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Abstract— Robotic grippers are receiving increasing attention
in various industries as essential components of robots for
interacting and manipulating objects. While significant progress
has been made in the past, conventional rigid grippers still have
limitations in handling irregular objects and can damage fragile
objects. We have shown that soft grippers offer deformability
to adapt to a variety of object shapes and maximize object
protection. At the same time, dynamic vision sensors (e.g.,
event-based cameras) are capable of capturing small changes
in brightness and streaming them asynchronously as events,
unlike RGB cameras, which do not perform well in low-light
and fast-moving environments. In this paper, a dynamic-vision-
based algorithm is proposed to measure the force applied to
the gripper. In particular, we first set up a DVXplorer Lite
series event camera to capture twenty-five sets of event data.
Second, motivated by the impressive performance of the Vision
Transformer (ViT) algorithm in dense image prediction tasks,
we propose a new approach that demonstrates the potential
for force estimation and meets the requirements of real-world
scenarios. We extensively evaluate the proposed algorithm on a
wide range of scenarios and settings, and show that it consistently
outperforms recent approaches.

Index Terms— Event-based Vision, Vision Transformer, Dy-
namic Vision Sensor, Soft Robotic Gripper.

I. INTRODUCTION

The robotic hand represents a critical component of
a robot, typically mounted on the robot’s arms. A key
part of the robotic hand is the gripper, which facilitates
interaction with the environment and manipulation of target
items. Gripping mechanisms find extensive application across
various industrial sectors, including the food industry [17],
healthcare [16], and agriculture [8]. Traditional grippers often
employ rigid metals as their primary material. However, such
rigid grippers lack flexibility in handling objects with irregular
shapes and may inadvertently damage items made from fragile
materials. In contrast, innovative soft robotic grippers can
deform to accommodate the shape and size of the target object,
thereby enhancing the object’s protection. Consequently, soft
grippers emerge as the preferred option for many manipulation
tasks [11], [10].
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Using vision-based methods to predict the deformation
and force applied to the robotic gripper is a popular topic,
while the use of traditional RGB cameras is always the first
choice. However, when the experimental environment is dark
or the gripper is moving very fast, RGB cameras cannot
clearly capture the trajectory of objects, or even get images
with significant motion blur, where thermal imaging [19]
and LiDAR [20] are often utilized as compensation. Event
cameras, known as bio-inspired sensors, are able to detect very
slight brightness changes at the pixel-level and output them as
events, as shown in Fig. 1. The events include four important
information: timestamps, x coordinates, y coordinates, and
their polarities. Compared to standard cameras, event cameras
have four remarkable advantages. High Temporal Resolution:
Capture slight brightness changes fast, and output events
in the order of us. Low Power Consumption: Due to their
efficient design, which only transmits brightness changes and
does not output redundant data, event cameras achieve low
power consumption. Wide Dynamic Range: Event cameras
can acquire visual information by over 120 dB, exceeding
standard cameras by over 60 dB, thanks to logarithmic-
scale photoreceptors and asynchronous pixel operation. Low
Latency: Event cameras have ultra-low latency since pixels
detect and transmit changes independently without global
exposure timing [12]. Therefore, event cameras have a strong
ability to capture gripper motion, even if the experimental
environment is not perfect.

The cooperation of machine learning and event cameras
is a new way of solving computer vision problems, which
achieves great performance [32], [24], [25]. For example,
object detection [26], object tracking [28], 3D reconstruction
[30], steering prediction for self-driving cars [22], optical flow
and intensity estimation [2], etc. These methods typically use
a continuous stream of asynchronous events, which allows
for efficient processing. Nevertheless, due to the sparse and
unstructured nature of the event streams, it is a challenge
to directly observe and process the event data [37]. To
better adapt to the traditional frame-based computer vision
algorithms, most event data is converted into event frames
based on timestamp or polarity.

The advantage of exploring the Vision Transformer on
force measurement via event frames has become evident.
Notably, in a real-world scenario (Fig. 2), we achieve a
13.0% percentage error and 0.13 N RMSE compared to the
ground truth force sensor measurement, benefiting from the
event frame representation and event transformer architecture.
In the application of our previous proposed variable stiffness
robotic gripper [11], it is an important part of outputting
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Comparison of RGB Camera and event camera outputs in experimental scenarios. While traditional cameras output frame-based images, event

cameras asynchronously output detected events. The comparison reveals significant distinctions in how these two types of cameras capture and process

visual information.

required force to the control end. ArUco marker detection
strategy was used to monitor the deformation of the gripper,
enabling the control end to read the force applied to the
grippers efficiently. However, while applying this technique in
a less-than-ideal environment, for example, if the illumination
is not enough, the marker detection would become intermittent.
Therefore, in the paper, we propose a vision-based Vision
Transformer in force measurement task, which is able to
capture the slight deformation of the robotic gripper and
make force predictions with high accuracy.

