
CoolerSpace: A Language for Physically Correct and

Computationally E�icient Color Programming

ETHAN CHEN, University of Rochester, USA

JIWON CHANG, University of Rochester, USA

YUHAO ZHU, University of Rochester, USA

Color programmers manipulate lights, materials, and the resulting colors from light-material interactions. Ex-
isting libraries for color programming provide only a thin layer of abstraction around matrix operations. Color
programs are, thus, vulnerable to bugs arising from mathematically permissible but physically meaningless
matrix computations. Correct implementations are di�cult to write and optimize. We introduce CoolerSpace
to facilitate physically correct and computationally e�cient color programming. CoolerSpace raises the level
of abstraction of color programming by allowing programmers to focus on describing the logic of color physics.
Correctness and e�ciency are handled by CoolerSpace. The type system in CoolerSpace assigns physical
meaning and dimensions to user-de�ned objects. The typing rules permit only legal computations informed by
color physics and perception. Along with type checking, CoolerSpace also generates performance-optimized
programs using equality saturation. CoolerSpace is implemented as a Python library and compiles to ONNX,
a common intermediate representation for tensor computations. CoolerSpace not only prevents common
errors in color programming, but also does so without run-time overhead: even unoptimized CoolerSpace

programs out-perform existing Python-based color programming systems by up to 5.7 times; our optimizations
provide up to an additional 1.4 times speed-up.

CCS Concepts: • Software and its engineering→ Domain speci�c languages; • Computing method-

ologies → Computer graphics.

Additional Key Words and Phrases: language design, color science, type systems

ACM Reference Format:

Ethan Chen, Jiwon Chang, and Yuhao Zhu. 2024. CoolerSpace: A Language for Physically Correct and Com-
putationally E�cient Color Programming. Proc. ACM Program. Lang. 8, OOPSLA2, Article 301 (October 2024),
30 pages. https://doi.org/10.1145/3689741

1 Introduction

Color programming broadly refers to the programmatic manipulation of lights, materials (e.g.
pigments), and the resulting color of light-material interactions. Color programming is fundamental
to almost every domain of art, science, and engineering. Imaging and display technologies are, in
essence, about capturing and reproducing colors [Miller and Spicer 2019; Rowlands 2017; Sharma
2017]; computer graphics simulate light-material interaction and color capturing in cameras [Pharr
et al. 2023]; artists use vibrant palettes of colors, both real and digital, to create their works [So-
chorová and Jamriška 2021], while art conservators analyze and preserve the original pigments in
historical pieces [Berns 2016; Johnston-Feller 2001].

Authors’ Contact Information: Ethan Chen, University of Rochester, Rochester, USA, echen48@ur.rochester.edu; Jiwon
Chang, University of Rochester, Rochester, USA, jchang38@ur.rochester.edu; Yuhao Zhu, University of Rochester, Rochester,
USA, yzhu@rochester.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for pro�t or commercial advantage and that copies bear this notice and
the full citation on the �rst page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).

© 2024 Copyright held by the owner/author(s).
ACM 2475-1421/2024/10-ART301
https://doi.org/10.1145/3689741

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 301. Publication date: October 2024.



Color programmers must follow the rules of physics governing light-material interaction and
the standards of di�erent color encodings (Sec. 2). The languages (e.g., Python) and libraries
(NumPy [Harris et al. 2020] and OpenCV [Bradski 2000]) they use, however, are physics-agnostic:
they, in large part, provide only a thin wrapper around raw tensor operations. The physical
meanings of objects (e.g., color, light power spectrum, material scattering spectrum) are not tracked.
Thus, programmers are prone to accidentally writing mathematically permissible but physically
meaningless or incorrect code. Physically correct code can be time consuming to implement and
are not always computationally e�cient (Sec. 3).
We propose CoolerSpace to facilitate physically correct and computationally e�cient color

programming (Sec. 4). The core of CoolerSpace is a type system (Sec. 5), which raises the level of
abstraction of color programming from tensors to physical objects, such as lights, materials, and
colors. The domain-speci�c typing rules, which are statically checked, permit only physically-based
or perceptually accurate computations.
In addition to avoiding common errors, the higher level of programming abstraction also frees

programmers from the burden of e�ciently implementing color science algorithms. Instead, a
CoolerSpace program is translated to a semantically-equivalent set of tensor algebra operations
(Sec. 6), which are then optimized using equality saturation [Tate et al. 2009; Yang et al. 2021]
(Sec. 8). Translation is guided by formal translational semantics that are provably type sound.

CoolerSpace assists any programmers working with color and light, and can be particularly
useful for a signi�cant scienti�c community that might not intersect with the conventional CS
community: color scientists and vision scientists. These are domain experts who write programs to
directly manipulate light and color data. They must do so in a physically accurate way. However,
researchers in these �elds are less familiar with modern programming techniques (e.g., type
checking, performance optimizations). They are exactly the population CoolerSpace can help.

We implement CoolerSpace as a Python library, as color and vision scientists predominantly use
high-level languages like Python and MATLAB. The Python program is compiled to ONNX [Onnx
2018], an intermediate representation for tensor algebra. The ONNX program is then executed
using ONNX Runtime [Developers 2021]. We show that CoolerSpace can express common algo-
rithms in color programming and prevent common errors without runtime overhead. Unoptimized
CoolerSpace programs out-perform existing Python color programming systems by up to 5.6
times. CoolerSpace is capable of further optimizing its programs by up to 1.4 times.
The entire CoolerSpace system, along with programs developed using CoolerSpace, will be

made open-source. Our speci�c contributions are as follows.

(1) We demonstrate a class of bugs in color programs where programmers write mathematically
permissible but physically incorrect computations.

(2) We design a type system speci�c to color programming. The type system codi�es and enforces
the fundamental principles of color physics.

(3) We introduce CoolerSpace, which implements the type system and automatically generates
e�cient color programs through tensor algebra optimizations.

(4) We experimentally show that CoolerSpace prevents common bugs in color programming
while providing up to 5.6 × speed-ups against existing Python color programming libraries.

(5) We also experimentally show that CoolerSpace’s optimizer provides an additional 1.4 ×

speed-up to our compiled programs.

2 Background: Lights, Colors, and Materials

Color programming involves manipulating lights, materials, and di�erent representations of color.
This section provides the necessary scienti�c background.

2



!

" !

3 " ! !

3 " ! !

3 " ! !

! !

!

(a) Color perception. (b) Color encodings are

di�erent in di�erent

color spaces.

! "

R "

3 ! " "

(c) Material color depends on light

spectrum and material reflectance.

Fig. 1. (a): A light with a Spectral Power Distribution (SPD) ¨(ą) gets transformed into a triplet [L, M, S] on

the retina, which represents the total responses of the Long, Medium, and Short cone photoreceptor cells. The

brain interprets a combination of [L, M, S] as a color. (b): Geometrically, a color is a point in a 3D color space.

We can change the basis of the coordinate system to derive a new color space. The same color is encoded

di�erently in di�erent color spaces. (c): Material color depends on both the spectrum of the incident light

and the spectral reflectance of the material.

Lights. In the realm of color science, a light is physically represented by a Spectral Power
Distribution (SPD) function, which describes the power distribution of the light over wavelengths.
The ¨(ą) function in Fig. 1a illustrates one example. The SPD is de�ned over the visible spectrum,
usually between 390 nm and 830 nm, and quantized into discrete intervals for ease of computation.

