


quantify the reliance of full-input models on the

spurious correlations present in the hypotheses.

We propose a method for measuring models’

reliance on partial input: COUNTERFACTUAL AT-

TENTIVENESS TEST, (CAT, §3). We present an

overview of the approach in Figure 1. CAT is sim-

ple, intuitive, and is based on the idea of counter-

factuals from the causal inference literature (Pearl,

2009). Importantly, it only requires a labeled

dataset for the task and black box model predic-

tions. To test a model that performs a tasks with

paired-inputs (tasks that consist of at least two com-

ponents, e.g., NLI), we query the model, and re-

place one part of the input (e.g., the premise) with

that part from another instance randomly drawn

from the same data split. Intuitively, this perturba-

tion results in the default label for that task (typi-

cally a label that signifies no relation between the

two inputs, e.g. neutral in NLI). As such, we focus

on the subset of instances where the model predicts

non-neutral.2 If the prediction changes, it suggests

that the model is attentive to the perturbed input.

Conversely, a model that keeps the prediction un-

changed is likely to be not attentive, as it insensitive

to the counterfactual. Following this intuition, our

metric measures attentiveness by calculating the

percentage of predictions that changed from the

non-neutral labels on the original instances.

We conduct extensive experiments on four dif-

ferent tasks, ten datasets, and 15 different mod-

els, using two setups: supervised and in-context

learning (§4). We first extend previous work to ob-

tain new results using the partial input baseline—a

model trained only on partial inputs, that quantifies

spurious correlations in the data. Then, using our

attentiveness metric, we show that even in datasets

with spurious correlations between parts of the in-

puts and the labels, models do not always rely on

them (§5). Finally, we study whether data augmen-

tation using our counterfactuals improves models’

attentiveness and find that is often the case (§6).

Our results indicate that the appearance of — often

unavoidable — spurious correlations in the data do

not indicate models rely on them, and propose a

simple and easy-to-use test for measuring it.

2 Background & Related Work

In this section we review the hypothesis-only base-

line in NLI and its extensions to other tasks: the

2Other datasets and tasks may have different neutral labels.
We provide more details on these labels in §3.

partial input baseline. We then discuss a related

work by Srikanth and Rudinger (2022) and high-

light the similarities and differences to our work.

Partial Input Correlations The hypothesis-only

baseline refers to a supervised classifier trained

only on the hypotheses in an NLI dataset, removing

the premises from the original paired inputs (Guru-

rangan et al., 2018; Poliak et al., 2018; Tsuchiya,

2018). Predicting an NLI label on a single-sentence

input is ill-defined, but nonetheless, classifiers

trained solely on the hypotheses on datasets such as

SNLI (Bowman et al., 2015) are able to generalize

and achieve better-than-random accuracy on the

corresponding test sets. This result indicates that

the dataset used to train the hypothesis-only classi-

fier contains predictive information about the labels.

This phenomenon is often referred to as spurious

correlations because, in principle, both the premise

and hypothesis should be required to infer the la-

bel. For instance, Poliak et al. (2018) found that

words such as ‘no’, ‘sleeping’, and ‘cat’ were of-

ten used for generating hypotheses that contradict

the premises, while ‘instrument’, and ‘touching’

were used more with entailed hypotheses. Other

works discovered similar behavior in other tasks

and datasets (Kaushik and Lipton, 2018a; KV and

Mittal, 2020; Trivedi et al., 2020; Mihaylov et al.,

2018; Hessel and Lee, 2020).

NLI Models Reliance on the Hypothesis Re-

cently, Srikanth and Rudinger (2022) raised the

question of whether models trained on the full in-

put data instances are in fact using such correlations

(e.g., in NLI, ignoring the premise when making a

prediction). They proposed to use counterfactuals

to study whether full-input models rely on such

heuristics. Importantly, Srikanth and Rudinger

(2022) manually constructed the counterfactuals,

which limits the scale of such analysis. Their study

uses RoBERTa-base and two NLI datasets (SNLI

(Bowman et al., 2015) and δ-NLI (Rudinger et al.,

2020)) which led to the conclusion that models are

not relying on such heuristics. Our study covers

a larger scope, including more tasks, datasets and

setups (we also consider in-context learning), and

reaches a more nuanced conclusion. We find that

models trained on full inputs may still rely on such

heuristic, while it is task and data-dependent. We

provide a detailed comparison with Srikanth and

Rudinger (2022), and summarize the similarities

and differences in Appendix E.
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Method Train Eval. Eval. Ex

Full input Mx→y(x) Mx→y(x) P: The other men shuffled. H: The other men were shuffled around.

Prior work (§3.1) Mx2→y(x2) Mx2→y(x2) H: The other men were shuffled around.

Naive partial-inputs (§3.2) Mx→y(x) Mx→y(x2) H: The other men were shuffled around.

COUNTERFACTUAL ATTENTIVENESS TEST (§3.3) Mx→y(x) Mx→y(x
′
1, x2) P: The dog barked. H: The other men were shuffled around.

Counterfactual attentiveness data augmentation (§6)
M(x1,x2)→y(x) M(x1,x2)→y(x) P: The other men shuffled. H: The other men were shuffled around.

M(x′

1
,x2)→y(x) M(x′

1
,x2)→y(x) P: The dog barked. H: The other men were shuffled around.

