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ABSTRACT 

Large deflection modeling is a crucial field of study in the 
analysis and design of compliant mechanisms (CM). The aim of 
this research paper is to propose a machine learning approach 
for predicting the deflection of discrete variable stiffness units 
(DSUs) that cover a range from small to large deflections. The 
primary structure of a DSU consists of a parallel guide beam 
with a hollow cavity that can change stiffness discretely by 
inserting or extracting a solid block. The principle is based on 
changing the cross-sectional area properties of the hollow 
section. Prior to model training, a large volume of data was 
collected using finite element analysis (FEA) under different 
loads and various dimensional parameters. Additionally, we 
present three widely used machine learning-based models for 
predicting beam deflection, taking into account prediction 
accuracy and speed. Several experiments are conducted to 
evaluate the performance of the models. The optimal machine 
learning model can achieve a 1.97% error compared to FEA. 
Furthermore, the model was employed in a practical application 
for inverse design, with various cases presented depending on 
the number of solved variables. This method provides a unique 
perspective for studying the modeling of compliant mechanisms 
and may be extended to other mechanical mechanisms. 

 
Keywords: large deflection modeling, discrete variable 
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1. INTRODUCTION 

Collaborative robots are becoming increasingly popular in 
shared workspaces within the industry due to the limitations of 
conventional industrial robots that require enclosures for safety 
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reasons [1]. To ensure human safety during joint working 
operations, two types of safety measures, active and passive, are 
usually employed [2]. An instance of active safety is the 
application of 3D vision [3] to detect human proximity, causing 
the robot to slow down or halt. Passive safety is typically 
achieved by torque sensors that detect collisions, which 
immediately stop the robot at the joint [4]. 

However, intrinsic safety methods are also necessary to 
address potentially dangerous situations arising from electronic 
module failure [5]. One viable approach involves the use of soft 
materials to envelop the robotic arm [6], reducing the impact of 
collisions. Alternatively, the safety issue can be addressed 
through mechanical design approaches by adopting compliant 
mechanisms [7].  

In order to compute the large deflection of flexible beams, 
which is the crucial component of compliant mechanisms, it 
requires efficient and accurate analysis methods . Three common 
methods for analyzing beam deflection include pseudo-rigid-
body methods (PRBM) [8], beam-constraint-model methods 
(BCM) [9], chained beam-constraint-model[10], and finite 
element methods (FEM). Howell and Midha proposed a method 
for approximating the deflection path of end-loaded large-
deflection cantilever beams, which involves the use of a physical 
model based on the PRBM. The values for key parameters have 
been determined using elliptic integral equations and verified 
with a numerical finite element algorithm in their paper. This 
method simplifies complex problems associated with geometric 
nonlinearity in large-deflection beams. 

In [9], Su proposed the PRB 3R model approximates 
cantilever beam deflection and solves large deflection beam 
equations through numerical integration. A comprehensive tip 
deflection atlas is obtained, and a three-dimensional search 

mailto:dgan@purdue.edu


 2 © 2022 by ASME 

routine is developed to optimize the PRB 3R model. Error 
analysis shows that the PRB 3R model has a smaller 
approximation error than the PRB 1R model, and benefits 
include the independence of external loads, small approximation 
error for large deflection beams, and simpler constraint 
equations. 

In addition to the numerical simulations described above, 
the FEA can also evaluate the mechanical performance of a 
compliant mechanism. However, there are still several 
challenges that need to be addressed in this method. Because 
utilizing FEA models is high computational cost, difficult to 
impose more physical and geometric constraints, and requires 
non-measurable variables and suppositions that must be 
validated through experimental testing, which is a costly and 
intricate process [11]. To overcome those constraints, the authors 
utilize the Machine Learning (ML) algorithm to identify and 
reconstruct intricate internal correlations among multiple 
variables using extensive datasets collected via FEA. 

Despite a lot of conventional methods of calculation and 
analysis that have been proposed and widely used, methods 
based on machine learning are increasingly being implemented 
in the field of mechanical engineering. For instance, [12] 
proposed a machine learning-based algorithm to progressively 
optimize the vehicle's thin-walled structure in order to increase 
its crashworthiness. Using the K-means algorithm, the optimal 
number of clusters was determined during the parametric design 
phase. In [13], computational intelligence and machine learning 
techniques were utilized to estimate the static properties of 
specific fluidic muscles, and a high prediction accuracy was 
achieved. In addition, [14] introduced and compared various 
machine learning models for predicting the deformation and 
shape of 2D cantilever beams.  