Colors. Humans perceive colors from lights because photons are absorbed by cone cells on the
retina, which in turn generate neural responses. These responses are interpreted by the brain as a
particular color. A cone’s behavior is described by its Spectral Sensitivity Function (SSF) [Wandell
1995], which represents the neural response generated per unit power at a particular wavelength.

There are three kinds of cone cells that are responsible for color vision, each with a unique SSF
that peaks at long, medium, and short wavelengths, respectively; these cone cells are thus called
the L, M, and S cones. Ĉ(ą),ĉ (ą), and ď (ą) in Fig. 1a show the SSFs of the three cone cells.
An incident light’s power, after retinal processing, gets converted into three numbers, i.e., the

total L, M, and S cone responses stimulated by the light. Mathematically, this is:1

[Ĉ,ĉ, ď] = [

830
∑

ą=390

¨(ą)Ĉ(ą),

830
∑

ą=390

¨(ą)ĉ (ą),

830
∑

ą=390

¨(ą)ď (ą)] (1)

where ¨(ą) is the SPD of the incident light. This can be understood as weighting the light SPD by
the cone sensitivity per wavelength and summing the weighted responses over the visible spectrum.
Our brain, over time, learns to associate an [L, M, S] triplet with a color. Thus, a color can be

represented as a point in a 3D (LMS) space. This is the fundamental reason why human color
perception is trichromatic.

In addition to the LMS space, there aremany other color spaces inwhich a color can be represented.
Geometrically, this amounts to changing the basis of a coordinate system and re-expressing the
same color in the new space. For instance, the most commonly used color space in color science is
the CIE 1931 XYZ color space [Brainard and Stockman 2010], which is a new coordinate system
that is a linear transformation (ĐĈĉď2ĔĕĖ ) away from the LMS space. This is illustrated in Fig. 1b.

1The summation is sometimes also written as an integration [Marschner and Shirley 2021]. We choose summation to re�ect
the actual computation performed in programs.

3



A color in the LMS space [Ĉę ,ĉę , ďę] can be re-expressed as [Ĕę , ĕę , Ėę] in the XYZ space by:

[Ĕę , ĕę , Ėę ]
Đ
= ĐĈĉď2ĔĕĖ × [Ĉę , ĉę , ďę ]

Đ (2)

Gamma. The LMS space is a linear color space, in that the channel values are proportional to
light power. For instance, if the light power is doubled across the spectrum, the resulting channel
values will simply double accordingly. However, color spaces used to encode digital images are
usually non-linear. Common examples include the popular sRGB and opRGB color spaces. In these
color spaces, channel values are proportional to perceived brightness, which is non-linearly related
to light power. The non-linear transformation between light power and brightness is called Gamma
correction/encoding [Poynton 2012]. Gamma correction is governed by a single value Ā2:

Ă = ÿ
1
Ā (3)

Ă represents the gamma-encoded color space, and ÿ represents its linear counterpart.
Materials. Much of the light entering our eyes is re�ected o� materials. The apparent color of

a material depends on the light striking the material and the material’s physical properties. The
simplest phenomenological model of a material is the spectral re�ection function Ď(ą), which
describes how much light is re�ected back at a given wavelength ą3. Given an incident light with
an SPD ¨(ą), the SPD of the re�ected light is

∑830
ą=390

¨(ą)Ď(ą), as illustrated in Fig. 1c.
Physically, the reason a light gets re�ected back is the complicated interaction of photons being

absorbed and/or scattered by particles inside the material. The absorption and scattering behavior
of a material is modeled by the spectral absorption function ć (ą) and spectral scattering function
ď (ą). The re�ectance spectrum Ď(ą) is related to the absorption and scattering spectra through the
Kubelka-Munk model [Kubelka 1948; Kubelka and Munk 1931]. The model is expressed in Equ. 4.

Ď(ą) = 1 +
ć (ą)

ď (ą)
−

√

ć (ą)2

ď (ą)2
+ 2

ć (ą)

ď (ą)
(4)

All functions are spectra, indicating that the scattering and absorption capability of a material
(and thus the re�ection) depend on the wavelength of the incident light. The advantage of modeling
materials using scattering and absorption spectra is that it allows us to easily simulate the color of
pigment mixing. The absorption and scattering coe�cients of homogeneous mixtures are modeled
as a weighted average of that of the constituent materials [Duncan 1940]. Speci�cally, when mixing
N materials, each with a spectral absorption and scattering function of ćğ (ą) and ďğ (ą), respectively,
the resulting mixture has a spectral absorption and scattering function of:

ćģğĮ (ą) =
1

ÿ

Ċ
∑

ğ

ćğ (ą) ×ÿğ , ďģğĮ (ą) =
1

ÿ

Ċ
∑

ğ

ďğ (ą) ×ÿğ (5)

where ÿğ denotes the weight concentration of the ğĪℎ material. ÿ is the sum of all individual
concentrations. The models are the scienti�c bases of simulating material mixing in CoolerSpace.

3 Motivations

Color programs are often written using libraries like Colour-Science [Developers 2015] and
NumPy [Harris et al. 2020]. These libraries provide only a thin wrapper around raw matrix op-
erations. The physical meanings of objects (e.g., color, light power spectrum, material scattering

2There also exist piece-wise Gamma functions.
3For simplicity we assume the surface is di�use, where re�ection is angle insensitive; phenomenological models such as
BRDF and BSSDF [Pharr et al. 2023] used for modeling non-di�use surfaces can be similarly supported.

4



spectrum) are not tracked by these tools [Stefan 2017]. Programmers are, thus, responsible for
keeping track of the physical meanings manually. This burden can lead to a variety of subtle bugs.

The consequence of such bugs is often “silent data corruption”, as physically incorrect operations
do not usually lead to program crashes. These bugs are tricky to catch, motivating the need to
type-check color programs. Users complain when they observe an undesirable output, as discussed
in a Google IO talk [Guy 2017].
Physically Meaningless Operations. Without meaningful type information, programmers

are prone to de�ning arithmetic operations that are physically meaningless but mathematically
permissible. For instance, common libraries provide code for color space conversion, but do not
check whether such conversion is performed on the correct color space. The code snippet in Prog. 1,
written using the popular Colour-Science Python library [Developers 2015], executes without
complaint but is incorrect.

1 image = open_image('srgb_image.png') # sRGB image

2 colour.XYZ_to_Lab(image) # should use sRGB_to_XYZ prior to XYZ_to_Lab

Program 1. Incorrect Translation from sRGB to LAB space.

In this example, a programmer intends to convert an image encoded in the sRGB color space to
the CIELAB color space, but the sRGB color data is inadvertently, and incorrectly, treated as data
encoded in the CIEXYZ color space on line 2. Nothing prevents programmers from making this
mistake. Needless to say, translating an sRGB image to a LAB image as if the former were encoded
in the XYZ space is not physically meaningful. The program still executes without complaint, as
the operation is mathematically permissible.
Incorrect color space handling is a common issue reported by programmers [McCurdy 2022].