Table 1: Comparing the methods we consider. Unlike prior work (“hypothesis-only baselines”), our proposed

counterfactual method does not change the model. We additionally show with counterfactual training that training

on examples of counterfactual partial-inputs can improve performance on them. M refers to a model, (x) is a paired

input that consist of the two variables (x1, x2), similarly to x′

2
: (x′

1
, x′

2
), and y is the model’s prediction.

factual instances. Specifically, we consider as an

initial set all of the instances (x1, x2) from the

development set. We obtain the model’s predic-

tion and only keep the instances where the model

predicts a non-neutral label. Then, we generate a

counterfactual by randomly sampling an instance

(x′1, x
′
2) from the same data split, and combining

x2 with x′1.6 Finally we compute how often the

model changes its prediction from the initial pair

on this subset. A higher score indicates the model

is more attentive to the full input, which signifies

the model does not rely on partial inputs for mak-

ing predictions. For each instance (x1, x2) in the

dataset, we sample k = 5 counterfactuals x′1 from

the data and report the mean and standard deviation

accuracy across the samples.

4 Experimental Setup

We consider four diverse tasks and ten English

datasets. We also consider two learning strategies:

supervised learning through fine-tuning using 12

models from six model families, and in-context

learning (ICL) using nine models from three model

families. Table 3 summarizes all configurations.

4.1 Tasks and Datasets

We use the standard train-development splits7 for

each dataset. In the ICL setup, we randomly sample

k instances from the training sets.

Natural Language Inference We consider three

datasets for NLI: MNLI (Williams et al., 2018),

WANLI (Liu et al., 2022), and RTE (Dagan et al.,

2005). MNLI and WANLI contain three labels:

6As opposed to previous work (Srikanth and Rudinger,
2022) that relies on hand-crafted counterfactuals to probe
the model, we rely on much easier-to-collect counterfactuals,
which can be randomly sampled from the data and do not
require manual curation.

7Except for WANLI which does not have a development
set, for which we randomly sample 5K instances from the
training set and use them for evaluation.

entailment, neutral, and contradiction, while RTE

only contains entailment and non-entailment.

Paraphrase Detection We consider two datasets

for paraphrase detection (PD): Quora Question

Pairs (QQP; Sharma et al., 2019) and PAWS (Zhang

et al., 2019). These datasets contain questions that

are labeled as paraphrase or non-paraphrase.

Reading Comprehension We consider three

datasets for reading comprehension (RC) that in-

clude a subset of questions that are not answerable

i.e., contain a no-answer label: SQuAD2.0 (Ra-

jpurkar et al., 2018), DuoRC (Saha et al., 2018),

and NewsQA (Trischler et al., 2017).

Visual & Language Reasoning We consider two

datasets for visual and language reasoning tasks

(VLR). VQA2.0 (Goyal et al., 2019) contains ques-

tions and images with multiple choice answers.

NLVR2 (Suhr et al., 2019) consists of two images

and a statement where the task is to predict whether

the statement is true for the images.

4.2 Counterfactual Default Labels

CAT generates counterfactuals by automatically

sampling two inputs from different instances. This

makes an assumption that no relation would hold

between the inputs in the new counterfactual in-

stance (as shown in the examples in Table 2), to-

gether with the respective label. Such relations

are different between tasks and datasets, which we

now specify: neutral in 3-class NLI (e.g. MNLI),

non-entailment in 2-class NLI (e.g. RTE), not-

paraphrase in the PD, no-answer in RC, false in

NLVR2, and no-answer in VQA.

Label-Flip Assumption Verification We ver-

ify CAT’s assumptions by hand-annotating 50

counterfactually-paired instances per dataset for

each of our four tasks. We annotate whether a rep-

resentative model’s predicted label for an instance

is incorrect for the counterfactual instance and
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Task Dataset Counterfactual Example Acc

x1 x2 y

NLI

MNLI

Perhaps North Africans and eastern Europeans peopled

the Ligurian coast, while the Adriatic and south may have been

settled by people from the Balkans and Asia Minor.

You can find more information from

the senior executive’s plan.
neutral 100

WANLI

The best known is the building that houses the National Gallery

in Trafalgar Square, London, designed by Sir Charles Barry and

completed in 1843.

A great many of the villages in the area

are in a state of repair, and some of them

are actually inhabited.

neutral 100

RTE
Schroder Investment Management has indicated its intention to

accept Revival’s offer to buy retailer Marks & Spencer.
There are 32 pandas in the wild in China. non-entailment 100

PD
QQP How do you delete messages on Snapchat?

Which are some of the best companies

to work for?
non-paraphrase 100

PAWS The Arieşul Mare River is a tributary of the Vâlcea River in Romania. Also steam can be used and need not be pumped. non-paraphrase 100

RC

SQuAD 2.0

Hypersensitivity is an immune response that damages

the body’s own tissues. They are divided into four classes

(Type I – IV) based on the mechanisms involved. . .

These reactions are mediated by T cells, monocytes, and macrophages.

What tracts does commensal flora

help pathogens thrive in?
no answer 98

DuoRC

South Boston teenager Jason Tripitikas is a fan of martial arts films and

awakens from a dream of a battle between the Monkey King and celestial

soldiers in the clouds. He visits a pawn shop in Chinatown to buy

Wuxia DVDs and discovers a golden staff. On his way home, Tripitikas

What is Ana’s profession? no answer 100

NewsQA

Iran’s parliament speaker has criticized U.S. President-elect Barack Obama

for saying that Iran’s development of a nuclear weapon is unacceptable.

Iranian President Mahmoud Ahmadinejad has outlined where he thinks U.S.

policy needs to change. Ali Larijani said Saturday that Obama should apply

his campaign message of change to U.S. dealings with Iran.

What does the U.N drug chief advocate? no answer 98

VLR

VQA 2.0 What color are this person’s shoes? no answer 92

NLVR2 There is a smartphone in the right image. false 96

Table 2: An example of a counterfactual pair (x′

1
, x2) from each of the datasets we consider. The label y is

assigned automatically to the counterfactual data. “Acc.” indicates the % of instances from our manual annotation

experiment (§4.2) where the assumption holds that the model’s predicted label should change from the original to

the counterfactual instance if the model is attentive.

