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Abstract

The inevitable appearance of spurious correla-
tions in training datasets hurts the generaliza-
tion of NLP models on unseen data. Previous
work has found that datasets with paired inputs
are prone to correlations between a specific part
of the input (e.g., the hypothesis in NLI) and
the label; consequently, models trained only
on those outperform chance. Are these cor-
relations picked up by models trained on the
full input data? To address this question, we
propose a new evaluation method, Counterfac-
tual Attentiveness Test (CAT ). CAT uses
counterfactuals by replacing part of the input
with its counterpart from a different example
(subject to some restrictions), expecting an at-
tentive model to change its prediction. Using
CAT, we systematically investigate established
supervised and in-context learning models on
ten datasets spanning four tasks: natural lan-
guage inference, reading comprehension, para-
phrase detection, and visual & language reason-
ing. CAT reveals that reliance on such corre-
lations is mainly data-dependent. Surprisingly,
we find that GPT3 becomes /ess attentive with
an increased number of demonstrations, while
its accuracy on the test data improves. Our re-
sults demonstrate that augmenting training or
demonstration data with counterfactuals is ef-
fective in improving models’ attentiveness. We
show that models’ attentiveness measured by
CAT reveals different conclusions from solely
measuring correlations in data.’

1 Introduction

Reliance on spurious correlations compromises
NLP models’ abilities to generalize across differ-
ent domains and tasks (Naik et al., 2018; McCoy
et al., 2019). Intuitively, spurious correlations are
features that are useful in the training data but are
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Figure 1: We are interested in quantifying model’s at-
tentiveness to part of the input. We propose CAT, an
evaluation that replaces the premise P with a counter-
factual P’. A change in behavior to the counterfactual
input indicates the model is attentive to the premise,
otherwise, the model relies solely on the hypothesis to
make a prediction.

P: Ilike cats
H: Idon’tlike cats

Counterfactual
: P—P

P’: Let’s go out
H: Idon’t like cats

unreliable in general (Eisenstein, 2022). Differ-
ent approaches have been proposed for measuring
model reliance on spurious correlations at various
granularities, e.g., the appearance of certain tokens
in a text, the length of a text, etc. (Sinha et al.,
2021; Gardner et al., 2021).

Spurious correlations in datasets are very com-
mon. For instance, the hypothesis-only baseline
(Poliak et al., 2018; Gururangan et al., 2018) was
designed to measure spurious correlations in nat-
ural language inference (NLI) datasets by train-
ing a model only on one part of the input (e.g.,
the hypothesis), effectively discarding information
deemed critical for performing the task. Surpris-
ingly, it performs significantly better than random
guessing, despite never seeing the premise. These
results suggest that the hypothesis-only baseline
has taken the shortcuts between the hypotheses and
the labels during training. However, they should
not be interpreted as evidence that models trained
on the full inputs (full-input models) also take these
shortcuts. The question that then arises is how to
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quantify the reliance of full-input models on the
spurious correlations present in the hypotheses.

We propose a method for measuring models’
reliance on partial input: COUNTERFACTUAL AT-
TENTIVENESS TEST, (CAT, §3). We present an
overview of the approach in Figure 1. CAT is sim-
ple, intuitive, and is based on the idea of counter-
factuals from the causal inference literature (Pearl,
2009). Importantly, it only requires a labeled
dataset for the task and black box model predic-
tions. To test a model that performs a tasks with
paired-inputs (tasks that consist of at least two com-
ponents, e.g., NLI), we query the model, and re-
place one part of the input (e.g., the premise) with
that part from another instance randomly drawn
from the same data split. Intuitively, this perturba-
tion results in the default label for that task (typi-
cally a label that signifies no relation between the
two inputs, e.g. neutral in NLI). As such, we focus
on the subset of instances where the model predicts
non-neutral > If the prediction changes, it suggests
that the model is attentive to the perturbed input.
Conversely, a model that keeps the prediction un-
changed is likely to be not attentive, as it insensitive
to the counterfactual. Following this intuition, our
metric measures attentiveness by calculating the
percentage of predictions that changed from the
non-neutral labels on the original instances.

We conduct extensive experiments on four dif-
ferent tasks, ten datasets, and 15 different mod-
els, using two setups: supervised and in-context
learning (§4). We first extend previous work to ob-
tain new results using the partial input baseline—a
model trained only on partial inputs, that quantifies
spurious correlations in the data. Then, using our
attentiveness metric, we show that even in datasets
with spurious correlations between parts of the in-
puts and the labels, models do not always rely on
them (§5). Finally, we study whether data augmen-
tation using our counterfactuals improves models’
attentiveness and find that is often the case (§6).
Our results indicate that the appearance of — often
unavoidable — spurious correlations in the data do
not indicate models rely on them, and propose a
simple and easy-to-use test for measuring it.

2 Background & Related Work

In this section we review the hypothesis-only base-
line in NLI and its extensions to other tasks: the

2Other datasets and tasks may have different neutral labels.
We provide more details on these labels in §3.

partial input baseline. We then discuss a related
work by Srikanth and Rudinger (2022) and high-
light the similarities and differences to our work.

Partial Input Correlations The hypothesis-only
baseline refers to a supervised classifier trained
only on the hypotheses in an NLI dataset, removing
the premises from the original paired inputs (Guru-
rangan et al., 2018; Poliak et al., 2018; Tsuchiya,
2018). Predicting an NLI label on a single-sentence
input is ill-defined, but nonetheless, classifiers
trained solely on the hypotheses on datasets such as
SNLI (Bowman et al., 2015) are able to generalize
and achieve better-than-random accuracy on the
corresponding test sets. This result indicates that
the dataset used to train the hypothesis-only classi-
fier contains predictive information about the labels.
This phenomenon is often referred to as spurious
correlations because, in principle, both the premise
and hypothesis should be required to infer the la-
bel. For instance, Poliak et al. (2018) found that
words such as ‘no’, ‘sleeping’, and ‘cat’ were of-
ten used for generating hypotheses that contradict
the premises, while ‘instrument’, and ‘touching’
were used more with entailed hypotheses. Other
works discovered similar behavior in other tasks
and datasets (Kaushik and Lipton, 2018a; KV and
Mittal, 2020; Trivedi et al., 2020; Mihaylov et al.,
2018; Hessel and Lee, 2020).

NLI Models Reliance on the Hypothesis Re-
cently, Srikanth and Rudinger (2022) raised the
question of whether models trained on the full in-
put data instances are in fact using such correlations
(e.g., in NLI, ignoring the premise when making a
prediction). They proposed to use counterfactuals
to study whether full-input models rely on such
heuristics. Importantly, Srikanth and Rudinger
(2022) manually constructed the counterfactuals,
which limits the scale of such analysis. Their study
uses RoOBERTa-base and two NLI datasets (SNLI
(Bowman et al., 2015) and §-NLI (Rudinger et al.,
2020)) which led to the conclusion that models are
not relying on such heuristics. Our study covers
a larger scope, including more tasks, datasets and
setups (we also consider in-context learning), and
reaches a more nuanced conclusion. We find that
models trained on full inputs may still rely on such
heuristic, while it is task and data-dependent. We
provide a detailed comparison with Srikanth and
Rudinger (2022), and summarize the similarities
and differences in Appendix E.
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Counterfactuals for Evaluating NLP Models
Counterfactuals were studied before in NLP. Some
works use counterfactuals to study models’ ro-
bustness to counterfactual perturbations (Glockner
et al., 2018; Kaushik et al., 2020; Dev et al., 2020;
Gardner et al., 2020; Wu et al., 2021; Fryer et al.,
2022; Teney et al., 2020). However, these works
typically construct the counterfactuals manually,
that involves expensive manual labor, in contrast
to our method that produces counterfactuals auto-
matically. Finally, there is a line of research that
modifies neural networks’ parameters or intermedi-
ate states, to study high-level concepts, which are
harder to create counterfactuals for, in the input-
level (Serrano and Smith, 2019; Elazar et al., 2021;
Feder et al., 2022; Wu et al., 2022; Geiger et al.,
2021, 2022).

3 Quantifying Attentiveness

We seek a method that measures model attentive-
ness to a part of the input in paired-input tasks,
such as the premise or hypothesis in NLI. Formally,
assume an input x contains two parts: = : (1, x2),
and let M _,, be a model trained to predict y from
x. We are interested in measuring the causal effect
of £1 on model M. If such effect is prominent, we
conclude that the model relies on z; for inference,’
otherwise it ignores it. By measuring such effect on
a dataset we quantify the extent by which the model
relies on 1. Cases where such effect is large are
especially interesting when the underlying training
data contains correlations between x2 and y, since
the model does not rely on such correlations during
training. We describe the partial input baseline and
a naive approach for measuring attentiveness and
explain why they do not fit as such metric. We then
describe our method, CAT, in §3.3. We summarize
these approaches in Table 1.