In this work, we propose to apply machine learning 
algorithms to estimate the degree of deflection of discrete 
variable stiffness units, while achieving high prediction accuracy 
and speed. We introduce the three most popular ML models 
Support Vector Machine (SVM) [11], Gaussian process 
regression (GPR) [15][16], and Multilayer Perceptron (MLP) 
[17]. By comparing the obtained Root Mean Square Error 
(RMSE) and prediction speed of the three models, we are able to 
select the optimal algorithm that could be applied to the 
prediction of DSU deflection. 

In this paper, a novel machine learning approach is proposed 
for predicting the deflection of discrete variable stiffness units 
(DSUs), which are made of a parallel guide beam with a hollow 
cavity that can change stiffness by inserting or extracting a solid 
block. Section 2 of this paper outlines the mechanical design, 
parameters, data collection, and machine learning methods. 
Subsequently, the results and analysis of the ML model, 
analytical model, and FEA are presented in section 3. In section 
4, a comparison is made between the inverse design of the ML 
model and the analytical model with different variables. Finally, 
section 5 concludes the study. 
 
 

2. PRINCIPLE AND MODELING 
 

2.1 Principle of stiffness variation 
The adjustment of mechanism stiffness can be achieved 

through two fundamental methods, namely, continuous and 
discrete. Fig. 1(a) displays a hollow parallel guided beam with a 
rectangular cavity housing a solid block. By altering the position 
of the block within the cavity, the stiffness of the beam can be 
continuously changed. As the block approaches the cavity's 
center, the stiffness increases, while it decreases as the block 
approaches the cavity's ends. On the other hand, the DSU 
depicted in Fig. 1(b) utilizes a discrete approach by moving the 
solid block along the vertical direction of the beam's length. The 
system offers two stiffness levels, with the block inserted in the 
cavity with a larger stiffness, called on mode, and being pulled 
out of the cavity with a lower stiffness, called off mode. The 
variation of the beam's stiffness is attributed to changing the 
cross-sectional area properties of its hollow section [18]. 

 
(a) CONTINUOUS STIFFNESS VARIATION 

 
(b) DISCRETE STIFFNESS VARIATION 

FIGURE 1: STIFFNESS CHANGE PRINCIPLES  
 
2.2 Analytical stiffness model 

In [19], we proposed a linear stiffness model for the DSU. 
This model is suitable for small and medium deflections up to 
10% relative to the beam length with an error less than 5.57%. 
However, experimental data indicate that it is also applicable to 
large deflections up to 30% within a specific parameter range 
with an error less than 13.84%. 

 
The main structure of the DSU is a parallel guide beam, 

which can be customized in size and material. It has a hollow 
parallel beam segment in the middle that is not thin-walled, and 
a solid segment at both ends that has a certain thickness. Fig. 2 
depicts a simplified force diagram of the DSU in off mode, where 
a perpendicular force F is applied to the right end tip of a parallel-
beam flexure of length L in an x-y coordinate system, with the x-
axis oriented horizontally to the right and the y-axis 
perpendicular to the x-axis downward, and the z-axis is ignored 
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here. The flexure is divided into three sections, with l1 and l3 
being solid rigid bodies with moment of inertia I1 and I3 

respectively, and l2 being a compliant parallel beam with moment 
of inertia I2. The left end of the beam is fixed to the wall. 

 
FIGURE 2: FREE BODY DIAGRAM OF THE DSU IN OFF 
MODE 

In Fig. 2, A, B, C, and D are located on the center auxiliary 
line, with A being the stressed end of the flexure, B and C at the 
two sections of l2, and D at the fixed end. The height of the 
flexure is denoted as H, and the height of the cavity is h. The 
thickness of a leaf spring in l2 is t = (H – h)/2, and the width b is 
used to calculate the moment of inertia, as shown in the formula: 

 

𝐼1 = 𝐼3 =
𝐻3𝑏

12
                             (1) 

𝐼2 =
𝑡 3𝑏

12
                             (2) 

 
The flexure is divided into three sections AB, BC, and CD 

according to l1, l2, and l3. The deflection of the three points A, B, 
and C are calculated one by one and applied to point A to obtain 
the maximum deflection in the y-direction.  

First, the BC and BD sections are treated as rigid, and only 
the AB section is considered. At this point, point B can be 
considered as on the wall, and point A is subject to the downward 
force F. The deflection δA1 of point A is obtained. where E is 
Young's modulus. 

