Therefore, ARIMA models should not be used for biomedical data
that require the modeling of long-term relationships or have a small
number of data points.

Several extensions such as Seasonal ARIMA (SARIMA) have
been introduced for addressing seasonality. For instance, the research
by Liuetal. (2023) examined 10 years of inpatient data on Acute
Mountain Sickness (AMS), uncovering evident periodicity and
seasonality, thereby establishing its suitability for SARIMA modeling.
The SARIMA model exhibited high accuracy for short-term forecasts,
assisting in comprehending AMS trends and optimizing the allocation
of medical resources. An additional extension of ARIMA, proposed
for long-term forecasts, is ARFIMA. In the study by Qietal
(2020), the Seasonal Autoregressive Fractionally Integrated Moving
Average (SARFIMA) model was utilized to forecast the incidence
of hemorrhagic fever with renal syndrome (HFRS). The SARFIMA
model showed a better fit and forecasting accuracy compared to
the SARIMA model, indicating its superior capability for early
warning and control of infectious diseases by capturing long-range
dependencies. Additionally, it is apparent that ARIMA models cannot
incorporate exogenous variables. Therefore, a variation incorporating
exogenous variables, known as the ARIMAX model, has been
proposed. The study by Mahmudimanesh et al. (2022) applied the
ARIMAXmodelto forecast cardiacand respiratory mortality in Tehran
by analyzing the effects of air pollution and environmental factors. The
key variables encompass air pollutants (CO, NO2, SO2, PM10) and
environmental data (temperature, humidity). The ARIMAX model is
selected for its capacity to include exogenous variables and manage
non-static time series data.

For multi-step ahead forecasting in temporal prediction models,
two methods exist. The first, known as the plug-in or iterated multi-
step (IMS) prediction that involves successively using the single step
predictor, treating each prediction as if it were an observed value to
obtain the expected future value. The second approach is to create a
direct multi-step (DMS) prediction as a function of the observations,
and to select the coefficients in this predictor by minimizing the sum of
squares of the multi-step forecast errors. Haywood and Wilson (2009)
developed a test to decide which of two approaches is more dependable
based on a given lead-time. In addition to this test, there are other ways
to decide which technique is most suitable for forecasting multiple steps
ahead. One of these methods can be used to decide the best choice
for multi-step ahead prediction either for ARIMA or other types of
models depending on the amount of historical data and the lead-time.

2.2 Exponential weighted moving average
models

The EWMA method, based on Roberts (2000), uses first-
order exponential smoothing as a linear combination of the
current observation and the previous smoothed observation. The
smoothed observation y, at time t is given by the equation y, =
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Ay, +(1=1)y, ], where A is the weight assigned to the latest
observation. This recursive equation requires an initial value y;.
Common choices for y; include setting it equal to the first
observation y, or the average of available data, depending on the
expected changes in the process. The smoothing parameter A is
typically chosen by minimizing metrics such as Mean Squared Error
(MSE) or MAPE (Montgomery et al., 2015).

Several modifications of simple exponential smoothing exist to
account for trends and seasonal variations, such as Holt's method
(Holt, 2004) and Holt-Winter's method (Winters, 1960). These can
be used in either additive or multiplicative forms. For modeling and
forecasting biomedical temporal data, the choice of method depends
on the data characteristics. Holt's method is more appropriate
for data with trends. On the other hand, EWMA is suitable for
stationary or relatively stable data, making it effective in scenarios
without a clear trend, such as certain biomedical measurements. For
instance, Rachmat and Suhartono (2020) performed a comparative
analysis of the simple exponential smoothing model and Holt’s
method for forecasting the number of goods required in a hospital’s
inpatient service, assessing performance using error percentage
and MAD. Their findings indicated that the EWMA model
outperformed Holt’s method, as it produced lower forecast errors.
This outcome is logical since the historical data of hospitalized
patients lack any discernible trend.

EWMA models are also intended for univariate, regularly-spaced
temporal data, as demonstrated in the example above (Rachmat
and Suhartono, 2020), which uses a single variable (number of
goods) over a period of time as input for model construction.
This model is not suitable for biomedical data that involves
multiple variables influencing the forecast unless its extention for
multivariate data is employed. As highlighted by De Gooijer and
Hyndman (2006), there has been surprisingly little progress in
developing multivariate versions of exponential smoothing methods
for forecasting. Poloni and Sbrana (2015) attributes this to the
challenges in parameter estimation for high-dimensional systems.
Conventional multivariate maximum likelihood methods are prone to
numerical convergence issues and high complexity, which escalate with
model dimensionality. They propose a novel strategy that simplifies
the high-dimensional maximum likelihood problem into several
manageable univariate problems, rendering the algorithm largely
unaffected by dimensionality.

EWMA models cannot directly handle data that is not evenly
spaced, and thus cannot be used to directly model biomedical data
with a large number of missing values without imputation. These
models are capable of multi-step ahead prediction either through
DMS or IMS approach. To emphasize long-range dependencies, the
parameter A can be set to a low value, while a higher value will
give more importance to recent past value (Rabyk and Schmid,
2016). The range of A values typically used for reasonable forecasting
is 0.1-0.4, depending on the amount of historical data available
for modeling (Montgomery et al., 2015).

2.3 Regression models
Several regression models are available, and in this discussion,

we focus on two specific types: multiple linear regression (MLR)
(Galton, 1886; Pearson, 1922; Pearson, 2023) and multiple
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polynomial regression (MPR) (Legendre, 1806; Gauss, 1823). These
models are particularly relevant for biomedical data analysis as
they accommodate the use of two or more variables to forecast
values. In MLR, there is one continuous dependent variable and two
or more independent variables, which may be either continuous
or categorical. This model operates under the assumption of a
linear relationship between the variables. On the other hand, MPR
shares the same structure as MLR but differs in that it assumes a
polynomial or non-linear relationship between the independent
and dependent variables. This review provides examination of these
two regression models.

2.3.1 Multiple linear regression models

The estimated value of output y at time ¢, denoted as y, with a
MLR model for a certain set of predictors is given by the following
Equation 1.

(1)

where, X, = (1, X, Xy ..., X)) is a vector of k explanatory variables

yi=Xp+e

at time t, B= (B, B,---.B,)" are regression coefficients, and ¢, is a
random error term at time ¢, £ = 1,..., N (Fang and Lahdelma, 2016).
It can be solved with least squares method (Pearson, 1901) to obtain
the regression coefficients.

R? value can be calculated to check the accuracy of model
fitting. The value of R* that is closer to 1 indicates better model
performance. Metrics such as Root Mean Squared Error (RMSE),
Mean Absolute Percentage Error (MAPE), and Theil’s inequality
coefficient (TIC) are commonly utilized to assess the forecasting
model’s performance. While RMSE is scale-sensitive, MAPE and
TIC are scale-insensitive. Lower values for these three metrics
signify a well-fitting forecasting model.

Zhang et al. (2021) developed an MLR model aimed at being
computationally efficient and accurate for forecasting blood glucose
levels in individuals with type 1 diabetes. These MLR models can
predict specific future intervals (e.g., 30 or 60 min ahead). The
dataset is divided into training, validation, and testing subsets;
missing values are handled using interpolation and forward filling,
and the data is normalized for uniformity. The MLR model showed
strong performance, especially in 60-min forward predictions, and
was noted for its computational efficiency in comparison to deep
learning models. It excelled in short-term time series forecasts with
significant data variability, making it optimal for real-time clinical
applications.

2.3.2 Multiple polynomial regression models
The estimated value of y, with say a second-order MPR model
for a certain set of predictors is given by the following Equation 2.
Vi = Bot Bixiet o 4 B+ By Xi + B Xaa t o
+ BoX1u + BopXar” + B Xaika + oo e

where, f3,,, 3,, are regression coefficients, x,;, Xy, ..., x,, are predictor

2)

variables, and ¢ is a random error. The ordinary least squares method
(Legendre, 1806; Gauss, 1823) is applicable for solving this, similar
to how it is used with MLR models. Furthermore, the evaluation
metrics utilized for MLR are also suitable for MPR models.
Wuetal. (2021) utilized US COVID-19 data from January
22 to July 20 (2020), categorizing it into nationwide and state-
level data sets. Positive cases were identified as Temporal Features
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(TF), whereas negative cases, total tests, and daily positive case
increases were identified as Characteristic Features (CF). Various
other features were employed in different manners, such as the daily
increment of hospitalized COVID-19 patients. An MPR model was
created for forecasting single-day outcomes. The model consisted
of pre-processing and forecasting phases. The pre-processing phase
included quantifying temporal dependency through time-window
lag adjustment, selecting CFs, and performing bias correction.
The forecasting phase involved developing MPR models on pre-
processed data sets, tuning parameters, and employing cross-
validation techniques to forecast daily positive cases based on state
classification.

The various applications of multiple regression models stated
above, linear or polynomial, reveal their inability to directly capture
temporal patterns. Although these models can accommodate
multiple input variables, their design limits them to forecasting a
singular outcome with one model. One of the extentions proposed
to tackle this problem is multivariate MLR (MVMLR). Suganya et al.
(2020) employs MVMLR to forecast four continuous COVID-
19 target variables (confirmed cases and death counts after
one and 2 weeks) using cumulative confirmed cases and death
counts as independent variables. The methodology includes data
preprocessing, feature selection, and model evaluation using metrics
like Accuracy, R? score, Mean Absolute Error (MAE), Mean Squared
Error (MSE), and Root Mean Squared Error (RMSE).

