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ABSTRACT
Large deflection modeling is a crucial field of study in the

analysis and design of compliant mechanisms (CM). The aim of

this research paper is to propose a machine learning approach
for predicting the deflection of discrete variable stiffness units
(DSUs) that cover a range from small to large deflections. The
primary structure of a DSU consists of a parallel guide beam
with a hollow cavity that can change stiffness discretely by
inserting or extracting a solid block. The principle is based on
changing the cross-sectional area properties of the hollow
section. Prior to model training, a large volume of data was
collected using finite element analysis (FEA) under different
loads and various dimensional parameters. Additionally, we
present three widely used machine learning-based models for
predicting beam deflection, taking into account prediction
accuracy and speed. Several experiments are conducted to
evaluate the performance of the models. The optimal machine
learning model can achieve a 1.97% error compared to FEA.
Furthermore, the model was employed in a practical application
for inverse design, with various cases presented depending on
the number of solved variables. This method provides a unique
perspective for studying the modeling of compliant mechanisms
and may be extended to other mechanical mechanisms.

Keywords: large deflection modeling, discrete variable
stiffness, machine learning, parallel beam, stiffness modeling,
compliant mechanism

1. INTRODUCTION

Collaborative robots are becoming increasingly popular in
shared workspaces within the industry due to the limitations of
conventional industrial robots that require enclosures for safety
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reasons [1]. To ensure human safety during joint working
operations, two types of safety measures, active and passive, are
usually employed [2]. An instance of active safety is the
application of 3D vision [3] to detect human proximity, causing
the robot to slow down or halt. Passive safety is typically
achieved by torque sensors that detect collisions, which
immediately stop the robot at the joint [4].

However, intrinsic safety methods are also necessary to
address potentially dangerous situations arising from electronic
module failure [5]. One viable approach involves the use of soft
materials to envelop the robotic arm [6], reducing the impact of
collisions. Alternatively, the safety issue can be addressed
through mechanical design approaches by adopting compliant
mechanisms [7].

In order to compute the large deflection of flexible beams,
which is the crucial component of compliant mechanisms, it
requires efficient and accurate analysis methods . Three common
methods for analyzing beam deflection include pseudo-rigid-
body methods (PRBM) [8], beam-constraint-model methods
(BCM) [9], chained beam-constraint-model[10], and finite
element methods (FEM). Howell and Midha proposed a method
for approximating the deflection path of end-loaded large-
deflection cantilever beams, which involves the use of a physical
model based on the PRBM. The values for key parameters have
been determined using elliptic integral equations and verified
with a numerical finite element algorithm in their paper. This
method simplifies complex problems associated with geometric
nonlinearity in large-deflection beams.

In [9], Su proposed the PRB 3R model approximates
cantilever beam deflection and solves large deflection beam
equations through numerical integration. A comprehensive tip
deflection atlas is obtained, and a three-dimensional search
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routine is developed to optimize the PRB 3R model. Error
analysis shows that the PRB 3R model has a smaller
approximation error than the PRB 1R model, and benefits
include the independence of external loads, small approximation
error for large deflection beams, and simpler constraint
equations.

In addition to the numerical simulations described above,
the FEA can also evaluate the mechanical performance of a
compliant mechanism. However, there are still several
challenges that need to be addressed in this method. Because
utilizing FEA models is high computational cost, difficult to
impose more physical and geometric constraints, and requires
non-measurable variables and suppositions that must be
validated through experimental testing, which is a costly and
intricate process [11]. To overcome those constraints, the authors
utilize the Machine Learning (ML) algorithm to identify and
reconstruct intricate internal correlations among multiple
variables using extensive datasets collected via FEA.