𝛿𝐴1
=

𝐹𝑙1
3

3𝐸𝐼1
                                (3) 

 For the AB section, the angle of point A is not needed to be 
calculated as it does not affect the final deflection of point A. 
Next, the AB and BD segments are rigid, and only the BC 
segment is considered. At this point, point C can be considered 
to be on the wall, and point B is subject to the downward force 
F and the bending moment Fl1 from section AB. The deflection 
angle θB of BC can be obtained, which will be transmitted to A 
through l1, causing a deflection δA2 at point A. The deflection δA3 
of point B can be obtained based on the theory of parallel guided 
mechanisms [20,21]. 

𝜃𝐵 =
𝑡 2

6ℎ2
(

𝐹𝑙1𝑙2

𝐸𝐼2
+

𝐹𝑙2
2

2𝐸𝐼2
)                      (4) 

𝛿𝐴2
= 𝜃𝐵𝑙1                              (5) 

𝛿𝐴3
= 𝛿𝐵 =

𝐹𝑙2
3

24𝐸𝐼2
                          (6) 

Then, segments AB and BC are regarded as rigid, and only 
the segment CD is considered. At this time, point D is fixed on 
the wall, and point C is affected by the downward force F and 
the bending moment F(l1 + l2) from segment AC. The force F 
produces an angle θCF and a deflection δCF. The moment results 
in an angle θCM and a deflection δCM. The angles cause point A to 
have deflection δA4. The deflections δCF and δCM at point C can 
be transmitted in parallel to point A, making point A with a 
deflection δA5. These parameters are calculated below:  

 𝜃𝐶𝐹 =
𝐹𝑙3

2

2𝐸𝐼3
                               (7) 

 𝛿𝐶𝐹 =
𝐹𝑙3

3

3𝐸𝐼3
                              (8) 

𝜃𝐶𝑀 =
𝐹(𝑙1+𝑙2)𝑙3

𝐸𝐼
                                (9) 

𝛿𝐶𝑀 =
𝐹(𝑙1+𝑙2)𝑙3

2

2𝐸𝐼3
                          (10) 

𝛿𝐴4
= (𝜃𝐶𝐹 + 𝜃𝐶𝑀)(𝑙1 + 𝑙2)                (11) 

𝛿𝐴5
= 𝛿𝐶𝐹 + 𝛿𝐶𝑀                         (12) 

Finally, by adding up all the deflections acting on point A, 
the maximum deflection δA of point A under the force F and its 
stiffness kA are obtained. 

𝛿𝐴 = 𝛿𝐴1
+ 𝛿𝐴2

+ 𝛿𝐴3
+ 𝛿𝐴4

+ 𝛿𝐴5
        (13) 

𝑘𝐴 =
𝐹

𝛿𝐴
                           (14) 

When the DSU is in on mode, the size of the block is set to 
coincide with the cavity of the beam, and it can be treated as a 
cantilever beam.  

However, considering the limitations of the above model for 
larger deflections, it is necessary to take other approaches to 
investigate including all deflection ranges. Machine learning 
may be a feasible path. 

 
2.3 Training data collection 

For data generating, we conduct finite element analysis 
(FEA) of the parallel beams in ABAQUS by a python script. The 
3D beams are automatically generated by several for loops that 
take several values at equal distances within a certain range in 
the unit of mm and N. Five values are taken from l2∈[10 290]; 
four values are taken from l1 = l3∈[30 300 – l2] ; five values are 
taken from H∈[1.4 l2] ; five values are taken from h∈[1 H – 
1.4]; three values are taken from b∈[5 L] ; ten values are taken 
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from F∈[0.5 100]. The size of the mesh element increases as the 
volume of the beam increases with element type C3D20. The 
material is Al 6061, for which Young’s modulus is E = 6.9×1010 
Pa and Poisons ratio is 0.33. Finally, 15000 data sets are 
generated, and takes around 227 hours.  

 
2.4 Machine learning models 

In this section, three machine learning-based deflection 
prediction algorithms SVM, GPR, and MLP are introduced. 
SVM is a supervised learning model for predicting discrete 
values, and its fundamental concept is to identify the optimal line 
of fit. A non-parametric approach for performing regression 
analysis on data that makes use of a Gaussian process prior is 
known as Gaussian Process Regression. However, GPR is a 
computationally expensive technique that is frequently used for 
solving problems involving low and small sample sizes of 
regression data. MLP, as demonstrated in Fig. 3, consisting of an 
input layer, one or more hidden layers, and an output layer, is 
most notably characterized by multiple neuron layers and is 
therefore also a deep neural network. Table 1 depicts the MLP 
model's training process in a straightforward manner. 

