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Abstract

Watermarking involves implanting an imper-

ceptible signal into generated text that can

later be detected via statistical tests. A promi-

nent family of watermarking strategies for

LLMs embeds this signal by upsampling a

(pseudorandomly-chosen) subset of tokens at

every generation step. However, such signals

alter the model’s output distribution and can

have unintended effects on its downstream per-

formance. In this work, we evaluate the per-

formance of LLMs watermarked using three

different strategies over a diverse suite of

tasks including those cast as k-class classifi-

cation (CLS), multiple choice question answer-

ing (MCQ), short-form generation (e.g., open-

ended question answering) and long-form gen-

eration (e.g., translation) tasks. We find that

watermarks (under realistic hyperparameters)

can cause significant drops in LLMs’ effective

utility across all tasks. We observe drops of

10 to 20% in CLS tasks in the average case,

which shoot up to 100% in the worst case. We

notice degradations of about 7% in MCQ tasks,

10–15% in short-form generation, and 5–15%

in long-form generation tasks. Our findings

highlight the trade-offs that users should be

cognizant of when using watermarked models.1

1 Introduction

Large Language Models (LLMs), and derived chat-

bots of the likes of ChatGPT, can generate human-

like responses to a variety of requests like writing

emails, translating or summarizing content (Brown

et al., 2020; Chowdhery et al., 2022). As these sys-

tems gain popularity, there are looming concerns

about their misuse for spreading targeted misinfor-

mation, influencing public opinion (Panditharatne

and Giansiracusa, 2023) or conducting social engi-

neering attacks (Grbic and Dujlovic, 2023).

∗Work done during an internship at IISc, Bangalore.
1We make our code available at https://github.

com/FLAIR-IISc/watermark_tradeoffs.

Such concerns have spurred research towards

distinguishing human-written and LLM-generated

content. Naive approaches such as training post-

hoc classifiers for this purpose have been shown

to be ineffective, as they typically have large false-

positive rates that can lead to false accusations of

plagiarism (O’Neill, 2023; OpenAI, 2023). These

classifiers can further degrade in accuracy when

LLM developers like OpenAI continually finetune

and update their public models. Additionally, the

output distributions of future LLMs may grow even

more similar to that of human-written text causing

the efficacy of such approaches to wane.

A promising alternative is to intentionally embed

a watermark signal (Atallah et al., 2001; Chiang

et al., 2004; Topkara et al., 2006; Jalil and Mirza,

2009) into LLM-generated text that is impercep-

tible to unsuspecting readers but can be algorith-

mically detected using statistical tests. A popular

watermarking scheme, often referred to as KGW,

works by boosting the probabilities of a psuedo-

randomly chosen subset of the model’s vocabu-

lary at every generation step (Kirchenbauer et al.,

2023a). This scheme has been extensively stud-

ied and extended (Kirchenbauer et al., 2023b; Liu

et al., 2024; Lu et al., 2024). The original approach

and its derivatives, collectively called the KGW

family in the literature, comprise the most popular

watermarking strategies for LLMs today.

Previous works studying the trade-offs of wa-

termarking LLMs mostly restrict their analysis to

intrinsic evaluations of watermarked models gen-

eration quality such as perplexity or GPT4 judge-

ments (Singh and Zou, 2023), eschewing evalua-

tion on downstream task benchmarks. But since it

is likely that all strong LLMs made available to the

public (eg. through internet APIs) will be water-

marked in the near future (as promised by several

leading LLM developers (Press, 2023)), it is impor-

tant to understand how watermarks impact LLMs’

performance on downstream tasks.
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In our work, we evaluate the downstream impact

of 3 popular watermarks from the KGW family in-

cluding the original KGW approach (Kirchenbauer

et al., 2023a), EWD (Lu et al., 2024) and SIR (Liu

et al., 2024) over a diverse selection of tasks. Since

KGW-based watermarks perturb output probability

distributions at the token level, we categorize the

tasks as follows for our analysis:

1. CLS: Tasks framed as k-class classification

problems with static labels.

2. MCQ: Tasks framed as multiple choice

question-answering problems with choices

that differ across test examples.

3. SGEN: Tasks requiring generation of a short

output sequence via sampling.

4. LGEN: Tasks involving the generation of a

long output sequence by repeatedly sampling

from the LLM’s probability distributions.