Despite a lot of conventional methods of calculation and
analysis that have been proposed and widely used, methods
based on machine learning are increasingly being implemented
in the field of mechanical engineering. For instance, [12]
proposed a machine learning-based algorithm to progressively
optimize the vehicle's thin-walled structure in order to increase
its crashworthiness. Using the K-means algorithm, the optimal
number of clusters was determined during the parametric design
phase. In [13], computational intelligence and machine learning
techniques were utilized to estimate the static properties of
specific fluidic muscles, and a high prediction accuracy was
achieved. In addition, [14] introduced and compared various
machine learning models for predicting the deformation and
shape of 2D cantilever beams.

In this work, we propose to apply machine learning
algorithms to estimate the degree of deflection of discrete
variable stiffness units, while achieving high prediction accuracy
and speed. We introduce the three most popular ML models
Support Vector Machine (SVM) [11], Gaussian process
regression (GPR) [15][16], and Multilayer Perceptron (MLP)
[17]. By comparing the obtained Root Mean Square Error
(RMSE) and prediction speed of the three models, we are able to
select the optimal algorithm that could be applied to the
prediction of DSU deflection.

In this paper, a novel machine learning approach is proposed
for predicting the deflection of discrete variable stiffness units
(DSUs), which are made of a parallel guide beam with a hollow
cavity that can change stiffness by inserting or extracting a solid
block. Section 2 of this paper outlines the mechanical design,
parameters, data collection, and machine learning methods.
Subsequently, the results and analysis of the ML model,
analytical model, and FEA are presented in section 3. In section
4, a comparison is made between the inverse design of the ML
model and the analytical model with different variables. Finally,
section 5 concludes the study.

2. PRINCIPLE AND MODELING

2.1 Principle of stiffness variation

The adjustment of mechanism stiffness can be achieved
through two fundamental methods, namely, continuous and
discrete. Fig. 1(a) displays a hollow parallel guided beam with a
rectangular cavity housing a solid block. By altering the position
of the block within the cavity, the stiffness of the beam can be
continuously changed. As the block approaches the cavity's
center, the stiffness increases, while it decreases as the block
approaches the cavity's ends. On the other hand, the DSU
depicted in Fig. 1(b) utilizes a discrete approach by moving the
solid block along the vertical direction of the beam's length. The
system offers two stiffness levels, with the block inserted in the
cavity with a larger stiffness, called on mode, and being pulled
out of the cavity with a lower stiffness, called off mode. The
variation of the beam's stiffness is attributed to changing the
cross-sectional area properties of its hollow section [18].

(a) CONTINUOUS STIFFNESS VARIATION

—on mcx;e\,‘ .

off mode

(b) DISCRETE STIFFNESS VARIATION
FIGURE 1: STIFFNESS CHANGE PRINCIPLES

2.2 Analytical stiffness model

In [19], we proposed a linear stiffness model for the DSU.
This model is suitable for small and medium deflections up to
10% relative to the beam length with an error less than 5.57%.
However, experimental data indicate that it is also applicable to
large deflections up to 30% within a specific parameter range
with an error less than 13.84%.

The main structure of the DSU is a parallel guide beam,
which can be customized in size and material. It has a hollow
parallel beam segment in the middle that is not thin-walled, and
a solid segment at both ends that has a certain thickness. Fig. 2
depicts a simplified force diagram of the DSU in off mode, where
aperpendicular force F'is applied to the right end tip of a parallel-
beam flexure of length L in an x-y coordinate system, with the x-
axis oriented horizontally to the right and the y-axis
perpendicular to the x-axis downward, and the z-axis is ignored
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here. The flexure is divided into three sections, with /; and
being solid rigid bodies with moment of inertia /; and
respectively, and /, being a compliant parallel beam with moment
of inertia /. The left end of the beam is fixed to the wall.
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FIGURE 2: FREE BODY DIAGRAM OF THE DSU IN OFF

MODE

In Fig. 2, 4, B, C, and D are located on the center auxiliary
line, with A being the stressed end of the flexure, B and C at the
two sections of /,, and D at the fixed end. The height of the
flexure is denoted as H, and the height of the cavity is 4. The
thickness of a leaf spring in /, is ¢ = (H — h)/2, and the width b is
used to calculate the moment of inertia, as shown in the formula:

I =13 =— (1)
I, == 2)

The flexure is divided into three sections 4B, BC, and CD
according to [y, />, and /5. The deflection of the three points 4, B,
and C are calculated one by one and applied to point 4 to obtain
the maximum deflection in the y-direction.