Setup Task Dataset Model

S
u
p
er

v
is

ed NLI RTE, MNLI, WANLI BERT, RoBERTa,

DeBERTa, T5,

T5-v1.1, Flan-T5

PD QQP, PAWS

RC SQuAD2.0, DuoRC, NewsQA

VLR VQA2.0, NLVR2 BLIP, ViLT

IC
L NLI RTE, MNLI, WANLI

GPT-3, T5, Flan-T5
PD QQP, PAWS

Table 3: Details about the configurations we use. We

experiment with ten datasets and 11 model families.

should thus change if the model is attentive. Over-

all we find the assumption to be true most of the

time: 100% of instances in MNLI, WANLI, RTE,

QQP, PAWS and DuoRC; 98% in SQuAD2.0 and

NewsQA, 96% in NLVR2, and 92% in VQA 2.0.8

We provide some randomly-selected instances from

each dataset in Table 2, along with the accuracy

from our manual evaluation.

4.3 Models

Supervised Learning We experiment with six

text-only models and two multimodal models

8Cases where the assumption fails for VQA are primarily
yes/no questions where the answer is still no after the im-
age is shuffled (4/25). When the questions are shuffled, the
assumption holds 100% of the time (25/25).

which were trained on some pretraining cor-

pora, and then fine-tuned on a respective super-

vised dataset (e.g., MNLI). We use three masked

language models: BERT (Devlin et al., 2019),

RoBERTa (Liu et al., 2019), DeBERTa v3 (He et al.,

2021). and three T5 models (Raffel et al., 2020),

with both the v1.0, and v1.1 versions (v1.0 was

first pre-trained, and then fine-tuned on supervised

training data from GLUE (Wang et al., 2018), and

QA tasks, while v1.1 was only pre-trained as a lan-

guage model). Additionally, we also use Flan-T5

(Chung et al., 2022), T5 models that were fine-

tuned on 1,836 tasks with instructions. We use the

base and large versions of each model. For multi-

modal models, we experiment with BLIP (Li et al.,

2022), and ViLT (Kim et al., 2021).

In-Context Learning We experiment with three

types of model families that were shown to per-

form well in zero-shot and few-shot settings using

in-context learning (ICL). The first, text-davinci-

003, is a GPT-3 model that was first trained on code

and then was additionally trained to follow instruc-

tions (Ouyang et al., 2022). We refer to this model

simply as GPT-3. Since the model is a commer-

3607



cial product, we do not have full information of its

training data, and other crucial reproducibility de-

tails. For instance, it is possible that the evaluation

data we test the model on were seen by the model.

However, it is reasonable to assume that the model

has not seen the paired input from CAT, as these

are randomly constructed pairs, and those results

can be trusted. In addition, we experiment with

two open-sourced models: T5 (Raffel et al., 2020),

and Flan-T5 (Chung et al., 2022). Flan-T5 was ini-

tialized from the T5 model, and finetuned on 1,836

supervised tasks accompanied by instructions.

4.4 Learning Strategies

Supervised Learning through Finetuning We

consider the fine-tuning setup to train a model per

task and dataset. Each model in these experiments

is trained for 10 epochs, following Bandel et al.

(2022) to reduce reliance on lexical overlap heuris-

tics. We use the same learning rate for all models.9

In-Context Learning We follow the prompt for-

mat in Raffel et al. (2020) for the T5 models. For

GPT-3 and Flan-T5, we prepend instructions to

each instance (described in Table 14 in the Ap-

pendix).10 We consider both zero-shot and few-

shot settings. Each demonstration includes ex-

amples from all labels, and we consider k ∈
{0, 1, 2, 3} number of tuples, which translates into

{0, 2, 4, 6} or {0, 3, 6, 9} depending on the number

of labels in a dataset. We use greedy decoding for

generating the answers for each of these models.

5 Results

Standard Evaluation We begin by training mod-

els on their corresponding datasets. For example,

DeBERTa-large achieves 87.73%, 91.28%, and

76.72% accuracy on RTE, MNLI, and WANLI,

respectively.11 The full results are in Appendix A.

Partial Input Baseline We experiment with the

partial input baseline (§3.1) and train with only

parts of the inputs. We extend previous work (Gu-

rurangan et al., 2018; Kaushik and Lipton, 2018b)

and perform extensive experiments with different

9Except for the smaller models (T5-small and base) as they
were unable to learn using smaller learning rates.

10Preliminary experiments find that including instructions
substantially improves both the accuracy and attentiveness.

11Our MNLI results are comparable to those by (He et al.,
2021), but on RTE ours is worse by 5%. This is likely because
we do not perform extensive hyper-parameter search. Note
that we achieve a reasonable performance nonetheless.

NLI PD RC

Dataset RTE MNLI PAWS SQuAD2.0

BERT-base 99.8±0.3 74.6±0.3 99.3±0.2 98.0±0.0

BERT-large 100.0±0.0 64.3±0.1 85.9±0.3 98.0±0.2

RoBERTa-base 99.8±0.3 73.4±0.5 80.5±0.6 98.3±0.1

RoBERTa-large 100.0±0.0 69.8±0.2 78.7±0.3 98.2±0.2

DeBERTa-base 97.0±1.6 78.8±0.4 99.9±0.1 97.6±0.1

DeBERTa-large 100.0±0.0 68.6±0.3 99.1±0.1 98.0±0.2

T5-base 99.4±0.7 81.3±0.1 99.0±0.1 99.1±0.1

T5-large 100.0±0.0 71.5±0.4 100.0±0.0 99.5±0.1

T5-1.1-base - 46.9±0.6 - 99.4±0.0

T5-1.1-large - 79.4±0.3 - 99.4±0.1

FLAN-T5-base 99.9±0.3 81.8±0.3 98.3±0.2 99.4±0.1

FLAN-T5-large 100.0±0.0 77.1±0.2 100.0±0.1 99.5±0.1

Table 4: CAT results on natural language inference

(NLI), paraphrase detection (PD) and reading compre-

hension (RC). Results are calculated by computing the

mean attentiveness of five counterfactuals per instance,

and their standard deviation. Higher numbers indicate

better model attentiveness. We mark results for models

whose standard performance is not significantly better

than random with ‘-’.

types of models, tasks, and datasets. Every experi-

ment corresponds to the evaluation performance of

a model trained on the respective training set from

the same data. The results are in Appendix B.