3.1 Partial Input Baseline

As discussed in §2, previous approaches such as
the hypothesis-only baseline (Poliak et al., 2018)
train a model solely on part of the input, x5 (e.g.,
the hypotheses in NLI and paragraphs in RC,
Mz,—y(22)). However, this approach does not
tell us whether a full-input model (M, (z)) also
relies on parts of the inputs as it is a different model;
it only tells us whether parts of the inputs contain
predictive information about the label. Therefore,

3We leave it to future work to explore problems where the

input has even more structure (i.e., more than two parts), but
conceptually the generalization is straightforward.

the partial input baseline solely discovers spurious
correlations in a dataset, and is not suitable for
studying full-input models’ behavior.

3.2 Naive Solution

Instead of relying on a partial input model, we
first introduce another naive approach to quantify
a model’s reliance on x2, and explain why it is not
valid for answering our research question. Naively,
one may use a full-input model M, (x) and eval-
uate the model on a partial input M, _,, (x2). Then,
we would test whether the predictions are equal,
which would indicate that the model only relies on
x92. Howeyver, attributing attentiveness (or inatten-
tiveness) is problematic since we cannot disentan-
gle the cause of such behavior, which can result
from either the model’s attentiveness, or from the
model’s behavior on out-of-domain data distribu-
tion (Fong and Vedaldi, 2017; Hooker et al., 2019).

3.3 Counterfactual Attentiveness Test

We propose an alternative solution that can be com-
puted automatically, and provides a better estimate
of the model’s reliance on parts of the input. We
call this method COUNTERFACTUAL ATTENTIVE-
NESS TEST (CAT ). The method is inspired by
counterfactuals from causal inference to ask “what
would happen if part of the input was different?”
(Pearl, 2009). Instead of completely removing a
part of the input, e.g., z1, we replace it with z} and
evaluate the model’s prediction on M, _,, (), z2).
Intuitively, replacing x; by z] is likely to result in
a non-related pair. As such, in almost all cases” the
new label is neutral in the case of NLIL.>

As we are interested in measuring models’ at-
tentiveness with a change in prediction, we cannot
estimate it in cases where the model predicts neu-
tral on the original (x1,z9) pair. We thus only
consider cases where the prediction on the original
pair is non-neutral. Since the predictions on the
original (1, z2) pairs may differ between models,
we cannot compare them directly. However, in Ap-
pendix §D, we compute the attentiveness on the
subset where models’ predictions are identical and
show that since the original predictions are often
similar, the trends are consistent.

Attentiveness Metric We use accuracy to mea-
sure the attentiveness of a model on the counter-

*We confirm this assumption empirically in §4.2.
SEach task and dataset have their own corresponding labels.
We discuss those labels in §4.
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Method Train Eval.

Eval. Ex

Full input Mgy (z) Mg y(z) P: The other men shuffled. H: The other men were shuffled around.
Prior work (§3.1) My sy(22) Meysy(2) H: The other men were shuffled around.
Naive partial-inputs (§3.2) My () My (22) H: The other men were shuffled around.
COUNTERFACTUAL ATTENTIVENESS TEST (§3.3) M, (2) Mg_y(2},22)  P: The dog barked. H: The other men were shuffled around.
. . M oy o () My (z) P: The other men shuffled. H: The other men were shuffled around.
£ 1 - Mz ,20)—y (w1,22)—y
Counterfactual attentiveness data augmentation (6) M(Ia_,z)qy(m) M, a2)—y(®)  P: The dog barked. H: The other men were shuffled around.

Table 1: Comparing the methods we consider. Unlike prior work (‘“hypothesis-only baselines”), our proposed
counterfactual method does not change the model. We additionally show with counterfactual training that training
on examples of counterfactual partial-inputs can improve performance on them. M refers to a model, (x) is a paired
input that consist of the two variables (1, z2), similarly to 5, : (2], z5), and y is the model’s prediction.

factual instances. Specifically, we consider as an
initial set all of the instances (x1,z2) from the
development set. We obtain the model’s predic-
tion and only keep the instances where the model
predicts a non-neutral label. Then, we generate a
counterfactual by randomly sampling an instance
(«}, %) from the same data split, and combining
w9 with 21.% Finally we compute how often the
model changes its prediction from the initial pair
on this subset. A higher score indicates the model
is more attentive to the full input, which signifies
the model does not rely on partial inputs for mak-
ing predictions. For each instance (1, x2) in the
dataset, we sample k = 5 counterfactuals 2 from
the data and report the mean and standard deviation
accuracy across the samples.

4 Experimental Setup

We consider four diverse tasks and ten English
datasets. We also consider two learning strategies:
supervised learning through fine-tuning using 12
models from six model families, and in-context
learning (ICL) using nine models from three model
families. Table 3 summarizes all configurations.

4.1 Tasks and Datasets

We use the standard train-development splits’ for
each dataset. In the ICL setup, we randomly sample
k instances from the training sets.

Natural Language Inference We consider three
datasets for NLI: MNLI (Williams et al., 2018),
WANLI (Liu et al., 2022), and RTE (Dagan et al.,
2005). MNLI and WANLI contain three labels:

®As opposed to previous work (Srikanth and Rudinger,
2022) that relies on hand-crafted counterfactuals to probe
the model, we rely on much easier-to-collect counterfactuals,
which can be randomly sampled from the data and do not
require manual curation.

"Except for WANLI which does not have a development
set, for which we randomly sample 5K instances from the
training set and use them for evaluation.

entailment, neutral, and contradiction, while RTE
only contains entailment and non-entailment.

Paraphrase Detection We consider two datasets
for paraphrase detection (PD): Quora Question
Pairs (QQP; Sharma et al., 2019) and PAWS (Zhang
et al., 2019). These datasets contain questions that
are labeled as paraphrase or non-paraphrase.

Reading Comprehension We consider three
datasets for reading comprehension (RC) that in-
clude a subset of questions that are not answerable
i.e., contain a no-answer label: SQuAD2.0 (Ra-
jpurkar et al., 2018), DuoRC (Saha et al., 2018),
and NewsQA (Trischler et al., 2017).

Visual & Language Reasoning We consider two
datasets for visual and language reasoning tasks
(VLR). VQA2.0 (Goyal et al., 2019) contains ques-
tions and images with multiple choice answers.
NLVR?2 (Suhr et al., 2019) consists of two images
and a statement where the task is to predict whether
the statement is true for the images.

4.2 Counterfactual Default Labels

CAT generates counterfactuals by automatically
sampling two inputs from different instances. This
makes an assumption that no relation would hold
between the inputs in the new counterfactual in-
stance (as shown in the examples in Table 2), to-
gether with the respective label. Such relations
are different between tasks and datasets, which we
now specify: neutral in 3-class NLI (e.g. MNLI),
non-entailment in 2-class NLI (e.g. RTE), not-
paraphrase in the PD, no-answer in RC, false in
NLVR2, and no-answer in VQA.

Label-Flip Assumption Verification We ver-
ify CAT’s assumptions by hand-annotating 50
counterfactually-paired instances per dataset for
each of our four tasks. We annotate whether a rep-
resentative model’s predicted label for an instance
is incorrect for the counterfactual instance and
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Task Dataset Counterfactual Example Acc
T T2 Y
Perhaps North Africans and eastern Europeans peopled . .
MNLI the Ligurian coast, while the Adriatic and south may have been :;uszi?oi;l]::ier:l:)trie\:/:'lsfo‘;nna"on from neutral 100
settled by people from the Balkans and Asia Minor. plan.
The best known is the building that houses the National Gallery A great many of the villages in the area
NLI  WANLI in Trafalgar Square, London, designed by Sir Charles Barry and are in a state of repair, and some of them neutral 100
completed in 1843. are actually inhabited.
RTE Schroder IrAlves,tme.n‘t Managemer!t has indicated its intention to There are 32 pandas in the wild in China. non-entailment 100
accept Revival’s offer to buy retailer Marks & Spencer.
Which are some of the best companies
PD QQpP How do you delete messages on Snapchat? to work for? non-paraphrase 100
PAWS The Ariesul Mare River is a tributary of the Valcea River in Romania. Also steam can be used and need not be pumped. non-paraphrase 100
Hypersensitivity is an immune response that damages
SQUAD 2.0 the body’s own tissues. They are d1}v1deé into four classes What tracts does c?mrrlensal flora 1o answer 98
(Type I - 1V) based on the mechanisms involved. .. help pathogens thrive in?
These reactions are mediated by T cells, monocytes, and macrophages.
South Boston teenager Jason Tripitikas is a fan of martial arts films and
RC DUoRC awal}(ens‘trom a dream of a .b:?mle between th(=j Morfkey King and celestial What is Ana’s profession? 10 answer 100
soldiers in the clouds. He visits a pawn shop in Chinatown to buy
‘Wauxia DVDs and discovers a golden staff. On his way home, Tripitikas
Iran’s parliament speaker has criticized U.S. President-elect Barack Obama
for saying that Iran’s development of a nuclear weapon is unacceptable.
NewsQA Iranian President Mahmoud Ahmadinejad has outlined where he thinks U.S.  What does the U.N drug chief advocate? no answer 98
policy needs to change. Ali Larijani said Saturday that Obama should apply
his campaign message of change to U.S. dealings with Iran.
VQA 2.0 What color are this person’s shoes? no answer 92
VLR
NLVR2 There is a smartphone in the right image. false 96

Table 2: An example of a counterfactual pair (2}, z2) from each of the datasets we consider. The label y is
assigned automatically to the counterfactual data. “Acc.” indicates the % of instances from our manual annotation
experiment (§4.2) where the assumption holds that the model’s predicted label should change from the original to

the counterfactual instance if the model is attentive.