 
FIGURE 3：AN ILLUSTRATION OF MLP STRUCTURE 
 

In our dataset generated by ABAQUS, the parameters l1, l2, 
l3, h, H, t, b, F, and δ are included. The other parameters are 
specified as input besides δ, and the δ values are set as output 
targets. It should be noted that in order to help the models better 
grasp the potential connections between the parameters and 
achieve the best prediction performance, we also use multiple 
relationship values between the parameters during training. Our 
dataset contains 15000 data sets, which we divide randomly into 
a training set having 12500 data sets and a test set involving 2500 
data sets. Then we feed the data to three models, let the models 
be trained and output the deflection values. 

TABLE 1. MLP REGRESSION PSEUDOCODE 

 
 

3. RESULTS ANALYSIS 
 
3.1 Machine learning performance 
We use the collected DSU deflection data to input three chosen 
regression models, SVM, GPR, and MLP, and assess how well 
they work. As shown in Table 2, RMSE [22], Error, and Speed 
are used to compare the effectiveness of three ML models. The 
higher the quality of the model, the smaller the RMSE value. All 
three models have extremely low RMSE, indicating that the 
average difference between the predicted and actual values is 
minor. In addition, it is demonstrated that the MLP approach has 
the fastest prediction speed. In light of both prediction accuracy 
and prediction speed, we believe that MLP is the optimal 
machine learning technique for predicting the deflection of 
cantilever beams. 

TABLE 2. PERFORMANCE COMPARISON OF ML MODELS 

 
 
 
 
 
 
 
 
3.2 Result comparison 

In this Finite Element Analysis (FEA) simulation, we have 
utilized structural steel as the material of the beam with a Young's 
modulus of E = 6.9×1010 Pa. The relationship between the 
stiffness and deflection of the beam with respect to the varying 
values of h/H has been demonstrated in Fig. 4(a) and Fig. 4(b), 
respectively. The dimensions of the beam are as follows: L = 300 
mm, l1 = l3 = 20 mm, l2 = 260 mm, H = b = 20 mm, F = 10 N. As 
anticipated, an increase in h/H results in a reduction in the 
stiffness and an increase in deflection of the beam. Notably, 
when h/H equals 0.2, the maximum error of kA from the 

MLP Regression Pseudocode 
1. Set up the original Multi-Layer Perceptron's weights and biases. 
2. Set up the training parameters, such as learning rate, epoch number, 
and batch size. 
3. For each epoch: 

a. Change the order of the training data; 
b. Separate the data into groups; 
c. For each batch:  

i. Send the input through the MLP in reverse order; 
ii. Use an applicable loss function to figure out the  
loss; 
iii. Send the error back through the MLP; 
iv. Use an optimization algorithm to optimize the  
weights and biases (e.g., SGD). 

4. Estimate the regression performance of the model on a validation 
set. 

Models RMSE Speed (obs /sec) 

SVM 0.0025 5.6e+3 

GPR 0.0012 1.8e+2 

MLP 0.0012 1.2e+4 
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theoretical model relative to the FEA is 11%, whereas the error 
of the kML is 0.48%. The overestimation of deflection in the kML 
may be due to the lack of specific data samples.  

Fig. 4(c) demonstrates the correlation between l2/L and 
stiffness, while Fig. 4(d) illustrates the correlation between l2/L 
and deflection. In this case, the dimensions of the beam are L = 
300 mm, l1 = l3 = (L – l2)/2, H = b = 20 mm, F = 10 N. As l2/L 
increases, the stiffness of the beam decreases, while the 
deflection increases. Notably, the three curves are almost 
coincident. The error of the stiffness kML compared to the FEA is 
less than 1.52%, and the error of kA is always within 2%. The 
deflection may be underestimated in the kML formula, which can 
be explained by the unavoidable factors in the experiments, such 
as the systematic errors of experimental measurement of our 
beams. 

In Fig. 4(e), the relationship between b/L and stiffness is 
demonstrated, while Fig. 4(f) illustrates the correlation between 
b/L and deflection. In this case, the dimensions of the beam are 
L = 300 mm, l1 = l3 = 20 mm, l2 = 260 mm, H = 20 mm, h = 18 
mm, F = 10 N. As expected, an increase in b/L leads to an 
increase in the stiffness of the beam and a decrease in deflection. 
The error of the stiffness kA compared to the FEA is always 
within 5%, while the error of kML is 1.97%. 