For instance, a PyTorch programmer says, “there is no way for the library to know if the input tensor

that you are passing is indeed in rgb colorspace. So you can silently get wrong results if you are not

careful” [Massa 2021]. Similarly, a scikit-image user says, “scikit-image operates on numpy arrays

exclusively, so we have no way of knowing metadata about the image” [Stefan 2017].
One might also want to simulate light re�ection o� a surface using the light spectrum and the

material re�ectance spectrum as shown in Fig. 1c, but may accidentally multiply two light spectra,
as they have the same data dimension. Such a multiplication makes no physical sense.
Incorrect Understanding of Color Science. Another class of bugs arises from incorrect

understanding of color science, ranging from a lack of understanding of radiometry (physics) vs.
photometry (human perception) [Pharr et al. 2023], to mistakenly equating mixing lights with
mixing materials [Sochorová and Jamriška 2021].
Consider a scenario where one wants to estimate the color of mixing two lights represented in

the sRGB color space. A naive programmer may simply add the sRGB values, as seen in Prog. 2.

1 # Assuming both images are encoded in sRGB

2 image1 = open_image('image1.png')

3 image2 = open_image('image2.png')

4

5 # Physically meaningless but permitted operation

6 mixed_img = image1 + image2

Program 2. Incorrect sRGB light addition.

This code is incorrect, because, as discussed in Sec. 2, sRGB is a non-linear color space: sRGB
channel values are not proportional to light power. To accurately simulate the mixing of two colored
lights, the addition must take place in a linear color space. The code is shown in Prog. 3.

1 # Convert sRGB image to linear sRGB

5



+
Incorrect Mixing Correct Mixing

Fig. 2. Mixing of red (sRGB [227, 0, 34]) and blue (sRGB [0, 15, 137]) lights in the non-linear sRGB space

(incorrect) vs. in a linear color space (correct).

2 image1_linear = (image1 / 255) ** 2.2

3 image2_linear = (image2 / 255) ** 2.2

4

5 # Add in linear space

6 mixed_linear = image1_linear + image2_linear

7

8 # Re-apply gamma

9 mixed = (mixed_linear ** (1 / 2.2)) * 255

Program 3. Correct sRGB light addition.

Incorrectly performing linear physics operations in a non-linear color space is a common issue
of color programming in the wild [yet 2011; wro 2014, 2016; thi 2021]. Programmers usually have to
manually track whether data are encoded in a physically linear space. For instance, three.js warns
programmers that “it’s important that the working color space be linear and the output color space be

nonlinear” [McCurdy 2022], without providing any checks.
“Silent data corruptions” from incorrect color manipulations are often too subtle to catch. Fig. 2

compares the outputs of the naive interpolation and the correct interpolation: the results are visually
similar. It can be hard to distinguish the output of unprincipled color programs from properly
written color programs. Bugs can easily pass human scrutiny.

Implementation Details and Speed Concerns. The correct program to add two lights rep-
resented in the sRGB color space, shown in Prog. 3, requires a non-trivial amount of complexity.
However, the program is semantically simple — the program mixes two colored lights. The com-
plexity of physically accurate color manipulation can and should be abstracted from programmers.

Isolating the logic of color physics from its implementation has another key advantage: it frees
programmers from optimizing for performance. Color programs operate on large datasets. For
reference, an uncompressed one minute full HD (1920 × 1080 pixels) video �lmed at 60 frames
per second constitutes over 22 GB of data. Due to the immense dataset sizes, color programmers
are sensitive to slow run-times. The absence of optimization can be a deal breaker. One user of
the Colour-Science python library writes, "this library is incredible but a lot of functions seem to be

really slow" [Ebenezer 2021]. Similar sentiments have been expressed by other developers [adriahf
2016; Lavrov 2020]. Operating on such a large dataset means that even small optimizations can
yield sizable execution time reductions. Manually writing optimal code is not always obvious, and
should be left to a compiler.

6



ÿ

Fig. 3. CoolerSpace overview. The colored components are introduced by CoolerSpace whereas the rest are

existing tools. CoolerSpace is a Python-based meta-programming system: the Python program gets compiled

and optimized into another program, an ONNX graph, which executes on the ONNX Runtime [Developers

2021]. Compilation and optimization are done once (o�line phase), so they introduce only a one-time cost.

1 import coolerspace as cs

2 light1 = cs.create_input(

3 shape=[1920,1080],

4 colorspace=cs.LightSpectrum

5 )

6 light2 = cs.create_input(

7 shape=[1920,1080],

8 colorspace=cs.LightSpectrum

9 )

10 color1 = cs.sRGB(light1)

11 color2 = cs.sRGB(light2)

12 color3 = color1 + color2

13 cs.create_output(color3)

Program 4. A CoolerSpace program, where we create two sets of light spectra, which are cast to the sRGB

type. The two sets of colored lights are then mixed. Notice how the programmer has to consciously unify the

color space but is free from writing and optimizing the actual color mixing code.

4 CoolerSpace System Overview

CoolerSpace is a Python-based meta-programming system. The key goal of CoolerSpace is to
allow programmers to focus on the logic of color physics while relying on the programming system
to guarantee correctness and to optimize for e�ciency. Fig. 3 provides an overview of the system.
This section walks through the pipeline at a high level and highlights our major design decisions.

Language. From a programmer’s perspective, CoolerSpace is a Python library. Prog. 4 shows
a simple program written in CoolerSpace. We choose Python as our host language as it is the
lingua franca of color programmers, who make use of libraries such as OpenCV [Bradski 2000],
Colour-Science [Developers 2015], and NumPy [Harris et al. 2020].

Compilation. The crux of CoolerSpace is a type system, which assigns types to user-de�ned
objects. The types store both the physical meaning and dimension of the data. For example, the
type of a full HD sRGB image would store the dimensions of the image (1920 × 1080) and the color
encoding (sRGB). Types are used to enforce physical and dimensional correctness through static
type checking. The type system is formalized in Sec. 5.

During compilation, the Python program is “executed”, and any operations betweenCoolerSpace
objects are intercepted, type checked, but not evaluated. If a program type checks, CoolerSpace
creates a corresponding ONNX program that is equivalent to the original CoolerSpace program.
For instance, the second last line in Fig. 4, color1+color2, does not actually mix sRGB colors.
Instead, the ‘+’ operator is overloaded to type check that both colors are in the same color space

7



Table 1. Simplified CoolerSpace abstract syntax. We omit trivial operations such as indexing color channels.

A complete syntax is defined in the supplemental material.

Arrays ė ∈ �oating point arrays
Variable Names Į ∈ variable names
Tristimulus Color Types ătristimulus ::= ăXYZ |ăLMS |ăsRGB |ăopRGB
Perceptual Color Types ăperceptual ::= ăHSL |ăLAB
Color Types ăcolor ::= ătristimulus |ăperceptual
Spectral Types ăspectrum ::= ăLight |ăRe�ectance |ăScattering |ăAbsorption |ăPigment

Physical Types ă ::= ăcolor |ăspectrum |ăChromaticity |ăMatrix

Dimension Types Ě ::= N|Ě × Ě

Shaped Types ĩ ::= (ă, Ě)

Values
Ĭ ::= Į |ă (ė) |ă (Ĭ) |ă (Ĭ, Ĭ) |mix(Ĭ, Ĭ, Ĭ, Ĭ) |Ĭ + Ĭ |Ĭ − Ĭ |Ĭ/Ĭ |

Ĭ × Ĭ |matmul(Ĭ, Ĭ)

Expressions ě ::= Į = Ĭ

Programs Č ::= ě; Č |ě

and of the same dimension. Afterwards, ONNX code is generated with the arithmetic for sRGB
color mixing. The exact translation strategy is de�ned in Sec. 6.
We have chosen ONNX as a compilation target, becasue ONNX is a popular format for tensor

algebra. There exists a vibrant community and ecosystem that provides cross-platform ONNX

support [Developers 2021]. Given that color programs naturally manipulate tensors, mapping
CoolerSpace programs to ONNX allows us to bene�t from ONNX’s existing ecosystem.