Setup Task Dataset Model
2 NLI  RTE, MNLI, WANLI BERT, RoBERTa,
% PD  QQP,PAWS DeBERTa, T5,
8 RC  SQuAD2.0, DuoRC, NewsQA T5-vl.1, Flan-T5
=
@ VLR VQA2.0, NLVR2 BLIP, ViLT
= NLI  RTE, MNLI, WANLI .
g PD QQP. PAWS GPT-3, T5, Flan-T5

Table 3: Details about the configurations we use. We
experiment with ten datasets and 11 model families.

should thus change if the model is attentive. Over-
all we find the assumption to be true most of the
time: 100% of instances in MNLI, WANLI, RTE,
QQP, PAWS and DuoRC; 98% in SQuAD2.0 and
NewsQA, 96% in NLVR2, and 92% in VQA 2.0.8
We provide some randomly-selected instances from
each dataset in Table 2, along with the accuracy
from our manual evaluation.

4.3 Models

Supervised Learning We experiment with six
text-only models and two multimodal models

8Cases where the assumption fails for VQA are primarily
yes/no questions where the answer is still no after the im-
age is shuffled (4/25). When the questions are shuffled, the
assumption holds 100% of the time (25/25).

which were trained on some pretraining cor-
pora, and then fine-tuned on a respective super-
vised dataset (e.g., MNLI). We use three masked
language models: BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019), DeBERTa v3 (He et al.,
2021). and three T5 models (Raffel et al., 2020),
with both the v1.0, and v1.1 versions (v1.0 was
first pre-trained, and then fine-tuned on supervised
training data from GLUE (Wang et al., 2018), and
QA tasks, while v1.1 was only pre-trained as a lan-
guage model). Additionally, we also use Flan-T5
(Chung et al., 2022), T5 models that were fine-
tuned on 1,836 tasks with instructions. We use the
base and large versions of each model. For multi-
modal models, we experiment with BLIP (Li et al.,
2022), and ViLT (Kim et al., 2021).

In-Context Learning We experiment with three
types of model families that were shown to per-
form well in zero-shot and few-shot settings using
in-context learning (ICL). The first, text-davinci-
003, is a GPT-3 model that was first trained on code
and then was additionally trained to follow instruc-
tions (Ouyang et al., 2022). We refer to this model
simply as GPT-3. Since the model is a commer-
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cial product, we do not have full information of its
training data, and other crucial reproducibility de-
tails. For instance, it is possible that the evaluation
data we test the model on were seen by the model.
Howeyver, it is reasonable to assume that the model
has not seen the paired input from CAT, as these
are randomly constructed pairs, and those results
can be trusted. In addition, we experiment with
two open-sourced models: T5 (Raffel et al., 2020),
and Flan-T5 (Chung et al., 2022). Flan-T5 was ini-
tialized from the TS model, and finetuned on 1,836
supervised tasks accompanied by instructions.

4.4 Learning Strategies

Supervised Learning through Finetuning We
consider the fine-tuning setup to train a model per
task and dataset. Each model in these experiments
is trained for 10 epochs, following Bandel et al.
(2022) to reduce reliance on lexical overlap heuris-
tics. We use the same learning rate for all models.”

In-Context Learning We follow the prompt for-
mat in Raffel et al. (2020) for the T5 models. For
GPT-3 and Flan-T5, we prepend instructions to
each instance (described in Table 14 in the Ap-
pendix).!® We consider both zero-shot and few-
shot settings. Each demonstration includes ex-
amples from all labels, and we consider £ €&
{0,1,2, 3} number of tuples, which translates into
{0,2,4,6} or {0, 3,6,9} depending on the number
of labels in a dataset. We use greedy decoding for
generating the answers for each of these models.

5 Results

Standard Evaluation We begin by training mod-
els on their corresponding datasets. For example,
DeBERTa-large achieves 87.73%, 91.28%, and
76.72% accuracy on RTE, MNLI, and WANLI,
respectively.!! The full results are in Appendix A.

Partial Input Baseline We experiment with the
partial input baseline (§3.1) and train with only
parts of the inputs. We extend previous work (Gu-
rurangan et al., 2018; Kaushik and Lipton, 2018b)
and perform extensive experiments with different

9Except for the smaller models (T5-small and base) as they
were unable to learn using smaller learning rates.

1%Preliminary experiments find that including instructions
substantially improves both the accuracy and attentiveness.

"Our MNLI results are comparable to those by (He et al.,
2021), but on RTE ours is worse by 5%. This is likely because
we do not perform extensive hyper-parameter search. Note
that we achieve a reasonable performance nonetheless.

NLI PD RC
Dataset RTE MNLI PAWS SQuAD2.0
BERT-base 99.8i0_3 74.6i0_3 99-3i0.2 98.0i0_0
BERT-large 100.0400 643101 859103 98.010.2
RoBERTa-base 99.8i0_3 73~4i0.5 SO.SiO_ﬁ 98.3i0_1
RoBERTa—large 100.010_0 69.8i0_2 78.7i0_3 98.2i0_2
DeBERTa-base  97.0416 78.8404 99.9+0.1 97.640.1
DeBERTa-large  100.0400 68.610.3 99.140.1 98.0+0.2
T5-base 9944107 813101 99.040.1 99.140.1
T5—large 100.01().() 71.510.4 100.0:&().() 99.5:&0,1
T5-1.1-base - 46~9i0_6 - 99'4i0.0
T5-1.1-large - 79.4+0.3 - 99.4,40.1
FLAN-TS5-base 99.910.3 81.810.3 98.310.2 99.410.1
FLAN—TS—large 1 O0.0i()_() 77.1 +0.2 1 O0.0iO.l 99~5i0.1

Table 4: CAT results on natural language inference
(NLI), paraphrase detection (PD) and reading compre-
hension (RC). Results are calculated by computing the
mean attentiveness of five counterfactuals per instance,
and their standard deviation. Higher numbers indicate
better model attentiveness. We mark results for models
whose standard performance is not significantly better
than random with ‘-’.

types of models, tasks, and datasets. Every experi-
ment corresponds to the evaluation performance of
a model trained on the respective training set from
the same data. The results are in Appendix B.

Hypothesis-only MNLI models achieve as high
as 61.66% accuracy with T5-1.1-large, a much
higher accuracy than the majority baseline (35.4%).
On the other hand, models trained on RTE and
WANLI only achieve 10.5% and 7.4% points better
than majority. For QA, the strong performance of
the question-only models is particularly notewor-
thy. The best results with DeBERTa-large is 98.5%
on SQuAD?2.0, 73.2% on DuoRC, and 96.8% on
NewsQA. These models are pre-trained on a large
amount of text data in the same domain as the re-
spective datasets and are likely to select the correct
answer span from a random passage based on their
parametric knowledge and grammar heuristics.

Our results support and extend prior findings by
showing that for a diverse class of models and a
variety of tasks, models trained on partial inputs are
strong. Next, we revisit the idea that these results
indicate standard models trained on such datasets
also relies on such heuristics.

5.1 Counterfactual Attentiveness Test

Next, we report the results of our Counterfactual
Attentiveness Test on the different setups. Overall,
the main trend we observe in our experiments is
that attentiveness is data and setup specific. The
results are summarized in Table 4 for the supervised
textual tasks, Table 5 for the visual reasoning tasks,

3608



Dataset VQA v2 NLVR2
BLIP (image) 65.1100 959103
BLIP (text) 89.6400 96.0404
ViLT (image) 63.6100 93.3103
VILT (text) 89.3100 93.1403

Table 5: CAT results on visual reasoning (VLR). Re-
sults are calculated by computing the mean attentiveness
of five counterfactuals per instance, and their standard
deviation. Higher numbers indicate better model atten-
tiveness. The portion of the input that is perturbed is
indicated in parentheses.

and Table 6 for ICL classification tasks.!'?