It is clear from the design of the regression models that they
are unable to process missing input data. Unless all the predictor
variables are present or substituted, the value of the output variable
cannot be determined. Therefore, it becomes essential to apply
imputation techniques prior to employing the regression models for
forecasting.

The regression models do not usually require a large amount
of data; it has been demonstrated to be effective with as few as
15 data points per case (Filipow etal., 2023). Multi-step ahead
prediction can be accomplished with either IMS or DMS approaches
when dealing with temporal data like previous cases. Nonetheless,
as mentioned previously, since these methods do not inherently
capture temporal dependencies, forecasts can be generated as
long as the temporal order is maintained while training, and
testing the model.

3 Machine learning models

Many machine learning models are employed to construct
forecasting models for temporal data sets. The most popular models
for temporal data sets include Support vector regression (SVR), k-
nearest neighbors regression (KNNR), Regression trees (Random
forest regression [RFR]), Markov process (MP) models, Gaussian
process (GP) models. We will examine these techniques in the
following sections.

3.1 Support vector regression

The origin of Support Vector Machines (SVMs) can be traced
back to Vapnik (1999). Initially, SVMs were designed to address
the issue of classification, but they have since been extended to the

frontiersin.org


https://doi.org/10.3389/fphys.2024.1386760
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org

Patharkar et al.

realm of regression or forecasting problems (Vapnik et al., 1996).
The SVR approach has the benefit of transforming a nonlinear
problem into a linear one. This is done by mapping the data set x
into a higher-dimensional, linear feature space. This allows linear
regression to be performed on the new feature space. Various kernels
are employed to convert non-linear data into linear data. The most
commonly used are linear kernel, polynomial kernel, and radial basis
or Gaussian kernel.

Upon transforming a nonlinear dataset x into a higher-
dimensional, linear feature space, the prediction function f(x) is
expressed by Equation 3.

fe)=w¢(0)+b ©)

The SVR algorithm solves a nonlinear regression problem by
transforming the training data x; (where i ranges from one to N, with
N being the size of the training data set) into a new feature space,
denoted by ¢(x). This transformation allows establishing a linear
relationship between input and output, using the weight matrix w
and bias matrix b to further refine the model.

In SVR, selecting optimal hyperparameters (C,¢) is crucial
for accurate forecasting. The parameter C controls the balance
between minimizing training error and generalization. A higher C
reduces training errors but may overfit, while a lower C results in a
smoother decision function, possibly sacrificing training accuracy.
The parameter ¢ sets a tolerance margin where errors are not
penalized, forming an e-tube around predictions. A larger e simplifies
the model but may underfit, whereas a smaller ¢ provides more detail,
potentially leading to overfitting. Optimal values for C and ¢ may
require additional methods (Liu et al., 2021).

SVR is often combined with other algorithms for parameter
optimization. Evolutionary algorithms frequently determine SVR
parameters. For example, Hamdi et al. (2018) used a combination of
SVR and differential evolution (DE) to predict blood glucose levels
with continuous glucose monitoring (CGM) data. The DE algorithm
was used to determine the optimal parameters of the SVR model,
which was then built based on these parameters. The model was
tested using real CGM data from 12 patients, and RMSE was used
to evaluate its performance for different prediction horizons. The
RMSE values obtained were 9.44, 10.78, 11.82, and 12.95 mg/dL for
prediction horizons (PH) of 15, 30, 45, and 60 min, respectively.
It should be noted that when these evolutionary algorithms are
employed for determining parameters, SVR encounters notable
disadvantages, including a propensity to get stuck in local minima
(premature convergence).

Moreover, SVR can occasionally lack robustness, resulting
in inconsistent outcomes. To mitigate these challenges, hybrid
algorithms and innovative approaches are applied. For instance,
Empirical Mode Decomposition (EMD) is employed to extract
non-linear or non-stationary elements from the initial dataset.
EMD facilitates the decomposition of data, thereby improving the
effectiveness of the kernel function Fan et al. (2017).

Essentially, SVR is an effective method for dealing with MTS
data (Zhang et al., 2019). SVR, which operates on regression-based
extrapolation, fits a curve to the training data and then uses this
curve to predict future samples. It allows for continuous predictions
rather than only at fixed intervals, making it applicable to irregularly
spaced time series (Godfrey and Gashler, 2017). Nonetheless,
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due to its structure, SVR struggles to capture complex temporal
dependencies (Weerakody et al., 2021).

It is suitable for smaller data sets as the computational
complexity of the problem increases with the size of the sample
Liuetal. (2021). It excels at forecasting datasets with high
dimensionality Gavrishchaka and Banerjee (2006) due to the
advanced mapping capabilities of kernel functions Fan et al. (2017).
Additionally, multi-step ahead prediction in the context of SVR’s
application to temporal data can be achieved either with the DMS
or IMS approach (Bao et al., 2014).

3.2 K-nearest neighbors regression

In 1951, Evelyn Fix and Joseph Hodges developed the KNN
algorithm for discriminant examination analysis (Fix and Hodges,
1989). This algorithm was then extended to be used for regression
or forecasting. The KNN method assumes that the current time
series segment will evolve in the future in a similar way to a past
time series segment (not necessarily a recent one) that has already
been observed (Kantz and Schreiber, 2004). The task is thus to
identify past segments of the time series that are similar to the
present one according to a certain norm. Given a time series y(N)
with N samples, the segment made of the last m samples is denoted
as y,,(N), reflecting the current disturbance pattern. The KNN
algorithm searches for k past time series intervals most comparable
to y,,(IN) within the memory y,(N) using various distance metrics.
For each nearest neighbor, a following time series of length h
is generated, known as prediction contributions. Forecasting can
then be done using unweighted or weighted approaches. In the
unweighted approach, the prediction is the mean of the prediction
contributions. In the weighted approach, the prediction is a weighted
average based on the distance of each nearest neighbor from the
current segment. Weights are assigned inversely proportional to the
distances.

Gopakumar et al. (2016) employed the KNN algorithm to
forecast the total number of discharges from an open ward in an
Australian hospital, which lacked real-time clinical data. To estimate
the next-day discharge, they used the median of similar discharges
from the past. The quality of the forecast was evaluated using the
mean forecast error (MFE), MAE, symmetric MAE (SMAPE), and
RMSE. The results of these metrics were reported to be 1.09, 2.88,
34.92%, and 3.84, respectively, with an MAE error improvement of
16.3% over the naive forecast.

KNN regression is viable for multivariate temporal datasets,
as illustrated by Al-Qahtani and Crone (2013). Nevertheless,
its forecasting accuracy diminishes as the dimensionality of the
data escalates. Consequently, it is critical to meticulously select
pertinent features that impact the target variable to enhance model
performance.

KNN proves effective for irregular temporal datasets (Godfrey
and Gashler, 2017) due to its ability to identify previous matching
patterns rather than solely depending on recent data. This distinctive
characteristic renders KNN regression a favored choice for
imputing missing data (Aljuaid and Sasi, 2016) prior to initiating
any forecasting. Furthermore, it excels in capturing seasonal
variations or local trends, such as aligning the administration
of a medication that elevates blood pressure with a low blood
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pressure condition. Conversely, its efficacy in identifying global
trends is limited, particularly in scenarios like septic shock,
where multiple health parameters progressively deteriorate
over time (Weerakody et al., 2021).

The KNN algorithm necessitates distance computations for k-
nearest neighbors. Selecting an appropriate distance metric aligned
with the dataset's attributes is essential, with Euclidean distance
being prevalent, though other metrics may be more suitable for
specific datasets. Ehsani and Drables (2020) examines the impact
of various distance measures on cancer data classification, using
both common and novel measures, including Sobolev and Fisher
distances. The findings reveal that novel measures, especially
Sobolev, perform comparably to established measures.

As the size of the training dataset increases, the computational
demands of the algorithm also rise. To mitigate this issue,
approximate nearest neighbor search algorithms can be employed
(Jones etal., 2011). Furthermore, the algorithm requires a
large amount of data to accurately detect similar patterns.
Several methods have been suggested to accelerate the process;
for example, (Garciaetal, 2010), presented two GPU-based
implementations of the brute-force kNN search algorithm using
CUDA and CUBLAS, achieving speed-ups of up to 64X and 189X
over the ANN C++ library on synthetic data.

Similarly to other forecasting models, KNN is applicable
for multistep ahead predictions using strategies such as
IMS or DMS (Martinez et al., 2019). It is imperative to thoroughly
analyze the clinical application and characteristics of the clinical
data prior to employing KNN regression for forecasting, given its
unique attributes. Optimizing the number of neighbors (k) and the
segment length (m) through cross-validation is crucial. Employing
appropriate evaluation metrics (e.g., MFE, MAE, SMAPE, RMSE) is
necessary to assess the model’s performance.

3.3 Random forest regression

Random Forests (RFs), introduced by Breiman (2001), are a
widely-used forecasting data mining technique. According to Bou-
Hamad and Jamali (2020), they are tree-based ensemble methods
used for predicting either categorical (classification) or numerical
(regression) responses. In the context of regression, known as
Random Forest Regression (RFR), RF models strive to derive a
prediction function f(x) that reduces the expected value of a loss
function L(Y, f(X)), with the output Y typically evaluated using the
squared error loss. RFR builds on base learners, where each learner is
a tree trained on bootstrap samples of the data. The final prediction
is the average of all tree predictions as shown by Equation 4.

