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Figure 1: Scene reconstruction achieves significant reductions in energy and latency with negligible accuracy loss. We system-
atically characterize the trade-off space in energy, accuracy, and latency, enabled by three energy-oriented optimizations, and
identify optimal designs under various downstream application imposed constraints. Qualitative results for the ground-truth, the
baseline algorithm at 30 FPS, and the chosen design for an application scenario show that meshes from the chosen design are
almost indistinguishable from the best achievable quality (Row 2). Disparities between the chosen design and the ground-truth
are attributed to the baseline algorithm, as seen in Row 1 and Row 2.

ABSTRACT

Extended Reality (XR) enables immersive experiences through un-
tethered headsets but suffers from stringent battery and resource
constraints. Energy-efficient design is crucial to ensure both
longevity and high performance in XR devices. However, latency
and accuracy are often prioritized over energy, leading to a gap
in achieving energy efficiency. This paper examines scene recon-
struction, a key building block for immersive XR experiences, and
demonstrates how energy efficiency can be achieved by navigating
the trilemma of energy, latency, and accuracy.

We explore three classes of energy-oriented optimizations, cov-
ering the algorithm, execution, and data, that reveal a broad de-
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sign space through configurable parameters. Our resulting 72 de-
signs expose a wide range of latency and energy trade-offs, with a
smaller range of accuracy loss. We identify a Pareto-optimal curve
and show that the designs on the curve are achievable only through
synergistic co-optimization of all three optimization classes and by
considering the latency and accuracy needs of downstream scene
reconstruction consumers. Our analysis covering various use cases
and measurements on an embedded class system shows that, rela-
tive to the baseline, our designs offer energy benefits of up to 60×
with potential latency range of 4× slowdown to 2× speedup. De-
tailed exploration of a use case across representative data sequences
from ScanNet showed about 25× energy savings with 1.5× latency
reduction and negligible reconstruction quality loss.

Index Terms: Energy efficiency, mobile computing, design space
exploration, extended reality, scene reconstruction, TSDF fusion

1 INTRODUCTION

Machine Perception - the capability enabling Extended Reality
(XR, the collection of AR/VR/MR) systems to understand and in-
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terpret their surroundings - is the cornerstone for high-quality user
interactions. It covers a wide range of algorithms, including scene
reconstruction, eye tracking, object detection, panoramic segmen-
tation, etc. Machine perception algorithms have historically been
prioritized for high performance (i.e., accuracy) and low frame
processing delay (i.e., latency1), with insufficient attention paid to
energy consumption. Unfortunately, achieving high accuracy and
low latency often comes at the cost of substantial energy usage, re-
sulting in a trilemma among energy, latency, and accuracy.

High energy consumption can be detrimental to the immer-
sive experience, especially on mobile XR devices with constrained
battery capacity. High energy consumption can quickly deplete
the battery, rendering the system inoperable. Algorithms that
consume high amounts of energy often need to be offloaded to
servers [18, 38, 47], incurring networking delay penalties, or re-
quire increased battery capacity with additional weight, neither of
which are optimal options. For instance, Apple’s Vision Pro [4, 69]
is reported to have a battery life of about two hours, which is similar
to Meta’s Quest Pro [57] but with ∼ 1.7× the battery capacity and
∼ 3.4× the battery weight [30, 58].

We study scene reconstruction (spatial mapping) for its desir-
ability in XR and its intense demands on energy and computing
resources [8, 16, 35]. While historically it was rare to find scene re-
construction deployed on headsets primarily due to resources con-
straints, it is now supported by high-end XR systems like Vision
Pro [3], Magic Leap 2 [45], and Meta Quest 3 [55]. Scene recon-
struction is a crucial for enabling immersive visual [24, 64] and au-
dio experiences [42, 43, 68]. Efforts in pursuing energy efficiency
for scene reconstruction are therefore likely to benefit future XR
systems by enhancing battery life and system usability.

Scene reconstruction replicates physical objects in virtual space
by progressively integrating posed RGB-D frames into a scene rep-
resentation, such as surfels or voxels. Since the on-device pose
tracker is shared by downstream tasks in real XR systems (e.g.,
Meta Quest [56]), we focus on data integration. Specifically, we ex-
amine the Truncated Signed Distance Function (TSDF) Fusion [14]
in voxel-based scene representation, which merges RGB-D data
into a voxel-based truncated distance map. While TSDF Fusion is
a well-established algorithm that balances low latency and high ac-
curacy, our study indicates that it is far from being energy-efficient.

We aim for energy efficiency by simultaneously and holistically
considering all three dimensions of energy, latency, and accuracy.
We first discuss three classes of optimizations with configurable
parameters that create a large design space with various trade-offs in
the above three dimensions. These optimizations, also summarized
in Fig. 2 are as follows.

• Algorithm (A): We identify significant operation redundan-
cies and parallelization overheads in the baseline, which lead
to unnecessary energy usage. Our optimizations in this class
reduce these inefficiencies, providing lower energy while also
reducing latency and without any impact on accuracy.

• Execution (E): Processor clock frequency impacts energy and
latency without affecting accuracy. While conventional wis-
dom is to execute as fast as possible, choosing a lower fre-
quency can reduce energy, albeit at the cost of higher latency.

• Data (D): Sensory data-based machine perception contains
rich redundancies across frames. Data sampling can substan-
tially reduce energy but may impact accuracy and latency.

We then characterize the energy, latency, and accuracy of 72 de-
signs within the trade-off space on a mobile computing platform
using a data sequence from ScanNet. Each design evaluated in-
volves combinations of algorithmic changes, execution frequency,
and data sampling rate, with varying configuration parameters.

1This is not the end-user’s Motion-to-Photon (MTP) latency but rather
an algorithm’s execution latency, which is often hidden by mechanisms like
asynchronous reprojection (timewarp), etc.