Supervised Models Attentiveness scores are con-
sistent across models, e.g., on RTE all models are
highly attentive with average scores ranging from
97.0% to 100%. On the other hand, models trained
on MNLI are much less attentive, with scores rang-
ing from 46.9% (T5-1.1-large) to 81.8% (FLAN-
T5-base). In the case of VLR, we test the attentive-
ness of models to both parts of the input, once to
the image and once to the text. The results indi-
cate that models are more attentive to the images,
than to the texts. For instance, in VQA v2, when
perturbing the images, BLIP achieves 65.1%, but
when perturbing the texts it gets 89.6%.

ICL We report the ICL attentiveness results in
Table 6. The results in this setup follow a similar
trend to the supervised models, where attentive-
ness results are data dependent. On RTE, mod-
els are highly attentive, performing 100% on CAT
in most cases, and above 98% in the other cases.
On MNLI however, the attentiveness varies from
28.3% (T5-3B, one-shot), 62.5% (GPT3, 3-shot) to
98.9% (Flan-T5-XL, O-shot).

5.2 Partial Input Baseline as Indication of
Attentiveness?

Next, we study the relationship between the partial
input baseline performance as a method to estimate
the spurious correlations in a dataset, and the at-
tentiveness of a model and its ability to overcome
these correlations. This relationship is presented
in Figure 2. We plot the results of the supervised
models, trained on the different considered datasets.
On the x-axis, we plot the difference between the
trained partial input baseline model and random

12The full results are presented in the Appendix (Table 15).
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Figure 2: Attentiveness as a function of partial input
correlations for the supervised models. Higher atten-
tiveness values (y axis) indicate better attentiveness to
counterfactual inputs. Higher values on the partial input
correlations indicate correlations between a part of the
input and the label. It is computed as the score on the
partial input baseline, subtracting the majority score.

accuracy (partial input correlations), and on the
y-axis, the model’s attentiveness score.

First, we highlight the left part of the figure
where the spurious correlations are small: models
trained on datasets with less than a 10% gap with
the partial input baseline over the majority label
are mostly robust, with attentiveness scores as high
as 100% (with 3 outliers, where the smallest one
achieves 78.7%). This is unsurprising, as low par-
tial input correlations indicate fewer spurious cor-
relations in the dataset, so full-input models should
be able to detect counterfactual inputs more readily.
Next, we observe scattered patterns, typically clus-
tered based on tasks and datasets, and overall worse
attentiveness. For instance, the middle cluster con-
sists of NLI models trained on MNLI, with high
partial input correlations (between 20-30%) and
low attentiveness (between 56.9-81.8%). Interest-
ingly, models trained on RC datasets appear to be
attentive (above 95%), while also having high par-
tial input correlation scores (32.4%-71.4%). These
results highlight two findings: (1) low partial input
correlations in the training data result in high atten-
tiveness, and (2) high partial input correlations
are not a good indicator of standard model be-
havior: some models (trained on certain datasets)
rely on such heuristics, whereas others do not.

5.3 1ICL: The Role of Demonstrations

The standard accuracy (Table 9 in the Appendix)
shows two trends: (1) more demonstrations im-
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NLI PD

Model #Tuples RTE MNLI PAWS
GPT3 0 99.5404 929403 99.9.100
GPT3 1 100.0400 66.0103 100.040.0
GPT3 2 100.0400 62.5405 100.040.0
GPT3 3 100.0400 62.0103 999100
Flan-T5-base 0 100.0400 66.5403 999100
Flan-T5-base 1 98.1414 48.6404 100.0+0.0
Flan-T5-large 0 100.0400 94.8402 100.0+0.0
Flan-TS-large 1 99.7:&(]'3 96.2;&()}3 100.0;&0'0
Flan-T5-XL 0 100.010'() 98.910'1 100.0:&0'()
Flan-T5-XL 1 100.040.0 98.640.2 100.0+0.0
T5-base 0 100.0400 76.6103 -
T5-base 1 - 514434 -
T5—large 0 100~0i0.0 72,9i0_5 -
T5-large 1 99~3i[J.6 43.515'5 -
T5-3B 0 100.0400 70.5403 -
T5-3B 1 - 283445 -

Table 6: CAT performance using ICL. We report the
mean and standard deviation across five counterfactuals
per instance. Models whose standard performance is
not significantly better than random are marked with *-°.

prove GPT’s accuracy, but generally decrease the
accuracy for others. Can we rely on these results
as the main measure for model behaviors? ICL
attentiveness results (Table 6) tell a different story.
While on RTE, and the two PD datasets the atten-
tiveness performance stays the same - near perfect,
the attentiveness on MNLI and WANLI decreases
when more demonstrations are used.

One hypothesis for GPT-3’s low attentiveness is
benchmark contamination (Rogers, 2023; Jacovi
et al., 2023). If the model was exposed to the
datasets we investigate and memorized their labels,
this could result in high standard accuracy (which
we observe). The low attentiveness we observe sim-
ilarly supports the memorization hypothesis, since
our perturbations are far less likely to have been
observed by the model during training, so a model
that has memorized rather than generalized would
not do well on them. These results highlight the im-
portance of reporting metrics such as attentiveness
when clean evaluation sets are not available.

6 CAT Augmentation

Considering the simplicity and automatic nature
of CAT, we reuse the same sampling process for
data augmentation to improve non attentive models.
We follow a similar procedure as in the evaluation
to augment the training data: apart from the reg-
ular training set, for every x1, x2 pair, where the

Setup Model Acc. Attentiveness
. T5-large 89.3 71.540.4
Finetune +augmentation 89.3 99.7_10.0
GPT3, 4 tuples, half neutral ~ 78.1 69.340.2

ICL GPT3, 3 tuples 77.4 66.210.3
+augmentation 66.4 76.7 103

Table 7: Standard accuracy performance on the respec-
tive development sets models are trained on, and the
counterfactual accuracy of our metric.

label y is different than the default label (e.g. neu-
tral for NLI), we sample 2 from the training data,
assigned the default label.!?

The following experiments study the models that
perform poorly on our metric in the standard setup.
We focus on MNLI since models are the least atten-
tive on this dataset, and experiment once with T5-
large in the supervised setup, and with GPT-3 in the
ICL setup, using the original data (or demonstra-
tions), and add the counterfactual instances. The
labels of counterfactuals match the default label
- neutral for MNLI. We report both accuracy on
the standard development set that verifies the aug-
mentation does not degrade model performance
and attentiveness. For each dataset, we report the
performance of the vanilla model (those trained in
§5 and used for CAT in §5.1) and the augmented
model. The results are in Table 7, which can be
directly compared to the results of training on the
standard datasets in Tables 8 and 9 in the Appendix.

For supervised learning, augmentation has little
impact on standard accuracy but improves atten-
tiveness. T5-large achieves 71.5%, and 99.7 in
attentiveness before and after the augmentation, re-
spectively (and 89.3% accuracy both before and
after augmentation on the MNLI development set).

For GPT3, we expeirment with two baselines,
one with 3 demonstration tuples with balanced la-
bels, and the other with four, half of which hav-
ing the neural label. The latter aims to control
for the label distribution shift invited by the data
augmentation process. The trend is different than
the finetuend T5-large: GPT-3 with data augmen-
tation sees decreased accuracy and increased at-
tentiveness, but still far from perfect attentiveness.
These results suggest that this simple augmentation
procedure can be used as a method for improving
model’s robustness, as measured by CAT.

3This will increase the data size by the proportion of non-
default labels, e.g. the new training set size will increase by
66% in the case of balanced 3-label classification like MNLI.
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7 Conclusions

We studied models’ reliance on partial inputs and
proposed a method to quantify it. We applied our
method, Counterfactual Attentiveness Test (CAT)
on multiple tasks, datasets, and setups including
fine-tuning and in-context learning. We found that
the spurious correlations between a part of the in-
puts and the labels are not always indicative of the
full model’s reliance on such heuristics in the su-
pervised setup. For instance, we found that while
partial inputs in SQuAD?2.0 are correlated with the
labels, models trained on it are attentive to both
parts of the input. This is in contrast to MNLI,
whose hypotheses and labels are highly correlated,
and models trained on it are also inattentive to the
premises. In addition, in ICL, we found that more
demonstrations lead to decreased attentiveness in
models such as GPT-3.

8 Limitations

While CAT allows automatic evaluation of the at-
tentiveness of a model on the full input, it has some
limitations.

