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Abstract

Uncertainty expressions such as “probably” or
“highly unlikely” are pervasive in human lan-
guage. While prior work has established that
there is population-level agreement in terms of
how humans quantitatively interpret these ex-
pressions, there has been little inquiry into the
abilities of language models in the same con-
text. In this paper, we investigate how language
models map linguistic expressions of uncer-
tainty to numerical responses. Our approach
assesses whether language models can employ
theory of mind in this setting: understanding
the uncertainty of another agent about a partic-
ular statement, independently of the model’s
own certainty about that statement. We find
that 7 out of 10 models are able to map uncer-
tainty expressions to probabilistic responses in
a human-like manner. However, we observe
systematically different behavior depending on
whether a statement is actually true or false.
This sensitivity indicates that language mod-
els are substantially more susceptible to bias
based on their prior knowledge (as compared to
humans). These findings raise important ques-
tions and have broad implications for human-
AI and AI-AI communication.

1 Introduction

The expression of uncertainty is ubiquitous in hu-
man communication — in relaying predictions (“it
is likely to rain tomorrow”), conveying imperfect
knowledge (“I think I have a copy in my desk”),
and describing unknown information (“the artifact
could be more than 500 years old”). Express-
ing uncertainty is particularly critical in fields such
as medicine, law, and politics, where statements
including uncertainty expressions (e.g., “likely,”
“doubtful”) are frequently used to support medi-
cal, judicial, and political decisions (Karelitz and
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dence: cbelem@uci.edu.

Budescu, 2004). Domain experts use these expres-
sions to communicate uncertainty across a vari-
ety of situations, such as the likelihood of side-
effects of a medical treatment (Sawant and Sans-
giry, 2018; Patt and Dessai, 2005), the chances
of a not-guilty verdict in legal cases (Fore, 2019),
the probability of environmental events resulting
from climate change (Patt and Dessai, 2005; Ho
et al., 2015), or the likelihood of emergence of
military conflicts (Duke, 2023). Prior work has
found that, in general, humans are well-attuned to
the use of such uncertainty expressions, exhibit-
ing population-level agreement in mapping these
expressions to corresponding probabilities (Wall-
sten et al., 1986a; Willems et al., 2019; Fagen-
Ulmschneider, 2019).

However, the topic of how large language mod-
els (LLMs) interpret linguistic uncertainty has
received relatively little attention. In particular,
given text where a speaker expresses uncertainty
about a particular statement, this paper investi-
gates whether LLMs can interpret the uncertainty
not as a function of the model’s internal beliefs,
but by objectively assessing the speaker’s uncer-
tainty about the statement. Consider the motivat-
ing example in Figure 1: when writing a head-
line for a statement qualified by the word “prob-
able,” ChatGPT expresses substantially different
uncertainty depending on its prior belief about the
statement.1 In this example, ChatGPT is conflating
the speaker’s uncertainty with its own uncertainty
about the statement—in effect, a failure of “theory
of mind.”

In this work, we investigate the abilities of LLMs
to provide quantitative interpretations of uncer-
tainty expressions, focusing in particular on how
the prior knowledge of an LLM affects this abil-
ity. To this end, we propose to evaluate models’

1When prompted about its belief about these statements,
ChatGPT agrees with the first and disagrees with the second;
see Figure 8 in the Appendix A.
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Figure 1: Two interactions with ChatGPT (June 2024)

concerning the generation of a headline for a short

passage. Both passages are structured identically and
qualified with the word “probable,” but the first is about
climate change and the second about the link between
vaccines and autism. For the first passage, ChatGPT gen-
erates a confident-sounding headline, using the words
“conclude” and “comprehensive.” The second headline
is weaker, with words like “suggests” and “possible.”

capabilities as a function of their ability to map text
containing uncertainty expressions to numerical
responses. We analyze the performance of both hu-
mans and 10 popular LLMs on this task, enabling
direct comparison between humans and models.2

We find that larger, newer models like GPT-4 and
LLama3 (70B) can consistently map uncertainty
expressions to numerical responses that align with
human population-level perceptions. However, we
also show that the responses LLMs generate are
susceptible to bias based on their prior knowledge—
with much greater susceptibility than that of hu-
mans.

The models’ sensitivity to their prior knowledge
has concerning implications for the use of LLMs
in tasks in which they must process and gener-
ate text containing uncertainty expressions, e.g.,
summarizing scientific reports or writing news arti-

2The code and data can be found at https://github.

com/UCIDataLab/llm-uncertainty-perceptions.

cles (Shao et al., 2024; Laban et al., 2024). When
an LLM’s ability to quantify uncertainty can be
“poisoned” by its beliefs, its downstream perfor-
mance is dependent on its parametric or pretrain-
ing knowledge (which can be obsolete or wrong
(Liang et al., 2022; Longpre et al., 2023)), rather
than on critical contextual information (Longpre
et al., 2021). Further, this means that the biases
of a model (including the many well-documented
potentially harmful biases of LLMs, e.g., Wan et al.
(2023); Kotek et al. (2023); Salewski et al. (2024);
Scherrer et al. (2024); Motoki et al. (2024)) can
subtly manifest in how it interprets and generates
uncertainty language and, as a consequence, have
broader implications for human-AI and AI-AI in-
teractions.

2 Related Work

Human Perceptions of Uncertainty Expressions.

In fields like medicine, finance, law, and politics,
where it is impossible to make predictions with
complete certainty, decisions are often informed
by subjective probabilities (Karelitz and Budescu,
2004; Dhami and Wallsten, 2005; Fore, 2019). Sub-
jective probabilities can be communicated quanti-
tatively, e.g., through numerical probabilities, odds,
percentages, intervals, or qualitatively, through the
use of uncertainty expressions or epistemological
markers (e.g., “I believe”, “According to”) (Dhami
and Mandel, 2022). Although they are less precise
than numerical values (Wallsten et al., 1986b; Brun
and Teigen, 1988; Budescu et al., 2014), humans
generally prefer to use linguistic expressions to
communicate uncertainty (Erev and Cohen, 1990;
Wallsten et al., 1993).

Interested in the efficacy of how humans commu-
nicate uncertainty linguistically, researchers have
examined how individuals map uncertainty expres-
sions into numerical values across different fields
and expertise levels (Windschitl and Wells (1996);
Karelitz and Budescu (2004); Wallsten et al. (2008,
1986a); Fore (2019); inter alia). Although there
can be considerable variation in responses at the
individual level, these studies have revealed con-
sistent and systematic patterns relating uncertainty
expressions and numerical responses at the popu-
lation level (Wallsten et al., 2008; Willems et al.,
2019; Fagen-Ulmschneider, 2019).

Uncertainty Quantification in LLMs. The need
for more reliable LLMs has prompted researchers
to investigate new methods for communicating the
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internal uncertainty of LLMs. Proposed methods
can be differentiated in terms of the information
used to estimate the model’s uncertainty: from
token-level information (Jiang et al., 2021; Kuhn
et al., 2023; Duan et al., 2024), to dissimilarities
across multiple samples (Si et al., 2022; Chen and
Mueller, 2023; Xiong et al., 2024; Hou et al., 2024;
Lin et al., 2024; Aichberger et al., 2024), to training
external classifiers using the inputs and/or LLMs’
representations (Jiang et al., 2021; Mielke et al.,
2022; Shrivastava et al., 2023), or even directly
eliciting confidence estimates from LLMs as out-
put tokens (Lin et al., 2022; Tian et al., 2023). Fur-
thermore, several works have analyzed the impact
of LLM-articulated uncertainty in human-AI in-
teraction, finding that participants adjust their per-
ception of LLMs’ correctness when shown LLM
outputs that include uncertainty expressions (Zhou
et al., 2024; Kim et al., 2024; Steyvers et al., 2024).
With the goal of calibrating human-AI interaction,
Chaudhry et al. (2024) propose fine-tuning LLMs
to convey uncertainty expressions that faithfully re-
flect their intrinsic uncertainty. While these works
investigate how we can gauge LLMs’ intrinsic un-
certainty and how humans react to various uncer-
tainty expressions in text, there has been far less
work on the questions we focus on in this paper,
i.e., how LLMs interpret linguistic uncertainty and
how closely these interpretations match those of
humans.

LLM Perceptions of Uncertainty Expressions.