Hypothesis-only MNLI models achieve as high

as 61.66% accuracy with T5-1.1-large, a much

higher accuracy than the majority baseline (35.4%).

On the other hand, models trained on RTE and

WANLI only achieve 10.5% and 7.4% points better

than majority. For QA, the strong performance of

the question-only models is particularly notewor-

thy. The best results with DeBERTa-large is 98.5%

on SQuAD2.0, 73.2% on DuoRC, and 96.8% on

NewsQA. These models are pre-trained on a large

amount of text data in the same domain as the re-

spective datasets and are likely to select the correct

answer span from a random passage based on their

parametric knowledge and grammar heuristics.

Our results support and extend prior findings by

showing that for a diverse class of models and a

variety of tasks, models trained on partial inputs are

strong. Next, we revisit the idea that these results

indicate standard models trained on such datasets

also relies on such heuristics.

5.1 Counterfactual Attentiveness Test

Next, we report the results of our Counterfactual

Attentiveness Test on the different setups. Overall,

the main trend we observe in our experiments is

that attentiveness is data and setup specific. The

results are summarized in Table 4 for the supervised

textual tasks, Table 5 for the visual reasoning tasks,
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NLI PD

Model #Tuples RTE MNLI PAWS

GPT3 0 99.5±0.4 92.9±0.3 99.9±0.0

GPT3 1 100.0±0.0 66.0±0.3 100.0±0.0

GPT3 2 100.0±0.0 62.5±0.5 100.0±0.0

GPT3 3 100.0±0.0 62.0±0.3 99.9±0.0

Flan-T5-base 0 100.0±0.0 66.5±0.3 99.9±0.0

Flan-T5-base 1 98.1±1.4 48.6±0.4 100.0±0.0

Flan-T5-large 0 100.0±0.0 94.8±0.2 100.0±0.0

Flan-T5-large 1 99.7±0.3 96.2±0.3 100.0±0.0

Flan-T5-XL 0 100.0±0.0 98.9±0.1 100.0±0.0

Flan-T5-XL 1 100.0±0.0 98.6±0.2 100.0±0.0

T5-base 0 100.0±0.0 76.6±0.3 -

T5-base 1 - 51.4±3.4 -

T5-large 0 100.0±0.0 72.9±0.5 -

T5-large 1 99.3±0.6 43.5±5.5 -

T5-3B 0 100.0±0.0 70.5±0.3 -

T5-3B 1 - 28.3±4.5 -

Table 6: CAT performance using ICL. We report the

mean and standard deviation across five counterfactuals

per instance. Models whose standard performance is

not significantly better than random are marked with ‘-’.

prove GPT’s accuracy, but generally decrease the

accuracy for others. Can we rely on these results

as the main measure for model behaviors? ICL

attentiveness results (Table 6) tell a different story.

While on RTE, and the two PD datasets the atten-

tiveness performance stays the same - near perfect,

the attentiveness on MNLI and WANLI decreases

when more demonstrations are used.

One hypothesis for GPT-3’s low attentiveness is

benchmark contamination (Rogers, 2023; Jacovi

et al., 2023). If the model was exposed to the

datasets we investigate and memorized their labels,

this could result in high standard accuracy (which

we observe). The low attentiveness we observe sim-

ilarly supports the memorization hypothesis, since

our perturbations are far less likely to have been

observed by the model during training, so a model

that has memorized rather than generalized would

not do well on them. These results highlight the im-

portance of reporting metrics such as attentiveness

when clean evaluation sets are not available.

6 CAT Augmentation

Considering the simplicity and automatic nature

of CAT, we reuse the same sampling process for

data augmentation to improve non attentive models.

We follow a similar procedure as in the evaluation

to augment the training data: apart from the reg-

ular training set, for every x1, x2 pair, where the

Setup Model Acc. Attentiveness

Finetune
T5-large 89.3 71.5±0.4

+augmentation 89.3 99.7±0.0

ICL

GPT3, 4 tuples, half neutral 78.1 69.3±0.2

GPT3, 3 tuples 77.4 66.2±0.3

+augmentation 66.4 76.7±0.3

Table 7: Standard accuracy performance on the respec-

tive development sets models are trained on, and the

counterfactual accuracy of our metric.

label y is different than the default label (e.g. neu-

tral for NLI), we sample x′1 from the training data,

assigned the default label.13

The following experiments study the models that

perform poorly on our metric in the standard setup.

We focus on MNLI since models are the least atten-

tive on this dataset, and experiment once with T5-

large in the supervised setup, and with GPT-3 in the

ICL setup, using the original data (or demonstra-

tions), and add the counterfactual instances. The

labels of counterfactuals match the default label

- neutral for MNLI. We report both accuracy on

the standard development set that verifies the aug-

mentation does not degrade model performance

and attentiveness. For each dataset, we report the

performance of the vanilla model (those trained in

§5 and used for CAT in §5.1) and the augmented

model. The results are in Table 7, which can be

directly compared to the results of training on the

standard datasets in Tables 8 and 9 in the Appendix.