Not a Standalone Evaluation CAT is not meant
to replace the standard model’s performance, but
to provide insights into models’ behavior. For in-
stance, a model can perform close-to-perfect on
CAT if the model relies on lexical overlap heuris-
tics, as the counterfactual pairs are not likely to
have high lexical overlap. As such, while the model
is likely to perform well on CAT, it will fail on
other benchmarks (e.g., HANS, McCoy et al. 2019).
In addition, CAT will not produce a meaningful
score for models that did not learn the task and
always predict the same label. We highlight the
importance of reporting both the standard metric
used for a task or dataset, as well as ours for a more
complete evaluation.

Random Counterfactual Assumption The au-
tomatic counterfactual generation process assumes
that two random instances from the same dataset
will not be related, and as such the label will change.
However, this is an assumption that should be man-
ually evaluated. As we discuss in Section 4.2, and
in Table 2, we show that for the datasets we con-
sidered this assumption is mostly true (with the
smallest percentage being 92% correct). However,
in preliminary experiments we considered another
dataset where this assumption didn’t hold in many
cases: SNLI (Bowman et al., 2015). Out of 50

counterfactual instances we manually inspected,
we found the neutral label to be correct only in
70% of the cases. Consider the following counter-
factual example we generated from SNLI: “P: A
man standing in front of a chalkboard points at a
drawing. H: The person is in a hat has a big bag
while walking on a tough terrain.”. We labeled this
example as contradiction because both sentences
discuss the same entity. This is as opposed to the
original entailment label this hypothesis was paired
with the following premise: “P: A person in a red
hat with a huge backpack going hiking.”. The neu-
tral label assumption does not hold in the SNLI
case is mainly due to the source of data used to col-
lect SNLI, which was based on image captions. In
addition, the dataset lexicon is not diverse enough,
and we often observe the same entities mentioned
in the generated counterfactuals. Inspecting the
SNLI gold annotations, it is clear that when an en-
tity is mentioned in both P & H, one must assume
that they refer to the same entity if reasonably pos-
sible.!* This result led us to discard SNLI from
the analysis, as our assumption was not accurate
enough.

SNLI is the only additional dataset we consid-
ered for this study and did not include in the analy-
sis due to our assumption not holding in practice.
We note though, that when analyzing other datasets,
a practitioner should validate the assumption and
manually annotate several counterfactual instances
before conducting the analysis.

Scope The second limitation is the scope of our
method. Since CAT tests the attentiveness of mod-
els, and expecting the prediction on the counterfac-
tual to change, we only include instances where the
original predictions are non-neutral for computing
attentiveness. This leaves cases where a model that
achieves a good score on CAT may be inattentive
to partial inputs in those cases. Therefore, evidence
of attentiveness cannot rule out inattentiveness on
neutral instances, and similarly evidence of inatten-
tiveness may be even more serious when originally-
neutral instances are included. We leave it to future
work to automatically estimate attentiveness for all
possible instances.

Acknowledgments

We want to thank Alisa Liu, Sofia Serrano, Mar-
ius Mosbach, and Shauli Ravfogel for discussions

“Some of the common mentioned entities are:
woman, boy, people.

man,

3611



and feedback on this project and this draft. This
work was supported in part by the National Science
Foundation (NSF) grants 2007398, 2217154, and
NSF IIS-2046873.

References

Elron Bandel, Yoav Goldberg, and Yanai Elazar. 2022.
Lexical generalization improves with larger models
and longer training. In Findings of the Association
for Computational Linguistics: EMNLP 2022, pages
4398-4410, Abu Dhabi, United Arab Emirates. As-
sociation for Computational Linguistics.

Samuel Bowman, Gabor Angeli, Christopher Potts, and
Christopher D Manning. 2015. A large annotated
corpus for learning natural language inference. In
Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pages 632—
642.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang,
Mostafa Dehghani, Siddhartha Brahma, Albert Web-
son, Shixiang Shane Gu, Zhuyun Dai, Mirac Suz-
gun, Xinyun Chen, Aakanksha Chowdhery, Sharan
Narang, Gaurav Mishra, Adams Yu, Vincent Zhao,
Yanping Huang, Andrew Dai, Hongkun Yu, Slav
Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam
Roberts, Denny Zhou, Quoc V. Le, and Jason Wei.
2022. Scaling instruction-finetuned language models.
ArXiv:2210.11416.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2005. The pascal recognising textual entailment
challenge. In Proceedings of the First Inter-
national Conference on Machine Learning Chal-
lenges: Evaluating Predictive Uncertainty Visual Ob-
ject Classification, and Recognizing Textual Entail-
ment, MLCW’05, page 177-190, Berlin, Heidelberg.
Springer-Verlag.

Sunipa Dev, Tao Li, Jeff M Phillips, and Vivek Sriku-
mar. 2020. On measuring and mitigating biased in-
ferences of word embeddings. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 34, pages 7659-7666.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
41714186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Jacob Eisenstein. 2022. Informativeness and invariance:
Two perspectives on spurious correlations in natural
language. In Proceedings of the 2022 Conference of
the North American Chapter of the Association for

Computational Linguistics: Human Language Tech-
nologies, pages 43264331, Seattle, United States.
Association for Computational Linguistics.

Yanai Elazar, Shauli Ravfogel, Alon Jacovi, and Yoav
Goldberg. 2021. Amnesic probing: Behavioral expla-
nation with amnesic counterfactuals. Transactions of
the Association for Computational Linguistics, 9:160—
175.

Amir Feder, Katherine A. Keith, Emaad Manzoor, Reid
Pryzant, Dhanya Sridhar, Zach Wood-Doughty, Ja-
cob Eisenstein, Justin Grimmer, Roi Reichart, Mar-
garet E. Roberts, Brandon M. Stewart, Victor Veitch,
and Diyi Yang. 2022. Causal inference in natural lan-
guage processing: Estimation, prediction, interpreta-
tion and beyond. Transactions of the Association for
Computational Linguistics, 10:1138-1158.

Ruth C Fong and Andrea Vedaldi. 2017. Interpretable
explanations of black boxes by meaningful pertur-
bation. In Proceedings of the IEEE international
conference on computer vision, pages 3429-3437.

Zee Fryer, Vera Axelrod, Ben Packer, Alex Beutel, Jilin
Chen, and Kellie Webster. 2022. Flexible text gen-
eration for counterfactual fairness probing. In Pro-
ceedings of the Sixth Workshop on Online Abuse and
Harms (WOAH), pages 209-229.

Matt Gardner, Yoav Artzi, Victoria Basmov, Jonathan
Berant, Ben Bogin, Sihao Chen, Pradeep Dasigi,
Dheeru Dua, Yanai Elazar, Ananth Gottumukkala,
Nitish Gupta, Hannaneh Hajishirzi, Gabriel Ilharco,
Daniel Khashabi, Kevin Lin, Jiangming Liu, Nel-
son F. Liu, Phoebe Mulcaire, Qiang Ning, Sameer
Singh, Noah A. Smith, Sanjay Subramanian, Reut
Tsarfaty, Eric Wallace, Ally Zhang, and Ben Zhou.
2020. Evaluating models’ local decision boundaries
via contrast sets. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
1307-1323, Online. Association for Computational
Linguistics.

Matt Gardner, William Merrill, Jesse Dodge, Matthew E
Peters, Alexis Ross, Sameer Singh, and Noah A
Smith. 2021. Competency problems: On finding
and removing artifacts in language data. In Proceed-
ings of the 2021 Conference on Empirical Methods
in Natural Language Processing, pages 1801-1813.

Atticus Geiger, Hanson Lu, Thomas Icard, and Christo-
pher Potts. 2021. Causal abstractions of neural net-
works. Advances in Neural Information Processing
Systems, 34:9574-9586.

Atticus Geiger, Zhengxuan Wu, Hanson Lu, Josh
Rozner, Elisa Kreiss, Thomas Icard, Noah Good-
man, and Christopher Potts. 2022. Inducing causal
structure for interpretable neural networks. In In-
ternational Conference on Machine Learning, pages
7324-7338. PMLR.

Max Glockner, Vered Shwartz, and Yoav Goldberg.
2018. Breaking nli systems with sentences that re-
quire simple lexical inferences. In Proceedings of the

3612



56th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), pages
650-655.

Yash Goyal, Tejas Khot, Aishwarya Agrawal, Douglas
Summers-Stay, Dhruv Batra, and Devi Parikh. 2019.
Making the V in VQA matter: Elevating the role of
image understanding in visual question answering.
Int. J. Comput. Vis., 127(4):398—414.

Suchin Gururangan, Swabha Swayamdipta, Omer Levy,
Roy Schwartz, Samuel Bowman, and Noah A. Smith.
2018. Annotation artifacts in natural language infer-
ence data. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 2 (Short Papers), pages 107-112,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Pengcheng He, Jianfeng Gao, and Weizhu Chen. 2021.
Debertav3: Improving deberta using electra-style pre-
training with gradient-disentangled embedding shar-
ing. arXiv preprint arXiv:2111.09543.