Figure 2: We study three classes of optimizations that create a large
design space through configurable parameters, where the designs
provide different trade-offs in the dimensions of energy, latency,
and accuracy. Co-optimization across all classes leads to significant
energy savings within latency and accuracy constraints, illustrated
on the right for a case that additionally provides latency benefits
with negligible accuracy loss.

We approach energy efficiency as minimizing energy usage while
meeting specified latency and accuracy constraints. Due to lim-
ited low-level hardware accessibility (e.g., for processor frequency
and power measurement) on real headsets, we use the Nvidia Jet-
son Xavier [62] for experimentation. It offers rich computing re-
sources, native power gauge support, and a configurable power bud-
get (TDP [63]) that can be adjusted to match recent headsets such
as the Vision Pro [30] and Quest Pro [58].

We observe three key findings and their implications for achiev-
ing energy-efficient design. 1 Our designs span a wide range
of energy and latency trade-offs. Latency can vary from a 4×
slowdown to a 2× speedup, with energy savings of up to 60×, rela-
tive to our off-the-shelf TSDF Fusion baseline implementation. De-
signs on the Pareto-optimal curve show a similar range, underscor-
ing the large design space available for optimization and the energy
inefficiency of the baseline. 2 Co-optimization is essential for
achieving designs on the Pareto-optimal curve. Optimizing pro-
cessor frequency or data sampling alone is inadequate to reach all
designs on the Pareto-optimal curve. Co-optimization can achieve
additional energy reductions ranging from 1.32× to 5.42×. 3 Ap-
plying tailored constraints from cross-component analysis max-
imizes energy efficiency. Downstream components have varying
latency and accuracy constraints. Identifying and applying appro-
priate constraints can enable more aggressive energy-efficient de-
signs, potentially yielding additional energy benefits of 1.5× with
relaxed accuracy and 1.66× with relaxed latency.

We apply our findings and analysis to three downstream use
cases—scanning and sharing, spatial audio, and an intermediate
scenario—with varying constraints for latency and accuracy. We
identify the lowest energy designs for each from our evaluated
trade-off space. We find energy benefits of about 16×, 60×, and
27× respectively for these use cases, relative to our baseline.

We comprehensively evaluate the sensitivity of our results to in-
put data for the last use case as a representative, studying multiple
sequences with various scales, scene types, trajectory patterns, etc.
The chosen energy optimal design generalizes well on the Scan-
Net [15] indoor SLAM dataset on Jetson AGX Xavier, reducing
energy usage by an average of 24.90× and respecting the latency
and accuracy constraints (frame latency reduces by 1.45× and F-
score by a negligible (0.005).

While we focus on TSDF Fusion, the insights from navigating
the extensive trade-off space to resolve the trilemma between en-
ergy, latency, and accuracy are broadly applicable. In summary,
this paper makes the following contributions:

• We exploit three classes of optimizations to make trade-offs
among energy, latency, and accuracy, exposing a broad trade-
off space with designs having distinct priorities.
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• We characterize the trade-off space and demonstrate that
achieving the optimal design requires co-optimizations within
an algorithm and across components in a full system.

• We show that while optimal design depends on specific use
cases, a design identified under certain constraints generalizes
well to diverse input data.

2 RELATED WORK

Single-Dimension Enhancements. In perception research, signifi-
cant progress has been made by focusing on improving a single di-
mension, often without directly considering the impact on other di-
mensions. For instance, many studies focus on enhancing accuracy
through developing advanced algorithms and neural models, im-
proving object detection precision and recall [5, 7, 9, 50, 72, 75, 79],
advancing scene understanding [10, 12, 23, 34, 44, 70], and en-
hancing 3D scene reconstruction quality [40, 59, 61, 73]. On
the other hand, reducing perception latency is crucial for real-
time applications like autonomous driving and augmented reality.
Recent research includes techniques to reduce perception latency
by decreasing computational complexity through methods such as
quantization [11, 71], network pruning [28, 53], and more effi-
cient algorithms and neural models [19, 20, 52]. Finally, efforts
to reduce energy consumption include utilizing specialized hard-
ware [21, 22, 46, 49, 60] in machine perception tasks.

Despite these achievements, focusing solely on single-dimension
enhancements can lead to improvements in one area while over-
looking trade-offs in others. For example, increasing accuracy may
come at the cost of higher computational demands or increased en-
ergy consumption. This paper demonstrates the need to co-optimize
simultaneously for all dimensions to achieve an optimal design.

Multi-Dimensional Trade-off Exploration. Past research has
also explored multi-dimensional optimization. Most related, there
is extensive work on the accuracy-latency trade-off for advancing
low-power vision [33, 36, 51], model compression [27, 29, 48, 67],
and efficient neural networks [54, 74, 78] for resource-constrained
devices. Recent vision competitions [1, 2] also focus on low-power
solutions, where participants are tasked with creating solutions that
excel in accuracy and execution time on specific low-power devices.
However, energy — defined as the product of power and time — is
typically not a primary evaluation criterion in these competitions.
As long as the models can run on the designated device, the evalu-
ation centers on which solution provides better accuracy and lower
execution time, often overlooking the potential for more energy ef-
ficient designs. This paper considers a more holistic and simultane-
ous exploration of all three dimensions of energy, latency, and ac-
curacy, to identify substantially more energy-efficient designs, with
scene reconstruction as our specific target for increased efficiency.