 
        (a) l2/L VS STIFFNESS;   (b) l2/L VS DEFLECTION; 
  

 
(c) b/L VS STIFFNESS;    (d) b/L VS DEFLECTION; 

 
(e) h/H VS STIFFNESS;     (f) h/H VS DEFLECTION; 

 
FIGURE 4: COMPARISON OF THE STIFFNESS OF THE DSU OF 
FEA, MACHINE LEARNING, AND THEORETICAL VALUE  
 

4. INVERSE DESIGN 
One of the main objectives of researchers studying 

compliant mechanisms is to achieve practical applications. And 
reverse design is a common method to achieve this goal. The 
specific approach is to find other reasonable dimensional 
parameters when the requirements of stiffness and some other 
dimensional parameters are known. Next, suppose we want to 
reverse the design of a variable stiffness gripper for a different 
number of variables. Assume that there are several basic 
parameters required here regarding the gripper: 1. minimum 
stiffness Kmin is 5.36 N/mm; 2. total length L is 100 mm. 3. 
Material is Al 6061 (E = 69 GPa). 
 
4.3 Case study of one variable 

First, the case of finding one parameter unknown is 
explored. Assuming that F =10 N, l1 = l3 = 10 mm, H = 20 mm, 
h = 18 mm, and b = 20 mm are known, the length of the parallel 
beam l2 needs to be found. Using MATLAB to solve the existing 
equation in reverse, we can obtain l2 = 8 mm. Or use a machine 
learning approach. 

The aforementioned study has proved that our applied 
algorithms have the ability to release the power of machine 
learning methods in the linkage of the parallel beam and 
learning-based regressions. More than this, the deployed 
methods can lead to a new method for inverse design of size 
dimensions. Specifically, different from the previous study, we 
particularly estimate l2 when giving the other pre-known factors, 
including K, F, δ, L, l1, l3, H, h, and b. When all other factors are 
fixed, l2 can be uniquely determined with a result of l2 = 8.06 
mm. And the estimation error RMSE to be 0.026. 
 
4.2 Case study of two variables 

Next, the case with two unknown parameters were studied. 
Assuming that F =10 N, l1 = l3 = 10 mm, H = 20 mm, and b = 20 
mm are known, the length of the parallel beam l2 and h needs to 
be found. The rang of l2 is required from 5 mm to 98 mm, and h 
is limited from 10 mm to 19 mm. MATLAB is used to solve the 
relationship between l2 and h and generate the plot as shown in 
Fig.5. We can choose a set of l2 and h from the line in the plot, 
such as (80 mm, 18 mm). Also, using identical samples as input, 
and feed them into MLP model, the relationship between l2 and 
h. A similar set of l2 and h can be obtained from the red line in 
the plot, which (80 mm, 17.96 mm). 
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FIGURE 5: FEASIBLE SET OF l2 AND h 

 
4.3 Case study of three variables 

Additionally, we investigated cases involving three 
unknown parameters. Assuming F =10 N, l1 = l3 = 10 mm, and 
H = 20 mm are known, we aimed to determine the values of l2, 
b, and h for the parallel beam. Specifically, the range of l2 was 
required to be between 5 mm to 98 mm, the range of b between 
5 mm to 40 mm, and the range of h between 10 mm to 19 mm. 
We employed MATLAB to solve the relationships between l2, b, 
and h, and the resulting plot is presented in Fig. 6. A set of l2, b, 
and h can be chosen from the surface in the plot, such as (80 mm, 
18 mm, 20 mm). 

 
FIGURE 5: FEASIBLE REGION OF l2, b, AND h 
 
5. CONCLUSIONS 

In conclusion, this paper has presented a novel machine 
learning approach for predicting the deflection of discrete 
variable stiffness units (DSUs). Three compliant mechanism 
analysis methods based on machine learning were introduced 
and compared, and the results showed that these models are 
faster and more accurate at predicting future outcomes compared 
to FEA. The study also included a large volume of data collected 
using FEA under different loads and parameters. An inverse 
design was implemented, which can predict one or multiple 
beam parameters gave the other known parameters. While the 
machine learning algorithm will be improved to increase 
prediction accuracy, the future goal is to simultaneously predict 

three or more beam parameters. Overall, this paper presents a 
certain contribution to the field of compliant mechanism analysis 
and highlights the potential of machine learning in the area of 
compliant mechanism. 
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