The main contributions of this work are summarised as:

« We propose a novel approach to estimate the force
applied to a robotic gripper using a Dynamic Vision
Sensor.

o We collect a dataset using our custom-designed robotic
gripper, a force sensor and an event camera, named
RG-Event, which contains 1000 event frames and their
corresponding force labels.

o We utilize state-of-the-art Vision Transformer architec-
ture as a backbone to train the data collected using an
event camera. We show that Vision Transformer performs
well in regression tasks.

II. RELATED WORK

In this section, we explore various recent advancements
in event-based vision and Vision Transformer techniques,
as well as existing methodologies for force measurement in
robotics, encompassing traditional contact-type force sensors,
and sensorless approaches.

A. Event-based Vision

Event-based vision is a developing technique and has great
potential. Due to their advantages of high temporal resolution,
low power consumption, low latency and high dynamic range,

these bio-inspired visual sensors are able to be used in various
complex environments. In [22], the authors proposed a deep
neural network for steering angle prediction using event
cameras, showcasing superior performance in challenging
conditions like low light and fast motion compared to
traditional cameras. Weng et al. first presented a novel
Transformer-based network called ET-Net for event-based
video reconstruction [37]. GSCEventMOD was an approach
for detecting moving objects based on events, which had great
performance in challenging scenarios such as fast movements
and sudden changes in lighting conditions [23]. In addition,
a lot of computer vision applications such as optical flow
estimation, depth estimation, motion segmentation, and visual-
inertial odometry all achieved excellent performances using
event-based methods [12].

B. Vision Transformer in Prediction

Transformer refers to a type of neural network architecture
that was initially utilized in natural language processing (NLP)
tasks, such as machine translation and text generation [9].
Inspired by the successful utilization in NLP, Transformer has
been gradually applied to computer vision tasks [34], [33],
[5], which largely improved conventional CNN and LSTM
based networks [35], [7]. For instance, Ranftl et al. presented
a novel architecture called dense prediction transformers,
which employed Vision Transformer instead of convolutional
networks as the foundational structure for tasks requiring
dense predictions [29]. In [27], Vision Transformer was
employed alongside Convolutional Neural Networks (CNN)
to forecast urban traffic congestion. TransDepth is also a
novel transformer-based network, aiming to make pixel-wise
predictions in various computer vision tasks, such as depth
estimation, surface normal estimation. Lu et al. introduced
TransFlow which used a pure transformer for optical flow
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Fig. 2. Overview of the proposed method Force-EvT. The output of the event camera is converted into event frames over a certain time interval 7T". The
events are colored according to polarity (positive in green, negative in red). Then, the event frames are processed by Vision Transformer (ViT) network,

which makes force prediction of the robotic gripper.

estimation, demonstrating the effectiveness of incorporating
spatial self-attention and cross-attention mechanisms [21].

C. Force Measurement

The existing force measurement methods applied to robot
hands usually fall into two categories, namely traditional force
sensors and non-sensor methods. Researchers have proposed
various force sensors integrated into gripper structures. In
[14], the Gifu hand II is introduced, featuring the capability
to be equipped with a six-axis force sensor at each fingertip,
showcasing high integration levels. Dai et al. developed a
contact force transducer based on a six-component Stewart
platform to enhance reliability and precision [6]. In [15],
Kuang et al. introduce a novel hinged-joint cantilever beam
sensor structure designed to reduce sensor nonlinearity.
The aforementioned traditional contact-type force sensors
typically exhibit high accuracy and reliability but come with
drawbacks, such as occupying substantial structural space and
increasing the complexity of the structure. Therefore, with
the advancements in technologies like machine learning and
computer vision, researchers have interdisciplinarily proposed
new sensorless methods for force sensing. For instance, [38]
captures deformations in nodes located on the framework of
the fin ray gripper, [39] observes the movement of markers
on the soft layer, [41] measures changes in the angle of
the fingers. Furthermore, Baghaei Naeini et al. proposed a
dynamic-vision based approach to measure contact force on

silicone membrane, using Convolutional Recurrent Neural
Networks [1]. These sensorless methods simplify the structure
of robotic hands. However, they also face the challenge of
insufficient precision. Additionally, the RGB cameras used
to capture deformations operate continuously, potentially
consuming plenty of system resources and resulting in high
energy consumption.