3 BACKGROUND

TSDF Fusion: Voxel-based scene reconstruction algorithms repre-
sent the scene using voxels, a primitive occupying a cubic region in
3-d space and holding the distance to the nearest surface as Trun-
cated Signed Distance Function (TSDF) values [80]. TSDF Fusion
is the dominant stage in the algorithm. It merges depth observations
from various frames into a unified TSDF value for the same voxel,
using the equation:

Tn =
Wn−1Tn−1 +wndn

Wn−1 +wn
, Wn =Wn−1 +wn (1)

where Tn and Wn are the TSDF and weight values stored in the
voxel after fusing frame n, and wn is the weight used to fuse depth
measurement dn.

Adjacent voxels are often grouped into cubic volumes to exploit
data locality and reduce the overhead of manipulating millions of
voxels in a hash table or an Octree. For instance, Open3D [77] and
InfiniTAM [66] group 4096 (163) and 512 (83) voxels, respectively.

TSDF Fusion first checks if a volume is visible from the cur-
rent camera viewport. All voxels in a visible volume are then ex-
haustively accessed to project onto the depth image plane and as-
sess their eligibility for TSDF calculation. A voxel proceeds to the
TSDF calculation phase only if it meets four conditions:

• The voxel locates in front of the camera plane.
• The voxel is close to a surface (within the truncation band).
• The projected location falls within the image boundaries.
• The projected location has a valid depth measurement.

Failing to satisfy any of these conditions results in early termination
of processing of that voxel.

Baseline algorithm: For our baseline algorithm and implemen-
tation, we use Open3D v0.16.0, a widely-adopted library developed
by Intel known for its low latency and high accuracy. We focus on
voxel-based scene reconstruction algorithms, primarily due to their
efficient implementation and suitability for mobile devices. It is
the de facto choice in both classical [65, 76] and neural-based [41]
algorithms. We use 10 mm voxels and a truncation band of 10 cm.

Metrics: For latency, we report the average time taken for TSDF
Fusion per frame in the data sequence (ScanNet sequences in our
case). For energy, we report the energy for the entire sequence.
Since some of our techniques reduce the number of frames pro-
cessed, the total processing time for the entire sequence depends
on both the number of frames processed and the average latency
per frame. In streaming applications, the latency per frame is often
more important (e.g., for scheduling) than the entire sequence time.
For energy, however, the energy of the entire run determines battery
life. We therefore report latency as the average per-frame and report
energy as the total for the sequence. Finally, for accuracy, we use
the F-score [25, 39] to quantify the quality of the final reconstructed
mesh against the ground-truth meshes from the dataset.

4 ALGORITHM DRIVEN ENERGY OPTIMIZATION

The most natural way to reduce energy consumption is to reduce the
work done to perform the specific machine perception task. This
typically results in reduced latency and often without loss of ac-
curacy, with a win-win situation in all dimensions. Work reduc-
tion can be achieved by reducing the complexity of the algorithm
and also by addressing sources of computation waste. We consider
three examples below for TSDF Fusion.

4.1 Voxel Pruning
Computation is wasted when it does not yield useful results; e.g.,
multiple checks for voxels that do not proceed to TSDF calculation.
We first characterize the eligibility of voxels for TSDF Fusion, and
then illustrate our design for early pruning of ineligible voxels.

Characterization. We record the status of each voxel during
processing in the baseline algorithm. A voxel may undergo process-
ing multiple times within a frame and across a sequence. Specifi-
cally, the processing of each voxel results in either a fused voxel (V.
Fused) or a non-fused voxel for four reasons: (1) the voxel is behind
the camera plane (V. Behind Cam. Plane); (2) the voxel is outside
the truncation band (V. Out of Trunc. Band); (3) the projected loca-
tion is outside the image scope (P. Out of Image Scope); and (4) the
projected location has invalid depth value (P. Invalid Depth Value).

Fig. 3 shows a breakdown of the processing status of voxels. Sur-
prisingly, only around 40% of voxels proceed to the TSDF calcu-
lation, while around 30% terminate early due to being outside the
truncation band. Although processing early-terminated voxels in-
volves minimal condition checks, the overheads before these checks
(e.g., parallelizing voxels) are similar to those for fused voxels.

Method. Targeting the primary inefficiency, we employ a
voxel pruning design, similar to but more aggressive than Flash-
Fusion [26], to filter out voxels outside the truncation band, based
on two key insights: (1) object surfaces intersecting with a voxel are
nearly flat at the voxel’s granularity (5 to 10 mm), and (2) voxels
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Figure 3: The breakdown
of processed voxel status
shows that only about 40%
of voxels are fused (V.
Fused). Our design filters
out non-contributing vox-
els while preserving the
critical ones nearly intact.

Figure 4: Our design decides eligible
voxels (in purple) from valid volumes
(in pink) by testing 9 critical posi-
tions (5 in 2D). A center point outside
the truncation band finds 1 or 2 sub-
volumes (purple in Volume A), while
a center point within the band finds all
voxels eligible for fusion (Volume B).

are densely aggregated into volumes to exploit locality. It is possi-
ble to estimate voxel status inside a volume by checking only a few
critical positions. Intuitively, a volume with eight corners beyond
the truncation band should have zero voxels eligible for fusion.

Fig. 4 presents a 2D cross-section of an example surface (in red)
and nearby valid volumes (in pink) in a 3D scenario. To prevent
cases where the entire volume is considered eligible when only
a corner falls within the truncation band (Volume A), we further
partition the volume into 8 sub-volumes (4 in the 2D example) by
evenly dividing the cube in three dimensions. We check the cen-
ter point, in addition to the eight corners of the volume (4 in the
2D example), to determine sub-volume’s eligibility. A center point
within the truncation band makes all voxels in the volume eligible
for TSDF Fusion (Volume B), while only a subset of voxels in a
volume are eligible if only a corner is within the truncation band.