A small body of recent work has begun to investi-
gate the relationships between uncertainty expres-
sions and model behavior. Recently, Yona et al.
(2024) found low correlations between LLMs’ in-
trinsic uncertainty and the use of uncertainty ex-
pressions. Sileo and Moens (2023) investigate
whether LLMs are able to discriminate between
two uncertainty expressions and reason in terms of
compositions of expressions. However, the paper
focuses on LLMs’ binary rankings of expressions,
as opposed to numerical interpretations, and does
not compare LLM and human behavior. Most di-
rectly related to our work is that of Maloney et al.
(2024) which compares numerical probability es-
timates from GPT-4 and humans using a small set
of “context” prompts, and the work of Tang et al.
(2024) who compare the numeric-textual mapping
of uncertainty expressions across four different con-
texts in both Chinese and English. Our paper goes
significantly beyond this work by assessing a broad

range of LLMs using a more diverse and natural
set of contexts. We additionally conduct human
experiments, assessing the performance of humans
on the same task to facilitate a direct comparison
between humans and LLMs. Further, our approach
is designed to target “theory of mind”—the task
requires humans and LLMs to quantify what an
uncertainty expression reflects about the speaker’s
belief, rather than what the expression means to the
human or LLM. Finally, our work is the first that
we are aware of to investigate how LLMs can be
biased by their prior knowledge in mapping uncer-
tainty expressions to numerical responses.

3 Baseline Human Study

As a baseline for how people map uncertainty ex-
pressions to numerical probabilities, we first con-
ducted an experiment in which 94 humans were
shown uncertainty expressions and asked to pro-
vide corresponding numerical responses. We fo-
cused on a set of 14 uncertainty expressions (e.g.,
“almost certain,” “unlikely”—the full list is pro-
vided in Appendix C and is also shown on the
y-axis in Figure 3), drawn from Wallsten et al.
(1986a) and Wallsten et al. (2008). In this initial ex-
periment, our goal is to assess how people perceive
these uncertainty expressions “in the wild,” putting
them in the context of plausible real-world state-
ments. In addition, we use types of statements that
attempt to minimize the potential for people to con-
flate their own beliefs about these statements with
their assessment of the confidence of the person
making the statement.

To this end, we constructed a set of statements
(u, s, e) which include uncertainty expressions u ∈
U used by speakers s ∈ S to convey their degree
of certainty about the truthfulness or falsehood of
a statement or event e ∈ E . By presenting state-
ments as being made by a specific speaker s,3 we
are asking participants to use theory of mind to es-
timate how likely it is that the speaker believes that
the statement is true. We then query participants
about the speaker’s degree of certainty, clearly dis-
tinguishing this notion from the participant’s own
beliefs. For instance, given the statement “Sonia
believes it is unlikely it will rain today,” we can ask
participants to quantify with a numerical response
how likely Sonia thinks it is that it will rain today,
distinct from the participants’ own beliefs about

3Names are selected arbitrarily from a pre-defined pool
of names. Participants see each name once throughout the
experiment. For more details, see Appendix C.
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tween the three additional settings and the baseline
experiment, we conclude this section with the de-
scription of two metrics.

4.1 Verifiable Statements

In addition to the non-verifiable statements de-
scribed in Section 3, our dataset also includes ver-

ifiable statements, for the purpose of assessing
the effects of prior knowledge on quantifying lin-
guistic uncertainty. To increase the chances that
both LLMs and humans are familiar with the ver-
ifiable statements, we focus on concise, general-
knowledge statements based on widely recognized
facts (e.g., geography, history of art, science).
Specifically, we create 60 verifiable statements
based on a multiple-choice question-answering
trivia dataset from The Question Company.5 Start-
ing with 30 of the dataset’s “easy” questions and
corresponding multiple-choice options, we write
true statements that use the correct answer and
false statements using one of the incorrect answers.
Examples of verifiable statements and additional
details about the dataset are included in Appendix
B. We focus on results for both humans and LLMs
with these 60 verifiable statements in the main pa-
per but include a validation analysis using 400 ad-
ditional statements in Section 5.3. These additional
statements are extracted via a similar procedure
from AI2-ARC (Clark et al., 2018), a grade-school
level, multiple-choice science question answering
dataset used to evaluate state-of-the-art LLMs’ rea-
soning capabilities (Beeching et al., 2023; Jiang
et al., 2023; Achiam et al., 2024).

4.2 Numerical responses from LLMs

To obtain uncertainty estimates from LLMs, we
create prompts similar to the queries provided to
humans (see Appendix C). Our goal is to estimate
an empirical distribution, per uncertainty expres-
sion u, over each LLM’s generated responses, in a
manner similar to how empirical distributions for
humans are generated (e.g., see Figure 3). In the
results in this paper we focus on greedy decoding,
where we select the numerical response that has
the highest probability in the next-token probabil-
ity distribution generated by the LLM conditioned
on the prompt, i.e., decoding with temperature=0.
Because this sampling approach requires no knowl-
edge about the weights or next-token probabilities,
it is applicable to any model, including those be-

5
https://www.thequestionco.com/

hind black-box APIs, such as Gemini (Anil et al.,
2024) and GPT-4 (Achiam et al., 2024). While fo-
cusing primarily on this greedy sampling approach
allow us to efficiently compare the modal behavior
of different LLM model families in equal terms (re-
gardless of the available information), it does not
provide insight into distributional behavior. Thus,
in Section 5 we include results using probabilis-
tic decoding with temperature=1 to evaluate the
sensitivity of our conclusions to decoding method.
Additional information on the extraction method-
ologies used can be found in Appendix D.

4.3 Metrics

We treat the empirical distribution obtained for the
non-verifiable statements with human participants
(described in Section 3) as our reference distribu-

tion for evaluation purposes, since it reflects human
perceptions of uncertainty expressions in a setting
that is designed to be free of prior information or bi-
ases about the corresponding statements. For every
uncertainty expression u ∈ U , we define a refer-

ence conditional probability distribution P (k|u),
k = 0, 5, 10, . . . , 95, 100, where P (k|u) is the em-
pirical distribution from the baseline experiment.
Given a response from any agent, human or LLM,
in the context of a particular uncertainty expression
u we measure the quality of the response using the
reference distribution P (k|u).

The primary quality metric that we propose is
Proportional Agreement (PA). PA can be defined
as follows: if an agent’s response matches bin k

for uncertainty expression u, then the PA value
for that response is defined as P (k|u), where P

is the reference (population) distribution defined
above. Intuitively, for an expression u, this PA
score P (k|u) represents the probability that the
agent’s response k agrees with that of a randomly
selected individual, and is upper bounded for any
expression by argmaxk P (k|u), i.e., by the mode
of the P (k|u) values. The higher the PA value,
the better the quality of the response in terms of
agreement with the aggregate human population (as
reflected by P (k|u)). To compute a single score for
a particular LLM or individual human, we average
the PA score over multiple responses and over the
14 uncertainty expressions.6

6Note that the PA metric is similar to the log-probability
metric widely used to score probabilistic models in machine
learning. However, it is not a likelihood in the sense that a
likelihood corresponds to measuring the probability mass a
model assigns to an observed outcome. Thus, in this non-
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Table 1: Human-LLM agreement for non-verifiable

statements. Average Proportional Agreement (PA), PA
as a fraction of the Human Mode results (% PA), and
absolute error between mean responses (MAE). Human

Mode represents the mode of the human NV distribution,
whereas Human Individual represents the PA score of
individual human responses relative to the population.

PA % PA MAE

Human Mode 27.6 — —
Human Individual 17.6 63.8 8.91

ChatGPT 19.7 71.4 6.80

GPT-4 24.4 88.4 4.64

GPT-4o 18.9 68.5 5.58

Gemini 25.4 92.0 4.09

LLama3 (8B) 17.8 64.5 11.99

LLama3 (70B) 23.6 85.5 5.56

Mixtral 8x7B 21.8 79.0 5.88

Mixtral 8x22B 21.8 79.0 7.20

OLMo (7B) 11.1 40.2 21.41

Gemma (2B) 8.1 29.3 20.17

pared to the variance in responses from a popula-
tion of humans.

These observations are reflected more precisely
by the PA scores in Tables 1 and 9. We observe
that larger and newer LLMs (in particular, GPT-4,
LLama3 (70B), and Gemini) perform especially
well on this task under the PA metric, being at 85%
or above in terms of matching the modal scores
that a human population assigns to each uncertainty
expression. In fact, 7 out of the 10 LLMs evalu-
ated are significantly better matched to population
modal responses than are individual humans on
average8. This aligns with the high-level findings
of Maloney et al. (2024), in particular, that the dif-
ference between the numerical responses of GPT-4
and humans were similar to (or smaller than) inter-
human differences. In the context of our experi-
ments, these high scores reflect that LLMs tend to
be more consistent than individual humans in terms
of agreement with aggregate human responses.