We categorize the examined tasks into these four

buckets as we expect similar effects of watermark-

ing for tasks in a given category. For instance,

for CLS tasks, there is a possibility of systematic

bias against some labels for every test example. In

SGEN and LGEN tasks, the modifications to the

output distributions due to watermarking can di-

rectly impact the correctness of generated content.2

We evaluate the performance of watermarked

LLaMA (Touvron et al., 2023a), Mistral (Jiang

et al., 2023) and OPT (Zhang et al., 2022) models

and observe that, under realistic watermark settings,

watermarking can cause significant drops in LLMs’

effective utility across all tasks. We notice drops

of 10–20% in CLS tasks in the average case which

can rise up to 100% in the worst case. We see drops

of about 7% in MCQ tasks, 10–15% in short-form

generation, and 5–15% in long-form generation.

We believe that our findings will allow model

developers and users to make informed choices

about watermarked models and spur interest into

developing novel watermarking schemes and

decoding strategies that may exhibit better perfor-

mance trade-offs. We make our code available

at https://github.com/FLAIR-IISc/

watermark_tradeoffs to facilitate research

in this area, and holistically evaluate future

watermarking approaches.

2We treat short-form and long-form generation tasks dif-
ferently due to differences in how they are evaluated.

2 Background

The KGW watermark (Kirchenbauer et al., 2023a)

is a deterministic algorithm parameterized by 3

hyperparameters γ, δ and k, and a keyed psuedo-

random function F· : N → {g, r}m.

Generation. The algorithm works by modifying

the logits obtained from the language model at

each generation step. Formally, given a model M
with vocabulary V , and a prefix comprising tokens

w1,w2, . . . ,wn the scheme involves first comput-

ing the logits M(w1 . . . ,wn) = (l1, . . . , l|V |) of

the language model that would ordinarily be used

to predict the subsequent token. The terminal pre-

fix token wn is then fed to F under the key k to

obtain a partition of V into a green list G and a red

list R such that |G| = ⌊γ|V |⌋. That is,

Fk(wn) ∈ {g, r}|V|

such that
∑

x∈Fk(wn)
1[x = g] = ⌊γ|V |⌋ . Finally,

watermarked logits (λ1, . . . , λ|V |) are computed

as λi = li + δ · 1[i ∈ G]. These watermarked

logits can then be used for sampling tokens (for

generation) or even computing the likelihood or

perplexity of a given sequence.

Detection. The detection scheme proposed by

Kirchenbauer et al. (2023a) works by assessing the

probability of a null hypothesis that the given text

was written without knowledge of the watermark-

ing scheme (specifically hash key k). Precisely,

given a token sequence x of length T that was writ-

ten without knowledge of the scheme, the number

of green list tokens in x, denoted by |x|G, can be

assumed to be normally distributed with a mean of

γT and a standard deviation of
√

Tγ(1− γ). The

detection algorithm computes a z-score,

z = (|x|G − γT )/
√

Tγ(1− γ), (1)

and rejects the null hypothesis if this z-score ex-

ceeds a chosen threshold.

Variations. Entropy-based Watermarking Detec-

tion (EWD) is a variation of the KGW approach

that uses the same generation algorithm but dif-

fers in its detection algorithm (Lu et al., 2024).

EWD seeks to improve the trade-off between wa-

termark detectability and language modeling abil-

ity by proposing a novel entropy-based detection

strategy that involves reweighting individual tokens
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using their entropies during detection. It computes

an adjusted z score as

z′ = (|x|G − γ

|T |−1
∑

i=m

Wi)/

√

√

√

√Tγ(1− γ)

|T |−1
∑

i=m

W 2
i

where Wi is computed based on the entropy of the

ith token of the sequence x.

Another KGW-based derivative called Semantic-

Invariant and Robust (SIR) watermarking aspires

to improve the robustness against paraphrasing at-

tacks (Liu et al., 2024). The SIR watermarking

scheme computes G as a pseudorandom function

of a semantic embedding of its prefix, departing

from KGW’s strategy of computing G using the

prefix’s lexical properties. For SIR,

F ′
k(embed(w1 . . . ,wn)) = {g, r}|V |

Specifically, SIR utilizes a sentence encoder to gen-

erate a semantic embedding for the prefix and then

uses a learned ‘watermark model’ to transform this

embedding into a partition over the model’s vocab-

ulary. A notable feature of the SIR watermark is

that the γ hyperparameter cannot be set explicitly,

but instead is implicitly determined by the water-

mark model at every generation step. This model’s

training objective incentivizes the effective γ to

always take on values close to 0.5.