Optimization. The ONNX graph produced by the compiler faithfully reproduces the semantics
of the original program but might not be optimal. Our optimizer then converts the unoptimized
ONNX graph into an optimized one.
The particular optimization strategy we use is based on equality saturation [Tate et al. 2009;

Willsey et al. 2021], which has been shown to be e�ective for optimizing tensor computations [Jia
et al. 2019; Yang et al. 2021]. The technique is broadly split into two phases: saturation and extraction.
During the saturation phase, rewrite rules are used to generate a set of equivalent programs,
each with a di�erent cost governed by a cost function. Then, the extraction phase extracts the
cheapest program. While using equality saturation for tensor optimizations is well established,
our contribution lies in specifying rewrite rules and a cost function tailored to color programming.
These are described in Sec. 8.

Execution. The optimizer outputs an optimizedONNX program, which is executed usingONNX
Runtime [Developers 2021]. Since CoolerSpace generates a reusable ONNX �le, the compilation
and optimization costs only have to be paid once per program.

5 CoolerSpace Type System

After discussing the general principles behind our type system (Sec. 5.1), we will walk through the
syntax by �rst describing the supported types (Sec. 5.2), followed by describing the permissible
operations and the typing rules that govern these operations (Sec. 5.3).

5.1 Overview

We show the abstract syntax of CoolerSpace in Tbl. 1. A program in CoolerSpace consists of a set
of expressions, each of which represents a physical operation that manipulates colors and/or spectra.
Critically, each value in an expression is typed, permitting static type checking and promoting
physics-aware color programming.

8



CoolerSpace’s type system is designed to capture common computations used in color pro-
gramming. CoolerSpace’s types capture the underlying physical qualities of lights and materials,
digital encodings of color, and models of human color perception. CoolerSpace allows users to
operate on lights, materials, and the colors that result from light-material interactions.

We acknowledge that our type system, and arguably any type system, is inherently opinionated,
as it stipulates as set of concrete rules. CoolerSpace’s type system is designed to follow the
rules of fundamental physics, or wherever applicable, of standards de�ned by bodies such as the
International Commission on Illumination (CIE). There may exist scenarios where programmers
would prefer to break our rules in favor of other considerations like speed. In these scenarios, we
provide users with an escape from our type system (see the usage of the Matrix type in Sec. 5.3).

5.2 Types in CoolerSpace

The type system is the most important component of CoolerSpace. All type-checked values in
CoolerSpace are of a Shaped Type (ă, Ě), which is a product type of a Physical Type ă and a
Dimension Type Ě . Physical Types represent physical properties, e.g., colors, light, and material; we
will describe them in detail later. Dimension Types represent the tensor dimension of a value/object.
The Dimension Types are expressed as a product of natural numbers, representing the shape of a
matrix. For example, a full HD image (1920 × 1080 in resolution) encoded in the sRGB color space
would have the Shaped Type (ăsRGB, 1920 × 1080).

Both Physical Types and Dimension Types are important because permissible computations
in CoolerSpace should be performed on inputs that are physically meaningful and of correct
dimension. For instance, adding lights with colors is physically meaningless, and adding two color
objects with mismatching dimensions is mathematically meaningless.

The Physical Types supported by CoolerSpace can be largely split into three broad categories:
Tristimulus Color Types, Perceptual Color Types, and Spectral Types.

Tristimulus Color Types. Tristimulus Color Types, ătristimulus, represent color spaces in which
any color is represented by three channels, i.e., the tristimulus values. These color spaces are de�ned
by the choice of three primary colors and a white color. A color of these types is internally encoded
as a linear combination of the three primaries. Thus, a speci�c color can be encoded di�erently
across di�erent tristimulus color spaces.
CoolerSpace currently supports four Tristimulus Color Types: opRGB, sRGB, LMS, and XYZ.

Extending to other color spaces is straightforward. The LMS and XYZ spaces are linear color spaces,
in the sense that a color encoded in these spaces has channel values proportional to the power of
the corresponding light. In contrast, sRGB and opRGB color spaces are non-linear. Channel values
are proportional to perceived brightness, as discussed in Sec. 2.
Linear and non-linear color spaces have di�erent uses in color programming and are both

important to support in CoolerSpace. Linear color spaces are usually used when colors are initially
captured or produced because of its direct relationship to light power. By contrast, non-linear color
spaces are usually used when encoding and storing colors; in fact, most image �le formats encode
colors in the sRGB color space by default. A classic work�ow in the graphics pipeline is to render
pixel colors in a linear space and store the image in a non-linear space.

Perceptual Color Types. CoolerSpace also supports a set of Perceptual Color Types, ăperceptual,
each corresponding to a perceptual color space. Unlike tristimulus color spaces, perceptual color
spaces do not represent colors as a mixture of primary colors; instead, they represent colors by
modeling how humans subjectively perceive colors.

For example, the CIELAB color space (abbreviated as LAB) models the opponent process of the
human visual system [Stockman and Brainard 2010]. LAB represents a color by lightness (perceived

9



brightness), red-green opponency, and yellow-blue opponency. The HSV (also called HSL or HSB)
color space represents a color as its lightness, hue, and saturation.
CoolerSpace provides the perceptual color spaces to support use-cases where subjective as-

sessments of colors are involved. For instance, both the HSV and LAB color spaces are commonly
used to compare colors; in fact, LAB is the most common color space to quantify color di�erences
(known as the CIE Delta E metric [Sharma 2017]), a key task in color programming. The HSV color
space is commonly used to design color pickers in digital applications.

Spectral Types. A Spectral Type, ăspectrum, represents a physical property that is dependent on
wavelength. For instance, the Reflectance type represents the re�ectance of a surface/material
over wavelength; similarly, the Light type represents the spectral power distribution of lights.
Two other important Spectral Types are the Scattering and Absorption types, which

represent the spectral scattering and spectral absorption functions of a surface/material, respectively.
The Pigment type, which represents materials (e.g., pigments like phthalo blue), is a product type
between Scattering and Absorption. This is because both scattering and absorption spectra
are required to accurately model the mixture of two materials [Kubelka and Munk 1931].
Internally, spectral types are represented as histograms across the visible spectrum, de�ned

between 390 nm and 830 nm in CoolerSpace. We uniformly quantize this visible spectrum into
89 unique bands (i.e., the Spectral Type has a channel count of 89) at a 5 nm interval, but more
�ne-grained quantization schemes can be trivially implemented.
Matrix Type. The Matrix type allows programmers to specify a numerical tensor in Cool-

erSpace. These tensors are usually used for geometrically or arithmetically manipulating colors and
spectra. For instance, a tristimulus color can be seen as a point in a 3D Euclidean space, and a color
science programmer might want to project the color to a plane, e.g., when simulating color vision
de�ciency [Brettel et al. 1997]. Projection (and in fact any linear transformation) is mathematically
a matrix multiplication, hence the need for a Matrix type.