III. METHODOLOGY

As shown in Figure 2, our methodology is designed to
precisely quantify the forces applied to a robotic gripper,
utilizing data captured by an event camera. In this section,
we first address the conversion of raw event data into a
structured frame format, according to a certain time interval.
Then, we employ a regression algorithm based on the Vision
Transformer architecture to estimate the forces applied to the
robotic gripper. Finally, we introduce the loss function that
guides training towards precise predictions.

A. Event Frame based Representation

Deep learning algorithms, which stand at the forefront
of recent advancements in machine learning, have been
developed with a focus on processing conventional frame-
based data [18]. To bridge the gap between the unique data
structure produced by event cameras and the requirements
of these advanced algorithms, we first perform an event-to-
frame conversion. In this case, the asynchronous events will
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Fig. 3. Experimental setup to conduct data collection using an event camera,
a force sensor, and robotic grippers.

be converted into synchronous frames. As mentioned before,
an event, as captured by an event camera, consists of four
key attributes: the x-coordinate (z;), the y-coordinate (y;),
the timestamp (t;), and the polarity (p;) of the change in
brightness. Therefore, we use e; = (x;, Y, t;, p;) to represent
the attributes.

In general, event-to-frame conversion can be approached
through various methodologies, primarily based on times-
tamps, the number of events, or the polarity of events [40].
In this work, we adopt a timestamp-based approach for
constructing event frames. Given a certain time interval 7, a
flow of events would be divided into numerous event-based
frames. Since the event camera is highly sensitive to changes
of brightness, the slight deformation of the robotic gripper
could be clearly captured, and the edges of the gripper are
clearly depicted in each event frame.

B. Vision Transformer based Force Measurement

Vision Transformer (ViT) is a powerful deep learning
architecture that can be used in computer vision tasks. In this
work, we leverage the ViT as a foundational architecture to
estimate the forces applied to a robotic gripper, an application
where precision and contextual understanding of spatial
relationships are important.

Unlike traditional Convolutional Neural Networks (CNNs)
which analyze images through a hierarchical sequence of
localized filters, ViT approaches the task by dividing the
input event frames into fixed-size patches (8 x 8 pixels in
our implementation). Each patch is then transformed into a
high-dimensional vector through a linear embedding process.
This transformation not only preserves the spatial hierarchy of
the original image but also allows for a more granular analysis
of the visual content. Once embedded, these patches are fed
into a series of transformer encoder, allowing the model to
capture both local and global features within patches and learn
the relationships across the entire image. For force estimation
on a robotic gripper, this means the ViT can intelligently
focus on critical regions of the input frames that are most

(b) (©

Fig. 4. The gripper is captured by an RGB camera and an event camera.
(a) displays our designed soft robotic gripper captured by a standard RGB
camera in a state without any applied force, (b) and (c) show the gripper
under different deformation states, as captured by an event camera.

indicative of the applied forces, such as areas of significant
deformation or contact points between the gripper and objects.
In addition, the adaptability and efficiency of ViT are further
enhanced by its self-attention mechanism, which allows for
selective focus on salient features within the image patches,
effectively ignoring irrelevant information [9].

C. Loss Function

In the development of our force measurement model, an
essential component is the choice of an appropriate loss
function to guide the training process towards accurate
predictions. For this purpose, we employ the Mean Squared
Error (MSE) as loss function in our experiments [31], [13].
MSE is widely recognized for its efficacy in regression tasks
and its ability to quantify the variance between predicted
values and ground truth. The selection of MSE is motivated
by its sensitivity to large errors, making it particularly suitable
for ensuring precision in force measurement.

The MSE is mathematically defined as the average of the
squared differences between the predicted forces (7;) and the
actual measured forces (y;), overall N samples in the dataset.
The formula for MSE is given by:

1 =1, 2
MSE = v (9 — i) (D
During the model training phase, the minimization of
MSE facilitates the adjustment of model parameters that
incrementally improves the accuracy of force predictions.

IV. EXPERIMENTS

In this section, we first present the experimental settings
of the proposed approach. Following this, we introduce the
process of data collection and data preprocessing steps taken
to prepare the data for analysis. Finally, force measurement
evaluations are provided.