3 Evaluation Setup

Datasets. To assess watermarks’ effects on tasks

that are framed as classification tasks (CLS),

we work with SST-2, BoolQ and CB from

the GLUE (Wang et al., 2019b) and Super-

GLUE (Wang et al., 2019a) benchmarks. These

correspond to sentiment analysis, yes/no question

answering and textual entailment tasks respectively.

We select the commonsense NLI dataset called

HellaSwag (Zellers et al., 2019) and the question-

answering dataset PIQA (Bisk et al., 2020) as

MCQ tasks, the reading comprehension datasets

DROP (Dua et al., 2019) and SQuADv2 (Rajpurkar

et al., 2016) as SGEN tasks, and the WMT14-En-

Fr (Bojar et al., 2014) and WMT20-En-De (Bar-

rault et al., 2020) translation tasks as LGEN tasks.

We evaluate models’ performance on these tasks

using the metrics typically associated with them.

For instance, CLS and MCQ tasks are evaluated us-

ing accuracy while SGEN tasks are evaluated using

F1 scores and LGEN translation tasks are evaluated

using BLEU scores (Papineni et al., 2002).

Models. We analyze the performance trade-offs

for the above tasks for watermarked and unwater-

marked versions of LLaMA 7B (Touvron et al.,

2023a), Mistral 7B (Jiang et al., 2023) and OPT

6.8B (Zhang et al., 2022) models.

Methodology. In KGW-based watermarks, the

γ and δ hyperparameters control the strength of

the watermark signal and accordingly, the shift in

watermarked models’ output distribution. However

due to differences among these algorithms, a spe-

cific (γ, δ) setting does not imply the same signal

strength (as measured by its empirical detectability)

or impact on an LLM’s language modeling ability.

To ensure a fair comparison of these schemes’

downstream implications, we find the settings of

hyperparameters for each watermarked model such

that the resulting signal is of the same strength. In

the watermarking literature, signal strengths are

typically evaluated by computing the True Positive

Rates (TPR) of their detection algorithm at a fixed

False Positive Rate (FPR). Generally, FPR is set to

a low value such as 0.01, to avoid the risk of false

accusing someone of plagiarism. In our evaluation,

we consider signal strengths of 0.5, 0.75 and 0.95
TPR@FPR=0.01 at 50 generated tokens to be light,

moderate and heavy intensity settings respectively.

For each watermark and model, we use 200 pre-

fixes sampled from the C4 corpus (Raffel et al.,

2020) as prompts to isolate the δ values corre-

sponding to light, moderate and heavy watermarks

for each γ ∈ {0.1, 0.25, 0.5, 0.75}. Next, we ob-

tain the perplexity values for each (γ, δ) setting

corresponding to a particular signal strength over

a disjoint sample of 200 C4 snippets. We then

choose the tuple which least impacts the model’s

perplexity scores as the canonical hyperparame-

ter setting for that signal strength. Through this

process, we select the pareto-optimal set of hyper-

parameters with respect to language modeling per-

formance under a target watermark strength. Some

contemporary work (Tu et al., 2024) that performs

downstream evaluations fails to conduct this type of

pareto-optimal hyperparameter search, and instead

arbitrarily chooses a (γ, δ) setting that achieves the

target signal strength. We believe that this limits

the practical applicability of their findings.

Measuring effective utility drop. We work un-

der the assumption that the metrics (e.g., accuracy,

F1, BLEU, etc.) that are typically used to evaluate

these tasks are representative of human perception
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(Figure 4), SGEN (Figure 7) and LGEN (Figure 8)

task we study.

One aspect that makes SIR different from KGW

and EWD is that its γ hyperparameter cannot be

explicitly set by the user, but instead varies dynami-

cally around 0.5. As Table 3 in the appendix shows

however, the γ settings for KGW and EWD we

obtain through the calibration procedure described

in Section 3 are all either 0.1 or 0.25. Noticing

that the likelihood of an arbitrary (independently

chosen) pair of tokens being segregated differently

into G and R is given by 1−γ2− (1−γ)2 and that

this expression is maximized at γ = 0.5, we hy-

pothesize that SIR’s systematic underperformance

may be due to the fact that γ = 0.5 “maximally"

perturbs the model’s output distribution. To verify

this claim, we evaluate the performance drops due

to KGW and EWD when (γ, δ) are set to the values

that realize the ‘moderate’ intensity when γ = 0.5.