The MAE scores in Table 1 (lower is better) are
highly anti-correlated with the PA scores and tell
a similar story in terms of which models perform
better. To provide a sense of scale, the MAE num-
bers are lower-bounded by 0 and upper-bounded
by 25 (the expected MAE for random responses).

pared to humans. Additionally, while probabilistic decod-
ing (temperature=1) generally increases variability for most
models, this effect is not observed for GPT-4.

8The average performance of individual humans is repre-
sented by the Human Individual row in Table 1.

Table 2: Human-LLM agreement for verifiable state-

ments. Average Proportional Agreement (PA), abso-
lute error between mean responses (MAE), and the dif-
ference between these scores and those from the non-
verifiable statements (Table 1) (∆ PA and ∆ MAE, re-
spectively). Again, Human Mode represents the mode
of the human NV distribution, whereas Human Individ-

ual represents the average behavior across individual
humans on the verifiable setting.

PA ∆ PA MAE ∆ MAE

Human Mode 27.6 — — —
Human Individual 16.7 -0.9 9.35 0.44

ChatGPT 15.3 -4.4 8.57 1.77
GPT-4 22.1 -2.3 3.84 -0.80
GPT-4o 15.2 -3.7 7.05 1.47
Gemini 21.3 -4.1 7.23 3.14
LLama3 (8B) 10.1 -7.7 16.59 4.60
LLama3 (70B) 18.9 -4.7 13.73 8.17
Mixtral 8x7B 15.2 -6.6 12.23 6.35
Mixtral 8x22B 18.6 -3.2 9.78 2.58
OLMo (7B) 7.6 -3.5 33.66 12.25
Gemma (2B) 5.3 -2.8 25.07 4.9

5.2 Does knowledge affect uncertainty

perceptions of LLMs?

In this section, we assess the extent to which LLMs,
and humans, are biased by their prior knowledge
or beliefs in mapping uncertainty expressions to
numerical responses. To investigate this question
we collect responses from humans and LLMs on
our verifiable (V) dataset, which includes both true
and false common-knowledge statements (based
on correct or incorrect answers, respectively, to
multiple-choice questions). We find that average
PA scores for both humans and LLMs are systemat-
ically lower for verifiable statements compared to
the non-verifiable responses (Tables 2 and 10). This
suggests that prior knowledge about a statement9

makes it more difficult to quantify the beliefs of
someone else about that statement. While humans
show a small drop in their PA score, this reduction
in PA is particularly pronounced for LLMs: all
10 LLMs demonstrated a significant reduction in
PA, averaging a 4.3 point drop in score (across all
models), compared to a 0.9 point drop for humans.

To investigate these differences in more detail,
we consider the mean response values produced
by the 6 models exhibiting the highest PA score.
These values differ systematically depending on
whether the statement is true or false: across the 6
LLMs in Figure 5, the mean response is 7.0 points

9We have empirically validated our use of true correctness
as a proxy for the LLMs’ beliefs in Appendix B.3.
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Limitations

Biases in Interpreting Uncertainty Expressions:

Prior work has raised several concerns about the
consistency of humans’ interpretations of uncer-
tainty expressions, demonstrating that they are sub-
ject to a number of biases and nuances. For exam-
ple, people may conflate the speaker’s confidence
with the speaker’s estimated uncertainty (Fleiner
and Vennekens, 2024), statements worded in terms
of confidence (“I am almost certain”) or likelihood
(“I believe it is almost certain”) are interpreted
as primarily communicating different types of un-
certainty (epistemic and aleatoric, respectively)
(Ülkümen et al., 2016), and these statements are
directional, emphasizing either the occurrence or
non-occurrence of an event (Teigen, 2023). Fur-
ther, these interpretations are context-dependent,
affected by factors including the individual’s per-
ception of the speaker and the severity of the event
in question (Budescu and Wallsten, 1985; Collins
and Hahn, 2018; Bonnefon and Villejoubert, 2006;
Juanchich and Sirota, 2013; Brun and Teigen, 1988;
Weber and Hilton, 1990). Thus, in interpreting un-
certainty expressions, high variability can occur
both across (Zhang et al., 2023; Collins and Hahn,
2018) and within (Clarke et al., 1992; Van Der Bles
et al., 2019) individuals. In this paper we do not
explore these dimensions of the interpretation of
uncertainty expressions, which could limit the gen-
erality of our conclusions.

US Centric View: In this paper we focus on a
small set of uncertainty expressions in English and
our baseline is drawn from participants located in
the United States. Investigating the role that cul-
tural and language differences play in communicat-
ing uncertainty is important future work that will
help better characterize the downstream abilities
of LLMs for all users. The recent work by Tang
et al. (2024) represents a first step in this direction,
but it does not account for the cultural context that
would inform the meaning of a speaker (Huang and
Yang, 2023). In particular, the meaning of “prob-
able” and “very likely” may differ significantly
between English and Chinese. Such cultural dif-
ference may suffice to explain the observed differ-
ences in perceptions measured between US pop-
ulation and GPT-4 when prompted with Chinese
contexts.

Lack of Explanation: Our results highlight the
LLMs’ abilities to interpret uncertainty phrases in a
way that agrees with population-level human distri-

bution in the non-verifiable and to less extent in the
verifiable setting. It is not clear why models have
acquired this general ability, given that there are
not similarly framed tasks in available instruction-
tuning and human feedback datasets (Wang et al.,
2022; Bai et al., 2022). We hope that future work
will explore the origins of this behavior.
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A Motivating example

In the main paper, we discuss the divergence of
model behavior in the use case of news headline
generation when prompted with text containing
uncertainty expressions. In particular, Figure 1
shows two different levels of conviction in the gen-
erated text: the first headline contains confident-
sounding words like “conclude” and “comprehen-
sive” whereas the second generated headline uses
less confident language like “suggests” and “pos-
sible”. To further understand the extent to which
these differences could be explained by the models’
own knowledge, we prompt the model a second
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time to assess its agreement or disagreement with
the topic being discussed. Its answers are in Figure
8.

B Datasets

To ensure that our results generalize and are not ar-
tifacts of the evaluation methodology and/or bench-
marks used (Selvam et al., 2023; Seshadri et al.,
2022), we intentionally include statements span-
ning multiple categories and different syntactic
structures. Moreover, to simplify and avoid po-
tential length-based artifacts, we opt for simple,
short statements that communicate a single fact.

B.1 Non-Verifiable Statements

As mentioned in Section 3, we manually craft the
non-verifiable statements to be short ordinary state-
ments that purposely lack grounding on specific
contextual information. In doing so, we hypothe-
size that an external observer will not have confi-
dence in the truth or falsity of the statement. To
ensure that our analysis covers a diverse set of
plausible and realistic uses of uncertainty expres-
sions, we create 15 statements for 4 different set-
tings, including: (1) the forecasting of events; (2)
the communication of imperfect knowledge; (3) to
communicate possession; and (4) to communicate
preferences. Below we list a random selection of 5
statements for each of the previous scenarios. Note
that each of these statements are incorporated in
the prompts listed in the main paper and the place-
holders [[they]] and [[their]] are replaced by
pronouns matching the gender of the statement
speaker’s name.

Forecasting of future events. Uncertainty ex-
pressions are often used to communicate uncer-
tainty about future events.

• [[they]] will buy a new watch this Thanks-
giving weekend.

• [[they]] will be offered a promotion this
fall.

• the company will have another round of lay-
offs by mid July.

• there will be vegetarian options at the barbe-
cue.

• [[they]] will visit New York over winter
break.

Imperfect knowledge. Uncertainty expressions
can also be used to communicate uncertainty im-
precise information about events or outcomes.

• the restaurant near [[their]] apartment ac-
cepts reservations.

• the new museum is offering complimentary
admission.

• there is a yoga studio within 2 miles of
[[their]] workplace.

• there are more than eighty students in the au-
ditorium right now.

• the temperature in the office is at least 72 de-
grees Fahrenheit.

Possession. Alternatively, uncertainty expres-
sions can be used to convey uncertainty about the
belongings of acquaintances.

• [[their]] boss owns a blue car.

• [[their]] friend has a leather jacket.

• [[their]] cousin has a vegetable garden.

• [[their]] classmate owns a guitar.

• [[their]] boss has a stereo amplifier.

Preference. Uncertainty expressions can be used
to convey uncertainty about the preferences of ac-
quaintances.

• [[their]] cousin prefers spinach over broc-
coli.

• [[their]] boss prefers coffee over tea.

• [[their]] friend prefers running over cy-
cling.

• [[their]] neighbor prefers the beach over
the mountains.

• [[their]] coworker prefers reading books
over watching movies.