A. Experimental Setup

As shown in Figure 3, in this work, the experimental
setup contains a tension and compression sensor (commonly
referred to as a force sensor), an Arduino microcontroller, an
event camera (DVS sensor), and a custom 3D-printed robotic



gripper. The event camera, known for its high-speed and low-
latency imaging capabilities, provided asynchronous visual
information crucial for dynamic scenes. The force sensor,
grasped by the robotic gripper, enabled precise measurement
of the forces exerted during object manipulation tasks. An
Arduino microcontroller served as the central processing unit,
orchestrating data acquisition and communication between
the force sensor and robotic gripper. In the experiments, the
force sensor is positioned at the center of the two grippers
to ensure optimal force measurement. Through the action of
grasping the robotic grippers, the force sensor receives the
applied force data at a rate of 10 samples per second.

In the implementation, we train and test the specific
vit_base_patch8_224 model on our collected dataset. In the
experiment, the dataset is randomly divided into a training
set, a validation set, and a testing set in the ratio of 7: 1.5:
1.5. Our force prediction training uses an Adam optimizer
with a learning rate set to 0.001 and a batch size of 16. This
entire pipeline is deployed on two GeForce RTX 3090s GPU
platforms using the PyTorch framework.

B. Dataset

To estimate the force exerted on our designed soft robotic
gripper, we conduct a comprehensive data collection using the
event camera. Employing the experimental setup described
previously, we repeat the process of closing, grasping, and
opening the gripper for 25 times. Given our interest in
capturing the critical moments when the gripper undergoes
deformation, our dataset exclusively encompasses event
frames corresponding to the grasping phase.

Finally, a total of 1000 event frames were gathered using the
DVXplorer Lite camera, and we call the dataset as RG-Event.
During each experimental iteration, the force applied to the
gripper varied within a range from O N to 1.6 N throughout the
grasping stage. We synchronize the data collection windows
for both the force sensor and the event camera to a duration
of T' = 100 ms, ensuring precise temporal alignment between
the sensory inputs and the visual data. Illustrated in Figure 4,
there are two representative images extracted from our dataset,
showcasing the progressive deformation of the gripper from
its initial state to the point of maximum deformation.

C. Force Measurement Evaluations

In order to evaluate the performance of using ViT in
the force prediction task, we use the Root Mean Squared
Error (RMSE) [4], [36] and R-squared (R2) [3] as evaluation
metrics. RMSE is a measure of the average deviation of
the predictions made by a model from the actual observed
values. Lower RMSE values indicate better performance of
the model, as it means the model’s predictions are closer to
the actual values. R? is a statistical measure that represents
the proportion of the variance in the dependent variable that
is predictable from the independent variables in a regression
model. It ranges from O to 1, where R? value closer to 1
indicates a better fit of the model to the data. In our testing
stage, we get RMSE as 0.13 N and R? as 0.93. As shown
in Figure 5, the deformed grippers with 0.5 N and 1.5 N are
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Fig. 5. The prediction results demonstrate the efficacy and accuracy of
employing Force-EvT in force measurement task.

RMSE R? Error
Marker-based Approach [11] - - 19.5%
Force-EvT 0.13 0.93 13%
TABLE I

OUR NOVEL FORCE-EVT MODEL IS ABLE TO ACHIEVE BETTER
PERFORMANCE IN FORCE MEASUREMENT COMPARED WITH OUR
PREVIOUS MARKER-BASED METHOD.

predicted as 0.48 N and 1.53 N respectively. The prediction
results with high accuracy demonstrate the effectiveness of
the proposed method. Furthermore, as shown in Table I, we
provide the performance comparisons between the novel event-
based approach and our previous marker-based approach [11].

V. CONCLUSION AND FUTURE WORK

In this paper, we introduce a novel approach named Force-
EvT for predicting forces applied to soft robotic grippers using
event-based vision. Leveraging a Dynamic Vision Sensor,
particularly the DVXplorer Lite event camera, we capture
and record gripper deformation processes. By employing the
Vision Transformer (ViT) algorithm, our proposed method
demonstrates promising results and potential for force estima-
tion in robotic applications. Experimental evaluations validate
the effectiveness of the approach, highlighting its suitability
for measuring forces applied to soft robotic grippers.

For future works, we intend to expand our experiments to
encompass different illumination conditions, including both
very bright and dark environments, to demonstrate the supe-
riority of using event cameras in force measurement projects.
Moreover, we plan to incorporate more complex designs of
robotic grippers into our training data. By diversifying our
dataset, we can enhance the robustness and adaptability of
our approach to a wider range of gripper configurations and
applications.
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