First, the BC and BD sections are treated as rigid, and only
the AB section is considered. At this point, point B can be
considered as on the wall, and point 4 is subject to the downward
force F. The deflection da; of point 4 is obtained. where E is
Young's modulus.

Fi3
6141 = ﬁ A3)

For the AB section, the angle of point 4 is not needed to be
calculated as it does not affect the final deflection of point 4.
Next, the AB and BD segments are rigid, and only the BC
segment is considered. At this point, point C can be considered
to be on the wall, and point B is subject to the downward force
F and the bending moment F7; from section AB. The deflection
angle 0g of BC can be obtained, which will be transmitted to 4
through /;, causing a deflection d, at point 4. The deflection da3
of point B can be obtained based on the theory of parallel guided
mechanisms [20,21].
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84 (6)
Then, segments AB and BC are regarded as rigid, and only
the segment CD is considered. At this time, point D is fixed on
the wall, and point C is affected by the downward force F and
the bending moment F(/, + /;) from segment AC. The force F'
produces an angle Ocr and a deflection dcr. The moment results
in an angle fcm and a deflection dcm. The angles cause point 4 to
have deflection das. The deflections dcr and dem at point C can
be transmitted in parallel to point 4, making point 4 with a
deflection das. These parameters are calculated below:

3

Ocr = % (7
Ocr = :Tli )

Ooy = T2l )
Scm = % (10)
84, = (Ocr + Ocp) (L + 1) (1)
8ag = Scr + Ocu (12)

Finally, by adding up all the deflections acting on point A,
the maximum deflection da of point 4 under the force F and its
stiffness ka are obtained.

6A == 6A1+6A2+6A3 +6A4 +6A5 (13)
F
ka=o (14)

When the DSU is in on mode, the size of the block is set to
coincide with the cavity of the beam, and it can be treated as a
cantilever beam.

However, considering the limitations of the above model for
larger deflections, it is necessary to take other approaches to
investigate including all deflection ranges. Machine learning
may be a feasible path.

2.3 Training data collection

For data generating, we conduct finite element analysis
(FEA) of the parallel beams in ABAQUS by a python script. The
3D beams are automatically generated by several for loops that
take several values at equal distances within a certain range in
the unit of mm and N. Five values are taken from /, €10 290];
four values are taken from /; =5 €[30 300 — /5] ; five values are
taken from HE [1.4 L] ; five values are taken from hE[1 H —

1.4]; three values are taken from b€ [5 L] ; ten values are taken
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from F'€[0.5 100]. The size of the mesh element increases as the
volume of the beam increases with element type C3D20. The
material is Al 6061, for which Young’s modulus is £ = 6.9x10'°
Pa and Poisons ratio is 0.33. Finally, 15000 data sets are
generated, and takes around 227 hours.

2.4 Machine learning models

In this section, three machine learning-based deflection
prediction algorithms SVM, GPR, and MLP are introduced.
SVM is a supervised learning model for predicting discrete
values, and its fundamental concept is to identify the optimal line
of fit. A non-parametric approach for performing regression
analysis on data that makes use of a Gaussian process prior is
known as Gaussian Process Regression. However, GPR is a
computationally expensive technique that is frequently used for
solving problems involving low and small sample sizes of
regression data. MLP, as demonstrated in Fig. 3, consisting of an
input layer, one or more hidden layers, and an output layer, is
most notably characterized by multiple neuron layers and is
therefore also a deep neural network. Table 1 depicts the MLP
model's training process in a straightforward manner.
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Input Layer Hidden Layer Output Layer