moderate γ γ = 0.5

Dataset KGW EWD SIR KGW EWD

BoolQ 0.91 0.93 0.70 0.88 0.93

SST2 0.84 0.86 0.51 0.82 0.81

CB 0.89 0.89 0.69 0.85 0.84

HellaSwag 0.99 1.00 0.92 0.97 0.98

PIQA 0.97 1.00 0.94 1.00 0.96

SQuAD2 0.93 0.96 0.91 0.89 0.86

DROP 0.86 0.87 0.69 0.87 0.85

WMT14-En-Fr 0.93 0.97 0.85 0.91 0.93

WMT20-En-De 0.92 0.95 0.87 0.91 0.94

Average 0.92 0.94 0.79 0.90 0.90

Table 1: Normalized scores for LLaMA 7B under the

pareto-optimal ‘moderate’ calibration and under γ =
0.5. The effective γ for SIR is 0.5 by default.

Although Table 1 shows that the normalized

scores under KGW and EWD become somewhat

closer to those under SIR when enforcing γ = 0.5,

they still remain significantly higher suggesting

that the choice of γ cannot be the only reason for

SIR’s underperformance.

Effect of model strength. In Table 2, we show

the effect of applying KGW-, EWD- and SIR-based

watermarks to two stronger models in the LLaMA

family: the larger LLaMA 13B and the similarly

sized 7B model from the subsequent LLaMA2

generation (Touvron et al., 2023b). Both stronger

models show slightly larger normalized scores than

LLaMA 7B, suggesting that stronger models may

see smaller utility drops upon watermarking.

6 Related Work

Watermarking text. Watermarking discrete-

valued text data has classically been considered

difficult (Petitcolas et al., 1999; Katzenbeisser and

Petitcolas, 1999). Early attempts involved rule-

based synonym substitutions and parse-tree modifi-

cations (Chiang et al., 2003; Topkara et al., 2006;

Venugopal et al., 2011). Seeing that implant-

ing strong watermarks without severely degrading

text quality was challenging for these approaches,

later work utilized LSTMs (Fang et al., 2017) and

masked language-models (Ueoka et al., 2021) for

generating watermarked text. The popularity of

autoregressive LLMs has spurred fresh interest in

text-watermarking techniques. Kirchenbauer et al.

(2023a) introduced a method for implanting wa-

termarks into LLM generations by upsampling a

subset of tokens during the decoding phase. This

has inspired much followup work to make LLM-

watermarks robust to paraphrase attacks (Kirchen-

bauer et al., 2023b; Hou et al., 2024; Ren et al.,

2024; Liu et al., 2024; Zhao et al., 2024), en-

code multibit information (Yoo et al., 2024; Qu

et al., 2024; Wang et al., 2024), distill watermarks

into standalone language models (Gu et al., 2024),

and reduce the degree of watermark-induced text

degradation (Wu et al., 2024; Takezawa et al.,

2024; Lu et al., 2024; Chen et al., 2024). Al-

though these works, collectively called the KGW

family of watermarks are by far the most popu-

lar LLM watermarks used today, there also ex-

ist other cryptographically-inspired watermarking

schemes (Christ et al., 2023; Aaronson and Kirch-

ner, 2023; Kuditipudi et al., 2024).

Downstream effects of watermarking. Most

prior work on watermarking has evaluated their

resulting models using perplexity of the generated

text. Kirchenbauer et al. (2023a) evaluates the per-

formance of watermarked models on a single ques-

tion -answering task. Some follow-up work (Fer-

nandez et al., 2023) conducts small-scale evalua-

tions but does not attempt to uncover the causes for

observed performance drops. One contemporane-

ous work (Tu et al., 2024) performs a similar study

to ours over a broad range of tasks but in contrast to

our work, chooses watermark hyperparameters rel-

atively arbitrarily (see Section 3) which we believe

limits the practical applicability of their findings.