Voxel pruning reduces the number of processed voxels by 50%,
from 1.77 billion to 0.89 billion. We compare our design with
FlashFusion [26] by integrating their pruning logic into our code-
base and measuring the total time for TSDF Fusion on the Jetson
board. Note that FlashFusion aims to find valid volumes, repre-
sented by the pink regions in Fig. 4, whereas our design improves
within each valid volume. To ensure a fair comparison, we apply
FlashFusion’s 8-corner check to valid volumes, denoted as FF′, and
compare it with the baseline and our design in Fig. 3. Our design
exploits fine-grained pruning and outperforms FF′ by 29.4%.

4.2 Operation Pruning

For each eligible voxel, Open3D performs the weighted average
TSDF computation as described in Sec. 3. However, the intermedi-
ate weighted average values are not required; only the final TSDF
value is consumed by the downstream computation (e.g., occlusion
checking or marching cubes). This observation offers the opportu-
nity to reduce computation waste by pruning some operations, as
noted in [26]. Specifically, for the Tn computation in equation 1, in-
stead of performing a division to compute an intermediate weighted
average at each voxel, we keep a running sum of the weighted depth
values and a sum of the weights. We then perform the division just
once at the end to compute the final weighted average, thus saving
several costly division operations.

4.3 Parallelism

Many machine perception tasks employ parallelism to reduce la-
tency. However, parallelism also incurs overheads; e.g., for thread
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Figure 5: Energy and latency
as functions of the number of
threads. The sweet spot (4) in
the energy-latency trade-off dif-
fers from the default (8), indi-
cating that parallelization must
be carefully implemented to bal-
ance overheads and benefits.
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Figure 6: Energy and latency
as functions of CPU frequency.
Energy and latency change in
opposite directions and at differ-
ent rates as frequency changes,
motivating careful design for an
energy efficient sweet spot in the
energy-latency trade-off.

creation, synchronization, communication, and due to load imbal-
ance. Depending on how the algorithm is parallelized (and hard-
ware attributes), the positive benefits of parallel execution may or
may not outweigh the negative impact of parallelism overheads.
Further, these impacts may affect latency differently from energy
resulting in a disproportionate energy-latency trade-off.

Our baseline Open3D implementation, configured by default
to use the maximum number of processing cores, exhibits all the
aforementioned impacts. As a motivational example, Fig. 5 shows
measured results for a ScanNet sequence running on the Nvidia Jet-
son Xavier board with 8 cores (more details in Sec. 7). The figure
shows measured average latency per frame and total CPU energy
for the entire sequence with 1, 2, 4, 6, and 8 threads (shown as a
fraction of latency and energy with 1 thread). The figure clearly
shows that the default value of 8 threads is neither latency nor en-
ergy optimal. Running with 6 threads is latency optimal, but not
energy efficient – the reduction in latency from 4 to 6 threads is mi-
nor compared to the increase in energy. In this case, 4 threads pro-
vides the sweet spot to balance energy and latency. Further analysis
shows that the main reason for the low parallelism effectiveness at
the default configuration of 8 threads is the relatively low amount
of total work in the parallel portion, which is not able to amortize
the parallelism overhead at 8 threads.

5 EXECUTION DRIVEN ENERGY OPTIMIZATION

Modern hardware provides multiple configurations to enable differ-
ent energy vs. latency trade-offs. Processor frequency is one of the
most widely used configuration parameters. The highest supported
processor frequency is the optimal configuration if energy is not a
consideration or if the lowest possible latency is a desirable target.
For mobile machine perception, however, neither is true. Energy is
a first-order constraint, and we do not need to run any faster than
necessary depending on downstream applications, such as human
perception in AR or control loop frequency in robotics. Hence, in
mobile machine perception, faster is not always better.

Fig. 6 shows the trade-off between energy and latency for TSDF
Fusion on the Nvidia Jetson Xavier board. The figure plots CPU
energy and latency for frequency spanning from half the maximum
supported frequency to the maximum. As frequency increases, la-
tency decreases but energy increases. However, the latency de-
crease is not proportional to energy use. At higher frequencies,
a small latency benefit results in a disproportionately large energy
increase. For instance, at 80% of the maximum frequency, latency
reduces by 5.6%, but energy increases by 28.0%.
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This phenomenon arises due to properties of CMOS logic:
Power ∝ Voltage2 × Frequency. Furthermore, higher frequency
requires higher voltage, making the relationship between power and
frequency super-linear.2 Latency on the other hand reduces linearly
with increasing frequency for CPU dominant workloads (sub-linear
for others). Since Energy = Power×Latency, latency and energy
do not improve proportionally with frequency, providing an oppor-
tunity to optimize algorithms for better energy-latency trade-offs.

Though well understood in hardware and systems communities,
this energy-latency trade-off is not fully exploited by modern ma-
chine perception tasks. Effective use of this technique requires
slack in the computation; i.e., if the algorithm choice is such that the
frame latency is barely within the required constraint, then reducing
frequency is not an option since it will entail exceeding the accept-
able frame latency. The algorithm-driven techniques from Sec. 4
can enable precisely such a slack by reducing per frame latency, in-
creasing the scope of benefits from the execution-driven techniques
and driving the system more towards energy efficiency.
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(a) Average F-score of all sequences.
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(b) Sequences used for evaluation.

Figure 7: The mesh quality varies with frame sampling rate, show-
ing minor accuracy loss in the average F-score across the ScanNet
validation set up to 3.75 FPS. We choose 8 representative sequences
with averaged trends that align with the overall validation set, cov-
ering distinct trade-offs between mesh quality and sampling rate.

6 DATA DRIVEN ENERGY OPTIMIZATION

Sensory data across frames often exhibits significant redundancy,
resulting in inefficient computations that consume energy without
proportional benefits to reconstruction. Data sampling reduces re-
dundancy by selecting frames to process, which can boost energy
efficiency but may compromise the algorithm’s accuracy.