K
1

flx)= E{; () (4)

where K is the number of trees, and [;(x) is the k-th tree. Trees

are constructed using binary recursive partitioning based on criteria

such as MSE.

Zhao et al. (2019) developed a RFR model to forecast the future
estimated glomerular filtration rate (eGFR) values of patients to
predict the progression of Chronic Kidney Disease (CKD). The
data set used was from a regional health system and included
120,495 patients from 2009 to 2017. The data was divided into three
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tables: eGFR, demographic, and disease information. The model was
optimized through grid-search and showed good fit and accuracy in
forecasting eGFR for 2015-2017 using the historical data from the
past years. The forecasting accuracy decreased over time, indicating
the importance of previous eGFR records. The model was successful
in predicting CKD stages, with an average R* of 0.95, 88% Macro
Recall, and 96% Macro Precision over 3 years.

The study presented in Zhao et al. (2019) indicates that RFR
is effective for forecasting multivariate data. Another research
by Hosseinzadeh etal. (2023) found that RFR performs better
with multivariate data than with univariate data, especially
when the features hold substantial information about the target.
Research by Tyralis and Papacharalampous (2017) indicated that
RF incorporating many predictor variables without selecting key
features exhibited inferior performance relative to other methods.
Conversely, optimized RF utilizing a more refined set of variables
showed consistent reliability, highlighting the importance of
thoughtful variable selection.

Similar to SVR, RFR is able to process non-linear information,
although it does not have a specific design for capturing temporal
patterns (Helmini et al., 2019). RFR is capable of handling irregular
or missing data. El Mrabet et al. (2022) compared RFR for fault
detection with Deep Neural Networks (DNNs), and found that RFR
was more resilient to missing data than DNNs, showing its superior
ability to manage missing values. To apply RFR to temporal data, it
must be suitably modeled. As an example, Hosseinzadeh et al. (2023)
has demonstrated one of the techniques, which involves forecasting
stream flow by modeling the RFR as a supervised learning task with
24 months of input data and corresponding 24 months of output
sequence. The construction of sequences involves going through
the entire data set, shifting 1 month at a time. The study showed
that extending the look-back window beyond a certain time frame
decreases accuracy, indicating RFR’s difficulty in capturing long-
term dependencies when used in temporal modeling context. For
a forecasting window of 24 months, the look-back window must be
at least 24 months to avoid an increase in MAPE. This implies that
although RFR can be used for temporal modeling, its effectiveness is
more in capturing short-term dependencies rather than long-term
ones. The experiments conducted by Tyralis and Papacharalampous
(2017) also support this, showing that utilizing a small number of
recent variables as predictors during the fitting process significantly
improves the RFR’s forecasting accuracy.

RFR can be used to forecast multiple steps ahead, similar to other
regression models used for temporal forecasting (Alhnaity et al.,
2021).
considerable volume of data to adjust its hyperparameters. It

Regarding data management, RFR necessitates a
can swiftly handle such extensive datasets, leading to a more

accurate model (Moon et al., 2018).

3.4 Markov process models

Two types of Markov Process (MP) models exist: Linear
Dynamic System (LDS) and Hidden Markov Model (HMM). Both of
these models are based on the same concept: a hidden state variable
that changes according to Markovian dynamics can be measured.
The learning and inference algorithms for both models are similar in
structure. The only difference is that the HMM uses a discrete state
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variable with any type of dynamics and measurements, while the
LDS uses a continuous state variable with linear-Gaussian dynamics
and measurements. These models are discussed in more detail in the
following sections.

3.4.1 Linear dynamic system

LDS, introduced by Kalman (1963), models the dynamics of
sequences using hidden states and discrete time. It assumes evenly
spaced time intervals within sequences, where the state transition
and state-observation probabilities are given by g, and o, respectively.
These probabilities are determined by the Equations 5, 6.

qi=Aq_, +¢ (5)

0;=Bg;+{; (6)

The terms A and B represent the transition and emission
matrices, respectively, whereas ¢ and (; denote Gaussian noise
components. Specifically, the stochastic element ¢; adheres to a zero-
mean Gaussian distribution ¢; ~ N(0, P), characterized by a zero-
mean vector and covariance matrix P. On the other hand, the
stochastic component (; follows a zero-mean Gaussian distribution
{; ~N(0, R), which is also characterized by a zero-mean vector
and covariance matrix R. The initial state distribution (q,) is
defined, with mean & and covariance matrix vy, i.e., q, ~ N( ).
The set of LDS parameters is denoted as A =(4,B,P,R,& y). In
applied scenarios, these parameters necessitate estimation from
empirical data. Two standard approaches for learning LDS are
the Expectation-Maximization (EM) (Ghahramani and Hinton,
1996) and spectral learning algorithms (Katayama, 2005; Overchee
and Moor, 1996; Doretto et al., 2003). EM iteratively maximizes
the likelihood of observations by cycling between expectation (E-
step) and maximization (M-step). It is precise but can be slow
and prone to local optima, especially with limited training data.
Spectral learning algorithms provide a non-iterative, closed-form
solution using singular value decomposition (SVD) to estimate LDS
parameters. They are faster but may be less precise than EM.

A new data-driven state-space dynamic model was
developed by Wang et al. (2014) using an extended Kalman filter to
estimate time-varying coefficients based on three variate time series
data corresponding to glucose, insulin, and meal intake from type
1 diabetic subjects. This model was used to forecast blood glucose
levels and was evaluated against a standard model (forgetting-factor-
based recursive ARX). The results showed that the proposed model
was superior in terms of fit, temporal gain, and J index, making
it better for early detection of glucose trends. Furthermore, the
model parameters could be estimated in real time, making it suitable
for adaptive control. This model was tested for various prediction
horizons, demonstrating the model’s suitability for multi-step ahead
prediction.

The LDS is apt for modelling multivariate temporal data, yet it
is confined to data sampled at regular time intervals. As a result, its
application to irregularly spaced data (Shamout et al., 2021) or time
series with missing values may be problematic. In such instances,
modifications and extension are needed. For example, Liu et al.
(2013) presented a novel probabilistic method for modeling
clinical time series data that accommodates irregularly sampled
observations using LDS combined with GP models. They defined
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the model by a series of GPs, each confined to a finite window,
with dependencies between consecutive GPs represented via an
LDS. Their experiments on real-world clinical time series data
demonstrate that their model excels in modeling clinical time
series and either outperforms or matches alternative time series
prediction models.

Typically, implementing the LDS model starts with thorough
data preparation, requiring uniform sampling. In cases of irregular
sampling or datasets with missing values, proper management
through interpolation or imputation is essential for using the model
without alterations, as mentioned above. The model architecture
is constructed using hidden state variables (g,) to encapsulate
the latent processes, alongside measurable observation variables
(0;) representing directly observable quantities. Parameters such as
the state transition matrix (A), the emission matrix (B), and the
covariance matrices for process noise (P) and observation noise
(R) should be initialized based on prior knowledge or through
randomization techniques. Parameter learning is facilitated through
the EM algorithm or spectral learning methods, with practical
considerations dictating the choice: EM being preferred for its
precision with limited datasets and spectral methods for their
computational expediency.

The LDS or Kalman filter remains a cornerstone for tracking and
estimation due to its attributes of simplicity, optimality, tractability,
and robustness. However, nonlinear system applications present
complex challenges, often mitigated by the Extended Kalman
Filter (EKF) (Lewis, 1986) which linearizes nonlinear models
to leverage the linear Kalman filter. Also, various advancements
have been proposed for LDS, particularly when addressing
nonlinear or non-Gaussian dynamics. For example, approximate
filtering methodologies such as the unscented Kalman filter (Julier
and Uhlmann, 1997), alongside Monte Carlo-based techniques
including the particle filter (Gordon et al., 1993) and the ensemble
Kalman filter (Evensen, 1994), are also utilized similar to EKE. Model
evaluation is conducted through cross-validation employing metrics
such as MSE or RMSE. For forecasting applications, the model can
be employed for one-step ahead forecasts or extended to iterative
multi-step predictions.

3.4.2 Hidden markov model

Hidden Markov Models (HMMs), introduced by Baum
and colleagues in the late 1960s and early 1970s (Baum and
Petrie, 1966; Baum and Eagon, 1967; Baum and Sell, 1968;
Baum et al., 1970; Baum, 1972), are powerful tools for linking
hidden states with observed events, assuming an underlying
stochastic process. An HMM consists of a set of hidden states,
a transition probability matrix, a sequence of observations,
observation likelihoods, and an initial state distribution. A critical
assumption in HMMs is output independence, where the probability
of an observation depends solely on the state that produced it.