Jack Hessel and Lillian Lee. 2020. Does my multimodal
model learn cross-modal interactions? it’s harder to
tell than you might think! In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 861-877.

Sara Hooker, Dumitru Erhan, Pieter-Jan Kindermans,
and Been Kim. 2019. A benchmark for interpretabil-
ity methods in deep neural networks. In Advances in
Neural Information Processing Systems, volume 32.
Curran Associates, Inc.

Alon Jacovi, Avi Caciularu, Omer Goldman, and Yoav
Goldberg. 2023. Stop uploading test data in plain
text: Practical strategies for mitigating data contam-
ination by evaluation benchmarks. arXiv preprint
arXiv:2305.10160.

Divyansh Kaushik, Eduard Hovy, and Zachary Lipton.
2020. Learning the difference that makes a differ-
ence with counterfactually-augmented data. In Inter-
national Conference on Learning Representations.

Divyansh Kaushik and Zachary C Lipton. 2018a. How
much reading does reading comprehension require? a
critical investigation of popular benchmarks. In Pro-
ceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, pages 5010—
5015.

Divyansh Kaushik and Zachary C. Lipton. 2018b. How
much reading does reading comprehension require? a
critical investigation of popular benchmarks. In Pro-
ceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, pages 5010—
5015, Brussels, Belgium. Association for Computa-
tional Linguistics.

Wonjae Kim, Bokyung Son, and Ildoo Kim. 2021. Vilt:
Vision-and-language transformer without convolu-
tion or region supervision. In Proceedings of the

38th International Conference on Machine Learning,
ICML 2021, 18-24 July 2021, Virtual Event, volume
139 of Proceedings of Machine Learning Research,
pages 5583-5594. PMLR.

Gouthaman KV and Anurag Mittal. 2020. Reducing
language biases in visual question answering with
visually-grounded question encoder. In Computer
Vision - ECCV 2020 - 16th European Conference,
Glasgow, UK, August 23-28, 2020, Proceedings, Part
XIII, volume 12358 of Lecture Notes in Computer
Science, pages 18-34. Springer.

Junnan Li, Dongxu Li, Caiming Xiong, and Steven C. H.
Hoi. 2022. BLIP: bootstrapping language-image pre-
training for unified vision-language understanding
and generation. In International Conference on Ma-
chine Learning, ICML 2022, 17-23 July 2022, Balti-
more, Maryland, USA, volume 162 of Proceedings
of Machine Learning Research, pages 12888-12900.
PMLR.

Alisa Liu, Swabha Swayamdipta, Noah A. Smith, and
Yejin Choi. 2022. WANLI: Worker and Al collabora-
tion for natural language inference dataset creation.
In Findings of the Association for Computational
Linguistics: EMNLP 2022, pages 68266847, Abu
Dhabi, United Arab Emirates. Association for Com-
putational Linguistics.

Y. Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar
Joshi, Dangi Chen, Omer Levy, M. Lewis, Luke
Zettlemoyer, and Veselin Stoyanov. 2019. Roberta:
A robustly optimized bert pretraining approach.
ArXiv, abs/1907.11692.

Tom McCoy, Ellie Pavlick, and Tal Linzen. 2019. Right
for the wrong reasons: Diagnosing syntactic heuris-
tics in natural language inference. In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 3428-3448, Florence,
Italy. Association for Computational Linguistics.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish
Sabharwal. 2018. Can a suit of armor conduct elec-
tricity? a new dataset for open book question an-
swering. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,

pages 2381-2391.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe,
Mike Lewis, Hannaneh Hajishirzi, and Luke Zettle-
moyer. 2022. Rethinking the role of demonstrations:
What makes in-context learning work? In EMNLP.

Aakanksha Naik, Abhilasha Ravichander, Norman
Sadeh, Carolyn Rose, and Graham Neubig. 2018.
Stress test evaluation for natural language inference.
In Proceedings of the 27th International Conference
on Computational Linguistics, pages 2340-2353,
Santa Fe, New Mexico, USA. Association for Com-
putational Linguistics.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.

3613



2022. Training language models to follow instruc-
tions with human feedback. Advances in Neural
Information Processing Systems, 35:27730-27744.

Judea Pearl. 2009. Causality. Cambridge university
press.

Adam Poliak, Jason Naradowsky, Aparajita Haldar,
Rachel Rudinger, and Benjamin Van Durme. 2018.
Hypothesis only baselines in natural language infer-
ence. In Proceedings of the Seventh Joint Confer-
ence on Lexical and Computational Semantics, pages
180-191, New Orleans, Louisiana. Association for
Computational Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. The Journal of Machine Learning Research,
21(1):5485-5551.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable ques-
tions for SQuAD. In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), pages 784-789,
Melbourne, Australia. Association for Computational
Linguistics.

Anna Rogers. 2023. Closed ai models make bad base-
lines. Blogpost on Towards Data Science.

Rachel Rudinger, Vered Shwartz, Jena D Hwang, Chan-
dra Bhagavatula, Maxwell Forbes, Ronan Le Bras,
Noah A Smith, and Yejin Choi. 2020. Thinking like
a skeptic: Defeasible inference in natural language.
In Findings of the Association for Computational
Linguistics: EMNLP 2020, pages 4661-4675.

Amrita Saha, Rahul Aralikatte, Mitesh M Khapra, and
Karthik Sankaranarayanan. 2018. Duorc: Towards
complex language understanding with paraphrased
reading comprehension. In Proceedings of the 56th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1683—
1693.

Sofia Serrano and Noah A Smith. 2019. Is attention
interpretable? In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics, pages 2931-2951.

Lakshay Sharma, L. Graesser, Nikita Nangia, and Utku
Evci. 2019. Natural language understanding with the
quora question pairs dataset. ArXiv, abs/1907.01041.

Koustuv Sinha, Robin Jia, Dieuwke Hupkes, Joelle
Pineau, Adina Williams, and Douwe Kiela. 2021.
Masked language modeling and the distributional hy-
pothesis: Order word matters pre-training for little.
In Proceedings of the 2021 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2888-2913.

Neha Srikanth and Rachel Rudinger. 2022. Partial-
input baselines show that NLI models can ignore
context, but they don’t. In Proceedings of the 2022
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 4753-4763, Seattle,
United States. Association for Computational Lin-
guistics.

Alane Suhr, Stephanie Zhou, Ally Zhang, Iris Zhang,
Huajun Bai, and Yoav Artzi. 2019. A corpus for
reasoning about natural language grounded in pho-
tographs. In Proceedings of the 57th Conference of
the Association for Computational Linguistics, ACL
2019, Florence, Italy, July 28- August 2, 2019, Vol-
ume 1: Long Papers, pages 6418—-6428. Association
for Computational Linguistics.

Damien Teney, Ehsan Abbasnedjad, and Anton van den
Hengel. 2020. Learning what makes a difference
from counterfactual examples and gradient supervi-
sion. In Computer Vision—-ECCV 2020: 16th Euro-
pean Conference, Glasgow, UK, August 23-28, 2020,
Proceedings, Part X 16, pages 580-599. Springer.

Adam Trischler, Tong Wang, Xingdi Yuan, Justin Harris,
Alessandro Sordoni, Philip Bachman, and Kaheer
Suleman. 2017. Newsqa: A machine comprehension
dataset. In Proceedings of the 2nd Workshop on
Representation Learning for NLP, pages 191-200.

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot,
and Ashish Sabharwal. 2020. Is multihop ga in dire
condition? measuring and reducing disconnected
reasoning. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 8846—8863.

Masatoshi Tsuchiya. 2018. Performance impact caused
by hidden bias of training data for recognizing tex-
tual entailment. In Proceedings of the Eleventh In-
ternational Conference on Language Resources and
Evaluation (LREC 2018).

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel Bowman. 2018. GLUE:
A multi-task benchmark and analysis platform for nat-
ural language understanding. In Proceedings of the
2018 EMNLP Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP, pages
353-355, Brussels, Belgium. Association for Com-
putational Linguistics.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume
1 (Long Papers), pages 1112—1122, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Tongshuang Wu, Marco Tulio Ribeiro, Jeffrey Heer, and
Daniel S Weld. 2021. Polyjuice: Generating coun-
terfactuals for explaining, evaluating, and improving

3614



models. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-

ral Language Processing (Volume 1: Long Papers),
pages 6707-6723.

Zhengxuan Wu, Karel D’Oosterlinck, Atticus Geiger,
Amir Zur, and Christopher Potts. 2022. Causal proxy
models for concept-based model explanations. arXiv
preprint arXiv:2209.14279.