Surprisingly, uniformly sampling from ScanNet’s 30 frames per
second (FPS) data sequence yields significant energy reduction
with only a minor accuracy compromise, we therefore adopt uni-
form sampling to balance accuracy and energy.

The uniform sampling rate is a configurable parameter that con-
trols the level of redundancy. Intuitively, a higher sampling rate is
likely to reduce redundancy but may lead to more accuracy compro-
mise. We quantify redundancy as the ratio of depth measurements
observed in both the current and the last fused frame relative to the
total valid depth measurements in the current frame. We find the
original ScanNet validation set has an average redundancy of 0.96.

We choose 30, 15, 7.5, 3.75, 2, and 1 FPS as candidate rates
for uniform sampling, corresponding to sampling every 1, 2, 4,
8, 15, and 30 frames. These candidates progressively reduce the
redundancy rate from 0.96 to 0.60 and improve energy efficiency.

2The voltage-frequency relationship was linear until recent CMOS gen-
erations, resulting in a cubic power-frequency relationship. Recent CMOS
generations have seen sub-linear voltage vs. frequency, but the super-linear
power vs. frequency trade-off remains for significant regimes. For simplic-
ity, we have also ignored static power in the above discussion.

For instance, scene reconstruction with a data stream sampled at
3.75 FPS yields meshes virtually identical to the 30 FPS baseline,
while achieving significant energy reduction.

We observe a consistent trend when applying uniform sampling
across all of the 312 sequences in the ScanNet validation set. Fig. 7a
shows F-score as a function of uniform sampling rate for each se-
quence (shown in grey), with the average F-score represented by the
red curve. On average, accuracy decreases only slightly across all
sequences until reaching 3.75 FPS, supporting the use of uniform
sampling to balance accuracy and energy.

7 EXPERIMENTS

7.1 Experimental Setup
We evaluate system designs incorporating a comprehensive set of
combinations of the algorithm-, execution-, and data-driven energy
optimizations from Sec. 4 to Sec. 6 using the methodology below.

Hardware. We use an NVIDIA Jetson AGX Xavier [62] de-
velopment board as our evaluation platform, which features an 8-
core Arm-v8 64-bit CPU, a 512-core Volta GPU, and 16GB of
LPDDR4x DRAM. The power consumption of the board is in a
similar range to the chipsets used in recent XR headsets [13, 31].

Datasets. We use ScanNet [15] for characterization and evalua-
tion. It has 1201 training, 312 validation, and 100 test sequences,
each featured with high-quality ground-truth meshes, poses, and
RGBD video streams recorded at 30 FPS in real-world indoor en-
vironments. We use sequences from the validation set because our
experiments do not involve training or testing.

Sequences We evaluate 8 representative sequences from the
ScanNet validation set. These sequences span a broad range of
quality trade-offs, and their average trend closely aligns with that
of the entire validation set (Fig. 7b). The sequences cover various
scene types, scales, motion speeds, complexity levels, lighting con-
ditions, and sequence lengths, as elaborated in Tab. 1.

Metrics. Sec. 3 describes metrics we evaluated.
Baseline and Design Variants. The baseline is the out-of-the-

box implementation of Open3D operating at a 30 Hz frame rate,
which is used for capturing the dataset. Our evaluated design vari-
ants perform a comprehensive sweep of various optimization com-
binations from Sec. 4 to Sec. 6. To highlight the optimizations
within each design, we label them using a combination of the fol-
lowing notations for each constituent optimization:.

• A: All Algorithm optimizations in Sec. 4.
• E(X): Execution optimization of Sec. 5 with processor fre-

quency set to X% of maximum. X ∈ [100,90,80,70,60,50].
• D(X): Data optimization of Sec. 6 with uniform sampling re-

sulting in X FPS. X ∈ [1, 2, 3.75, 7.5, 15, 30].
Energy Consumption. We apply a custom tool, similar to [37],

which monitors various power channels provided by the Jetson
board, and precisely records the start and end timestamps of TSDF
Fusion for each frame. We average the power readings across the
entire processing period, and derive energy consumption by multi-
plying power by the total processing time.

The Jetson board internally carries two INA3221 power moni-
tors [63], reporting the instantaneous voltage and current readings
for the CPU, GPU, DDR, SoC, Sys, and CV components of the
board. We choose to report the power consumption of workload-
related components, specifically DRAM (DDR) and CPU.

We exclude power data from components such as on-chip micro-
controllers (SoC) and I/O (Sys). A considerable part of their power
usage is due to connectivity to peripherals like cameras, displays,
WiFi, etc, which are not in use in our experiments. In fact, the SoC
and Sys power remains relatively constant regardless of the work-
load being executed or a particular design being evaluated.

Experimental Details. Errors in pose estimation can affect
scene reconstruction accuracy, which are orthogonal to our work
on TSDF Fusion. We therefore modify the Open3D codebase to use
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Table 1: Characteristics of selected evaluation sequences. We abbreviate Moderate as 'Mod' and Medium as 'Med'.

Sequence Number 0088 02 0131 01 0378 00 0461 00 0474 04 0568 00 0607 00 0664 00
Sequence Length 2210 1122 1892 520 848 1651 992 1439
Scene Complexity High Mod-Low High Low Moderate Mod-Low Mod-High Low

Scene Type Conf. Room Office Office Lobby Office Lounge Kitchen Bathroom
Scene Scale Large Medium Med-Small Med-Small Med-Large Large Medium Small

Motion Speed Moderate Mod-Fast Mod-Slow Moderate Fast Mod-Slow Mod-Fast Slow
Light. Condition Mod-Poor Good Mod-Poor Poor Poor Good Mod-Poor Good

the ground-truth poses provided by the dataset. We record times-
tamps at the start and end of the TSDF Fusion to measure process-
ing time and energy consumption, with disk I/O time excluded.