HMMs address three fundamental problems: (1) Likelihood
estimation: Using the forward or backward algorithm to compute
the probability of an observed sequence given the model parameters;
(2) Decoding: Employing the Viterbi algorithm to determine the
optimal sequence of hidden states corresponding to a sequence
of observations; and (3) Learning: Applying the Baum-Welch
algorithm, a special case of the EM algorithm, to estimate HMM
parameters from observation sequences.
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Sotoodeh and Ho (2019) proposed a novel feature representation
based on the HMM to predict the length of stay of patients admitted
to the ICU. This representation was composed of a specified time
resolution and a summary statistic calculated for a specific time
window for each feature (e.g., average, most recent, maximum, etc.).
An HMM was then trained on these features, and used to generate
a series of states for each patient, with the first and last states being
used as it was thought that these could better explain the variance in
the length of stay. This feature matrix was then used as the input to
a regression model to estimate the length of stay. Experiments were
conducted to determine the optimal number of states, overlapping or
non-overlapping time windows, aggregation of ICU types, summary
measure for each time window, and selection of time window
probabilities. The model was compared to other baseline models,
and was found to have a lower RMSE than all of them.

It is evident from the application here that HMM is capable
of dealing with multivariate data. Additionally, it is designed to
process temporal data that is spaced at regular intervals of time
(Shamout et al., 2021). Unfortunately, it is not able to process
temporal data that is irregular or has missing values. Cao et al.
(2015) employed both DMS and IMS strategies to forecast multiple
future system states and anticipate the evolution of a fault
in the Tennessee Eastman (TE) chemical process using HMM.
They reported the accuracy of 1,2,3,.,20 step-ahead predictions,
which were similar for both approaches, with the DMS approach
being slightly more accurate than the IMS approach. This is
understandable, as the IMS approach has to contend with additional
complexities, such as cumulative errors, decreased precision, and
increased uncertainty. This demonstrates the capability of HMM to
make predictions for multiple steps in the future.

HMM can be constructed using either raw time series data
or extracted features. Samaee and Kobravi (2020) introduced
a forecasting model aimed at forecasting the timing of tremor
bursts with a nonlinear hidden Markov model. This model
was trained using the Baum-Welch algorithm, employing both
raw Electromyogram (EMG) data and extracted features such
as integrated EMG, mean frequency, and peak frequency. The
study found that an HMM trained on raw EMG data performed
better at forecasting tremor occurrences, suggesting that raw data
more accurately captures tremor dynamics compared to extracted
features. This is likely due to the short time window being insufficient
for feature-based methods. Therefore, it is crucial to determine
whether raw time series data or extracted features yield better
performance in HMM construction.

In general, MP models are well-recognized for their efficacy in
capturing short-term relationships (Manaris et al., 2011) between
adjacent symbols or sequences with strong inter-symbol ties.
However, they prove inadequate for representing long-distance
dependencies between symbols that are spatially or temporally
distant (Yoon and Vaidyanathan, 2006; Manaris etal., 2011).
To enhance the representational scope of these models, certain
methodologies must be employed. For instance, Yoon and
Vaidyanathan (2006) proposed context-sensitive HMMs capable
of capturing long-distance dependencies, thereby enabling robust
pairwise correlations between distant symbols.

Additionally, a limitation of Markov models is that the intrinsic
dimensionality of its hidden states is not known beforehand. If the
dimensionality is too large, there is a risk of the model becoming
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overfitted. Therefore, it is often necessary to try out different training
sizes and intrinsic dimensionality of the hidden states to create a
model that fits (Liu, 2016).

3.5 Gaussian process models

The Gaussian process (GP), introduced by Williams and
Rasmussen (Williams and Rasmussen, 2006), is a non-parametric,
non-linear Bayesian model in statistical machine learning. A
GP is a collection of random variables, any finite number of
which have a joint Gaussian distribution. This model extends
the multivariate Gaussian to infinite-sized collections of real-
valued variables, defining the distribution over random functions.
A GP is represented by the mean function: m(x) = E[f(x)], and
the covariance function: K%(x,x') = E[(f(x) - m(x))(f(x") = m(x"))],
where f(x) is a real-valued process and, x and x’ are two input vectors.

In the context of biomedical temporal data, GP shows promises
for modeling and forecasting due to their flexibility and ability
to incorporate uncertainty. For example, GP can be used to
model patient vital signs over time or predict disease progression
(Siami-Namini et al., 2019). The key advantage of GP is their
ability to provide uncertainty estimates along with predictions,
which is crucial in biomedical applications where uncertainty
quantification can inform clinical decisions. The GP can compute
the distribution of function values for any set of inputs. This
initial distribution, known as the prior, is a multivariate Gaussian
represented by Equation 7.

FX)~ N (m(X7), K (X*,X")) )

When given observed data, the GP updates this to the posterior
distribution, which also follows a multivariate Gaussian. This
updated distribution incorporates the observed data, providing
more accurate predictions. The posterior distribution is influenced
by the observed values and accounts for noise in the data.

GPs extend the multivariate Gaussian distribution into an
infinite function space, making them suitable for time series
modeling. They can handle observations taken at any time,
whether regularly or irregularly spaced, and can make future
predictions by calculating the posterior mean for any given time
index. Additionally, GPs can act as non-linear transformation
operators by replacing the linear transformations used in traditional
temporal models with GP, offering a flexible approach to modeling
complex data.

GP parameters consist of mean and covariance function
parameters. The mean function, dependent on time, represents
the expectation before observations. In cases of uncertain trend
directions, constant-offset mean functions are common. If prior
knowledge about the long-term trend exists, it can be incorporated
into GP models, optimizing mean function parameters using
gradient-based methods. In clinical scenarios with diverse patient
ages and circumstances, aligning time origins is challenging.
A practical approach is setting mean functions to a constant
(m(t) = M), making the GP time-invariant. The constant M is
determined by averaging all patient observations. To optimize the
covariance function parameters ©, one can maximize the marginal

likelihood p(Y1X). The log marginal likelihood for GP is calculated
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where Yincludes all training observations. The covariance matrix for
noisy observations is represented by K. It is calculated as K¥ = K9 +
0?1, where K€ is the covariance matrix for noise-free function values,
and ois a standard deviation of the noise, represented as, ¢ ~ A/(0, 0).
The partial derivatives of the marginal likelihood with respect to
each parameter in © are then derived. These derivatives are used in
gradient-based optimization methods to maximize p(Y|X), thereby
optimizing the covariance function parameters.

A prevalent limitation of GP models pertains to their high
computational demands. Sparse GP methodologies have been
devised to mitigate this challenge (Williams and Rasmussen, 2006;
Quinonero-Candela and Rasmussen, 2005), primarily by identifying
a subset of pseudo inputs to alleviate computational load. Further
optimization of computational efficiency can be achieved through
the application of the Kronecker product (Stegleetal., 2011),
synchronization of training data across identical time intervals for
each dimension (Evgeniou et al., 2005), or the implementation of
recursive algorithms tailored for online settings (Pillonetto et al.,
2008). Applications necessitating near real-time retraining are
more apt to benefit from these approaches, whereas methods that
extend over more prolonged temporal frameworks exhibit reduced
sensitivity to such computational constraints. Another shortcoming
of GP is that it models each time series separately, disregarding the
interactions between multiple variables. To tackle this problem and
capture the multivariate behavior of MTS, the multi-task Gaussian
process (MTGP) was proposed (Bonilla et al., 2007).

3.5.1 Multi-task Gaussian process

MTGP is an extension of GP that models multiple tasks (e.g.,
MTS) simultaneously by utilizing the learned covariance between
related tasks. It uses K€ to model the similarities between tasks and
KE to capture the temporal dependence with respect to time stamps.
The covariance function of MTGP is given by Equation 8.

KM=K°®K°+D®I; (8)

where KC is a positive semi-definite matrix and ka measures the
similarity between time series j and time series k. D is an n x n
diagonal matrix in which D is the noise variance 6j2 for the j time
series. ® is the Kronecker product.

The parameters of GP-based models are composed of
parameters that define the mean and covariance functions.
Generally, the covariance function ensures that values of the
function for two close times tend to have a high covariance,
while values from inputs that are distant in time usually have a
low covariance. These parameters can be acquired from data that
includes one or multiple examples of time series. The predictions
of values at future times are equivalent to the calculation of the
posterior distribution for those times.

Proper data preprocessing is essential when building MTGP
models for forecasting time series. This involves transformations
such as detrending and applying logarithmic adjustments. Methods
like spectral mixture kernels or Bayesian Nonparametric Spectral
Estimation can be employed for initialization. Post-training, it is
vital to visualize and interpret cross-channel correlations to better
understand the inherent patterns, thereby supporting practical and
accurate forecasting applications (de Wolff et al., 2021).

Shukla (2017) proposed to use MTGP to forecast blood
pressure from Photoplethysmogram (PPG) signals and compared
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its performance to Artificial Neural Networks (ANNs). Ten features
were extracted from the PPG signal, and five of them were chosen
as the tasks (or targets) to construct the MTGP model. These
features were systolic blood pressure, diastolic blood pressure,
systolic upstroke time, diastolic time and cardiac period. Four
different ANN models were built based on one or more of the
above tasks. The models were evaluated on clinical data from the
MIMIC Database, with the absolute error e calculated for each
heart beat as the performance measure. The results showed that the
performance of MTGP was either comparable to or better than the
ANNs and existing methods of computing BP from non-invasive
data. MTGP is thus applicable for modeling multivariate temporal
data with multiple prediction targets. In a study by Diirichen et al.
(2014), MTGP was employed on three diverse biomedical data sets.
The experiments aimed to illustrate that forecasting all correlated
variables simultaneously enhanced prediction performance,
contrasting with individual variable predictions. MTGP has been
demonstrated to be successful in multi-step ahead forecasting for a
variety of biomedical domain applications mentioned here, as well
as in other domains (Cai et al., 2020).