5.3 Typing Rules

The typing rules allows only physically meaningful arithmetic operations. Each class of the typing
rules is, thus, designed to allow expressing a particular set of physical operations. Our description
below focuses on how CoolerSpace helps implement physically correct color programs.

Mixing Lights. The �rst class of typing rules expresses mixing two lights, which is perhaps the
single most widely used operation in color science where one, for instance, mixes multiple lights in
order to produce a target color.
Light mixing can be done in either the spectral or tristimulus domains. Both are expressed by

the ‘+’ operator in the syntax. When mixing two lights in the spectral space, the intention is to
calculate the spectrum of the resulting light. This is expressed by the Rule 5.1, which stipulates
that the result of mixing two set of light spectra is another set of light spectra.

� ¢ Ĭ1 : (ăLight, Ě) � ¢ Ĭ2 : (ăLight, Ě)
LightAdd

� ¢ Ĭ1 + Ĭ2 : (ăLight, Ě)

Rule 5.1. Light addition rule.

Mixing lights using their colors is also permitted. Programmers can mix tristimulus colors
additively with the intention to calculate the color of the mixture of the original lights. This is
represented in Rule 5.2, which stipulates that both input colors must belong to the same tristimulus
color space. Then, the resulting color of the light will be presented in the same color space. Note
both rules also enforce that the dimensions of the two operands must match.

10



� ¢ Ĭ1 : (ătristimulus, Ě) � ¢ Ĭ2 : (ătristimulus, Ě)
TristimulusAdd

� ¢ Ĭ1 + Ĭ2 : (ătristimulus, Ě)

Rule 5.2. Tristimulus addition rule.

Mixing Perceptual Colors. Color mixing can be done in either a physically uniform or
perceptually uniform manner. The rules above are intended for the physically uniform mixture of
colors – the linearity of addition in the spectral power domain is preserved. However, the human
visual system perceives color non-uniformly. For example, a linear increase in LMS cone responses
does not correspond to a linear increase in perceived brightness. Perceptually uniform color spaces,
represented by ăperceptual, are color spaces designed to represent the range of human-perceivable
colors uniformly. The distance between any two colors in a perceptually uniform color spaces like
LAB are representative of the perceived di�erence between the two colors [Sharma and Bala 2017].

Programmers may want to mix colors in a perceptually uniform color space when creating gra-
dients or when conducting psychophysical experiments [Fairchild and Reni� 1995]. CoolerSpace
allows programmers to add colors in a perceptually uniform manner, provided that the inputs to
the addition operation are of a perceptual color space. This is represented in Rule 5.3. Like in Rule
5.2, the addition is only permitted if the operands are of the same speci�c perceptual type.

� ¢ Ĭ1 : (ăperceptual, Ě) � ¢ Ĭ2 : (ăperceptual, Ě)
PerceptualAdd

� ¢ Ĭ1 + Ĭ2 : (ăperceptual, Ě)

Rule 5.3. Perceptual addition rule.

Light Re�ection. CoolerSpace also allows expressing re�ecting light o� of a surface. This
operation allows programmers to calculate the color of an object under a particular illuminant.
Physically, such calculation must be done in the spectral space, where light SPD and material
re�ectance are de�ned (Fig. 1c). Syntactically, re�ection is expressed with ‘×’. Rule 5.4 describes
the corresponding typing rule.

� ¢ Ĭ1 : (ăLight, Ě) � ¢ Ĭ2 : (ăRe�ectance, Ě)
Reflect

� ¢ Ĭ1 × Ĭ2 : (ăLight, Ě)

Rule 5.4. Type rule for reflection.

Mixing Materials. Color programming also involves mixing materials, e.g., pigments. For
instance, painters routinely mix their primary paints to produce new colors. This process must be
faithfully implemented in any digital painting software [Sochorová and Jamriška 2021]. Print and
dye industries also investigate how to properly mix inks and dyes to produce the target material
quality [Broadbent 2001]. Syntactically, mixing material is expressed by mix(·), which takes four
parameters: two pigment objects and their corresponding concentrations.

Mixing pigments is both physically and mathematically di�erent frommixing lights and warrants
its own typing rules. Two rules in CoolerSpace govern pigment-related operations. First, we allow
initializing a pigment type from an absorption and a scattering type, as enshrined by the PgmtInit
rule in Rule 5.5. This re�ects the fact that a Pigment is internally described by the absorption and
scattering spectra of the material. Second, the PgmtMix rule in Rule 5.5 expresses the mixing the of
two pigment objects. The rule states that the output of mixing two Pigment objects of matching
dimensions is another Pigment object of the same dimension.

11



� ¢ Ĭ1 : (ăAbsorption, Ě) � ¢ Ĭ2 : (ăScattering, Ě)
PgmtInit

� ¢ ăPigment (Ĭ1, Ĭ2) : (ăPigment, Ě)

� ¢ Ĭ1, Ĭ2 : (ăPigment, Ě) � ¢ Ĭ3, Ĭ4 : (ăMatrix, Ě)
PgmtMix

� ¢ mix(Ĭ3, Ĭ1, Ĭ4, Ĭ2) : (ăPigment, Ě)

Rule 5.5. Pigment rules.

Transforming Colors. Programmers can scale each channel of a tristimulus color through
element-wise multiplication. Syntactically, these operations are expressed as ĬĨĝĘ × ĬģėĪĨğĮ . Rule
5.6 governs this operation.

� ¢ Ĭ1 : (ătristimulus, Ě) � ¢ Ĭ2 : (ăMatrix, 3)
TriScale

� ¢ Ĭ1 × Ĭ2 : (ătristimulus, Ě)

Rule 5.6. Elementwise scaling of a tristimulus color.

Type Casting. If one wants to mix, for instance, an sRGB color with a XYZ color, one must cast
the sRGB type to the XYZ type (or vice versa). Syntactically, casting is expressed by ă (Ĭ), where ă
is the target type and Ĭ is the object to cast.

Principles in color science dictate the set of legal castings, which is illustrated in Fig. 4. A casting
between any origin and destination type is allowed if there exists a path from the former to the
latter in Fig. 4. The legal castings are expressed in Rule 5.7. The path_exists(ă1, ă2) function type
checks if there is a path from type ă1 to type ă2 in Fig. 4.

� ¢ Ĭ : (ă1, Ě) path_exists(ă1, ă2)
Cast

� ¢ ă2 (Ĭ) : (ă2, Ě)

Rule 5.7. Casting rule

Our casting rules prevent mathematically ill-posed castings. For instance, casting a Light type
to an LMS type is permitted, but casting an LMS type to a Light type is not. This is because
converting a light spectrum to an LMS color is a dimensionality reduction (Equ. 1), so the inversion
is mathematically ill-posed. There are many light spectra that correspond to the same LMS color.
The Pigment type casts to the Scattering type or the Absorption type, because the

former is de�ned as a product type of the latter two; these two castings are lossy and cannot
be reversed. Importantly, we allow the Pigment type to cast to the Reflectance type. This
represents the physical reality that the re�ectance spectrum of a material can be derived from the
material’s scattering and absorption spectra, which are carried in the Pigment type.
Using the Matrix Type. We allow casting to and from the Matrix type from most other

types. By casting objects to the Matrix type, programmers can escape our strict type system and
de�ne arithmetic operations that would not normally be permissible. For example, programmers
can de�ne arbitrary addition operations using Rule 5.8. If one wishes to arithmetically add two
sRGB colors, as seen in Prog. 2 of Sec. 3, they may do so by �rst casting the objects to the Matrix
type before the addition operation.
Other Rules. CoolerSpace also de�nes other operations and their associated typing rules.