For supervised learning, augmentation has little

impact on standard accuracy but improves atten-

tiveness. T5-large achieves 71.5%, and 99.7 in

attentiveness before and after the augmentation, re-

spectively (and 89.3% accuracy both before and

after augmentation on the MNLI development set).

For GPT3, we expeirment with two baselines,

one with 3 demonstration tuples with balanced la-

bels, and the other with four, half of which hav-

ing the neural label. The latter aims to control

for the label distribution shift invited by the data

augmentation process. The trend is different than

the finetuend T5-large: GPT-3 with data augmen-

tation sees decreased accuracy and increased at-

tentiveness, but still far from perfect attentiveness.

These results suggest that this simple augmentation

procedure can be used as a method for improving

model’s robustness, as measured by CAT.

13This will increase the data size by the proportion of non-
default labels, e.g. the new training set size will increase by
66% in the case of balanced 3-label classification like MNLI.
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7 Conclusions

We studied models’ reliance on partial inputs and

proposed a method to quantify it. We applied our

method, Counterfactual Attentiveness Test (CAT)

on multiple tasks, datasets, and setups including

fine-tuning and in-context learning. We found that

the spurious correlations between a part of the in-

puts and the labels are not always indicative of the

full model’s reliance on such heuristics in the su-

pervised setup. For instance, we found that while

partial inputs in SQuAD2.0 are correlated with the

labels, models trained on it are attentive to both

parts of the input. This is in contrast to MNLI,

whose hypotheses and labels are highly correlated,

and models trained on it are also inattentive to the

premises. In addition, in ICL, we found that more

demonstrations lead to decreased attentiveness in

models such as GPT-3.

8 Limitations

While CAT allows automatic evaluation of the at-

tentiveness of a model on the full input, it has some

limitations.

Not a Standalone Evaluation CAT is not meant

to replace the standard model’s performance, but

to provide insights into models’ behavior. For in-

stance, a model can perform close-to-perfect on

CAT if the model relies on lexical overlap heuris-

tics, as the counterfactual pairs are not likely to

have high lexical overlap. As such, while the model

is likely to perform well on CAT, it will fail on

other benchmarks (e.g., HANS, McCoy et al. 2019).

In addition, CAT will not produce a meaningful

score for models that did not learn the task and

always predict the same label. We highlight the

importance of reporting both the standard metric

used for a task or dataset, as well as ours for a more

complete evaluation.

Random Counterfactual Assumption The au-

tomatic counterfactual generation process assumes

that two random instances from the same dataset

will not be related, and as such the label will change.

However, this is an assumption that should be man-

ually evaluated. As we discuss in Section 4.2, and

in Table 2, we show that for the datasets we con-

sidered this assumption is mostly true (with the

smallest percentage being 92% correct). However,

in preliminary experiments we considered another

dataset where this assumption didn’t hold in many

cases: SNLI (Bowman et al., 2015). Out of 50

counterfactual instances we manually inspected,

we found the neutral label to be correct only in

70% of the cases. Consider the following counter-

factual example we generated from SNLI: “P: A

man standing in front of a chalkboard points at a

drawing. H: The person is in a hat has a big bag

while walking on a tough terrain.”. We labeled this

example as contradiction because both sentences

discuss the same entity. This is as opposed to the

original entailment label this hypothesis was paired

with the following premise: “P: A person in a red

hat with a huge backpack going hiking.”. The neu-

tral label assumption does not hold in the SNLI

case is mainly due to the source of data used to col-

lect SNLI, which was based on image captions. In

addition, the dataset lexicon is not diverse enough,

and we often observe the same entities mentioned

in the generated counterfactuals. Inspecting the

SNLI gold annotations, it is clear that when an en-

tity is mentioned in both P & H, one must assume

that they refer to the same entity if reasonably pos-

sible.14 This result led us to discard SNLI from

the analysis, as our assumption was not accurate

enough.

SNLI is the only additional dataset we consid-

ered for this study and did not include in the analy-

sis due to our assumption not holding in practice.

We note though, that when analyzing other datasets,

a practitioner should validate the assumption and

manually annotate several counterfactual instances

before conducting the analysis.

Scope The second limitation is the scope of our

method. Since CAT tests the attentiveness of mod-

els, and expecting the prediction on the counterfac-

tual to change, we only include instances where the

original predictions are non-neutral for computing

attentiveness. This leaves cases where a model that

achieves a good score on CAT may be inattentive

to partial inputs in those cases. Therefore, evidence

of attentiveness cannot rule out inattentiveness on

neutral instances, and similarly evidence of inatten-

tiveness may be even more serious when originally-

neutral instances are included. We leave it to future

work to automatically estimate attentiveness for all

possible instances.
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A Models’ Standard Performance

We report the majority-class accuracy and the full

results of the supervised models (BERT, RoBERTa,

DeBERTa, both versions of T5 and Flan-T5) in Ta-

ble 8 for NLI and PD. The results of the models

used in few-shot in-context learning experiments

(both versions of T5, Flan-T5 and GPT-3) are re-

ported in Table 9.

We highlight a few interesting trends. First,

DeBERTa-large and Flan-T5-large obtain similar

performance across the tasks and datasets. Second,

while T5 v1 typically performs better across tasks

and models’ sizes than v1.1 - which is expected

as the training data of many of these dataset were

part of training data of the later - it is especially

expected noticable on RTE, a very small dataset

(2,490 instances for training) - and in the smaller

models. For instance, T5-small performs 67.87%

on RTE, while the corresponding v1.1 model only

achieves 47.29%, which is worse than random.