GP models, with an appropriate choice of covariance function,
can capture rapid changes in a time series and can be applied to
time series modeling problems by representing observations as a
function of time. This means that there is no restriction on when
the observations are made or if they are regularly or irregularly
spaced in time. Liu (2016) and Cheng et al. (2020) demonstrated
that, with the appropriate selection of a covariance function, it is
possible to model both the short-term dependencies or long-term
correlations of temporal data. GP models also work well with small
amounts of data (Liu, 2016). It is possible to predict with a certain
degree of certainty (confidence interval) using GP (Roberts et al.,
2013), which is usually essential for temporal modeling of
medical data that necessitates a certain degree of assurance to
be employed by medical professionals to make their decisions.
However, this approach has some limitations, the most serious
being that the mean function of the GP is a function of time
and must be set to a constant value in order to make the
GP independent of the time origin. This significantly restricts
its ability to represent changes or different modes in time
series dynamics.

4 Deep learning models

The use of Deep Learning techniques for predicting time series
data has gained significant attention. While there are various models
available for handling time-series data, in this review, we will
focus on some commonly used models for forecasting clinical
data sets over time. Specifically, we will explore Recurrent Neural
Networks (RNN), Long Short Term Memory Networks (LSTM), and
Transformer models.

4.1 Recurrent Neural Networks
The concept of RNN was introduced by Elman (1990) for

identifying patterns in sequential data. RNNs accept sequential data
as input and process it recursively. In an RNN, nodes are linked
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RNN structure (reproduced from Liu et al., 2021, licensed under CC BY 4.0).

sequentially, where the input at time ¢ depends on the output at time
t— 1. The structure and functions of RNNs are depicted in Figure 1.

In this structure, the input layer (X) is weighted by U, the
hidden layer (A) by W, and the output layer (Y) by V. The equations
employed for calculations are Equations 9, 10.

Y= g(VAt+1) )

Apy = f(UX,, + WA,) (10)

The above formula is iterative in nature and can be expanded using
the Equation 11 as:

Vi1 = VF(UXyy + WEUX, + WF(UX,_ +0))) (11

The equation above demonstrates that the RNN network’s output
Y,,, is influenced by the current input A, ;, as well as the previous
inputs A,,A,_;,.. RNNs effectively handle sequential and correlated
data by considering historical inputs. The work of Chandra et al.
(2021) demonstrates its applicability in multi-step ahead prediction.
Although their demonstration focuses on univariate cases, RNN has
also been successfully applied to multivariate cases. In their study,
Zhu et al. (2020) utilized four data fields for each instance: sampling
time, CGM values, meal intake, and insulin dose. They employed
a deep learning approach using an extention of RNN, dilated RNN
(DRNN), to forecast glucose levels for the next 30 min. The DRNN
model exhibits superior performance compared to current models
like autoregressive (ARX), SVR, and neural networks for glucose
prediction (NNPG), when evaluated on the OhioT1DM dataset.
The RMSE values reported are ARX: 20.1 mg/dL, SVR: 21.7 mg/dL,
NNPG: 22.9 mg/dL, and DRNN: 18.9 mg/dL. RNNs are frequently
used to handle missing values or irregularities in multivariate
temporal datasets. There are two main approaches to achieve this:
imputation and data generation, or a forecasting approach. When
using the first approach, RNNs leverage temporal correlations within
each series and correlations among multiple features to fill in
missing values or create a time series that captures the original
characteristics. On the other hand, the latter approach involves the
development of more advanced RNN-based solutions that provide
a deeper understanding of the missing data, as well as the patterns
and relationships within the data (Weerakody et al., 2021).
Implementing RNNs for modeling and forecasting biomedical

temporal data necessitates meticulous attention to data
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preprocessing, model structure, tuning of hyperparameters,
and evaluation techniques. The recommendations for each
aspect are outlined as discussed in Hewamalage etal. (2021).
Deseasonalization is advised for datasets exhibiting seasonal
trends unless consistent seasonal patterns exist, which RNNs
can inherently manage. Data normalization enhances training
convergence, while the sliding window approach divides the time
series into overlapping sequences for model input. Hyperparameter
tuning is crucial for achieving optimal RNN performance. Principal
hyperparameters include the learning rate, batch size, and the
number of layers. The learning rate must be selected judiciously;
for ideal convergence, the Adagrad optimizer typically needs a
higher learning rate ranging between 0.01 and 0.9, whereas the
Adam optimizer performs effectively within a narrower range of
0.001-0.1. The batch size should be commensurate with the dataset
size, and usually, one or two layers are sufficient, as additional
layers may result in overfitting. Setting high values for the standard
deviation of regularization parameters for Gaussian noise and L2
weight regularization can cause significant underfitting, reducing
the neural network's efficacy in generating forecasts. One category
of RNN models, stacked RNNs, which involve multiple RNN layers,
are employed for forecasting and often utilize skip connections
to alleviate vanishing gradient issues. Another category of RNN
models, known as sequence-to-sequence (S2S) models, is typically
applied in sequential data transformations and is useful for tasks
like multi-step forecasting. Assessing RNN performance against
traditional methods like ARIMA using standard metrics and cross-
validation confirms their competitiveness. Enhancements to RNN
methods, such as attention mechanisms and ensemble methods,
further boost their performance. Attention mechanisms enable the
model to concentrate on relevant parts of the input sequence, while
ensemble methods combine several RNN models to produce robust
forecasts, reducing biases and variances.

RNNs
(Helmini et al., 2019). They are more sensitive to time series data

excel at capturing short-term  dependencies
than traditional convolutional neural networks (CNNs) and can
retain memory during data transmission. However, as previously
mentioned, when the input sequence lengthens, the network
demands more temporal references, leading to a deeper network.
In longer sequences, it becomes challenging for the gradient to

propagate back from later sequences to earlier ones, resulting in
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LSTM structure (reproduced from Liu et al., 2021, licensed under
CC BY 4.0).

the vanishing gradient problem. Consequently, RNNs struggle with
long-term dependencies. To mitigate this vanishing (or exploding)
gradient issue, a modification of the RNN known as the long sshort-
term memory (LSTM) model was introduced by Hochreiter and
Schmidhuber (1997).

4.1.1 Long Short Term Memory Networks

To overcome the challenges of vanishing and exploding
gradients in RNNs, the LSTM model was introduced. This
architecture employs a cell state to maintain long-term
dependencies, as discussed by Helminietal. (2019). The model
effectively manages gradient dispersion by establishing a retention
mechanism between input and feedback. Figure 2 illustrates the
LSTM structure (Weerakody etal., 2021). Additionally, LSTM
models are proficient in capturing short-term dependencies,
primarily through the use of a hidden state. LSTM units are
controlled by three gates: the input gate, the output gate, and
the forget gate. These gates regulate the flow of information
and maintain the cell state, enabling LSTMs to retain important
information over long periods. The key equations (Equations 12-17)

governing LSTM operations are mentioned as follows:

fr=0(WiA,  + WX, +b) (12)
iy =0(Wi A + WX, +b;) (13)
¢ =tanh (WA, | + WX, +b,) (14)
= (frecy)+(io8) (15)
=0(Wy Ay + WyxX, +by) (16)
A, = (Y,otanh(c,)) 17)

In these equations, ¢ represents the sigmoid function, and o
denotes element-wise multiplication. The forget gate (f,) controls
the retention of the previous cell state (c,_;), the input gate (i,)
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manages the incorporation of new information, and the output gate
(Y,) determines the output based on the cell state (c,). Wi W,
Wia>» Wix, and W, are different weights associated with the forget
gate, input gate, and the current input unit state.

A deep learning neural network (NN) model based on
LSTM with the addition of two fully connected layers was
proposed by Idrissetal. (2019), for forecasting blood glucose
levels. To determine the optimal parameters for the model, several
experiments were conducted using data from 10 diabetic patients.
The performance of the proposed LSTM NN, as measured by RMSE,
was compared to that of a simple LSTM model and an autoregressive
(AR) model. The results indicated that the LSTM NN achieved
higher accuracy (mean RMSE = 12.38 mg/dL) compared to both
the existing LSTM model (mean RMSE = 28.84 mg/dL) for all
patients and the AR model (mean RMSE = 50.69 mg/dL) for 9 out
of 10 patients. LSTM is therefore valuable in the representation of
time-based information.

One popular extention of the LSTM network is a Bidirectional
LSTM (BiLSTM) model which is obtained by modifying the
architecture of the LSTM network to include two LSTM layers:
one processing the input sequence from left to right (forward
direction) and the other from right to left (backward direction).
This bidirectional traversal allows the model to have information
from both past and future contexts, enhancing its ability to capture
complex patterns and dependencies. The outputs from both layers
are concatenated at each time step, providing a richer representation
of the input sequence. This approach results in improved
performance for tasks like time series forecasting, as BiLSTM
models can leverage additional training from both directions to
better understand sequential data (Abbasimehr and Paki, 2022). For
instance, in a study by Said et al. (2021), a bidirectional LSTM (Bi-
LSTM) was employed to analyze multivariate data from countries
grouped based on demographic, socioeconomic, and health sector
indicators alongwith the information on lockdown measures, to
predict the cumulative number of COVID-19 cases in Qatar from
December 1st to 31 December 2020.