To the best of our knowledge, our study is the first

to conduct a principled analysis on the downstream
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Dataset LLaMA 7B LLaMA 13B LLaMA2 7B

KGW EWD SIR KGW EWD SIR KGW EWD SIR

BoolQ 0.91 0.93 0.70 0.96 0.97 0.87 0.96 0.98 0.90
SST2 0.84 0.86 0.51 0.94 0.97 0.84 0.93 0.93 0.79
CB 0.89 0.89 0.69 0.92 0.93 0.77 0.97 0.97 0.92
HellaSwag 0.99 1.00 0.92 1.02 0.99 0.95 1.00 1.00 0.97
PIQA 0.97 1.00 0.94 0.98 0.99 0.97 0.96 1.00 1.00
SQuAD2 0.93 0.96 0.91 0.91 0.95 0.89 0.87 0.97 0.83
DROP 0.86 0.87 0.69 0.81 0.72 0.58 0.79 0.92 0.69
WMT14-En-Fr 0.93 0.97 0.85 0.94 0.97 0.90 0.95 0.97 0.92
WMT20-En-De 0.92 0.95 0.87 0.95 0.98 0.93 0.91 0.99 0.94

Average 0.92 0.94 0.79 0.94 0.94 0.86 0.93 0.97 0.88

Table 2: Normalized scores of LLaMA 7B, LLaMA 13B and LLaMA2 7B models with KGW, EWD and SIR

watermarks, along with the average scores (in the last row). Normalized scores appear slightly larger for LLaMA

13B and LLaMA2 7B (compared to LLaMA 7B), suggesting that stronger models do not see as much utility drop.

effects of watermarking schemes over a broader

spectrum of tasks, shedding light on underlying

reasons for the observed trade-offs.

7 Conclusion

We evaluate the extent to which watermarks from

the KGW family hurt downstream performance

by examining three watermark and three LLMs

over a diverse suite of NLP tasks. We motivate a

categorization of tasks into 4 buckets and analyze

causes for the observed trade-offs in each category.

We find the performance trade-offs for each cat-

egory vary in a manner that simple perplexity mea-

surements cannot capture or predict (an assumption

implicit in prior work). Watermarks, under realis-

tic hyperparameters, can cause significant drops in

LLMs’ effective utility across all tasks. We observe

drops of 10 to 20% in CLS tasks in the average

case, which shoot up to 100% in the worst case.

We notice degradations of about 7% in MCQ tasks,

10–15% in short-form generation, and 5–15% in

long-form generation tasks. We also find some

evidence that the downstream trade-offs posed by

the KGW family of watermarks may diminish with

increasing model strength.

We believe that our work will (i) allow devel-

opers and practitioners to make informed choices

about watermarked LLMs and their adaptations, (ii)

spur research into novel watermarking strategies

that present better trade-offs, and (iii) inspire tech-

niques for maintaining model performance under

existing watermarking schemes.

Limitations

We restrict our analysis in this work to empiri-

cally evaluating the downstream performance of

three representatives from the KGW family of wa-

termarks. While we perform some analyses and

give some theoretical intuitions, it may be possible

to establish a concrete theoretical framework for

(KGW-based) watermarked models’ downstream

trade-offs. We leave such analyses to future work.

Although our findings likely transfer to most

KGW-based watermarks, unrelated schemes such

as Aaronson and Kirchner (2023) and Christ et al.

(2023), lie outside the scope of our work.

We only analyze the effect of watermarking un-

der the typical decoding strategies used for each of

the tasks. It is plausible that not all decoding strate-

gies would be similarly affected by KGW-based wa-

termarks. There may also exist watermark-aware

decoding strategies designed to mitigate perfor-

mance drops. This possibility presents an exciting

avenue for future work.
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A Watermark Hyperparameters

We show the watermark hyperparameters we use

for our main experiments (arrived at through our

calibration procedure described in Section 3) in

Table 3.

KGW EWD SIR
Model γ δ γ δ γ δ

OPT-6.8B 0.25 1.21 0.1 1.41 0.5 0.86
LLaMA-7B 0.1 2.13 0.1 1.72 0.5 1.31
Mistral-7B 0.1 1.8 0.1 1.5 0.5 1.02

Table 3: We show the (γ, δ) hyperparameters obtained

through the calibration procedure described in Section 3

for each model and moderate watermark. Note that the

effective γ values for SIR are determined dynamically

at each generation step, but we empirically verify that

they always take values very close to 0.5.

B Additional Results

B.1 Results for Light, Moderate and Heavy

settings

We provide evaluation results for each task, model

and watermark we study in Table 4.

B.2 LGEN Examples

We present representative examples for LGEN

tasks. Examples from the WMT14-En-Fr task are

tabulated in Table 5 and examples from WMT20-

En-De are tabulated in Table 6.