B.2 Verifiable statements.

Unlike the non-verifiable statements, verifiable
statements are created such that an external ob-
server may have confidence in the truth or falsity
of the statement. One way to ensure that the both
humans and LLMs have high confidence in the
truth or falsity of the statements is by focusing on
popular general-knowledge facts, for example by
focusing on trivia-like facts or student grade level
science questions.

TriviaQA dataset. For the experiments in the
main paper, we propose to create short verifiable
statements using the set of questions provided by
The Question Company (as described in Section 4).
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Table 4: Examples of true and false verifiable statements across different categories of the trivia dataset. The
true and false statements are created based on the correct and one of the incorrect choices of a trivia multiple-choice
question answering dataset. The statements constitute short, simple, public knowledge facts.

Category True statement False statement

Cities &
Geography

“Great Britain directly borders 0 countries.” “Great Britain directly borders 2 countries.”
“New York is known as the Big Apple.” New York is known as the Big Orange.”
“the Colosseum, a famous landmark in Rome, was
originally built as an Amphitheatre.”

“the Colosseum, a famous landmark in Rome, was
originally built as an Cathedral.”

History &
Art

“the Mona Lisa is a famous painting by Leonardo
da Vinci.”

“the Mona Lisa is a famous painting by Tintoretto.”

“the Scream is the best known painting by Edvard
Munch.”

“the Scream is the best known painting by Jackson
Pollock.”

“Andy Warhol became a famous artist in the 1960s
for painting soup cans and soap boxes.”

“Frida Kahlo became a famous artist in the 1960s
for painting soup cans and soap boxes.”

Science &
Nature

“water’s chemical formula is H2O.” “carbon monoxide’s chemical formula is H2O.”
“the nearest planet to the sun is Mercury.” “the nearest planet to the sun is Mars.”
“oG is a measure of the acidity or basicity of a
substance.”

“pH is a measure of the acidity or basicity of a
substance.”

Table 5: Examples of true and false verifiable statements derived from the AI2-Arc dataset (Clark et al., 2018).
The true and false statements are created based on the correct and one of the incorrect choices of the dataset. The
statements constitute short school-level science facts.

Category True statement False statement

Easy
“Growing and reproducing are two life processes
that occur in both plants and humans.”

“Germinating and reproducing are two life pro-
cesses that occur in both plants and humans.”

“A light year refers to the distance light travels in
one year.”

“A light year refers to the time it takes light to travel
from Earth to the Sun.”

“Carbon dioxide produced by cells is removed from
the body primarily by the respiratory system.”

“Carbon dioxide produced by cells is removed from
the body primarily by the immune system.”

Challenge
“Trees are a renewable natural resource that can be
replenished over a period of time”

“Coal is a renewable natural resource that can be
replenished over a period of time.”

“When cold temperatures are produced in a chemi-
cal reaction, the reaction is known as endothermic.”

“When cold temperatures are produced in a chemi-
cal reaction, the reaction is known as exothermic.”

“Swimming fast is an adaptive characteristic that
helps dolphins survive life in the ocean.”

“Traveling alone is an adaptive characteristic that
helps dolphins survive life in the ocean.”

Metrics. Our goal is to provide supporting ev-
idence that the models’ belief of correctness dif-
fers for the three different settings evaluated in our
experiments, in particular, we want to show that:
(1) LLMs do not know the veracity of the non-
verifiable statements; (2) LLMs knows which of
the verifiable statements are true (dubbed “verifi-
able true”) and which of them are false (dubbed
“verifiable false”). To gauge model correctness,
we report the average accuracy of the model. In
particular, we consider a model to be correct (or ac-
curate) if it generates “unknown” when prompted
about the veracity of the non-verifiable statement;
“true” when prompted about the veracity of a true
verifiable statement; and “false” when prompted
about the veracity of a false statement. To differ-
entiate the accuracy of the models across the three
different scenarios, we designate the models’ accu-
racy in each setting as AccNV ,AccV T , and AccV F ,

respectively.

Results. Table 6 shows the average accuracy re-
sults of applying the methodology described previ-
ously to four different LLMs. Overall, our results
show that LLMs are able to differentiate between

verifiable and non-verifiable settings. Specifically,
GPT-4 and GPT-4o abstain from assigning a ve-
racity judgment to the non-verifiable statements
in about >99% of the examples, while correctly
judging 100% of the true verifiable statements and
>93% of the false verifiable statements.

Overall, we find that models are able to cor-

rectly discriminate between true and false state-

ments (>90% accuracy) which corroborates the
use of true correctness of the statements as a proxy
for the LLMs’ beliefs.
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Avg Acc (%) AccNV (%) AccV T (%) AccV F (%)

Num examples 170 110 30 30

ChatGPT 90.00 90.00 90.00 90.00
GPT-4 98.82 100.00 100.00 93.33
GPT-4o 98.82 99.09 100.00 96.67
Gemini 90.00 90.91 93.33 83.33

Table 6: Accuracy of LLMs’ beliefs about the veracity of the non-verifiable (NV) and verifiable statements (V)

in the main experiment. Overall, models are very accurate in differentiating between non-verifiable and verifiable
statements. Moreover, we observe that models are able are able to correctly discriminate between true and false
statements (>90% accuracy), which corroborate the hypothesis that LLMs know the correctness of the statements
they are tested with.

C Experiment Details

This section describes in greater detail various as-
pects of the experiments conducted in this paper,
including the list of uncertainty expressions, the
name selection strategy, the list of prompts, a list
of statements, as well as additional details on the
human experiments.

C.1 Uncertainty Expressions

The uncertainty expressions are a subset of the
expressions proposed in Wallsten et al.; Wallsten
et al.; Willems et al.; Fore. The final list of un-
certainty expressions used in this paper is listed
below:

• almost certain, highly likely, very likely,
likely, probable, somewhat likely, somewhat
unlikely, uncertain, possible, unlikely, not
likely, doubtful, very unlikely, highly unlikely

C.2 Name Selection

All names used in our experiments were collected
from a random name generator11, which we ran
iteratively until we obtained 32 unique names, half
of each biological gender (as determined by the
random generator).

• Female names: “Amanda”, “Bonnie”,
“Camille”, “Catherine”, “Cheri”, “Ethel”,
“Gabriela”, “Jacquelyn”, “Jessica”, “Laura”,
“Olga”, “Roxanne”, “Silvia”, “Tara”, “Violet”

• Male names: “Brendan”, “Bruce”, “David”,
“Gary”, “Isaac”, “Jeffery”, “Joey”, “John-
nie”, “Kenny”, “Lance”, “Marco”, “Mike”,
“Nathan”, “Nick”, “Raul”

11
https://randomwordgenerator.com/name.php, last

accessed on March 26th, 2024.

C.3 Human Experiments

Human responses were collected using Prolific
(https://www.prolific.com/). We recruited
100 participants for the non-verifiable experiment
and 100 different participants for the second verifi-
able experiment. One of the 100 responses was not
received due to a technical issue in both the first and
second experiment, leaving a total of 99 responses
for each. We recruited participants whose first lan-
guage was English that were located in the United
States. Participants were paid $2 for completing
the study and the average completion time was
8 minutes and 48 sections; the average payment
rate was $13.64/hour. The University of California,
Irvine Institutional Review Board (IRB) approved
the experimental protocol. Prior to the experiment,
participants were given detailed instructions out-
lining the experimental procedure as well as how
to understand and interact with the user interface.
Participants were asked to sign an integrity pledge
after reading all of the instructions, stating that they
would complete the experiment to the best of their
abilities. After submitting their integrity pledge,
participants were granted access to the experiment.

We filtered out low-quality responses with the
following procedure. For each participant, we com-
puted the Spearman correlation between the partic-
ipant’s responses and the overall ranking of uncer-
tainty statements in the non-verifiable experiment.
We removed participants with ρ < 0.2, a thresh-
old chosen empirically to filter out only no-signal,
spam-like responses. This filter removed 5 partici-
pants in the first experiment and 10 in the second
experiment. In total, we remain with 94 partici-
pants in the non-verifiable experiment and 89 in
the verifiable experiment.
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In this experiment, you will be shown text reflecting an individual’s beliefs about a statement. You
will then be asked to judge, in your opinion, the strength of that individual’s belief. To do so, you
will provide a probability (expressed as a percentage) where:
- The number 0 indicates that the individual believes with certainty that the statement is false.
- The number 100 indicates that the individual believes with certainty that the statement is true.

You will be shown two example question and response pairs below to familiarize you
with the experiment setup. After the examples, you will be asked to answer a new question.