Yuan Zhang, Jason Baldridge, and Luheng He. 2019.
PAWS: Paraphrase adversaries from word scrambling.
In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 1298—1308,
Minneapolis, Minnesota. Association for Computa-
tional Linguistics.

3615



A Models’ Standard Performance

We report the majority-class accuracy and the full
results of the supervised models (BERT, RoBERTa,
DeBERTa, both versions of T5 and Flan-T5) in Ta-
ble 8 for NLI and PD. The results of the models
used in few-shot in-context learning experiments
(both versions of TS5, Flan-T5 and GPT-3) are re-
ported in Table 9.

We highlight a few interesting trends. First,
DeBERTa-large and Flan-T5-large obtain similar
performance across the tasks and datasets. Second,
while T5 v1 typically performs better across tasks
and models’ sizes than v1.1 - which is expected
as the training data of many of these dataset were
part of training data of the later - it is especially
expected noticable on RTE, a very small dataset
(2,490 instances for training) - and in the smaller
models. For instance, T5-small performs 67.87%
on RTE, while the corresponding v1.1 model only
achieves 47.29%, which is worse than random.

The ICL results can be found in Appendix A in
Tables 8, 10, 9; they illustrate two opposing trends.
GPT-3 benefits from more demonstrations, where
the biggest benefits happen with three-shots, and
additional demonstrations’ benefit is more subtle.
For instance, GPT-3 achieves 53.7% accuracy on
MNLI in zero-shot, then 74.9% with 3-shots and
77.4% with 9-shots. On the other hand, the perfor-
mance of both the T5 and Flan-T5 models, across
all sizes (from small to XL), performs worse the
more demonstrations are shown.!®> For instance,
on MNLI Flan-T5-XL achieves 89.5% accuracy,
slightly decreases to 89.2 with 3-shot, and then
completely fails with 6-, and 9-shots (37.8% and
32.3%, respectively). While Min et al. (2022)
found that demonstrations contribute by provid-
ing examples of the label space, input distribution,
and format, and are not as attentive to the content
itself, we find that demonstrations harm models in
performing the task (except for GPT-3).

In the PD datasets, we notice that the perfor-
mance of all models are rather high, and the gap
between all models is small (5.37 in QQP).

B Partial Input Baseline

We report the full results of the partial input base-
lines in Tables 12, 13.

In NLI, we train models on the hypotheses (or
sentencel in RTE), sentencel in PD, either on the

'SExcept for Flan-T5 Small that gets worse than random.

question or paragraph in RC,'® and either image
or the fext in VLR.

On QQP, T5-base trained on the corresponding
dataset achieves 78.81% (compared to the 63.18%
majority accuracy).

Similarly, models finetuned on VLR datasets per-
form much higher than the majority class (24.2%)
However, while image-only and text-only models
perform similarly when finetuned for NLVR2, we
observe that the text-only performance is much
higher for VQA v2 dataset (39.9% for BLIP and
42.1% for ViLT) than the image-only (~ 24%).
The image-only model performs close to the ma-
jority class baseline. This demonstrates unequal
correlations in different modalities.

C Full CAT Results

Here we provide the full results for all datasets we
consider. The results are summarized in Table 15.

D Comparable Counterfactuals

In Section 5.1 we report the results of each model
based on its own original predictions. As a result,
the models evaluated on the same dataset are not
entirely comparable since they are evaluated on dif-
ferent subsets. As such, in this section we perform
the evaluation on the same subsets across models,
to perform a fair comparison. We report the results
in Table 16. The average difference between each
model between the main results and the comparable
ones on the same subset is minimal. This results
suggest that even if the models are evaluated on
different subsets, it is enough to gain insights about
the inspected models.

E Comparison with Srikanth and
Rudinger (2022)

We provide additional comparison with Srikanth
and Rudinger (2022) in Table 17.

F Responsible Research Checklist

License All datasets we use use the cc-by-3.0 li-
cense, besides PAWS, which has a different license:
https://github.com/google-research-datasets/
paws/blob/master/LICENSE.

Compute To run experiments we used nvidia A-
100 gpus, for an estimated time of 100 hours.

!SFollowing Kaushik and Lipton (2018b) it is implemented
by randomly sampling a different passage from the corpus
and adding the answer candidate to this passage in a random
location.
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NLI PD RC
Dataset RTE MNLI WANLI QQP PAWS SQuAD NewsQA
BERT-base 65.3 83.5 68.6 91.0 90.7 74.1 59.4
BERT-large 70.0 86.3 69.9 91.5 93.3 80.5 61.8
RoBERTa-base  71.1 86.8 72.7 91.6 94.4 80.3 61.7
RoBERTa-large  79.8 90.1 75.4 92.1 95.7 84.9 65.7
DeBERTa-base  76.5 90.0 75.4 92.4 95.6 87.2 65.1
DeBERTa-large  87.7 91.3 76.7 93.0 95.7 89.6 66.0
T5-base 67.5 85.8 70.2 91.5 93.9 70.8 61.0
T5-large 87.7 89.3 76.2 92.1 94.9 87.5 62.4
T5-1.1-base 45.5 60.9 49.8 87.7 55.8 78.9 59.7
T5-1.1-large 52.7 90.5 71.3 90.3 92.6 88.7 61.7
FLAN-T5-base  79.8 86.1 71.2 91.7 94.0 83.3 60.5
FLAN-T5-large  89.5 90.4 76.4 91.0 95.1 89.4 63.3

Table 8: Standard evaluation performance on respective datasets.

3617



NLI PD

Model # Tuples RTE MNLI WANLI QQP PAWS
Majority - 52.7 354 48.3 63.2 55.8
GPT3 0 74.7 53.7 58.3 50.5 71.7
GPT3 1 86.3 74.9 55.8 80.0 77.6
GPT3 2 86.3 76.3 58.0 81.0 77.3
GPT3 3 88.1 77.4 58.1 81.5 78.1
Flan-T5 Small 0 47.7 38.1 24.3 63.2 55.7
Flan-T5 Small 1 44.4 43.5 35.7 63.3 49.8
Flan-T5 Small 2 44 4 354 314 63.4 51.4
Flan-T5 Small 3 50.5 34.5 31.5 63.3 54.2
Flan-T5 Base 0 75.5 73.5 48.3 70.8 85.8
Flan-T5 Base 1 74.7 71.4 46.2 68.6 83.4
Flan-T5 Base 2 69.3 36.5 38.1 68.4 79.2
Flan-T5 Base 3 50.5 32.3 34.8 68.2 51.5
Flan-T5 Large 0 88.1 86.8 58.7 84.9 91.3
Flan-T5 Large 1 88.4 86.3 59.1 84.4 90.6
Flan-T5 Large 2 75.8 37.5 40.7 84.5 86.2
Flan-T5 Large 3 50.5 32.1 37.8 84.4 52.5
Flan-T5 XL 0 89.5 89.5 61.7 85.9 94.4
Flan-T5 XL 1 89.2 89.2 62.0 85.6 94.2
Flan-T5 XL 2 76.5 37.8 42.0 85.6 88.8
Flan-T5 XL 3 50.5 32.2 35.1 85.5 53.2
T5 Small 0 50.5 80.4 52.7 88.4 N/A
T5 Small 1 47.3 42.0 35.7 70.3 N/A
T5 Small 2 47.3 38.1 34.2 65.7 N/A
T5 Small 3 47.3 34.5 32.0 63.4 N/A
T5 Base 0 67.5 85.6 59.0 90.6 N/A
T5 Base 1 49.1 40.1 33.2 69.0 N/A
T5 Base 2 51.3 37.9 37.1 66.4 N/A
T5 Base 3 49.5 35.1 36.0 64.4 N/A
TS Large 0 85.9 89.7 61.7 91.3 N/A
TS5 Large 1 82.7 42.7 36.6 74.9 N/A
T5 Large 2 75.8 40.2 33.3 70.9 N/A
TS5 Large 3 57.8 35.7 25.7 67.4 N/A
T5 3B 0 87.7 91.1 63.3 90.6 N/A
T5 3B 1 52.0 40.3 31.3 68.6 N/A
T5 3B 2 47.3 36.3 21.2 64.7 N/A
T5 3B 3 43.0 33.7 16.4 63.3 N/A

Table 9: In-context learning dev. set accuracy. TS models fail to output valid labels on PAWS.
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Dataset VQA v2 NLVR2

BLIP 77.5 81.1
ViILT 70.3 74.6

Table 10: Standard performance on the VLR tasks
benchmarked on the finetuned model with full-inputs
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NLI PD