LSTM is also combined with multi-head attention mechanisms.
This approach aims to address the non-linear patterns and
data,
which traditional forecasting techniques struggle to predict
accurately (Siami-Namini et al., 2019). When dealing with irregular
temporal data that contain missing values, traditional LSTM

complexities often found in real-world time series

models face challenges and may produce suboptimal analyses and
predictions. This is because applying the LSTM model to irregular
temporal data, either by filling in missing values or using temporal
smoothing, does not enable the model to differentiate between actual
observations and imputed values. Therefore, caution is advised when
using an LSTM model on a dataset where multiple missing values
have been imputed.

4.2 Transformer models

The Transformer model for natural language processing (NLP)
was introduced by Vaswani et al. (2017). This model is composed
of an encoder-decoder network, which differs from the traditional
sequential structure of RNN. Transformer model utilizes the Self-
Attention mechanism to enable parallel training and capture global
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information. The encoder takes historical time series data as
input, while the decoder predicts future values using an auto-
regressive approach. This means that the decoder’s generated output
at each step is based on previously generated outputs. To establish
a connection between the encoder and decoder, an attention
mechanism is employed. This allows the decoder to learn how to
effectively focus (“pay attention”) on relevant parts of the historical
time series before making predictions. The decoder utilizes masked
self-attention to prevent the network from accessing future values
during training, thereby avoiding information leakage. The typical
architecture of the Transformer model is depicted in the Figure 3.

Originally designed for NLP tasks, the Transformer architecture
has found application in temporal forecasting as well. To model
irregular temporal data, various methods have been proposed.
For instance, Tipirneni and Reddy (2022) introduced the Self-
supervised Transformer for Time-Series (STraTS) model, which
treats each time-series as observation triplets (time, variable, value)
instead of matrices as done by conventional methods. This approach
eliminates the need for aggregation or imputation. STraTS utilizes a
Continuous Value Embedding (CVE) scheme to retain detailed time
information without discretization.

The study by Harerimana et al. (2022) utilized a Multi-Headed
Transformer (MHT) model to forecast clinical time-series variables
from charted vital signs, leveraging the transformer architecture’s
attention mechanism to capture complex temporal dependencies.
The dataset is split into training and testing sets per patient, using
past 24-h data for recursive future predictions. Training involves a
fixed dimension of 512 for all layers, and the model is evaluated using
metrics like Area under the Receiver Operating Characteristic Curve
(AUC-ROC), MSE, and MAPE. The MHT model outperforms
traditional models (LSTM, Temporal Convolutional Network,
TimeNet) in forecasting vital signs, length of stay, and in-hospital
mortality, demonstrating superior accuracy and robustness by
focusing on influential past time steps, validating its efficacy in
handling clinical time-series data.

The Transformer architecture is a relatively new concept, and
ongoing research is being conducted to explore its capabilities. For
instance, Li et al. (2019) suggest that unlike RNN-based methods,
the Transformer enables the model to access any part of the
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time series history, disregarding the distance. This characteristic
potentially makes it more adept at capturing recurring patterns with
long-term dependencies. However, Zeng et al. (2023) presented an
opposing viewpoint, questioning the effectiveness of Transformer-
based solutions in long-term time series forecasting (LTSF). They
argue that while Transformers are adept at capturing semantic
correlations in sequences, their self-attention mechanism, which
is invariant to permutations, may result in the loss of crucial
temporal information necessary for accurate time series modeling.
In support of their claim, the researchers introduced LTSF-Linear, a
simple one-layer linear model, and discovered that it outperformed
more complex Transformer-based LTSF models on nine real-
life data sets. In addition, a temporal fusion transformer (TFT)
was suggested by Zhang et al. (2022) as a method that effectively
captures both short-term and long-term dependencies. Hence, when
employing Transformer-based approaches for temporal forecasting,
it is crucial to take into account these distinct viewpoints and
conduct experiments to determine the most effective modeling
technique for the specific forecasting task, considering the presence
of short-term and long-term dependencies.

While DL models are capable of generating precise predictions,
they are frequently perceived as black-box models that lack
interpretability and transparency in their internal processes (Vellido,
2019). This presents a significant issue as medical professionals
are often hesitant to trust machine recommendations without
a clear understanding of the underlying rationale. In addition,
significant quantities of clinical data are utilized to generate
standardized inputs for training DL models. The challenge of
acquiring extensive clinical data sets poses a challenge in the
integration of DL clinical models into real-world clinical systems
(Xiao et al., 2018).

5 Discussion

This section is comprised of two subsections. The first subsection
summarizes the overview of the models and their capacities in
addressing the difficulties encountered in forecasting of clinical
datasets. The second subsection explores the future prospects
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concerning the practical obstacles in implementing AI models for
biomedical data modeling.

5.1 Summary of models for biomedical
temporal data forecasting

5.1.1 Summary of statistical, ML, and DL models

This review focuses on predictive models for biomedical
temporal data, which face several challenges such as missing values
due to irregular data collection or errors. Traditional methods
use imputation or deletion, but models that handle missing
values without these steps are preferable, as patterns of missing
data might hold valuable information termed as “informative
missingness”. EHRs often feature MTS data, so models must capture
these correlations. Temporal data complexity requires models to
consider short-term and long-term patterns. Short-term patterns
might involve events like norepinephrine administration linked
to recent hypotension, while long-term patterns could involve
past acute kidney injury necessitating dialysis. Models should
account for these dependencies and support multi-step ahead
forecasting for early disease detection. Data availability varies with
clinical events, thus impacting model selection. These challenges are
crucial for accurate, effective predictions in clinical settings. Table 3
summarizes the advantages and disadvantages of the discussed
models, supplemented by literature insights.

Forecasting is categorized into statistical, ML, and DL methods.
We focused on models frequently used in biomedical temporal
modeling, evaluating their effectiveness. For statistical methods,
we analyzed ARIMA, EWMA, and regression models. In ML, we
assessed SVR, RFR, KNNR, MP, and GP models. For DL methods,
we evaluated RNN, LSTM, and Transformer models. Our analysis
found the MTGP model effective for irregularly spaced data,
capturing both short-term and long-term dependencies with an
appropriate covariance function. It predicts multiple steps ahead
and accounts for autocorrelation within and correlation between
time series, making it suitable for multivariate temporal analysis
with small to moderate data. However, MTGP’s computational
cost can be high with large data, and a constant mean function
may limit its ability to represent time series dynamics. While
MTGP is suitable for biomedical temporal modeling, alternative
approaches include improving current models, adopting ensemble
methods, or wusing hierarchical approaches discussed later
in this paper.

Improving existing models by incorporating new techniques
can address limitations in temporal analysis of biomedical data.
For instance, while RNNs struggle with long-range dependencies,
they handle other temporal challenges well. To overcome this,
Zhu et al. (2020) introduced a dilated RNN, enhancing neuron
receptive fields to capture long-term dependencies, enabling
30-min glucose level forecasts. Similarly, HMMs lack long-
range correlation modeling. Yoon and Vaidyanathan (2006)
introduced context-sensitive HMM (csHMM), capturing long-
range correlations by adding context-sensitivity to model states.
Additionally, the interpretability in DL models is essential. Tipirneni
and Reddy (2022) proposed an interpretable model with outputs
as linear combinations of individual feature components. Slight
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modifications to the original models can address specific
limitations.

Even though various modifications have been suggested to
address the shortcomings of individual models, certain limitations
remain insurmountable. A recently emerging solution involves
combining multiple models to create a fusion model, which allows
for the integration of their strengths and mitigation of their
weaknesses. These fusion models, also known as combination
or ensemble forecasting models, is examined in the next
subsection.

5.1.2 Fusion models

A different approach to enhance forecasting precision
involves merging multiple models, also known as combination
or ensemble forecasting models. The paper by Wang etal
(Wang et al., 2023) provides a comprehensive overview of the
evolution and effectiveness of combining multiple forecasts
to enhance prediction accuracy. Combining forecasts, known
as “ensemble forecasts,” integrates information from various
sources, avoiding the need to identify a single “best” forecast
amidst model uncertainty and complex data patterns. The review
covers simple combination methods, such as equally weighted
averages, which surprisingly often outperform more sophisticated
techniques due to their robustness and lower risk of overfitting.
Linear combinations, which determine optimal weights based
on historical performance, and nonlinear combinations, which
account for nonlinear relationships using methods like neural
networks, are also discussed. Wang etal. (2023) emphasize the
potential of learning-based combination methods, such as stacking
and cross-learning, which improve accuracy by training meta-
models on multiple time series. In stacking, several forecasting
models are trained on the original dataset, and their predictions
are combined by a meta-model to provide an optimal forecast.
Cross-learning builds on this by utilizing data from various time
series to train the meta-model. The review also highlights the
crucial role of diversity and precision in forecast combinations,
pointing out that successful combinations are enhanced by diverse
individual forecasts.