FIGURE 3: AN ILLUSTRATION OF MLP STRUCTURE

In our dataset generated by ABAQUS, the parameters /j, /5,
L, h, H, t, b, F, and ¢ are included. The other parameters are
specified as input besides J, and the ¢ values are set as output
targets. It should be noted that in order to help the models better
grasp the potential connections between the parameters and
achieve the best prediction performance, we also use multiple
relationship values between the parameters during training. Our
dataset contains 15000 data sets, which we divide randomly into
a training set having 12500 data sets and a test set involving 2500
data sets. Then we feed the data to three models, let the models
be trained and output the deflection values.

TABLE 1. MLP REGRESSION PSEUDOCODE

MLP Regression Pseudocode

1. Set up the original Multi-Layer Perceptron's weights and biases.
2. Set up the training parameters, such as learning rate, epoch number,
and batch size.
3. For each epoch:
a. Change the order of the training data;
b. Separate the data into groups;
c. For each batch:
i. Send the input through the MLP in reverse order;
ii. Use an applicable loss function to figure out the
loss;
iii. Send the error back through the MLP;
iv. Use an optimization algorithm to optimize the
weights and biases (e.g., SGD).
4. Estimate the regression performance of the model on a validation
set.

3. RESULTS ANALYSIS

3.1 Machine learning performance

We use the collected DSU deflection data to input three chosen
regression models, SVM, GPR, and MLP, and assess how well
they work. As shown in Table 2, RMSE [22], Error, and Speed
are used to compare the effectiveness of three ML models. The
higher the quality of the model, the smaller the RMSE value. All
three models have extremely low RMSE, indicating that the
average difference between the predicted and actual values is
minor. In addition, it is demonstrated that the MLP approach has
the fastest prediction speed. In light of both prediction accuracy
and prediction speed, we believe that MLP is the optimal
machine learning technique for predicting the deflection of
cantilever beams.

TABLE 2. PERFORMANCE COMPARISON OF ML MODELS

Models RMSE Speed (obs /sec)
SVM 0.0025 5.6e+3
GPR 0.0012 1.8e+2
MLP 0.0012 1.2e+4

3.2 Result comparison

In this Finite Element Analysis (FEA) simulation, we have
utilized structural steel as the material of the beam with a Young's
modulus of £ = 6.9x10'° Pa. The relationship between the
stiffness and deflection of the beam with respect to the varying
values of #/H has been demonstrated in Fig. 4(a) and Fig. 4(b),
respectively. The dimensions of the beam are as follows: L =300
mm, /;=[3=20 mm, ,=260 mm, H =b =20 mm, =10 N. As
anticipated, an increase in A/H results in a reduction in the
stiffness and an increase in deflection of the beam. Notably,
when #/H equals 0.2, the maximum error of kx from the
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theoretical model relative to the FEA is 11%, whereas the error
of the kv is 0.48%. The overestimation of deflection in the Avp
may be due to the lack of specific data samples.

Fig. 4(c) demonstrates the correlation between /L and
stiffness, while Fig. 4(d) illustrates the correlation between /»/L
and deflection. In this case, the dimensions of the beam are L =
300 mm, /y=5=(L—-5L)2, H=b=20mm, F=10N. As /L
increases, the stiffness of the beam decreases, while the
deflection increases. Notably, the three curves are almost
coincident. The error of the stiffness kv compared to the FEA is
less than 1.52%, and the error of ka is always within 2%. The
deflection may be underestimated in the kv formula, which can
be explained by the unavoidable factors in the experiments, such
as the systematic errors of experimental measurement of our
beams.