The ICL results can be found in Appendix A in

Tables 8, 10, 9; they illustrate two opposing trends.

GPT-3 benefits from more demonstrations, where

the biggest benefits happen with three-shots, and

additional demonstrations’ benefit is more subtle.

For instance, GPT-3 achieves 53.7% accuracy on

MNLI in zero-shot, then 74.9% with 3-shots and

77.4% with 9-shots. On the other hand, the perfor-

mance of both the T5 and Flan-T5 models, across

all sizes (from small to XL), performs worse the

more demonstrations are shown.15 For instance,

on MNLI Flan-T5-XL achieves 89.5% accuracy,

slightly decreases to 89.2 with 3-shot, and then

completely fails with 6-, and 9-shots (37.8% and

32.3%, respectively). While Min et al. (2022)

found that demonstrations contribute by provid-

ing examples of the label space, input distribution,

and format, and are not as attentive to the content

itself, we find that demonstrations harm models in

performing the task (except for GPT-3).

In the PD datasets, we notice that the perfor-

mance of all models are rather high, and the gap

between all models is small (5.37 in QQP).

B Partial Input Baseline

We report the full results of the partial input base-

lines in Tables 12, 13.

In NLI, we train models on the hypotheses (or

sentence1 in RTE), sentence1 in PD, either on the

15Except for Flan-T5 Small that gets worse than random.

question or paragraph in RC,16 and either image

or the text in VLR.

On QQP, T5-base trained on the corresponding

dataset achieves 78.81% (compared to the 63.18%

majority accuracy).

Similarly, models finetuned on VLR datasets per-

form much higher than the majority class (24.2%)

However, while image-only and text-only models

perform similarly when finetuned for NLVR2, we

observe that the text-only performance is much

higher for VQA v2 dataset (39.9% for BLIP and

42.1% for ViLT) than the image-only (∼ 24%).

The image-only model performs close to the ma-

jority class baseline. This demonstrates unequal

correlations in different modalities.

C Full CAT Results

Here we provide the full results for all datasets we

consider. The results are summarized in Table 15.

D Comparable Counterfactuals

In Section 5.1 we report the results of each model

based on its own original predictions. As a result,

the models evaluated on the same dataset are not

entirely comparable since they are evaluated on dif-

ferent subsets. As such, in this section we perform

the evaluation on the same subsets across models,

to perform a fair comparison. We report the results

in Table 16. The average difference between each

model between the main results and the comparable

ones on the same subset is minimal. This results

suggest that even if the models are evaluated on

different subsets, it is enough to gain insights about

the inspected models.

E Comparison with Srikanth and

Rudinger (2022)

We provide additional comparison with Srikanth

and Rudinger (2022) in Table 17.

F Responsible Research Checklist

License All datasets we use use the cc-by-3.0 li-

cense, besides PAWS, which has a different license:

https://github.com/google-research-datasets/

paws/blob/master/LICENSE.

Compute To run experiments we used nvidia A-

100 gpus, for an estimated time of 100 hours.

16Following Kaushik and Lipton (2018b) it is implemented
by randomly sampling a different passage from the corpus
and adding the answer candidate to this passage in a random
location.
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NLI PD RC

Dataset RTE MNLI WANLI QQP PAWS SQuAD NewsQA

BERT-base 65.3 83.5 68.6 91.0 90.7 74.1 59.4

BERT-large 70.0 86.3 69.9 91.5 93.3 80.5 61.8

RoBERTa-base 71.1 86.8 72.7 91.6 94.4 80.3 61.7

RoBERTa-large 79.8 90.1 75.4 92.1 95.7 84.9 65.7

DeBERTa-base 76.5 90.0 75.4 92.4 95.6 87.2 65.1

DeBERTa-large 87.7 91.3 76.7 93.0 95.7 89.6 66.0

T5-base 67.5 85.8 70.2 91.5 93.9 70.8 61.0

T5-large 87.7 89.3 76.2 92.1 94.9 87.5 62.4

T5-1.1-base 45.5 60.9 49.8 87.7 55.8 78.9 59.7

T5-1.1-large 52.7 90.5 71.3 90.3 92.6 88.7 61.7

FLAN-T5-base 79.8 86.1 71.2 91.7 94.0 83.3 60.5

FLAN-T5-large 89.5 90.4 76.4 91.0 95.1 89.4 63.3

Table 8: Standard evaluation performance on respective datasets.
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NLI PD