## Example Question 1
[[demonstration1]]

Choose the answer from the following options:
0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100
Correct answer: 100

## Example Question 2
[[demonstration2]]

Choose the answer from the following options:
0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100
Correct answer: 100

## Question
Given the examples before, answer the following question by writing a single number as the answer.

[[test-example]]

Choose the answer from the following options:
0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100 Correct answer:

Figure 10: Prompt used to conduct the experiments in the 2-shot setting. [[demonstration1]],
[[demonstration2]], and [[text-example]] are placeholders that will be composed of a statement (or event),
question, and individual instructions. The prompt closely reflects the interface presented to the participants of the
user studies. Similarly to the human interface, we encourage LLMs to select a multiple of 5 in the range [0, 100].
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Sentence: “[[speaker]] believes it’s [[uncertainty]] that [[statement]].”

Question: Provide a number between 0 and 100 that reflects, from [[speaker]]’s per-
spective, the probability (expressed as a percentage) that [[statement]].
- 0 indicates [[speaker]] believes there is a 0% chance that [[statement]].
- 100 indicates [[speaker]] believes there is a 100% chance that [[statement]].

Figure 11: Structure of a demonstration (or exemplar), as defined in the 2-shot prompt. The placeholders
[[speaker]], [[uncertainty]], and [[statement]] are replaced by gendered names, uncertainty expressions,
and statements, respectively.

C.5 Language Models

Our evaluation concerns the study of instruction-
tuned LLMs, some of which are accessible through
black-box APIs and others through the use of the
HuggingFace Python package. We use OpenAI to
obtain the results for ChatGPT, GPT-4, and GPT-4o;
Google’s Vertex AI API to obtain results for
Gemini, and TogetherAI12 to run LLama3 (70B),
Mixtral 8x7B, Mixtral 8x22B, and DBRX. We
run LLama3 (8B) OLMo (7B) and Gemma (2B) lo-
cally on a single GPU 8 RTX A6000 (48 GB). All
experiments were conducted from April through
June 2024.

For simplicity, we have abbreviated the name of
the evaluated models, removing information about
the size and version of the model. For reproducibil-
ity, we list below the mapping from model name to
exact version of the model used:

• ChatGPT: gpt-3.5-turbo-0125

• GPT-4: gpt-4-turbo-2024-04-09

• GPT-4o: gpt-4o-2024-05-13

• LLama3 (8B):

meta-llama/Meta-Llama-3-8B-Instruct

• LLama3 (70B): meta-llama/Llama-3-70b-chat-hf

• Gemini: models/gemini-pro

• Mixtral 8x7B:

mistralai/Mixtral-8x7B-Instruct-v0.1

• Mixtral 8x22B:

mistralai/Mixtral-8x22B-Instruct-v0.1

• Gemma (2B): google/gemma-1.1-2b-it (we found
Gemma (2B) to respond better empirically to
the prompts than its 7B version, which tended
to extrapolate the few-shot instructions with
additional examples).

• OLMo (7B): allenai/OLMo-7B-Instruct

12https://www.together.ai/

D Extracting LLMs Numerical Responses

In this section, we outline the methodologies
used to extract the numerical responses from auto-
regressive LLMs. In an ideal world, given an un-
certainty expression u, the model’s conditional
distribution P̂model(k|u), would be fully observ-
able. However, information about P̂model is seldom
available, for models are either (1) served through
opaque closed-source APIs or (2) too large, often
requiring large amounts of compute to estimate the
full distribution. To circumvent such limitations,
one idea is to empirically estimate such probabil-
ities using sampling-based approaches (e.g., self-
consistency (Wang et al., 2023a)) or using greedy
decoded sequences over multiple examples. In the
ensuing sections, we describe the three different
strategies considered in our work to estimate the
LLMs’ empirical distributions.

D.1 Method 1: Full Probability Approach

The “full” methodology requires access to the next-
token probability distribution of an auto-regressive
LLM and, as a result, is currently applicable to
open source models. Because we use the models’
probability to compute the probability of producing
any integer between 0 and 100, it is also our most
time-consuming approach13, requiring 101 model
calls to obtain the full probability.

Methodology. An important aspect to account
for when using LLMs to estimate the probabil-
ity distribution over the set of integers ranging
from 0 to 100 is the LLM’s tokenizer. Specifically,
models, such as Gemma (2B), LLama3 (70B), and
OLMo (7B), use single-digit tokenization (Singh
and Strouse, 2024), which implies that the textual
representation of 100 (represented as “100”) is to-

13Running LLama3 (70B) across 5x GPU 8 RTX A6000
(48 GB) for 900 examples required approximately 9 full days.
For that reason, we only apply this strategy to a few LLMs.
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kenized into at least three individual tokens (i.e.,
“1”, “0”, “0”) and not in a single token (e.g., “100”).
In terms of probabilities, this is a challenge, since
many of these LLMs generate digits in a left-to-
right fashion and, by design, the probabilities of
any number in [10, 100] are always less than or
equal to the probability of the first constituting digit
(e.g., probability of “10” subsumes the probability
of “1” since in order to generate the string “10” the
model needs to generate the string “1” first). Since
we are interested in knowing the true independent
probability assigned to every integer between 0
and 100, we need to adjust the LLMs’ probabil-
ity. Therefore, instead of reporting the probability
that a number i ∈ [0, 100] occurs, we compute the
probability that i occurs and is not followed by a
number j ∈ [0, 9]:

p(xt = i|x<t)−
9∑

j=0

p(xt = i, xt+1 = j|x<t),

where p represents the LLM’s next-token prob-
ability distribution. In sum, given a prompt pa-
rameterized with a speaker s, uncertainty expres-
sion u, statement e, and a prompt that combines
these parameters, denoted prompt(s, u, e) we use
the expression above to obtain the full proba-
bility distribution for all k ∈ 0, ..., 100. We
denote this corrected probability distribution as
p(k|prompt(s, u, e)) and we refer to the proba-
bility mass that falls outside the set of strings
k ∈ 0, ..., 100 as p̄.

Constructing the Greedy Histogram. Unlike
sampling-based greedy decoding algorithms, we
restrict the selection of the arg-max to the set of
strings representing the numbers between [0, 100],
as opposed to sampling a series of tokens using
temperature=0. In other words, we constrain
the greedy decoding to be any of the sequences
in {“0”, “1”, ..., “100”}, regardless of how little
probability14 is assigned to any of these numerical
sequences. For every triplet (u, s, e), we obtain the
the arg-max prediction and then assign it to a bin
0, 5, 10, ..., 100.

Constructing the Probabilistic Histogram. The
probabilistic histogram benefits from the probabil-
ity information that was computed previously for a

14We found this approach to be particular sensitive to the
instruction format used. For example, in earlier iterations of
this work we used Llama-2 and Gemma (7B) but found them
to be particular sensitive to the whitespaces provides in the
prompt.

specific triplet (u, s, e). In particular, for a specific
example we accumulate all probability values in
the corresponding bins 0, 5, ..., 100. The remaining
probability mass p̄ is assigned to a default bin “-1”.
In other words, the bin “-1” will accumulate the
probability of a number in [0, 100] not following
the specified prompt. While we could have nor-
malized the probabilities of 0, 5, ..., 100 to sum to
1, we decided to add a “-1” bin to allow for a fair
comparison with the top-k approach, where only
part of the probability distribution (e.g., top-20 next
probability distribution values are revealed), as is
the case for the OpenAI models. After accumu-
lating the probability over all (u, s, e) triplets, we
normalize the histogram by dividing by the number
of triplets.

D.2 Method 2: Top-k approach

This method leverages information about the top-k
values of the next-token probability information.
Applicable to OpenAI models, namely ChatGPT,
GPT-4, and GPT-4o, this approach allow us to ob-
tain richer probability information with a single
API call.

Methodology. This method requires two proper-
ties to be satisfied: (1) numbers between 0 and 100
must be encoded with one single token each (i.e.,
each integer is represented with a single token), and
(2) exponentiating the log probabilities returned by
the API must lead to a valid probability distribution
(i.e., numbers obtained for different prompts will
be comparable to one another). We validate that the
first requirement is satisfied by OpenAI models.

Constructing the Greedy Histogram. Unlike
traditional greedy decoding, we condition the se-
lection of the arg-max prediction over numbers the
top-k (k=20 for OpenAI). That is, we select the
most likely number that is present in the top-20
predicted tokens. If no number is present in the
top-20 tokens, we assign a default value of ‘-1’.

Constructing the Probabilistic Histogram.