In Fig. 4(e), the relationship between b/L and stiffness is
demonstrated, while Fig. 4(f) illustrates the correlation between
b/L and deflection. In this case, the dimensions of the beam are
L=300mm, /,=/5=20 mm, =260 mm, H=20 mm, 7= 18
mm, FF = 10 N. As expected, an increase in b/L leads to an
increase in the stiffness of the beam and a decrease in deflection.
The error of the stiffness ka compared to the FEA is always
Withi1110§%, while the error of kv is 1.97%.
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FIGURE 4: COMPARISON OF THE STIFFNESS OF THE DSU OF
FEA, MACHINE LEARNING, AND THEORETICAL VALUE

4. INVERSE DESIGN

One of the main objectives of researchers studying
compliant mechanisms is to achieve practical applications. And
reverse design is a common method to achieve this goal. The
specific approach is to find other reasonable dimensional
parameters when the requirements of stiffness and some other
dimensional parameters are known. Next, suppose we want to
reverse the design of a variable stiffness gripper for a different
number of variables. Assume that there are several basic
parameters required here regarding the gripper: 1. minimum
stiffness K, is 5.36 N/mm; 2. total length L is 100 mm. 3.
Material is Al 6061 (£ = 69 GPa).

4.3 Case study of one variable

First, the case of finding one parameter unknown is
explored. Assuming that ¥ =10 N, /;= [;= 10 mm, H = 20 mm,
h =18 mm, and b = 20 mm are known, the length of the parallel
beam /, needs to be found. Using MATLAB to solve the existing
equation in reverse, we can obtain /;= 8 mm. Or use a machine
learning approach.

The aforementioned study has proved that our applied
algorithms have the ability to release the power of machine
learning methods in the linkage of the parallel beam and
learning-based regressions. More than this, the deployed
methods can lead to a new method for inverse design of size
dimensions. Specifically, different from the previous study, we
particularly estimate /, when giving the other pre-known factors,
including K, F, 0, L, I;, I3, H, h, and b. When all other factors are
fixed, /> can be uniquely determined with a result of /; = 8.06
mm. And the estimation error RMSE to be 0.026.

4.2 Case study of two variables

Next, the case with two unknown parameters were studied.
Assuming that F =10 N, /;=[3= 10 mm, H = 20 mm, and b =20
mm are known, the length of the parallel beam /; and 4 needs to
be found. The rang of /> is required from 5 mm to 98 mm, and %
is limited from 10 mm to 19 mm. MATLAB is used to solve the
relationship between /; and / and generate the plot as shown in
Fig.5. We can choose a set of /; and / from the line in the plot,
such as (80 mm, 18 mm). Also, using identical samples as input,
and feed them into MLP model, the relationship between [, and
h. A similar set of [, and /4 can be obtained from the red line in
the plot, which (80 mm, 17.96 mm).
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4.3 Case study of three variables

Additionally, we investigated cases involving three
unknown parameters. Assuming F =10 N, /;= /3= 10 mm, and
H =20 mm are known, we aimed to determine the values of [,
b, and h for the parallel beam. Specifically, the range of /> was
required to be between 5 mm to 98 mm, the range of b between
5 mm to 40 mm, and the range of /4 between 10 mm to 19 mm.
We employed MATLAB to solve the relationships between />, b,
and 4, and the resulting plot is presented in Fig. 6. A set of [, b,
and 4 can be chosen from the surface in the plot, such as (80 mm,
18 mm, 20 mm).
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FIGURE 5: FEASIBLE REGION OF /,, b, AND A

5. CONCLUSIONS

In conclusion, this paper has presented a novel machine
learning approach for predicting the deflection of discrete
variable stiffness units (DSUs). Three compliant mechanism
analysis methods based on machine learning were introduced
and compared, and the results showed that these models are
faster and more accurate at predicting future outcomes compared
to FEA. The study also included a large volume of data collected
using FEA under different loads and parameters. An inverse
design was implemented, which can predict one or multiple
beam parameters gave the other known parameters. While the
machine learning algorithm will be improved to increase
prediction accuracy, the future goal is to simultaneously predict

three or more beam parameters. Overall, this paper presents a
certain contribution to the field of compliant mechanism analysis
and highlights the potential of machine learning in the area of
compliant mechanism.
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