Model # Tuples RTE MNLI WANLI QQP PAWS

Majority - 52.7 35.4 48.3 63.2 55.8

GPT3 0 74.7 53.7 58.3 50.5 71.7

GPT3 1 86.3 74.9 55.8 80.0 77.6

GPT3 2 86.3 76.3 58.0 81.0 77.3

GPT3 3 88.1 77.4 58.1 81.5 78.1

Flan-T5 Small 0 47.7 38.1 24.3 63.2 55.7

Flan-T5 Small 1 44.4 43.5 35.7 63.3 49.8

Flan-T5 Small 2 44.4 35.4 31.4 63.4 51.4

Flan-T5 Small 3 50.5 34.5 31.5 63.3 54.2

Flan-T5 Base 0 75.5 73.5 48.3 70.8 85.8

Flan-T5 Base 1 74.7 71.4 46.2 68.6 83.4

Flan-T5 Base 2 69.3 36.5 38.1 68.4 79.2

Flan-T5 Base 3 50.5 32.3 34.8 68.2 51.5

Flan-T5 Large 0 88.1 86.8 58.7 84.9 91.3

Flan-T5 Large 1 88.4 86.3 59.1 84.4 90.6

Flan-T5 Large 2 75.8 37.5 40.7 84.5 86.2

Flan-T5 Large 3 50.5 32.1 37.8 84.4 52.5

Flan-T5 XL 0 89.5 89.5 61.7 85.9 94.4

Flan-T5 XL 1 89.2 89.2 62.0 85.6 94.2

Flan-T5 XL 2 76.5 37.8 42.0 85.6 88.8

Flan-T5 XL 3 50.5 32.2 35.1 85.5 53.2

T5 Small 0 50.5 80.4 52.7 88.4 N/A

T5 Small 1 47.3 42.0 35.7 70.3 N/A

T5 Small 2 47.3 38.1 34.2 65.7 N/A

T5 Small 3 47.3 34.5 32.0 63.4 N/A

T5 Base 0 67.5 85.6 59.0 90.6 N/A

T5 Base 1 49.1 40.1 33.2 69.0 N/A

T5 Base 2 51.3 37.9 37.1 66.4 N/A

T5 Base 3 49.5 35.1 36.0 64.4 N/A

T5 Large 0 85.9 89.7 61.7 91.3 N/A

T5 Large 1 82.7 42.7 36.6 74.9 N/A

T5 Large 2 75.8 40.2 33.3 70.9 N/A

T5 Large 3 57.8 35.7 25.7 67.4 N/A

T5 3B 0 87.7 91.1 63.3 90.6 N/A

T5 3B 1 52.0 40.3 31.3 68.6 N/A

T5 3B 2 47.3 36.3 21.2 64.7 N/A

T5 3B 3 43.0 33.7 16.4 63.3 N/A

Table 9: In-context learning dev. set accuracy. T5 models fail to output valid labels on PAWS.
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Dataset VQA v2 NLVR2

BLIP 77.5 81.1

ViLT 70.3 74.6

Table 10: Standard performance on the VLR tasks

benchmarked on the finetuned model with full-inputs
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NLI PD

Model #Tuples RTE MNLI WANLI QQP PAWS

GPT3 0 96.3±0.9 94.6±0.1 94.3±0.3 97.2±0.1 100.0±0.0

GPT3 1 100.0±0.0 31.3±0.3 36.7±0.4 100.0±0.0 100.0±0.0

GPT3 2 100.0±0.0 26.0±0.7 41.0±0.8 100.0±0.0 100.0±0.0

GPT3 3 100.0±0.0 25.6±0.5 41.8±0.9 100.0±0.0 100.0±0.0

Flan-T5-base 0 100.0±0.0 55.9±0.2 57.9±0.3 99.7±0.0 99.9±0.0

Flan-T5-base 1 98.6±1.1 23.5±0.7 23.9±0.6 99.7±0.0 99.9±0.0

Flan-T5-large 0 100.0±0.0 94.1±0.1 94.3±0.3 100.0±0.0 100.0±0.0

Flan-T5-large 1 99.9±0.2 95.8±0.6 96.5±0.2 100.0±0.0 100.0±0.0

Flan-T5-XL 0 100.0±0.0 99.0±0.1 99.2±0.1 100.0±0.0 100.0±0.0

Flan-T5-XL 1 100.0±0.0 98.5±0.5 99.3±0.1 100.0±0.0 100.0±0.0

T5-base 0 100.0±0.0 72.6±0.2 87.6±0.3 99.9±0.0 -

T5-base 1 99.8±0.3 53.7±2.6 57.6±7.8 97.9±0.4 -

T5-large 0 100.0±0.0 65.9±0.2 77.6±0.3 100.0±0.0 -

T5-large 1 99.0±0.8 43.0±4.0 37.2±8.9 98.8±0.3 -

T5-3B 0 100.0±0.0 61.7±0.2 72.7±0.4 100.0±0.0 -

T5-3B 1 100.0±0.0 27.3±3.3 28.6±1.9 98.8±0.4 -

Table 11: Accuracy of in-context learning models on the standard dev. split without perturbation, averaged across

five different random seeds. T5 models fail to output valid labels on PAWS. The small-sized T5 model, in the

three-shot setting, always makes neutral predictions on the original RTE dev. set, making its counterfactual accuracy

unavailable.

Setup Model/Data VQA v2 NLVR2

Image-only
BLIP 24.2 50.9

ViLT 25.4 49.3

Text-only
BLIP 40.0 42.2

ViLT 50.7 49.3

Table 12: Standard performance on the Visual Reason-

ing tasks benchmarked on partial inputs.
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NLI PD RC - Question Only RC - Paragraph Only

Model/Data RTE MNLI WANLI QQP PAWS SQuAD DuoRC NewsQA SQuAD DuoRC NewsQA

Majority 52.7 35.4 48.3 63.2 55.8 33.4 28.8 33.4 28.8

BERT-base 56.0 56.6 50.8 77.9 56.6 95.6 67.2 90.7 50.1 6.1 27.5

BERT-large 57.4 57.1 50.7 77.5 56.2 95.5 69.7 91.8 50.1 6.3 27.6

RoBERTa-base 52.0 59.3 53.3 77.9 58.1 95.1 70.2 96.3 50.1 6.6 27.5

RoBERTa-large 56.3 59.7 51.7 77.7 55.8 96.5 72.2 96.7 50.1 6.8 27.5

DeBERTa-base 61.4 60.0 52.7 76.5 58.0 98.0 70.9 96.6 50.1 7.0 27.5

DeBERTa-large 61.4 61.1 52.4 78.3 58.4 98.5 73.2 96.8 50.1 7.0 27.6

T5-base 56.0 57.9 50.1 78.8 58.6 93.5 54.0 61.2 50.2 5.9 27.5

T5-large 63.2 61.2 54.7 77.8 56.9 97.1 58.4 64.3 50.1 6.9 27.5

T5-1.1-base 56.3 56.4 49.0 77.9 56.1 95.1 54.8 62.3 50.1 5.9 27.5

T5-1.1-large 53.1 61.7 49.3 74.3 53.9 97.7 58.5 64.1 50.1 6.8 27.5

FLAN-T5-base 53.8 57.6 50.9 78.6 58.0 95.2 56.4 62.0 50.1 6.5 27.5

FLAN-T5-large 59.2 61.5 55.7 75.5 56.3 97.5 58.5 64.4 50.1 7.0 27.5

Table 13: Partial-input baselines on NLI, PD, and RC.