C Task Evaluation Details

C.1 Decoding

1. CLS tasks are tasks framed as k-class classifi-

cation problems with static (and often short)

labels that are common across all test exam-

ples. These are evaluated by picking the class

label that the model assigns the highest prob-

ability to. Formally, the input text x is for-

matted using a suitable prompt template T
and the class y which maximizes p(y|T (x))
is chosen as the model’s prediction.

ŷ = argmax
y∈L

p(y|T (x))

These tasks are also typically evaluated using

accuracy metrics.

2. The MCQ category includes several

open-book question-answering, reading-

comprehension and common-sense reasoning

tasks that are posed as multiple-choice

question-answering tasks to language models.

In these tasks, every test input x is associated

with a set of possible answer choices L(x).
When a test input x is formatted using a

suitable template T , the answer choice that

the language model assigns the highest

average log likelihood to,

argmax
y∈L(x)

avg-log-likelihood(y|T (x))

is chosen as the model’s prediction. These

tasks are also typically evaluated using accu-

racy metrics.

3. SGEN includes open-domain question-

answering and reading-comprehension tasks

are posed to language models as short-form

conditional generation tasks and require

models to output concise free-form responses.

Given a test input x formatted using a

prompt template T , the model produces a

sequence y∗ which maximizes the conditional

likelihood p(y|T (x)).

y
∗ = argmax

y

p(y|T (x))

Typically, the generated sequence is bounded

by a certain length or concludes when the

model outputs an end-of-sequence token. The

generated sequences are typically evaluated

against gold sequences using F1 scores.

4. LGEN represents all long-form generation

tasks including machine translation and sum-

marization. For an input text x, formatted

using an appropriate prompt template T , the

model is tasked with producing an extended

sequence y
∗ that maximizes the conditional

likelihood p(y|T (x)).

y
∗ = argmax

y

p(y|T (x))

The generated sequences are often evaluated

against multiple ground truth references using

metrics such as ROUGE and BLEU, allowing

for some flexibility for paraphrases.
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Model Watermark Intensity BoolQ SST2 CB HellaSwag PIQA SQuADv2 DROP WMT14-En-Fr WMT20-En-De