Like the “full” probability approach, we construct
the probabilistic histogram by accumulating the
probabilistic information that we gather with each
inference call: For a given triplet (u, s, e), we make
an API call and obtain probability about the next 20
tokens. If any of these strings represents a number
between 0 and 100, we exponentiate it to obtain a
probability value, and accumulate the probability
in the corresponding bin. Any remaining probabil-
ity that is not assigned to a number in the top-20 is
accumulated in the ‘-1’ bin. After accumulating the
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probability over all (u, s, e) triplets, we normalize
the histogram by dividing by the number of triplets.

D.3 Method 3: Sampling-based approach

Some models are provided through black-box APIs
with no access to next-token probability informa-
tion. Ideally, one could estimate the next-token
probability information by continuously sample,
but doing so would be too costly. In the main paper,
we only run sampling based approaches using a
single sample.

Constructing the Greedy Histogram. This
approach differs from the previous two in that it
is unconstrained sampling-based approach, which
means that the next immediate token may not be
a number. Moreover, it is also agnostic to the tok-
enization. It many cases, the model may generate
some text before it actually produces the answer
“The answer is 100” or “**Sure, here is the answer:
55”. To accommodate for such scenarios, we con-
sider the arg-max prediction to be the first number
between 0 and 100 to be mentioned in the model’s
response. Otherwise we assume the arg-max pre-
diction to be ‘-1’.

Constructing the Probabilistic Histogram. Due
to budget constraints, we could not reliably esti-
mate a probabilistic histogram via the sampling-
based approach, as this would require thousands of
requests. Future work could use strategies like self-
consistency to estimate a probabilistic histogram.

D.4 Which methodology applied to which

model?

The following describes the list of methodologies
used for each LLM:

• Greedy Sampling: Gemini, LLama3 (70B),
Mixtral 8x7B, Mixtral 8x22B. We opt
for using greedy sampling (max_tokens=200,
temperature=0) as opposed to standard sam-
pling due to budget constraints. Given the
nature of our experiments, faithfully estimat-
ing the empirical distributions over the 101
numbers would require hundreds or even thou-
sands of calls. These calls are time-consuming
and costly. We believe that using greedy de-
coding is still representative of how a model
would behave in the majority of the cases.

• Full next-token probability distribution:
LLama3 (8B), Gemma (2B), OLMo (7B). We
found these models to be particularly brittle
to prompting.

• Next-token probability distribution: ChatGPT,
GPT-4, GPT-4o. As of June 2024, OpenAI
models only provide access to the next-token
probabilities of the top-20 tokens. In the ex-
periments in Section 5.4, we collect the infor-
mation about the top 20 numbers.

E Additional Results

In this section, we report the following additional
results:

• In Section E.1 we report the mean and
95% confidence estimates for the propor-
tional agreement (PA) and mean average er-
ror (MAE) metrics. Since the PA prioritizes
mode-matching behavior, we also include a
distribution-matching metric based on Wasser-
stein distance.

• In Section E.2 we analyze differences in
model responses between true and false state-
ments on a pairwise basis, pairing statements
by the original question they were based on.

• In Section E.3 we comment on the variability
of the distributions obtained when using prob-
abilistic decoding vs simple greedy decoding.

• In Section E.4 we provide visualizations of the
histogram distributions for the non-verifiable
and verifiable settings.

E.1 Mode- and Distribution-Matching

Metrics

Tables 9 and 10 show the mean and 95% confi-
dence intervals for the PA and MAE metrics. For
completeness, we also include the PA score and
MAE metrics per expression in Sections E.1.1 and
E.1.2.

E.1.1 Proportional Agreement

As described in Section 4.3, the proportional agree-
ment (PA) metric gauges the overall agreement
between an agent’s and a reference (population)
distribution. We use the results of the human stud-
ies in the non-verifiable setting as our reference
distribution (dubbed Human Mode) throughout the
whole paper.

Tables 12 and 13 report the proportional agree-
ment (PA) metric discriminated by uncertainty ex-
pression in the non-verifiable and verifiable set-
tings, respectively. The values are reported with
respect to the population-level human distribution
described in Section 3, denoted Human+NV.
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Table 10: Human-LLM agreement for verifiable statements. Average Proportional Agreement (PA), absolute
error between mean responses (MAE), and the difference between these scores and those from the non-verifiable
statements (Table 1) (∆ PA and ∆ MAE, respectively). Again Human Mode represents the mode of the human NV
distribution, whereas Human Individual represents the average behavior across individual humans on the verifiable
setting.

PA (95% CI) ∆ PA MAE (95% CI) ∆ MAE

Human Mode 27.6 — — —
Human Individual 16.7(16.3,17.1) -0.9 9.35(8.23,9.50) 0.44

ChatGPT 15.3(14.6,15.9) -4.4 8.57(6.81,10.07) 1.77
GPT-4 22.1(21.7,22.4) -2.3 3.84(3.03,4.45) -0.80
GPT-4o 15.2(14.5,15.9) -3.7 7.05(6.45,7.62) 1.47
Gemini 21.3(20.7,21.8) -4.1 7.23(6.04,8.49) 3.14
LLama3 (8B) 10.1(9.5,10.7) -7.7 16.59(15.10,18.18) 4.60
LLama3 (70B) 18.9(18.1,19.6) -4.7 13.73(11.92,15.64) 8.17
Mixtral 8x7B 15.2(14.5,15.9) -6.6 12.23(10.37,14.18) 6.35
Mixtral 8x22B 18.6(18.3,19.0) -3.2 9.78(8.51,11.08) 2.58
OLMo (7B) 7.6(7.2,8.0) -3.5 33.66(31.82,35.11) 12.25
Gemma (2B) 5.3(5.0,5.6) -2.8 25.07(23.45,26.66) 4.9

verifiable setting: we compare how different the
empirical distributions obtained in the main exper-
iment differ with respect to the empirical distri-
butions observed in the generalization experiment.
These results are reported in Section F.

E.1.4 Differences in Mean Numerical

Responses

Figures 13 and 16 show the mean numerical re-
sponse for the two verifiable datasets, discriminated
by model and uncertainty expression. Overall, both
plots show evidence of the large perceptual differ-
ences exhibited by different models according to
the truthfulness of the evaluated statements.

E.2 Pairwise Correctness Analysis

In our paper, we find that LLMs exhibit a system-
atic “knowledge bias,” where the average numerical
response is higher for true statements than for false
statements. To provide statistical support to this
claim, we run a one-sided paired Wilcoxon signed-
rank test, comparing mean response between true
and false statements. We perform a paired test,
as a true and false statement were generated from
each original question (e.g., “water’s chemical for-
mula is H2O” and “carbon monoxide’s chemical
formula is H2O” are paired). Overall, we find that
the knowledge bias is statistically significant at
α = 0.05 for all models except OLMo (7B) and
Gemma (2B)—see Tables 14, 15, and 16.

E.3 Variability

In this section, we conduct a quantitative analysis
of the variability of the LLMs’ empirical distribu-
tions. This analysis is motivated by the observation
that, visually, the empirical distributions obtained
via greedy decoding appear to be less diverse than
the population-level human distributions. In ad-
dition to drawing comparisons between humans
and LLMs, we also inspect how the observed vari-
ability changes with different decoding algorithms,
namely, we consider a probabilistic decoding algo-
rithm temperature=1.

Metric. As a measure of the variability of an em-
pirical distribution, we consider the interquartile

range (IQR) (Mohr et al., 2022), i.e., the difference
between the 0.75 and 0.25 quantiles.15 Intuitively,
a smaller IQR value implies that the models’ pre-
dictions tend to be concentrated in the same set of
values, whereas a larger IQR value suggests a more
uniform distribution. Because we have an empiri-
cal distribution for each uncertainty expression, we
use the average IQR across uncertainty expressions
to analyse the overall behavior.

Results. In the non-verifiable setting, we find
that most models exhibit lower average IQR values
than population-level human perceptions (see Table
17). In particular, the values reported for GPT-4,

15Other metrics could also be used to study the variability
of the distributions, such as the entropy. However, we leave
further analysis for future work.
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Table 11: Summary metrics averaged across uncertainty expressions for both NV and V settings. All metrics
are computed with respect to the human distribution in the non-verifiable setting (Human+NV). “PA” reports the
general agreement between LLMs and the mode of the human distribution, reported in percentages. “MAE” reports
the absolute error between the mean responses of LLMs and those of humans. Wasserstein-1 computes the distance
between LLMs and human distributions.