We configure the processors to operate at the specified frequency
with Dynamic Voltage and Frequency Scaling (DVFS) disabled to
avoid unpredictable scaling overhead. We set the cooling fan speed
and DRAM frequency to their maximum levels to eliminate poten-
tial memory and thermal impacts.
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Figure 8: The trade-off space shows various parameter configura-
tions, with each point representing a design combining A, E(X),
and D(X). Colors indicate execution frequencies, shapes denote
data sampling rates, and marker sizes represent the accuracy losses
compared to the baseline. The Pareto-optimal curve, D(30), and
E(50) are connected for reference. Designs with algorithm aug-
mentation form the upper cluster, offering a broad range of options.

7.2 Design Space Analysis and Implications for Energy-
Efficient Design

A three-dimensional trade-off space exists among energy, latency,
and accuracy, where each design represents a point in this space
with various optimizations enabled. We present and characterize
this trade-off space on a mobile platform similar in form factor
to commercial XR systems [30], and discuss its implications for
energy-efficient designs. We evaluate 72 designs selecting between
the baseline and optimized algorithm, a choice among 6 processor
frequencies ([100, 90, 80, 70, 60, 50] percent of the maximum),
and 6 data sampling rates ([30, 15, 7.5, 3.75, 2, and 1] FPS). Scal-
ing experiments on a mobile platform is challenging, especially for
intensive workloads like scene reconstruction. Therefore, we exam-
ine all 72 designs on a sample data sequence (0153 00) and perform
a sensitivity study for 8 representative sequences in Sec. 7.4.

1⃝A Broad Trade-off Space. Overlooking the broad trade-off
space often results in sub-optimal designs that fail to achieve en-
ergy efficiency. Fig. 8 visualizes this trade-off space by projecting
designs onto the energy-latency plane and representing accuracy
loss with marker sizes. We show the reduction rates for energy and
latency, as well as the absolute differences in F-score for accuracy,
all compared against the baseline.

In addition to size, each design is distinguished by color and
shape. Designs with the same color were executed at the same pro-
cessor frequency, while those with the same shape were executed

at the same data sampling rate. This relationship is exemplified by
two connected lines in Fig. 8: a solid gray line for D(30) and a dot-
ted black line for E(50). The Pareto-optimal curve for latency and
energy, annotated in orange, highlights designs that offer superior
reductions in latency or energy compared to those below it.

Our evaluated designs show a more varied distribution for la-
tency and energy compared to accuracy, with latency changes rang-
ing from a 4× slowdown to a 2× speedup, energy savings of up
to 60×, and accuracy loss of up to 0.03. The widely distributed
design points exhibit distinct priorities. For instance, designs on
the left side of the curve, such as A+E(100) +D(30), prioritize
minimizing latency while neglecting a potential order of magni-
tude in energy reduction. Conversely, designs on the right side,
like A+ E(60) +D(1), achieve substantial energy reductions but
come with a notable increase in latency. In fact, the common prac-
tice of executing programs at the maximum processor frequency
without data sampling aligns with the A+E(100)+D(30) design
mentioned above. The flat Pareto-optimal curve near this design
indicates that the potential to reduce energy usage with negligible
latency increase is being missed.

2⃝ Importance of Co-optimization. Achieving a design on the
Pareto-optimal curve requires co-optimizing processor frequency
and data sampling rate. Algorithm optimization is always benefi-
cial since it does not compromise latency or accuracy. The Pareto-
optimal curve is jointly formed by designs with higher processor
frequencies and lower data sampling rates. Relying on a single op-
timization alone is inadequate for accessing the full range of the
curve and may lead to sub-optimal designs.

To illustrate further, Fig. 9 shows a simplified trade-off space
with designs on the Pareto-optimal curve, alongside designs opti-
mized in isolation for processor frequency or data sampling. Within
the D(30) cluster, A + E(60) is the lowest energy design with-
out considering data sampling. However, a set of designs in the
top right direction, which includes data sampling, achieves addi-
tional energy reduction ranging from 1.32× (A+E(100)+D(15))
to 5.42× (A+E(80)+D(3.75)). Similarly, A+D(1) is the lowest-
energy design without frequency control but has 1.14× higher en-
ergy and 1.05× higher latency compared to A + E(60) + D(2),
which combines processor frequency tuning for better efficiency.

The need for co-optimization arises from the distinct latency-
energy trade-offs of each individual optimization. In the left range
of the Pareto-optimal curve, reducing the data sampling rate with
D(X) yields significant energy savings with minor latency penal-
ties. In contrast, applying E(X) in the right range of the curve
shows an opposite trend. This transition shows how the two opti-
mizations collaboratively shape the design frontier, calling the need
for co-optimization to fully explore the available design candidates.

3⃝ Tailored Constraints from Cross-component Analysis.
Design candidates within the trade-off space are constrained by la-
tency and accuracy requirements. Ill-defined constraints may un-
necessarily limit the potential candidates, thereby leading to sub-
optimal results. Achieving optimal designs necessitates cross-
component analysis to align constraints with the needs of down-
stream consumers, such as algorithms, components, or end users.
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Figure 9: The simplified trade-off space. The Pareto-optimal curve
can only be fully accessed through co-optimization. Constraints
on latency and accuracy directly impact the accessible trade-off
space. Common practice, which uses a latency constraint of 33 ms
(30 FPS) and 0 accuracy loss, limits the trade-off space to the top-
left area, missing much of the Pareto-optimal curve. Releasing ac-
curacy constraints allows access to the top-right corner. Finding
optimal constraint values requires cross-component analysis. We
evaluate the annotated design in Sec. 7.4 for sensitivity analysis.