For instance, programmers can retrieve individual channels of an object through the syntax Ĭ .ę ,
where ę represents the channel to be accessed. We also allow the application of transformation

12



XYZ

sRGB

LMS

opRGB

HSV

LABLight

Chromaticity Reflectance

Pigment

Absorption

Scattering

Fig. 4. The graph of all permissible castings. CoolerSpace currently only supports a small number of com-

monly used color spaces. This is not an inherent limitation of CoolerSpace. With more engineering e�ort,

CoolerSpace’s interface can be extended to support other color spaces.

� ¢ Ĭ1 : (ăMatrix, Ě) � ¢ Ĭ2 : (ăMatrix, Ě)
MatrixAdd

� ¢ Ĭ1 + Ĭ2 : (ăMatrix, Ě)

Rule 5.8. Simplified matrix type addition.

Table 2. Subset of ONNX syntax.

Natural Numbers N ∈ natural numbers
Arrays ė ∈ �oating point arrays
Dimension Types Ě ::= N|Ě × Ě

Values
ī ::= ė |add(ī,ī) |div(ī,ī) |mul(ī,ī)

|sub(ī,ī) |matmul(ī,ī) |pow(ī,ī)

matrices to tristimulus colors using matmul(ĬĨĝĘ, ĬģėĪĨğĮ ). The supplemental material contains a
comprehensive list of CoolerSpace’s typing rules.

6 CoolerSpace to ONNX Translation

Programs written in CoolerSpace are translated into ONNX. The decision to use ONNX as
a compilation target is justi�ed in Sec. 4. We introduce our translation strategy with formal
translational semantics in Sec. 6.1. We then prove that our translation is sound in Sec. 6.2: any type
checked value in CoolerSpace translates to a type checked value in ONNX. Finally, in Sec. 6.3, we
show that CoolerSpace is type sound in addition to being translationally sound.

6.1 Translational Semantics

The translation process is guided by our translational semantics. The translational semantics must
be understood in conjunction with the abstract syntax of ONNX, our target language. To our best
knowledge, there is no formal syntax of ONNX. Completely formalizing ONNX is out of our scope.
We do, however, formalize a subset of ONNX pertaining to CoolerSpace, which is shown in Tbl. 2.

Unlike CoolerSpace,ONNX does not assign Physical Types to values, because ONNX is designed
to express tensor algebra. Therefore, values in ONNX are assigned only Dimension Types. add,
div, mul, sub, and pow perform element-wise operations between two tensors; matmul is matrix
multiplication. All expressions support dimension broadcasting, which is discussed in Sec. 6.2

13



Table 3. Subset of CoolerSpace to ONNX translational semantics. M1, M2, and M3 represent the LMS Cone

Fundamentals, XYZ to LMS transformation matrix, and XYZ to RGB transformation matrix, respectively.

They are constant matrices that can be found in standard color science texts [Wyszecki and Stiles 2000], and

are omi�ed here.

JNK ≜ N T-Nat

JĬ1 + Ĭ2K ≜ ¨(+, ă1, ă2) (Ĭ1, Ĭ2), Ĭ1 : (ă1, Ě1), Ĭ2 : (ă2, Ě2) T-Add

JėK ≜ ė T-Array

JĬ1 × Ĭ2K ≜ ¨(×, ă1, ă2) (Ĭ1, Ĭ2), Ĭ1 : (ă1, Ě1), Ĭ2 : (ă2, Ě2) T-Mul

Jă (ė)K ≜ ė T-Init

JăĚ (Ĭĥ )K ≜ «(ăĥ , ăĚ ) (Ĭĥ ), Ĭĥ : (ăĥ , Ěĥ ) T-Cast

JĚK ≜ Ě T-Dim

J(ă, Ě)K ≜ Ě × channel_count(ă) T-Type

¨(+, ăXYZ, ăXYZ) (Ĭ1, Ĭ2) ≜ add
(

JĬ1K, JĬ2K
)

¨(+, ăLMS, ăLMS) (Ĭ1, Ĭ2) ≜ add
(

JĬ1K, JĬ2K
)

¨(+, ăsRGB, ăsRGB) (Ĭ1, Ĭ2) ≜ mul(pow(add(pow(div(JĬ1K,
[

255
]

),
[

2.2
]

),

div(pow(JĬ2K,
[

255
]

)
[

2.2
]

)),
[

0.455
]

),
[

255
]

)

¨(×, ăLight, ăRe�ectance) (Ĭ1, Ĭ2) ≜ mul(JĬ1K, JĬ2K)
«(ăLight, ăLMS) (Ĭ) ≜ matmul

(

JĬK,M1

)

«(ăLMS, ăXYZ) (Ĭ) ≜ matmul
(

JĬK,M2

)

«(ăXYZ, ăsRGB) (Ĭ) ≜ pow
(

mul
(

matmul
(

JĬK,M3

)

,
[

255
] )

,
[

2.2
] )

Given the abstract syntax of ONNX, Tbl. 3 shows the formal translational semantics for converting
a subset of the CoolerSpace abstract syntax to ONNX’s abstract syntax. Due to space constraints,
we show only a subset of the translational semantics, focusing on those that highlight important
properties of this translation.

Immediately clear is that the Physical Type information in CoolerSpace is lost during translation.
As shown by theT-Type rule, the Physical Type ă inCoolerSpace gets reduced to only its dimension
information in ONNX. For instance, after translating to ONNX, objects of the same dimension in
LMS and sRGB space are no longer di�erentiated, as both LMS and sRGB have three channels.
The translations of the actual expressions are encoded in the ¨ and « lookup tables, which

represent, respectively, the ONNX implementation of each operation and casting in CoolerSpace.
For instance, ¨(+, ăsRGB, ăsRGB) (Ĭ1, Ĭ2) encodes the ONNX implementation of sRGB+sRGB, and
«(ăLight, ăLMS) (Ĭ) encodes how we cast a Light spectrum to a color in the LMS color space.
Two interesting properties of ¨ and « are worth discussing. First, arithmetic operations type

checked by the same type rule do not necessarily translate to the same set of ONNX operations in
¨. For instance, adding two XYZ objects and adding two sRGB objects are both expressed with the
‘+’ syntax and are type-checked by Rule 5.2. However, sRGB addition is translated to a much more
complicated sequence of ONNX operations, as seen in the corresponding entry in ¨ (Tbl. 3). The
reason is that the sRGB color space has a de�ned gamma curve, which must be removed before
addition and reapplied after addition.
Second, casting operations between types that are not adjacent in Fig. 4 are intentionally not

de�ned in«. Casting operations between non-adjacent types are expanded into a series of individual
casting operations representing the shortest path between the origin type and the destination
type. For example, LMS and sRGB are not connected by an edge. The casting between the two,
«(ăLMS, ăsRGB) (Ĭ), is converted to «(ăXYZ, ăsRGB) («(ăLMS, ăXYZ) (Ĭ)). This cascaded translation is
sub-optimal: it involves multiplying two constant matrices. We rely upon equality saturation to
optimize these ine�cient translations (Sec. 8) while maintaining a small ¨. Note that there is no

14



TrivialBroadcast
broadcastable(Ě, Ě)

ScalarBroadcast
broadcastable(1, Ě)

Ě1 = Ě2 × Ě3
SubsetBroadcast

broadcastable(Ě3, Ě1)

ī1 : Ě1 ī2 : Ě2 broadcastable(Ě1, Ě2)
OnnxAddR

add(ī1, ī2) : Ě2

Fig. 5. Subset of ONNX typing rules.

ambiguity in non-adjacent casting: there exists at most one path between any pair of types, because
the casting graph in Fig. 4 is a directed forest.