Avg PA (↑) Avg MAE (↓) Avg Wasserstein-1 (↓)

NV V NV V NV V

Human Mode 27.6 27.6 — — — —
Individual 17.6 16.7 8.91 9.35 12.35 12.99

Baseline Random 5.1 5.1 27.72 27.72 28.16 28.16
LLM OLMo 12.1 7.6 18.44 33.67 20.45 40.16

Gemma (2B) 8.1 6.6 20.17 24.33 22.13 25.89
Llama3 8B 17.8 10.1 11.99 16.59 14.11 18.35
Llama3 (70B) 23.6 18.8 5.56 13.73 9.94 16.39
Mixtral 8x7B 21.8 15.2 5.88 12.32 8.88 15.93
Mixtral 8x22B 21.8 18.6 7.20 9.78 10.78 12.05
Gemini 25.4 21.3 4.09 7.23 9.24 9.78
ChatGPT 19.7 15.3 6.80 8.57 9.26 12.74
GPT-4 24.4 22.1 4.64 3.84 9.96 6.88
GPT-4o 18.9 15.2 5.58 7.05 10.34 9.96

Table 12: Proportional Agreement (PA) score per uncertainty expression in the non-verifiable setting. The
scores are with respect to the population-level human reference distribution (Human+NV).

OLMo (7B) Gemma (2B) LLama3 (70B) LLama3 (8B) ChatGPT GPT-4 GPT-4o Mixtral 8x22B Mixtral 8x7B

Methodology full full full full top-k top-k top-k sampling sampling

Average 12.2 8.6 25.1 18.8 20.5 25.0 19.1 23.9 22.3 22.0
Standard Deviation 13.6 8.8 12.8 14.2 12.5 13.1 8.8 13.5 13.0 12.5
almost certain 55.0 0.8 60.0 60.6 55.9 60.6 35.5 58.7 60.6 59.7
doubtful 2.6 5.5 18.9 9.8 13.2 12.9 14.2 17.5 16.4 13.7
highly likely 20.5 1.0 18.0 14.9 16.1 22.1 17.4 8.3 23.9 21.5
highly unlikely 14.9 10.5 35.0 19.8 25.7 35.1 24.8 35.1 28.7 25.2
not likely 4.2 4.6 17.8 15.5 16.7 17.1 11.3 17.7 16.1 10.3
possible 6.7 14.3 15.3 7.7 14.2 15.4 6.5 15.0 8.6 14.8
probable 7.9 3.3 15.2 7.0 7.6 14.3 14.9 14.8 15.7 13.5
somewhat likely 9.5 2.7 16.5 4.7 6.8 17.9 12.8 16.5 18.2 15.4
somewhat unlikely 1.0 15.5 22.3 21.5 21.8 19.3 18.0 22.3 18.4 19.3
uncertain 6.2 34.0 35.1 35.1 33.1 35.1 35.1 35.1 35.1 35.1
unlikely 1.6 9.2 16.6 16.8 15.9 18.3 11.1 16.8 10.1 16.4
very likely 14.4 0.8 17.4 15.2 13.6 19.5 19.1 14.4 15.1 19.1
very unlikely 13.9 9.2 38.3 15.9 26.5 37.9 27.8 38.8 22.3 21.8

GPT-4o, and LLama3 (70B) are up to 13x smaller
than the one reported for humans. These findings
suggest that, when using greedy decoding, these
LLMs are unable to replicate the diversity of human
responses.

When considering the change in avg IQR val-
ues for probabilistic decoding in Table 17, we ob-
serve an increase in the spread for most models
with respect to the greedy decoding values (+6.60
and +10.60 IQR increase on average for 2-shot and
0-shot, respectively). In fact, from the evaluated
models, GPT-4 and LLama3 (70B) remain mostly
insensitive to the change of decoding algorithm
(between 0 and 1.20) whereas the IQR values for
ChatGPT and GPT-4o increase +4.38 and +35.3, re-

spectively. These results seem to suggest that for
some models, the variability of the observed empiri-
cal distributions may be a function of the employed
decoding algorithm.

E.4 Histograms

Figure 14 depicts the empirical distributions for the
non-verifiable experiments.

F Generalization results

Diversity of grammatical and semantic structures is
an important component of current evaluation prac-
tices in LLMs (Selvam et al., 2023; Seshadri et al.,
2022), since it helps ensure that obtained results are
not an artifact of the evaluation methodology and/or
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Table 13: Proportional Agreement (PA) score per uncertainty expression in the verifiable setting. The PA
scores are with respect to the population-level human reference distribution (Human+NV).

OLMo (7B) Gemma (2B) LLama3 (8B) ChatGPT GPT-4 GPT-4o LLama3 (70B) Mixtral 8x22B Mixtral 8x7B Gemini

Methodology full full full top-k top-k top-k sampling sampling sampling sampling

Average 7.8 7.0 10.3 15.9 22.8 15.3 19.5 19.4 15.6 22.1
Standard Deviation 12.2 8.9 5.1 11.5 13.8 7.1 10.8 14.6 9.3 13.2
almost certain 46.0 0.8 20.6 48.0 60.6 28.7 35.2 60.6 36.2 54.6
doubtful 0.9 4.2 11.2 6.2 11.5 11.6 15.2 13.8 9.3 16.4
highly likely 18.5 0.9 11.1 13.0 22.0 14.7 17.4 24.1 12.8 22.8
highly unlikely 8.3 1.2 4.0 22.1 32.8 17.2 33.3 28.7 23.9 33.3
not likely 2.6 1.5 14.0 12.8 15.0 10.9 15.5 13.3 7.5 15.7
possible 1.2 14.8 3.5 5.8 10.2 6.1 4.0 4.6 6.0 6.7
probable 1.8 3.3 6.5 3.8 11.5 11.3 6.8 5.8 5.7 9.9
somewhat likely 1.7 3.9 7.2 6.5 12.1 7.0 8.6 9.0 9.7 10.0
somewhat unlikely 0.8 15.0 10.6 15.4 18.8 15.0 17.3 11.8 19.6 15.4
uncertain 0.0 32.4 14.2 25.1 34.2 30.3 34.0 33.4 31.0 34.0
unlikely 0.4 11.3 17.7 13.6 16.8 10.6 15.0 9.4 11.6 14.3
very likely 11.6 0.7 9.3 10.1 17.2 17.2 14.9 14.9 11.1 17.6
very unlikely 7.5 1.7 4.1 24.2 34.1 18.8 35.9 22.3 18.6 36.2

Table 14: Analysis of the pairwise differences be-

tween true and false statements in the verifiable

dataset. Using a one-sided Wilcoxon signed-rank test,
we find that, for most models, numerical responses for
true statements are statistically significantly larger than
those for false statements (* = significant at α = 0.05).

Model Methodology Statistic p-value

ChatGPT top-k 31180.00 <0.0001*
GPT-4 top-k 34980.00 <0.0001*
GPT-4o top-k 36185.50 <0.0001*

Gemini sampling 25564.00 <0.0001*
LLama3 (70B) sampling 34979.00 <0.0001*
Mixtral 8x22B sampling 16051.00 <0.0001*
OLMo (7B) sampling 5309.50 <0.0001*

LLama3 (8B) full 17115.00 <0.0001*
OLMo (7B) full 5309.50 <0.0001*
Gemma (2B) full 786.50 0.9979

Table 15: Analysis of the pairwise differences be-

tween true and false statements in the AI2-ARC

(Easy) dataset. Using a one-sided Wilcoxon signed-
rank test, we find that, for most models, numerical re-
sponses for true statements are statistically significantly
larger than those for false statements (* = significant at
α = 0.05).

Model Methodology Statistic p-value

ChatGPT top-k 183290.50 <0.0001*
GPT-4 top-k 303749.50 <0.0001*
GPT-4o top-k 346533.00 <0.0001*

Gemini sampling 180349.50 <0.0001*
LLama3 (70B) sampling 250250.00 <0.0001*
Mixtral 8x22B sampling 129417.50 <0.0001*
OLMo (7B) sampling 111281.00 <0.0001*
Gemma (2B) sampling 46702.50 0.1148

Table 16: Analysis of the pairwise differences be-

tween true and false statements in the AI2-ARC

(Challenge) dataset. Using a one-sided Wilcoxon
signed-rank test, we find that, for most models, nu-
merical responses for true statements are statistically
significantly larger than those for false statements (* =
significant at α = 0.05).