Model #Tuples RTE MNLI WANLI QQP PAWS
GPT3 0 963109 94.6101 943103 972401 100.0+0.0
GPT3 1 100.040.0 31.3103 36.7+04 100.049.0 100.040.9
GPT3 2 100.0+00 26.0+07 41.04038 100.040.0 100.0+0.0
GPT3 3 100.040.0 25.6105 41.8+09 100.0+9.0 100.040.0
Flan-T5-base 0 IO0.0:H),O 55.910,2 57.9:‘:0,3 99.7;&0_0 99.9:|:0.0
Flan-T5-base 1 98.6i1.1 23-5i0.7 23-910.6 99-7i0.0 99-9i0.0
Flan—TS—large 0 100.010.0 94.110.1 94.3:‘:0.3 100.0:|:0.0 100.0:&0.0
Flan—TS—large 1 99.9:|:0_2 95.810_6 96.5:‘:0_2 100.0:|:0_0 IO0.0iO.Q
Flan-T5-XL 0 IO0.0i0.0 99-0i0.1 99-2i0.1 IOO.OiO,o IO0.0iO.Q
Flan-T5-XL 1 100.0:|:0.0 98.510.5 99.3:‘:0.1 lO0.0io,o 100.0:&040
T5-base 0 IO0.0:H),O 72.610,2 87.6:‘:0,3 99.9;&0_0 -
T5-base 1 998403 537426 57.647% 979404 -
T5—1arge 0 100.010.0 65.910.2 77.6:‘:0.3 100.0:|:0.0 -
T5—1arge 1 99-O:I:0.8 43.014_0 37.2;&&9 98.8:|:0_3 -
T5-3B 0 100.040.0 61.7102 72.7+04 100.0+0.0 -
T5-3B 1 100.0400 27.3433 28.6419 98.840.4 -

Table 11: Accuracy of in-context learning models on the standard dev. split without perturbation, averaged across
five different random seeds. TS models fail to output valid labels on PAWS. The small-sized T5 model, in the
three-shot setting, always makes neutral predictions on the original RTE dev. set, making its counterfactual accuracy
unavailable.

Setup Model/Data  VQA v2 NLVR2
. ., BLIP 24.2 50.9
Mage-ony  viLr 25.4 49.3
Textoon] BLIP 40.0 422
Y viLr 50.7 49.3

Table 12: Standard performance on the Visual Reason-
ing tasks benchmarked on partial inputs.
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NLI PD RC - Question Only RC - Paragraph Only
Model/Data RTE MNLI WANLI QQP PAWS SQuAD DuoRC NewsQA SQuAD DuoRC NewsQA
Majority 527 354 48.3 632 558 33.4 28.8 33.4 28.8
BERT-base 56.0  56.6 50.8 7.9 56.6 95.6 67.2 90.7 50.1 6.1 27.5
BERT-large 574 571 50.7 715 562 95.5 69.7 91.8 50.1 6.3 27.6
RoBERTa-base 520 593 53.3 7.9 58.1 95.1 70.2 96.3 50.1 6.6 27.5
RoBERTa-large 563  59.7 51.7 717 55.8 96.5 722 96.7 50.1 6.8 275
DeBERTa-base 614 60.0 52.7 765 580 98.0 70.9 96.6 50.1 7.0 27.5
DeBERTa-large 614 61.1 52.4 783 58.4 98.5 732 96.8 50.1 7.0 27.6
T5-base 56.0 579 50.1 788 586 93.5 54.0 61.2 50.2 5.9 275
T5-large 632 612 54.7 778 569 97.1 58.4 64.3 50.1 6.9 27.5
T5-1.1-base 563  56.4 49.0 7.9 56.1 95.1 54.8 62.3 50.1 5.9 27.5
T5-1.1-large 531 617 49.3 743 539 97.7 58.5 64.1 50.1 6.8 27.5
FLAN-T5-base 538  57.6 50.9 786  58.0 95.2 56.4 62.0 50.1 6.5 27.5
FLAN-T5-large 59.2  61.5 55.7 755 56.3 97.5 58.5 64.4 50.1 7.0 275
Table 13: Partial-input baselines on NLI, PD, and RC.

Task Instruction

You’re given a pair of sentences: a Text and a Hypothesis. Your job is to determine the

relation between them based on your inference from the statement and your common-
RTE . . . . .

sense knowledge. Answer ‘Entailment’ if the Hypothesis can be inferred from the Text;

Answer ‘Not entailment’ if the Hypothesis disagrees with the Text.

You’re given a pair of sentences: a Premise and a Hypothesis. Your job is to determine

the relation between them based on your inference from the statement and your com-

monsense knowledge. Answer ‘Entailment’ if the Hypothesis can be inferred from the
MNLI, WANLI . , e, . . .

Premise; Answer ’Contradiction’ if the Hypothesis disagrees with the Premise Answer

’Neutral’ if the Hypothesis can neither be inferred from the Premise nor disagrees with

the Premise.

You’re given a pair of questions. Your job is to determine whether they are semanti-
QQP cally equivalent. Answer ‘Paraphrase if they bear the same meaning; Answer ‘Not

paraphrase’ if they have different meanings.

You’re given a pair of sentences. Your job is to determine whether they are semanti-
PAWS cally equivalent. Answer ‘Paraphrase’ if they bear the same meaning; Answer ‘Not

paraphrase’ if they have different meanings.

Table 14: Textual instructions for the instruction-fintuned models in the in-context learning experiments.
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NLI PD RC
Dataset RTE MNLI WANLI QQP PAWS SQuAD DuoRC NewsQA
BERT-base 99.8i0,3 74.6i0,3 97.8i0,2 99~9i0.0 99.3i0,2 98.0i0A0 97~4i041 99.Oi0,1
BERT—large 100-Oi0.0 64.3i0.1 99.8i0,1 99~9i0.0 85.9i0,3 98.0i0,2 97.6i0.1 99'1i0.1
RoBERTa-base 99.8i0,3 73-4i0.5 99~5i0.1 99-9i0.0 80~5i0.6 98.3i0,1 97-7i0.1 99-1i0.2
RoBERTa-large 100.04009 69.8102 99.6101 999100 78. 7103 982102 98.1101 99.1i01
DeBERTa-base 97.0416 788404 995401 999100 99.910.1 97.6401 97.6403 99.0401
DeBERTa-large 100.0109 68.6403 99.4101 999100 99.140.1 98.0402 979401 98.940.1
T5-base 99~4i0.7 81.3i0,1 99-0i0.2 99~9i0.0 99-0i0.1 99~]i0.1 96.5i0.1 99.5i0,0
T5-1arge 100'Oi0.0 71-5i0.4 99.8i0.1 99-9i0‘0 100-0i0.0 99-5i0‘1 97.8i0‘2 99~7i0.0
T5-1.1-base - 46.910_6 - 97-110.1 - 99-4i0.0 96.9i0,1 99-0i0.1
T5-1.1-large - 7944103 99.84101 99.910.0 - 94,01 97.6400 99.6401
FLAN-TS5-base 9994103 81.8403 99.5401 999100 98.310.2 94101 974400 994400
FLAN-TS-large 100.0100 77.1102 99.840.1 99.9401 100.040.1 99.5401 98.2401 99.7 100

Table 15: CAT results on natural language inference (NLI), paraphrase detection (PD) and reading comprehension
(RC). Results are calculated by computing the mean attentiveness of five counterfactuals per instance, and their
standard deviation. Higher numbers indicate better model attentiveness. We mark results for models whose standard
performance is not significantly better than random with ‘-’.
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Dataset RTE MNLI WANLI

BERT-base 93.3 70.8 98.4
BERT-large 100.0 60.2 100.0
RoBERTa-base  100.0 68.8 99.9
RoBERTa-large  100.0 64.7 99.4
DEBERTA-base 100.0 74.7 99.4
DeBERTa-large  100.0 64.5 99.3
T5-base 93.3 77.5 98.9
T5-large 100.0 67.2 100.0
T5-1.1-base - 43.3 -
T5-1.1-large - 74.6 100.0
FLAN-T5-base  100.0 78.3 99.4

FLAN-T5-large  100.0 72.8 100.0

Table 16: Comparable partial-inputs counterfactuals on
NLI datasets.

Property Srikanth and Rudinger (2022) Our Work

Tasks NLI NLL PD, RC, V&L-R

NLI-Datasets SNLI, §-NLI RTE, MNLI, WANLI

Models RoBERTa-base BERT*, RoBERTa*, DeBERTa*,
T5* T5-v1.1*, Flan-T5*, GPT-3

Counterfactuals ~ Manual Automatic

Examples subset Heuristic prone Non-neutral prediction

Epochs 2 10

New labels All Neutral

Conclusions No reliance Data & Model dependent

Table 17: Summarizing our setup compared to Srikanth
and Rudinger (2022). * signifies we test several model
sizes from the same family.
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