6.2 Translational Soundness

We now prove translational soundness: any well-typed value in CoolerSpace remains well-typed
after being translated to ONNX. Translational soundness indicates that our translation preserves
typeability: CoolerSpace’s type safety is as strong as that of ONNX. This strategy is inspired by
Gator [Geisler et al. 2020]. However, proving ONNX’s type safety is beyond the scope of this paper.

ONNX Typing Rules. The translational soundness proof depends on the formal typing rules of
ONNX. Fig. 5 shows a set of key typing rules for ONNX. The rules ensure that the tensor dimensions
of operands are valid. This is complicated because ONNX, like many tensor libraries (e.g., NumPy),
permits �exible dimension broadcasting. Arithmetic operations are valid even if the Dimension
Types of two input tensors do not match, so long as the dimension of the smaller tensor can be
“broadcast”, or expanded, to be compatible with that of a larger tensor.

Many CoolerSpace expressions rely on broadcasting in ONNX to implement. For instance,
removing and applying gamma from a tensor of sRGB objects requires broadcasting a scalar
(gamma) to an entire tensor of sRGB colors. Therefore, the pow function in ONNX, which is used
to implement gamma, must broadcast a scalar (2.2) to every element in a tensor in an element-wise
manner. See the ¨(+, ăsRGB, ăsRGB) (Ĭ1, Ĭ2) entry in the translational semantics (Tbl. 3) for an example.
To our best knowledge, broadcasting has not been formally speci�ed in ONNX. We formalize

a subset of broadcasting rules that are relevant to CoolerSpace. These rules are de�ned in the
rules TrivialBroadcast, ScalarBroadcast, and SubsetBroadcast. Here, broadcastable(Ě1, Ě2)
indicates that a dimension Ě1 can be broadcast to a dimension Ě2. TrivialBroadcast is the usual
case where both inputs have the same dimensions. ScalarBroadcast allows a scalar input to
be broadcast to a tensor in an element-wise manner. SubsetBroadcast allows a smaller tensor
dimension Ě1 to be broadcast to Ě2 if Ě1 is a right-aligned subset of Ě2 (i.e. 1080 × 3 is broadcastable
to 1920 × 1080 × 3, but 1920 × 1080 is not).
The rest of the rules codify legal tensor operations using the broadcast rules. For instance,

OnnxAddR speci�es that adding two tensors is allowed so long as the �rst tensor dimension can be
broadcast to that of the second. Other rules governing sub, mul, div, pow, and matmul are omitted
here, but can be found in Section 2.2 of the Supplementary Material.
Theorem. Formally, translational soundness states:

JĬ : (ă, Ě)K

JĬK : J(ă, Ě)K

15



JĬ1 + Ĭ2 : (ăXYZ, Ě )K
Conv-TriAdd

JĬ1, Ĭ2 : (ăXYZ, Ě )K JĬ1, Ĭ2 ¢ Ĭ1 + Ĭ2K
IndHyp

JĬ1, Ĭ2K : J(ăXYZ, Ě )K
TrivBroadcast

broadcastable(J(ăXYZ, Ě )K, J(ăXYZ, Ě )K)
OnnxAddR

add(JĬ1K, JĬ2K) : J(ăXYZ, Ě )K

add(JĬ1K, JĬ2K) : J(ăXYZ, Ě )K

JĬ1, Ĭ2 : (ăXYZ, Ě )K
T-Add

JĬ1 + Ĭ2K ≜ add(JĬ1K, JĬ2K)
Subst

JĬ1 + Ĭ2K : J(ăXYZ, Ě )K

Fig. 6. Proof of translational soundness for XYZ + XYZ under ColorAdd

The Inductive Hypothesis. We use structural induction to prove translational soundness.
The inductive hypothesis is given below. The inductive hypothesis states that all sub-values of a
well-typed value in CoolerSpace translate to well-typed values in ONNX. We use Ĭğ ¢ Ĭ to mean
that Ĭğ is an immediate sub-value of Ĭ .

JĬğ ¢ ĬK JĬğ : (ăğ , Ěğ )K JĬ : (ă, Ě)K
IndHyp

JĬğK : J(ăğ , Ěğ )K

Proof. We prove translational soundness by covering all cases of well-typed values. We show a
representative case, where the value Ĭ is of the form Ĭ1 + Ĭ2 and belongs to the XYZ type. Other
cases are similar in form. See Section 2 of the Supplementary Material for the comprehensive proof.
Fig. 6 shows the proof tree. If the value Ĭ1 + Ĭ2 has the type XYZ, from the typing rules (Rule

5.2 TristimulusAdd) we know that Ĭ1 and Ĭ2 are both of type XYZ; this is represented by Conv-

TriAdd in the proof tree. By the inductive hypothesis, Ĭ1 and Ĭ2 are typed as J(ăXYZ, Ě)K in ONNX

after translation. From OnnxAddR, we know that add(JĬ1K, JĬ2K) must also be typed as J(ăXYZ, Ě)K.
From the translational semantics T-Add, we know that JĬ1 + Ĭ2K translates to add(JĬ1K, JĬ2K).

Given that add(JĬ1K, JĬ2K) is typed as J(ăXYZ, Ě)K in ONNX, using substitution we can conclude
that JĬ1 + Ĭ2K is typed as J(ăXYZ, Ě)K in ONNX. Therefore, the translational soundness theorem is
satis�ed for ColorAdd when Ĭ1 + Ĭ2 is of type XYZ.

6.3 Type Soundness

Our proof of translational soundness demonstrates that any well-typed value in CoolerSpace is
guaranteed to translate to a well-typed ONNX value. However, translational soundness does not
imply type safety. For example, translational soundness cannot ensure that CoolerSpace types are
preserved after evaluation. Consider the following hypothetical and faulty re�ection type rule for
re�ection operations:

� ¢ Ĭ1 : (ăLight, Ě) � ¢ Ĭ2 : (ăRe�ectance, Ě)
WrongReflect

� ¢ Ĭ1 × Ĭ2 : (ăRe�ectance, Ě)

Rule 6.1. A faulty type rule for reflection operations. The correct type rule is Rule 5.4 (Reflect).

ăLight (ė1) × ăRe�ectance (ė2) → ăLight ((ė1) × (ė2)) E-Reflect

Rule 6.2. The evaluation rule for reflection operations. The corresponding type rule is Rule 5.4 (Reflect).