These techniques have been successfully applied to biomedical
data forecasting. For example, Naemi etal. (2020) introduced a
customizable real-time hybrid model, leveraging the Nonlinear
Autoregressive Exogenous (NARX) model along with Ensemble
Learning (EL) (RFR and AdaBoost), to forecast patient severity
during their stay at Emergency Departments (ED). This model
makes use of patient vital signs such as Pulse Rate (PR), Respiratory
Rate (RR), Arterial Blood Oxygen Saturation (SpO2), and Systolic
Blood Pressure (SBP), which are recorded during treatment. The
model forecasts the severity of illness in hospitalized patients
at ED for the upcoming hour based on their vital signs from
the previous 2 hours. The effectiveness of the NARX-EL models
is evaluated against other baseline models including ARIMA, a
fusion of NARX and LR, SVR, and KNNR. The findings revealed
that the proposed hybrid models could predict patient severity
with significantly higher accuracy. Furthermore, it was noted that
the NARX-RF model excels at predicting abrupt changes and
unexpected adverse events in patients’ vital signs, exhibiting an
R? score of 0.978 and NRMSE of 6.16%. Kandula etal. (2018)
used a super-ensemble technique to combine information from
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TABLE 3 Advantages and disadvantages of models for handling biomedical temporal data.
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Model type Advantages Disadvantages
ARIMA - Captures linear dependencies and trends - Needs data to be stationarized
- Interpretable parameters - Lacks ability to handle missing values
- Works well with stationary data - Inability to manage multivariate data
- Can not capture long-range dependencies
EWMA - Proficient in temporal modeling - Not suitable for complex patterns
- Simple and computationally efficient - Unsuitable for handling multivariate data
- Adapts quickly to recent changes in data - Critical initialization and parameter selection
- Useful for smoothing noisy data - Capable of long-range modeling with parameter
- Effective in short-range modeling adjustment
MLR - Interpretable coefficients - Assumes linear relationships
- Insights into variables’ relationships - Sensitive to multicollinearity
- Performs well with small-mid datasets - Requires features to be linearly related to the target.
- Efficiently manages multivariate data
- Can be adapted for temporal modeling
MPR - Can capture higher-order relationships - Prone to overfitting with high polynomial-degrees
- More flexible than MLR. - Interpretation of coefficients can be complex
- Suitable for polynomial relationships - Unable to handle missing values
- Manages multivariate data efficiently
SVR - Effective in high-dimensional spaces - Computationally complex
- Can capture nonlinear relationships - Needs support from other algorithms for
- Robust to overfitting with regularization hyperparameter tuning
- Manages multivariate data efficiently - Lacks robustness resulting in inconsistent outcomes
- Although not designed for temporal modeling, but - Struggles to capture complex temporal dependencies
can be adapted to capture them - Memory intensive for large datasets
KNNR - Non-parametric and flexible - Expensive for large datasets
- Can be adapted for temporal modeling - Memory intensive
- Proficient in handling missing values - Falls short in capturing global dependencies
- Efficiently manages multivariate data
- Effective in short-range modeling due to its unique
structure
RFR - Handles nonlinear relationships - Time consuming for large datasets
- Robust to overfitting - Requires careful tuning of hyperparameters
- Can handle high-dimensional data - Difficulty in handling long-range dependencies
- Manages multivariate data efficiently
- Capable of handling irregular or missing data
LDS - Captures temporal dependencies - Complex parameter tuning
- Efficiently handles multivariate data - Cannot deal with irregular data
- Captures short-term relationships - Difficulty with nonlinear relationships
HMM - Captures hidden influencing states - Training complexity
- Useful for sequential data modeling - Lacks interpretability of hidden states
- Efficiently handles multivariate data - Prone to overfitting when intrinsic dimensionality
- Can capture short-term dependencies efficiently exceeds data
- Struggles with capturing long-term dependencies
MTGP - Models multiple tasks simultaneously - Complex to implement and tune
- Captures correlations between tasks - If the GP is made time independent, it restricts the
- Provides uncertainty estimates representation of changes in time series dynamics
- Can forecast efficiently with irregular data - Computationally intensive on large-scale
- Flexible covariance function that can capture both
short-range and long-range dependencies
RNN - Proficient in handling missing values - Vanishing/exploding gradient problem
- Can handle variable-length sequences - Training can be slow
- Effective for multivariate sequential data modeling - Difficulty with very long-term dependencies
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TABLE 3 (Continued) Advantages and disadvantages of models for handling biomedical temporal data.

Model type Advantages Disadvantages
LSTM - Handles vanishing gradient problem - Training complexity
- Captures long-term dependencies effectively - Lacks interpretability
- Robust to sequence length variations - Requires careful hyperparameters tuning
- May produce suboptimal analyses and predictions
when modeling imputed data
Transformer - Highly suitable for multivariate temporal modeling - Computationally intensive

- Parallel processing of sequences
- Scalable to large datasets
- Effective in short-range modeling

- Requires large amounts of data

- Lacks interpretability

- Fine-tuning can be complex

- Uncertain effectiveness in managing long-term
dependencies

different forecasting methods robustly. This method yielded a
more accurate comprehensive forecast on average than a single
model. They compared three forecasting approaches for predicting
seven characteristics of seasonal influenza during the 2016-2017
USA season: a mechanistic method, a weighted average of two
statistical methods, and a super-ensemble of eight statistical
and mechanistic models. The study found the meta-ensemble
approach to be the most accurate overall. Katarietal. (2023)
employed a combination of Decision Tree (DT) and Ada Boosting
algorithms for heart disease prediction. The study highlights the
importance of early diagnosis due to high mortality rates. The
hybrid model outperformed traditional methods in accuracy, true
positive rate (TPR), and precision. Results indicate this combination
approach enhances heart disease prediction and aids clinical
decision-making.

It is evident that combining forecasts is a crucial component
in contemporary forecasting methods for temporal biomedical
datasets, providing notable benefits over using single models.
Nevertheless, it is crucial to thoroughly understand the data and
the aim of forecasting to create an effective ensemble model.
Furthermore, it is essential to employ appropriate evaluation
metrics for assessing biomedical temporal forecasts. Advancements
in research on efficient combination techniques may arise from
the capability to manage large and varied datasets, alongside
the development of automatic selection methods that balance
expertise and diversity when selecting and combining models for
forecasting (Wang et al., 2023).

5.1.3 Coherent forecasting

This type of forecasting a.k.a. hierarchical time series (HTS)
represents a set of data sequences organized by aggregation
constraints, reflecting many real-world applications in research
and industry. Forecasting in such hierarchical structures is
challenging and time-consuming due to the need to ensure
forecasting consistency among hierarchy levels based on their
dimensional attributes, such as geography or product categories.
Coherent forecasts are essential, meaning that higher-level
forecasts must equal the sum of lower-level forecasts. This
coherency requirement adds complexity to the original time series
forecasting problem (Sagheer et al., 2021).

For biomedical data scenarios, HTS forecasting is applied in
predicting instances similar to emergency medical services (EMS)
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requirements (Rostami-Tabar and Hyndman, 2024) and mortality
rates across various U.S. states (Li and Hyndman, 2021; Liet al,,
2024). Forecasting is crucial for EMS as it promotes consistency
and synchronized resource allocation, enhancing decision-making
processes and leading to better patient outcomes by avoiding
the imbalance between demand and resources. In mortality
rate predictions, forecasting addresses differences in mortality
patterns across different geographic regions. Maintaining adherence
between state-level and national-level mortality forecasts is vital
for precise policy planning and resource management, aiding
in reducing life expectancy disparities and enhancing public
health results.

Different reconciliation procedures like top-down, bottom-up,
and middle-out have been developed to maintain consistency
across levels by generating base forecasts and then adjusting
them. These procedures vary in approach: bottom-up starts from
the lowest level and aggregates upwards, top-down begins at
the highest level and disaggregates downwards, and middle-out
combines both methods starting from an intermediate level.
Each has its strengths and weaknesses, and none has proven
universally superior. Hyndman et al. (2011) proposed an optimal
combination approach, which independently forecasts all levels and
then combines them using regression to ensure coherence. The
Minimum Trace (MinT) method (Wickramasuriya et al., 2018) is
another widely adopted approach for reconciliation. This technique
uses the complete covariance matrix of forecast errors to generate
a set of coherent forecasts. It aims to minimize the MSE of these
coherent forecasts across the whole series, under the assumption of
unbiasedness.

The approach detailed by Rostami-Tabar and Hyndman (2024)
involves implementing forecast reconciliation for the hierarchical
data of ambulance demand. It utilizes an ensemble of models:
Exponential Smoothing State Space model (ETS), Poisson regression
with Generalized Linear Model (GLM), and time series GLM
(TSGLM). It generates base forecasts independently for each
hierarchy level and reconcile them using the MinT method,
minimizing forecast variances for coherence. Validation is done
via time series cross-validation, with accuracy measured by mean
absolute scaled error (MASE) and continuous ranked probability
scores (CRPS). The methodology by Li and Hyndman (2021)
ensures coherent mortality forecasts using a forecast reconciliation
approach. Independent state-level forecasts are generated with
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the Lee-Carter model and then reconciled using the Minimum
Trace (MinT) method together with the sampling approach by
Jeon et al., (2019) to ensure consistency with national-level forecasts.
Validation is performed using out-of-sample forecasting, with
accuracy measured by MAPE and the Winkler score. The study
uses U.S. mortality data from 1969 to 2017 and projects rates up to
2027. Another paper by Li et al. (2024) uses boosting with stochastic
mortality models as weak learners. The authors extend gradient
boosting with age-based and spatial shrinkage, iteratively fitting
the Lee-Carter model to residuals and adding graph Laplacian-
based penalties to align forecasts of adjacent age groups and
states. Validation uses US male mortality data (1969-2019), with
forecasting performance assessed using MASE.