ChatGPT top-k 123271.00 <0.0001*
GPT-4 top-k 194138.00 <0.0001*
GPT-4o top-k 231543.50 <0.0001*

Gemini sampling 106837.00 <0.0001*
LLama3 (70B) sampling 135453.00 <0.0001*
Mixtral 8x22B sampling 99689.50 <0.0001*
OLMo (7B) sampling 48763.50 0.0333
Gemma (2B) sampling 34161.50 0.0191

benchmarks used. The experiments described in
the main paper were carefully crafted to cover vari-
ous topics and situations where uncertainty expres-
sions could be used. To further strengthen our anal-
ysis and validate our findings, we simultaneously
run collect models perceptions of uncertainty ex-
pressions using a larger dataset. This dataset by the
authors based on the AI2-ARC test set (Clark et al.,
2018) — a popular question-answering dataset
consisting of genuine grade-school level, multiple-
choice science questions. Not only has this dataset
been recently used to measure commonsense rea-
soning of current state-of-the-art LLMs (Jiang et al.,
2023; Achiam et al., 2024; Beeching et al., 2023),
but it is also composed of easier questions, a key
aspect to our verifiable experiment setup.

The creation of this dataset mirrors the proce-
dure described in Section 4. We manually repur-
posed 200 question-answer pairs from AI2-ARC
(100 from the easy set and another 100 from the
challenge set). For every statement, the authors pro-
duce a true statement and a false statement using
the available information about the correct and in-
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Table 17: InterQuartile Range (IQR) of the empirical distributions averaged across all uncertainty expres-

sions in the non-verifiable setting. Reported values include both histograms created using greedy decoding
(temperature=0) and random decoding (temperature=1). While most models exhibit become more diverse when
using random decoding, models like GPT-4 and LLama3 (70B) seem to be minimally affected by the change in
decoding algorithm, suggesting that these models lead to less diverse results (when compared to humans).

2-shot prompt 0-shot prompt

Models Methodology Greedy Probabilistic Greedy Probabilistic

Humans — 15.00 — — —
ChatGPT top-k 4.62 9.00 8.08 11.54
GPT-4 top-k 1.15 1.15 1.15 2.69
GPT-4o top-k 3.85 39.15 3.85 39.00

LLama3 (70B) full 1.92 3.08 0.77 1.54
LLama3 (8B) full 15.38 21.54 10.00 21.92
OLMo (7B) full 36.54 39.23 36.15 —
Gemma (2B) full 23.08 19.62 0.77 11.54

Mixtral 8x22B sampling 5.00 — 5.77 —
Mixtral 8x7B sampling 4.23 — 4.62 —

correct multiple choices. The final dataset consists
of 200 true statements and 200 false statements.

To determine distributional differences between
the conditional distributions obtained in the main
paper and the ones obtained in the generalization
set, we compare the Wasserstein-1 distance of the
two empirical distributions. These values are re-
ported in Table 18. In general, we find models
that performed worse in the main paper, includ-
ing Gemma (2B) and OLMo (7B), to exhibit the
largest distributional differences with Wasserstein
distances of 48.5 and 13.1 when averaged over un-
certainty expressions. ChatGPT, LLama3 (70B),
and Mixtral models all exhibit higher differences
in expressions of higher certainty, e.g., “highly
likely”, “probable”, “possible”. On the other hand,
the two GPT-4 models, as well as Gemini (Pro)
suffer the least changes distributionally (1.9, 1.8,
and 4.2 Wasserstein-1 distances on average, respec-
tively), suggesting that these models were robust
to changes in the statements.

In the main paper, we find it surprising that
LLMs perception abilities differ significantly based
on whether the uncertainty expressions are refer-
ring to someone’s belief in a true or false statement.
To test the generalization of this finding in a larger
(and different) dataset, we repeat the same analysis
and compare the observed mean response differ-
ences with that of humans obtained in the original
setting (see Figures 15 and 16). We observe that
in absolute sense the differences are smaller than

those observed in the original setting, but that mod-
els are affected by this knowledge gap to a greater
extent than humans.

G Probabilistic Decoding

The findings reported in the main paper mostly con-
cern the conditional distributions that are estimated
using greedy decoding algorithm. Despite being a
common decision in analyses papers (Yona et al.,
2024; Steyvers et al., 2024), the use of greedy de-
coding may not provide the full picture of model
behavior (Ivgi et al., 2024; Holtzman et al., 2020).
Thus, to ensure that our results are not a degener-
ate behavior only observed when using greedy de-
coding algorithms, we conduct an analysis consid-
ering a probabilistic decoding (temperature=1):
instead of estimating the conditional distributions
for each uncertainty expression using the arg-max
predicted numerical response, we use the available
probability information to estimate the conditional
distributions.

Most of our analyses on the study of OpenAI
models— ChatGPT, GPT-4, and GPT-4o—using the
top-k approach. Using OpenAI models has the ben-
efit of being more cost-efficient than the other ap-
proaches, i.e., it is less time-consuming and lower
cost than the full probability methodology or the
sampling-based approach. Moreover, even though
theoretically the use of full probability information
is better for estimating the conditional distributions,
we found that the smaller evaluated open-source
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Table 18: Analysis of the distributional differences between the conditional distributions estimated using

greedy (temperature=0) versus probabilistic decoding (temperature=1). We use Wasserstein-1 distance to
report the distributional differences between each conditional distribution: maximally distant distributions exhibit a
score of 101.

0-shot prompting 2-shot prompting

Model NV V NV V AI2-ARC (Easy) AI2-ARC (Challenge)

ChatGPT 3.28 3.40 3.32 2.75 2.87 3.08
GPT-4 0.31 0.52 0.22 0.84 0.49 0.78
GPT-4o 19.88 15.51 15.38 19.86 20.70 20.97

models (e.g., OLMo (7B) and Gemma (2B)) were
extremely sensitive to the prompt formatting and,
frequently resulted in negligible probability mass
being assigned to integers in the range [0, 100].

H Ablation: 0-shot vs 2-shot

Table 20 reports the proportional agreement (PA)
metric discriminated by uncertainty expression in
the non-verifiable and verifiable settings, respec-
tively. The values are reported with respect to the
population-level human distribution described in
Section 3, denoted Human+NV.
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Table 19: Summary metrics averaged across uncertainty expressions for both NV and V settings when using

probabilistic decoding (temperature=1). All metrics are computed with respect to the human distribution in the
non-verifiable setting (Human+NV). “PA” reports the general agreement between LLMs and the mode of the human
distribution, reported in percentages. “MAE” reports the absolute error between the mean responses of LLMs and
those of humans. Wasserstein-1 computes the distance between LLMs and human distributions.

Avg PA (↑) Avg MAE (↓) Avg Wasserstein-1 (↓)

NV V NV V NV V

Human Mode 27.6 27.6 — — — —
Individual 17.6 16.7 8.91 9.35 12.35 12.99

LLM ChatGPT 16.4 12.8 6.40 8.32 7.65 12.14
GPT4 24.4 21.4 4.62 4.00 9.78 6.72
GPT4o 12.9 8.7 19.01 26.07 19.69 26.14

Table 20: Proportional Agreement (PA) score per uncertainty expression in the non-verifiable setting. The
scores are with respect to the population-level human reference distribution (Human+NV).

OLMo (7B) Gemma (2B) LLama3 (70B) LLama3 (8B) ChatGPT GPT-4 GPT-4o Mixtral 8x22B Mixtral 8x7B

Methodology full full full full top-k top-k top-k sampling sampling

Average 9.3 2.4 18.3 14.4 17.1 25.9 22.3 20.2 18.8
Standard Deviation 9.2 4.0 6.4 5.2 8.3 12.2 13.1 14.5 13.1
almost certain 35.3 0.2 27.8 15.5 33.0 58.0 57.4 60.6 59.0
doubtful 8.4 0.0 16.5 16.5 8.7 18.0 12.7 8.9 10.7
highly likely 21.2 0.4 8.7 5.1 12.0 27.2 19.4 25.6 16.3
highly unlikely 4.5 0.5 16.0 14.1 22.6 35.1 33.0 28.7 16.7
not likely 4.3 0.5 17.6 17.6 13.8 17.9 11.5 9.9 10.8
possible 3.1 12.7 15.2 12.8 14.5 15.4 10.7 9.5 14.9
probable 6.9 4.9 15.9 8.7 10.2 14.7 15.4 9.0 13.4
somewhat likely 2.2 9.7 16.0 10.9 8.1 16.6 11.0 16.5 6.1
somewhat unlikely 3.5 0.6 22.2 21.2 18.4 22.3 19.5 7.5 10.8
uncertain 3.0 0.6 35.1 25.5 34.5 35.1 34.1 34.5 32.6
unlikely 6.0 0.0 17.0 16.8 13.6 16.7 11.0 9.2 15.2
very likely 16.6 0.9 14.5 8.9 11.3 21.1 21.4 20.7 18.5
very unlikely 6.1 0.0 15.6 14.2 21.2 38.8 32.1 22.3 19.2

8496