Cross-component knowledge enables additional energy benefits
that might be overlooked. We discuss the impact on accuracy and
latency constraints, respectively. Reference lines are added to the
trade-off space to indicate latency constraints at frame intervals of
30 FPS (camera frame rate, equivalent to 33 ms), 15 FPS (66 ms),
and 7.5 FPS (99 ms). We also show the boundary between designs
with and without accuracy loss.

Accuracy Constraints. Without cross-component analysis to
guide accuracy constraints, pursuing zero accuracy loss may ex-
clude candidates with data sampling rates lower than D(7.5). While
A + E(70) + D(7.5) is the lowest energy option under the initial
constraints (i.e., 33 ms camera frame rate and zero accuracy loss)
and achieves ∼ 16× energy reduction, additional savings from trad-
ing accuracy are missed, ranging from about 20× to 60×. For in-
stance, D(3.75) brings an extra 2× energy savings with a negligible
F-score accuracy loss of less than 0.01.

Latency Constraints. Similarly, without analyzing and relaxing
latency constraints from consumer components, even a relaxed ac-
curacy constraint only enables three additional design candidates,
namely A+E(80 ∼ 100)+D(3.75). Latency constraints are ini-
tially imposed as the time interval between captured frames, pre-
venting future frames from being blocked and ensuring prompt con-
tent updates. However, with a sampled input data stream, frames
are unlikely to be blocked, as even D(15) increases the frame inter-
val to ∼66 ms. Therefore, delay-tolerant consumers could further
relax latency constraints, allowing for designs with longer laten-
cies. For instance, relaxing the latency constraint to 66 ms shifts
the design choice from A+E(80)+D(3.75) to A+E(60)+D(2),
expanding energy reduction from 26.66× to 43.75×.

Summary. Relaxing accuracy and latency constraints unlocks
access to design options that bring additional energy efficiency.
While precise constraints are only attainable through analysis of
consumers in an end-to-end system, we exemplify two real-world
use cases with divergent design constraints: one with stringent la-
tency and accuracy requirements while the other not, to illustrate
how the optimal design decision will shift.

7.3 Application-Dependent Constraints: Case Studies

Scanning and Sharing. Scanning a target of interest and sharing
it with friends is a common scenario but expects prompt feedback
and high-quality reconstruction. High accuracy and low latency are
two prerequisites that allow users to instantly know whether the tar-
get of interest is well reconstructed and rescan a compromised area

if necessary. High accuracy ensures the reconstruction faithfully
replicates the physical object in the virtual space, and low latency
enables smooth interaction when users change their view port.

Without compromising scanning quality and processing delay
from when a frame is captured, the accuracy and latency are con-
strained to zero loss and 33 ms, respectively, making A+E(90)+
D(7.5) an optimal design. Compared to the baseline, this design
achieves about 16× energy reduction while maintaining accuracy
and latency, thus extending the battery life of the mobile system.

Spatial Audio. Spatial audio provides an immersive acoustic ex-
perience by creating pose-dependent sound based on head position,
orientation, and surrounding information. The key computation is
to mimic how sound behaves in physical environments, relying on
scene reconstruction to replicate the physical world in virtual space
and compute acoustics like sound wave reflections and absorptions.

Scene reconstruction for spatial audio often has relatively re-
laxed accuracy and latency constraints, as changes in reconstruc-
tion are more noticeable in the visual domain than in the acoustic
domain [42, 43, 68]. For instance, a misaligned wall in the recon-
struction creates obvious visual artifacts but may not significantly
affect sound effects. Likewise, relaxed latency constraints in scene
reconstruction are unlikely to impact the acoustic experience.

Tolerance to accuracy loss and latency increase unlocks designs
with D(3.75), D(2), and D(1), allowing energy reductions ranging
from ∼ 20× to over 60×. As the time interval between frames at
D(3.75) (∼264ms) is already far longer than the latency of any can-
didates, frames are guaranteed to be finished before the next frame
arrives. Therefore, the optimal design can be A + E(60) + D(1)
with ∼0.03 accuracy loss and ∼60× energy reduction. The effect
of relaxing latency constraints is significant, as otherwise only three
candidates, A+D(3.75) with E ranging from 100 to 80, are viable.

Intermediate Case. For more diversity of use cases, we in-
troduce a third scenario with constraints between those of scan-
ning/sharing and spatial audio. The latency target is restricted to
the baseline sensor frame interval (33 ms), and the accuracy target
tolerates a 0.01 drop in F-score. These constraints narrow the trade-
off space, leading us to A+E(80)+D(3.75) as the optimal design
(denoted in Fig. 9). This design observes a notable energy reduc-
tion of 26.66×, a 1.44× decrease in frame latency, and a negligible
accuracy loss of 0.002 in F-score, relative to the baseline.

Summary. The optimal design is application-dependent, as dif-
ferent constraints on latency and accuracy lead to divergent design
choices. Applying one design across various applications may ei-
ther violate the constraints expected by downstream consumers or
miss energy reduction opportunities, as evidenced by the optimal
designs identified for the above three use cases.

7.4 Sensitivity Analysis

The large design space limited our previous analysis to a single data
sequence. We now expand evaluation to 8 representative sequences
with distinct characteristics, as detailed in Sec. 7.1. We focus on
the intermediate (third) use case and its identified optimal design.

On average across 8 evaluated sequences, with only a minimal
compromise in mesh quality (0.005 in F-score), the chosen design
achieves a notable energy reduction of 24.90× and a decrease in
frame latency of 1.45×. These improvements are attainable only
through co-optimization of processor frequency and data sampling
rate, as evidenced by the breakdown of each optimization below.

Energy. Energy reduction increases progressively as optimiza-
tions are enabled (Fig. 10a). The chosen design achieves a 24.90×
energy reduction, with contributions of 3.45× from A, 1.21× from
E(80), and 5.98× from D(3.75). While mitigating data redundancy
drives most of the benefits, the other two optimizations are also cru-
cial, as every Joule is valuable in battery-constrained XR systems.