Traditionally, methods like ARIMA and exponential smoothing
generate base forecasts but fail to capture individual and
grouped time series dynamics, especially with time variation
or sudden changes. They also struggle with exploiting complete
hierarchical information, affecting forecasting efficiency. Recently,
ML algorithms like artificial neural networks, extreme gradient
boosting, and SVR have been employed to improve accuracy by
considering nonlinear relationships and dynamic changes. However,
they often still rely on traditional methods and may overlook
useful hierarchical information. Overall, HTS forecasting remains a
complex problem with ongoing research aimed at finding more
efficient and accurate methods to ensure coherent and reliable
forecasts across all levels of the hierarchy (Sagheer etal., 2021).
Note: A list and description of open source tools for forecasting is
provided in the Supplementary Material of this article.

5.2 Future directions

Extensive research has been conducted to interrogate biomedical
temporal data in medical and health applications. Challenges
remain, and are summarized into six key areas: (1) standardizing
diverse data formats; (2) managing data quality; (3) ensuring model
interpretability; (4) protecting patient privacy; (5) enabling real-
time monitoring; and (6) addressing bias to create fair models. To
grasp the potential future developments, we present a use case to
illustrate six future directions within the clinical context. Specifically,
taking Mr. Smith (45 years old) as a persona who is concerned about
his risk of developing Alzheimer’s Disease (AD).

5.2.1 Data harmonization to standardize data
format

Time series analysis plays a critical role in the early detection
of AD by enabling the continuous monitoring of specific
biomarkers over time. This approach is crucial for understanding
the progression of the disease through its various stages, from
preclinical AD to mild cognitive impairment (MCI), and ultimately
to dementia. The primary biomarkers used in detecting and
monitoring AD include beta-amyloid and tau proteins, which
are typically measured in cerebrospinal fluid (CSF), along with
imaging biomarkers such as PET scans for assessing beta-amyloid
burden and MRI scans for detecting changes in brain volume.
These biomarkers are indispensable for identifying the onset
and progression of the disease, often before clinical symptoms
become evident (Hernandez-Lorenzo et al., 2022).
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During his visit to the physician, Mr. Smith is advised to undergo
a series of tests, including genetic screening, neuroimaging, and
cognitive assessments. These tests generate a diverse array of data
types, ranging from genetic biomarkers to neuroimaging data (e.g.,
MRI scans) and time-series data derived from cognitive assessments.
However, the data collected from Mr. Smith originate from multiple
sources: a local hospital, a specialized lab for genetic testing,
and a cognitive assessment app. To create a unified dataset, data
harmonization is necessary, ensuring consistency across different
formats, terminologies, and units. Implementing interoperable
technologies can greatly facilitate seamless data exchange across
disparate healthcare systems. Future research should focus on
developing advanced harmonization techniques for time series data
to ensure accurate and consistent integration from various sources.
Additionally, integrating multi-modal data, such as clinical, genetic,
and imaging information, will be crucial for creating personalized
prediction models.

5.2.2 Data quality

As Mr. Smith assesses his risk of developing AD, data from
various tests play a critical role in forecasting his condition.
However, his data may contain missing values due to irregular
monitoring, different data collection protocols, or the progression of
his condition. Addressing these gaps is crucial for building a reliable
predictive model. A promising approach involves filling these gaps
and using the missing data as a valuable signal. Missing biomarker
readings can be estimated using methods like forward-filling or zero
imputation. The model can also incorporate indicators to highlight
absent data points, learning from the pattern of missing data. For
example, if Mr. Smith's cognitive scores are missing for several
months, the model can predict these values and use the absence of
scores as a feature. This allows the model to detect patterns that
may reveal insights such as health changes or inconsistencies in
monitoring.

Ensuring data quality is essential for reliable predictive models
in clinical research. Future directions should integrate advanced
ML techniques that handle missing data and leverage the temporal
patterns surrounding these gaps. By combining models that analyze
available data and sequences of missing data, we can improve
predictive accuracy, uncover hidden trends, and identify critical
periods signaling disease progression. This approach enhances
timely, personalized predictions for patients like Mr. Smith.

5.2.3 Interpretability

As Mr. Smith assesses his risk of developing AD, advanced
ML models analyzing the biomarkers to identify the intervention
strategies become crucial. Current models offer predictive power
but often function as “black boxes” making it challenging to
understand risk factors and the associated impacts. To address
this, interpretability methods are essential to know the factors
behind risk predictions. One important future direction on
interpretability is to use attention mechanisms that prioritize key
biomarkers and time points, focusing on early disease prediction
characteristics. For example, attention-based models can highlight
critical data points, such as changes in biomarkers that signal the
onset of AD.

A significant biomarker decline flagged by the model would
make the risk assessment more transparent, aiding the physician's
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understanding and decisions (e.g., intervention). Alternatively,
time-based SHAP (SHapley Additive exPlanations) techniques
enhance model prediction transparency by assessing feature
importance at specific times. Future work could focus on
developing interpretability frameworks in personalized, real-
time risk assessments for AD and other conditions, ensuring
are accurate and understandable for

predictions patients

and clinicians.

5.2.4 Data privacy

As Mr. Smith evaluates his risk of AD, the sensitive data
gathered requires rigorous privacy safeguards. Data privacy is
crucial for legal compliance and maintaining trust in the healthcare
system. Sharing sensitive information in research while retaining
data utility is challenging. Anonymization is a technique to
safeguard against reidentification while maintaining the usefulness
of research data. Blockchain technology is another method,
providing secure means for sharing data. Federated learning (FL)
is also beneficial for collaborative studies, enabling ML models
to be trained on Mr. Smiths data locally without the need for
centralization, thus decreasing privacy risks. Informed consent
is another essential aspect for research purposes. If consent is
dynamic, it allows for real-time management, permitting alterations
as new research develops. Future directions include implementing
these techniques independently or as hybrid frameworks that
improve privacy protection without sacrificing research utility.
Establishing international standards for these methods is imperative
for harmonizing global privacy practices and enhancing security and
trust in collaborative research.

5.2.5 Real-time detection

Let’s assume, the physician seeing Mr. Smith recommends
the use of a wearable device that monitors essential physiological
indicators such as sleep patterns and heart rate variability (HRV) to
assess his AD risks. Note these devices have already demonstrated
potential in identifying early signs of cognitive decline (Saif et al.,
2020). With continuous, real-time monitoring, Mr. Smith would be
empowered to take proactive actions—such as making lifestyle
changes or seeking further medical evaluations—that could
potentially delay the progression of the disease. We have observed
an emerging trend in health domain to embed wearable devices
into regular health surveillance, facilitating the early identification
and treatment of AD or other disease conditions. A future direction
in predictive modeling is high-fidelity model enabling real-time,
or near real-time (e.g., 15 min) detection. Some related research
questions include data storage (where data to be stored, cloud or
locally), model calibration and fine tuning strategies (e.g., transfer
learning).

5.2.6 Bias and fairness

A typical problem in AI models is the possibility of bias if they
are trained on unrepresentative datasets. For example, if a model is
trained mainly on data from old Asian females, it might inaccurately
evaluate Mr. Smith, who is a middle-aged American male. Future
directions for utilizing AI-driven models should emphasize making
these models unbiased and dependable for various populations. A
critical measure is the creation and validation of AI models with
datasets that include a broad spectrum of demographics, such as
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different ages, ethnicities, and genders. Another approach to ensure
fairness in AI algorithms is through regular audits and validation
by independent experts. These audits can uncover and fix biases
that could distort predictions. Independent audits help guarantee
that AT models are equitable and effective for diverse groups thereby
offering reliable health assessments. Additionally, it is essential for
both healthcare providers and patients to recognize the potential
biases in AI tools. By carefully reviewing Al-generated advice
alongside clinical expertise and other diagnostic tools, healthcare
providers can ensure that the AI model's predictions are accurate
and contextual.

6 Conclusion

In summary, the review paper outlines the challenges faced
in predictive modeling for biomedical temporal data, such as
managing missing values, addressing correlations between variables,
capturing both short-term and long-term dependencies, performing
multi-step ahead predictions, and considering data availability. It
assesses models in three categories—statistical, machine learning,
and deep learning—to evaluate their effectiveness in forecasting
data amidst these challenges. Recognizing limitations in each
approach, it discusses alternative methods like model enhancements
or ensemble/combination forecasting techniques to potentially
improve forecasting accuracy. The review also covers hierarchical
forecasting for biomedical datasets with relevant structures.
Moreover, it explores issues like data quality, privacy concerns,
data harmonization, interpretability, real-time detection, and
bias/fairness considerations in integrating AI or ML into clinical
practices. These challenges underline the necessity for thorough
data evaluation, strong privacy laws, and a deep understanding of the
goals of predictive modeling. Moreover, successfully implementing
these models necessitates a joint effort from the different fields,
along with an inclusive approach that tackles not just the technical
aspects of the model but also the broader ethical and fairness issues
in healthcare environments.
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