Task Instruction

RTE

You’re given a pair of sentences: a Text and a Hypothesis. Your job is to determine the

relation between them based on your inference from the statement and your common-

sense knowledge. Answer ‘Entailment’ if the Hypothesis can be inferred from the Text;

Answer ‘Not entailment’ if the Hypothesis disagrees with the Text.

MNLI, WANLI

You’re given a pair of sentences: a Premise and a Hypothesis. Your job is to determine

the relation between them based on your inference from the statement and your com-

monsense knowledge. Answer ‘Entailment’ if the Hypothesis can be inferred from the

Premise; Answer ’Contradiction’ if the Hypothesis disagrees with the Premise Answer

’Neutral’ if the Hypothesis can neither be inferred from the Premise nor disagrees with

the Premise.

QQP

You’re given a pair of questions. Your job is to determine whether they are semanti-

cally equivalent. Answer ‘Paraphrase if they bear the same meaning; Answer ‘Not

paraphrase’ if they have different meanings.

PAWS

You’re given a pair of sentences. Your job is to determine whether they are semanti-

cally equivalent. Answer ‘Paraphrase’ if they bear the same meaning; Answer ‘Not

paraphrase’ if they have different meanings.

Table 14: Textual instructions for the instruction-fintuned models in the in-context learning experiments.
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NLI PD RC

Dataset RTE MNLI WANLI QQP PAWS SQuAD DuoRC NewsQA

BERT-base 99.8±0.3 74.6±0.3 97.8±0.2 99.9±0.0 99.3±0.2 98.0±0.0 97.4±0.1 99.0±0.1

BERT-large 100.0±0.0 64.3±0.1 99.8±0.1 99.9±0.0 85.9±0.3 98.0±0.2 97.6±0.1 99.1±0.1

RoBERTa-base 99.8±0.3 73.4±0.5 99.5±0.1 99.9±0.0 80.5±0.6 98.3±0.1 97.7±0.1 99.1±0.2

RoBERTa-large 100.0±0.0 69.8±0.2 99.6±0.1 99.9±0.0 78.7±0.3 98.2±0.2 98.1±0.1 99.1±0.1

DeBERTa-base 97.0±1.6 78.8±0.4 99.5±0.1 99.9±0.0 99.9±0.1 97.6±0.1 97.6±0.3 99.0±0.1

DeBERTa-large 100.0±0.0 68.6±0.3 99.4±0.1 99.9±0.0 99.1±0.1 98.0±0.2 97.9±0.1 98.9±0.1

T5-base 99.4±0.7 81.3±0.1 99.0±0.2 99.9±0.0 99.0±0.1 99.1±0.1 96.5±0.1 99.5±0.0

T5-large 100.0±0.0 71.5±0.4 99.8±0.1 99.9±0.0 100.0±0.0 99.5±0.1 97.8±0.2 99.7±0.0

T5-1.1-base - 46.9±0.6 - 97.1±0.1 - 99.4±0.0 96.9±0.1 99.0±0.1

T5-1.1-large - 79.4±0.3 99.8±0.1 99.9±0.0 - 99.4±0.1 97.6±0.0 99.6±0.1

FLAN-T5-base 99.9±0.3 81.8±0.3 99.5±0.1 99.9±0.0 98.3±0.2 99.4±0.1 97.4±0.0 99.4±0.2

FLAN-T5-large 100.0±0.0 77.1±0.2 99.8±0.1 99.9±0.1 100.0±0.1 99.5±0.1 98.2±0.1 99.7±0.0

Table 15: CAT results on natural language inference (NLI), paraphrase detection (PD) and reading comprehension

(RC). Results are calculated by computing the mean attentiveness of five counterfactuals per instance, and their

standard deviation. Higher numbers indicate better model attentiveness. We mark results for models whose standard

performance is not significantly better than random with ‘-’.
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Dataset RTE MNLI WANLI

BERT-base 93.3 70.8 98.4

BERT-large 100.0 60.2 100.0

RoBERTa-base 100.0 68.8 99.9

RoBERTa-large 100.0 64.7 99.4

DEBERTA-base 100.0 74.7 99.4

DeBERTa-large 100.0 64.5 99.3

T5-base 93.3 77.5 98.9

T5-large 100.0 67.2 100.0

T5-1.1-base - 43.3 -

T5-1.1-large - 74.6 100.0

FLAN-T5-base 100.0 78.3 99.4

FLAN-T5-large 100.0 72.8 100.0

Table 16: Comparable partial-inputs counterfactuals on

NLI datasets.

Property Srikanth and Rudinger (2022) Our Work

Tasks NLI NLI, PD, RC, V&L-R

NLI-Datasets SNLI, δ-NLI RTE, MNLI, WANLI

Models RoBERTa-base BERT*, RoBERTa*, DeBERTa*,

T5* T5-v1.1*, Flan-T5*, GPT-3

Counterfactuals Manual Automatic

Examples subset Heuristic prone Non-neutral prediction

Epochs 2 10

New labels All Neutral

Conclusions No reliance Data & Model dependent

Table 17: Summarizing our setup compared to Srikanth

and Rudinger (2022). * signifies we test several model

sizes from the same family.
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