OPT-6.8B KGW light 0.92 0.91 1.11 0.97 0.98 0.93 0.98 0.98 0.99

moderate 0.86 0.83 0.81 0.93 0.98 0.93 0.97 0.98 0.96

heavy 0.85 0.83 0.80 0.90 0.94 0.81 0.96 0.89 0.88

EWD light 1.15 0.91 0.96 1.12 1.06 1.00 0.97 1.01 0.97

moderate 0.92 0.91 0.90 0.93 1.00 1.00 0.95 0.98 0.96

heavy 1.04 0.83 0.83 1.08 0.94 0.90 0.87 0.95 0.91

SIR light 0.86 0.85 1.06 0.96 1.06 0.96 0.98 0.98 0.98

moderate 0.69 0.64 0.70 0.94 1.10 0.92 1.01 0.90 0.95

heavy 0.50 0.50 0.56 0.68 0.82 0.22 0.65 0.42 0.63

LLaMA-7B KGW light 0.93 0.86 0.89 1.00 0.97 0.95 0.88 0.96 0.93

moderate 0.91 0.84 0.89 0.99 0.97 0.93 0.86 0.93 0.92

heavy 0.86 0.82 0.89 0.99 0.97 0.84 0.78 0.83 0.76

EWD light 0.92 0.81 0.90 0.99 1.04 0.97 0.94 0.97 0.98

moderate 0.93 0.86 0.89 1.00 1.00 0.96 0.87 0.97 0.95

heavy 0.84 0.73 0.89 0.97 0.97 0.81 0.78 0.89 0.90

SIR light 0.91 0.75 0.73 0.97 1.06 0.91 0.86 0.96 0.99

moderate 0.70 0.51 0.69 0.92 0.94 0.91 0.69 0.85 0.87

heavy 0.50 0.50 0.48 0.26 0.42 0.37 0.37 0.40 0.46

Mistral-7B KGW light 0.97 0.98 0.94 1.01 1.01 1.01 1.26 0.99 0.98

moderate 0.96 0.97 0.90 0.99 1.01 0.97 1.29 0.97 0.97

heavy 0.92 0.95 0.83 0.98 0.97 0.96 1.22 0.93 0.92

EWD light 0.93 0.97 0.94 1.06 0.98 0.97 0.94 0.99 0.99

moderate 0.97 0.98 0.93 0.99 0.99 0.99 0.93 0.98 0.98

heavy 0.90 0.95 0.90 1.03 0.98 0.98 0.81 0.96 0.96

SIR light 0.97 0.98 0.92 1.02 0.97 0.96 0.89 0.99 1.00

moderate 0.85 0.90 0.69 0.96 0.88 0.90 0.68 0.93 0.94

heavy 0.50 0.50 0.45 0.30 0.37 0.44 0.24 0.30 0.37

Table 4: Normalized scores for all Model, Watermark, Intensity, Dataset combinations we evaluate.

Model Content

Input Repainted Traffic Lights: MP Asks Brigitte Grouwels to Resign
Ground Truth Feux repeints: un député demande la démission de Brigitte Grouwels [Re-

painted lights: a deputy calls for the resignation of Brigitte Grouwels]

LLaMA 7B Output Les feux de circulation ont été repeints: le député a demandé à Brigitte
Grouweels de démissionner. [The traffic lights have been repainted: the MP
asked Brigitte Grouweels to resign.]

+ moderate KGW Output Les feux de circulation sont rénovés, mais c’est la ministre qui se trouve sur le
gril, demande à être relevée de ses fonctions. [The traffic lights are renovated,
but it is the minister who is on the grill, asking to be relieved of her duties.]

Input This really is a must for our nation.
Ground Truth Cela est vraiment indispensable pour notre nation. [This is truly essential for

our nation]

Mistral 7B Output Cela est vraiment indispensable pour notre nation. [This is truly essential for
our nation]

+ moderate SIR Output C’est une chose qui nous manque réellement. [This is something we really
miss.]

Table 5: Moderate watermarks can cause increase factual errors in model outputs in the WMT14-En-Fr task. We

provide the input, the gold output, the unwatermarked model’s output and the output generated by a model with a

moderate watermark. We also provide the English back-translation (from Google Translate) for each of these.
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Model Content

Input He is now facing 10 counts of murder in Canada and 16 counts of attempted
murder following the attack on April 23, 2018.

Ground Truth Nach dem Attentat vom 23. April 2018 wurden in Kanada nicht weniger als
10 Anklagepunkte wegen Mordes und 16 Anklagepunkte wegen versuchten
Mordes gegen ihn erhoben. [Following the assassination attempt on April
23, 2018, no fewer than 10 charges of murder and 16 charges of attempted
murder were brought against him in Canada.]

OPT 6.8B Output Der Mann ist jetzt auf 10 Mordverdachtsfälle in Kanada und 16 Mordver-
dachtungen gegenüber der Tat am 23. April 2018. [The man is now facing 10
counts of murder in Canada and 16 counts of murder for the crime on April
23, 2018.]

+ moderate EWD Output [The man is now convicted of 10 counts of murder and 16 attempted murders
in Canada.]

Input However, despite fans being eager for the upcoming release, it seems we all
need to sit tight as it won’t be dropping on our screens until 2021.

Ground Truth Selbst wenn seine Fans die bevorstehende Ausstrahlung der Serie kaum
erwarten können, bleibt Geduld angesagt, da diese erst für 2021 angekündigt
wurde. [Even if his fans can hardly wait for the upcoming broadcast of the
series, patience remains as it has only been announced for 2021.]

Mistral 7B Output Trotzdem, obwohl Fans eifrig auf die kommende Veröffentlichung warten,
scheint es so, als würden wir alle auf die Sitze sitzen müssen, bis es 2011 auf
unseren Bildschirmen erscheint. [Nevertheless, although fans are eagerly
awaiting the upcoming release, it seems we will all have to sit on the edge of
our seats until it hits our screens in 2011.]

+ moderate KGW Output Jedoch, obwohl Fans einschließlich mich ehrgeizig auf die nächste Veröf-
fentlichung warten, müssen wir alle auf die nächstjährige Veröffentlichungs-
datum warten. [However, although fans including myself are eagerly waiting
for the next release, we all have to wait for next year’s release date.]

Table 6: Moderate watermarks can cause increase factual errors in model outputs in the WMT20-En-De task. We

provide the input, the gold output, the unwatermarked model’s output and the output generated by a model with a

moderate watermark. We also provide the English back-translation (from Google Translate) for each of these.
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