Latency. The reduction in frame latency clearly illustrates
the latency-energy trade-off and the need for co-optimization
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(b) Per-frame latency over the baseline.

Figure 10: Energy reduction increases progressively with optimiza-
tions applied. D achieves the greatest reduction at the cost of ac-
curacy and frame latency, while A effectively compensates for the
latency penalty. Consistent trends across sequences emphasize the
importance of multifaceted co-optimization.

(Fig. 10b). While both E and D sacrifice latency for energy savings,
these penalties are compensated by A, which still leads to an aver-
age 1.45× latency reduction. E trades latency for energy by scaling
down processor frequency, boosting energy reduction from 3.45×
to 4.16× but reducing frame latency improvement from 2.35× to
2.02×. On the other hand, D prolongs frame latency because partial
workloads from skipped data cannot be eliminated but are merely
deferred to the next processed frame. For instance, a voxel that
should have been allocated earlier must now be created when pro-
cessing the sampled frame to enable TSDF Fusion.

Ablation. The three algorithmic enhancements are evaluated
collectively to avoid overemphasizing the importance of specific
designs while focusing on demonstrating the trade-off space. We
further break down their contributions and show that each of them
enables a considerable portion of the benefits. Specifically, the la-
tency and energy reductions unlocked by voxel pruning, operation
pruning, and mitigating parallelism overhead are [30.56%, 36.60%,
32.84%] and [27.48%, 26.12%, 46.40%], respectively.

Among all tested sequences, the chosen design consistently
demonstrates significant energy and latency reductions, highlight-
ing the effectiveness and generalizability of selecting the right de-
sign point from the wide trade-off space. Beyond the scene re-
construction we studied in this paper, similar trade-off spaces and
optimizing opportunities in A, E, and D are prevalent in many other
applications. For instance, object detection and panoramic segmen-
tation are critical machine perception tasks in XR systems. Op-
eration redundancy and parallelization overheads (A) can appear
as less significant branches in neural-based algorithms. E remains
algorithm-independent, and data redundancy in D is usually present
when data comes from continuously operating sensors.

7.5 Subjective Evaluation
While we use the widely adopted F-score as a quantitative metric
to evaluate the accuracy (i.e., mesh quality) of scene reconstruction,
we also assess the subjective human-perceived quality of the chosen
design by presenting side-by-side comparisons of the meshes.

Due to space constraints, Fig. 1 shows four scenes from the
ground-truth and the baseline algorithm operating at a 30 FPS
dataset frame rate. The reconstructions of A + E(80) + D(3.75)
exhibit high visual similarity to these references, with a clear and
cohesive appearance of objects. Although the meshes display slight
uneven boundaries, particularly at the top of the wall, this is not typ-

ically a critical area for applications consuming the mesh. Zoomed-
in sections highlight subtle differences. Despite being slightly
blurred compared to the ground-truth, the meshes from the cho-
sen design closely resemble those from the 30 FPS baseline, which
represents the highest quality achievable with the given algorithm.

The evaluated design has a conservative accuracy constraint
(< 0.01) to show how understanding the trade-off space aids in
achieving energy-efficient designs. The high resemblance of recon-
structed meshes in the qualitative comparison reveals a key insight:
data sampling mainly affects boundary areas, which often receive
less attention from a user’s perspective. This suggests that accuracy
could potentially be further traded for energy savings as long as
critical regions are preserved and user experience is not impacted.
However, this also shows the need to understand constraints from
an end-to-end system perspective.

7.6 Limitations

We evaluate our work on ScanNet, which, while widely adopted
for scene reconstruction, has some limitations. (1) The datasets we
study may not always be representative for broader XR user cases.
While the high data redundancy exhibited is expected in XR, these
sequences may not reflect XR user motion patterns, which contain
a mix of saccadic and stationary motions [6, 17, 32]. Although
we mitigate redundancy with uniform sampling, advanced sampling
policies could be developed to better exploit redundancy in XR mo-
tions. (2) ScanNet’s ground-truth meshes may lack sufficient accu-
racy, potentially biasing the design evaluation if the ground-truth is
worse than both designs being compared. For instance, a 4 cm voxel
ground-truth mesh cannot effectively differentiate between a 3 cm
and a 1 cm mesh. Our parameter choice avoids this issue by using a
5 mm voxel when the ground-truth uses 4 mm. However, we point
this out as a consideration that should be taken into account. (3)
We evaluate a limited number of sequences mainly due to the time-
consuming nature of averaging energy measurements from multiple
rounds of scene reconstruction on mobile platforms. While results
across various sequence characteristics are consistent, expanding
the sequence scope could further solidify the conclusions.

8 CONCLUSION

As XR technologies proliferate, the need for energy-efficient de-
sign becomes paramount, especially in battery-constrained mobile
XR devices. This paper addresses the trilemma among the dimen-
sions of energy, latency, and accuracy for scene reconstruction, a
critical component of XR systems. We demonstrate that achiev-
ing energy efficiency requires a holistic approach that considers
all three dimensions simultaneously. We expose a broad trade-off
space through multiple energy-oriented optimizations with config-
urable parameters. Our measurement and analysis on an embedded
platform show that this space supports designs with a wide range of
trade-offs, with the Pareto-optimal frontier accessible only through
synergistic co-optimizations and consideration of constraints im-
posed by downstream consumers of scene reconstruction. Through
an exploration of multiple use cases, we show energy benefits of up
to 60X over the baseline, with acceptable latency and accuracy for
the downstream application. The insights gained from this study
are broadly applicable to other machine perception tasks, and em-
phasize the importance of a comprehensive system perspective in
developing energy-efficient XR systems.
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