In Rule 6.1, re�ection operations are mistakenly given the type Reflectance. The evaluation
rule E-Reflect (Rule 6.2) evaluates the physical type of ăLight (ė1) × ăRe�ectance (ė2) to Light. Thus,

16



the type of the expression ăLight (ė1) × ăRe�ectance (ė2) changes after evaluation. Preservation is
violated. Importantly, the translational soundness proof would not be able to catch this faulty
type rule. Ĭ1 × Ĭ2 is translated to mul(JĬ1K, JĬ2K), according to the translational semantics in Tbl. 3.
mul(JĬ1K, JĬ2K) would still type check in ONNX, as the dimension types of Ĭ1 and Ĭ2 match.

We prove type soundness of CoolerSpace in addition to translational soundness. Our approach
is a straightforward proof of progress and preservation for each rule. We have de�ned a set of
evaluation rules to aid the proof. The entire type soundness proof can be found in Sections 3 and 4
of the Supplementary Material.

7 Type System Design Decisions

There were several considerations that informed our design decisions for CoolerSpace. We detail
them in this section.

Handling of Non-linear Tristimulus Color Spaces. The sRGB and opRGB color spaces are
non-linear tristimulus color spaces (Gamma paragraph of Sec. 2). In CoolerSpace, interpolations
between two sRGB or two opRGB objects are done in linear space (see the ¨(+, ăsRGB, ăsRGB) (Ĭ1, Ĭ2)
entry in Tbl. 3). We convert sRGB and opRGB values to linear space prior to interpolation as
interpolation in linear spaces is uniform with respect to physical luminance.
An alternative is to perform non-linear tristimulus interpolation in a perceptual space instead.

This is because non-linear tristimulus color spaces are roughly uniform in perceived brightness;
programmers may expect interpolation between non-linear tristimulus colors to be perceptually
uniform. However, non-linear tristimulus color spaces are not uniform in chromaticity. Principled
perceptual interpolation must be done in a perceptually uniform space like LAB.
CoolerSpace could convert sRGB values to LAB values prior to interpolation. However, there

are many competing models of uniform color perception like CIELUV [Sharma and Bala 2017],
CIELAB [Sharma and Bala 2017], and CAM16 [Li et al. 2017]. Interpolation operations done in
di�erent perceptually uniform color spaces will yield di�erent results. We do not want to make
any assumptions on what model of perceptual uniformity the programmer prefers. We therefore
reject this design.

Tristimulus Addition Restrictions. Rule 5.2 (TristimulusAdd) stipulates that the operands
of a tristimulus addition must be of the same tristimulus type. For example, addition between two
LMS objects is valid, but addition between an LMS and an XYZ object is invalid. However, there is
nothing wrong, in principle, with interpolating two tristimulus values of di�erent spaces. One can
imagine a set of translational semantics that, given an addition between an LMS or an XYZ object,
�rst converts the LMS value to XYZ space or converts the XYZ value to LMS space. However, the
output type of an operation between operands of di�ering spaces would be unspeci�ed.
To address that issue we could ideally use bidirectional type checking [Chlipala et al. 2005] to

derive the expected color space of the tristimulus addition operation. For example, in Prog. 5, the
output of the operation between the XYZ and LMS is assigned to the mixed variable. The mixed
variable is annotated with the Python type hint : cs.XYZ, indicating that the programmer expects
the mixed variable to be of the XYZ type. Using the mixed variable’s type hint, CoolerSpace
could infer, through bidirectional type checking, that the programmer expects cs.XYZ(...) +

cs.LMS(...) to output an object of type XYZ.

1 mixed: cs.XYZ = cs.LMS(...) + cs.XYZ(...)

Program 5. Bidirectional typing example. The cs.LMS(...) + cs.XYZ(...) operation is inferred to have the output

type of cs.XYZ, as the mixed object that the operation output is assigned to has the XYZ type.

Unfortunately, implementing bidirectional type checking in a Python library is not feasible.
Python is a dynamically typed interpreter language. It is impossible for CoolerSpace to obtain

17



the type hint of the mixed variable prior to variable assignment. Therefore, the output type of
cs.LMS(...) + cs.XYZ(...) cannot be known when evaluating the addition operation.

It’s important to note that while bidirectional typingwould alleviate the stringent type restrictions
for tristimulus space addition operations, perceptual addition (Rule 5.3) would remain the same.
This is because the outputs of arithmetic operations performed in di�erent perceptual color spaces
are not equivalent. The user must still specify the perceptual color space used for interpolation.

Casting. Readers familiar with physical unit types (measurement types) literature [Allen et al.
2004; Dreiheller et al. 1986; Karr and Loveman 1978] will notice some parallels between our type
system and those of previous works in the �eld of physical unit types. However, not all assumptions
of physical unit type systems are applicable to CoolerSpace. This di�erence informs the design of
our casting rule (Rule 5.7).

In physical unit types literature, units can be easily converted into other units of measurement
representing the same dimension4, but not to units of di�erent dimensions. Dimensions indicate
the physical quantity being measured, and units indicate the standard of measurement [Allen
et al. 2004; Varkor 2018]. Examples of dimensions include time, length, and mass. Corresponding
examples of units include seconds, meters, and grams. A programmer can convert a Fahrenheit
measurement to a Celsius measurement using the syntax of [Allen et al. 2004] in Prog. 6. The
conversion from Fahrenheit to Celsius is possible as both units share the same dimension type —
temperature. However, conversion from Fahrenheit to, say, meters is not permitted: the dimension
types are mismatched.

1 fahrenheitValue.inUnit<CelsiusDegrees>()

Program 6. Conversion from Fahrenheit to Celsius in [Allen et al. 2004].

There are seven dimensions represented in CoolerSpace: re�ectance spectra, absorption spectra,
scattering spectra, pigments, light spectra, color, and chromaticity. Unlike measurement types,
units in CoolerSpace can be converted to units of other dimensions. For example, Light is a
unit of the light spectra dimension, and XYZ is a unit of the color dimension. Light values can
be coerced into XYZ values. However, the reverse is not true. XYZ values cannot be coerced into
Light values. This is because the operation is under-determined; there exist multiple light spectra
that correspond to a single color. A similar relationship exists between units of the color dimension
and the Chromaticity unit of the chromaticity dimension.
Since casting is not always bidirectional in CoolerSpace, we designed the path_exists

function in the Cast rule (Rule 5.7) to enable the type checker to automatically determine if a
casting is possible from one physical type to another. Additionally, the edges of the graph in Fig. 4
represent implemented casting algorithms. Therefore, if the type checker con�rms that an object is
cast-able into another type, there must exist a corresponding series of castings that convert the
object into the desired type. The path_exists rule and the casting graph are also designed to
facilitate the addition of new types intoCoolerSpace. New types can be inserted as nodes into Fig. 4,
and edges can be de�ned that correspond to implemented casting algorithms. No modi�cations to
the casting type rule needs to be made.

Tristimulus PigmentMixing. The mix function is utilized to simulate the mixture of pigments,
as speci�ed in Rule 5.5 (PgmtMix). mix is only applicable to Pigment objects. We had originally
planned for the mix operator to simulate pigment mixing for colors encoded in tristimulus color
spaces as well. However, this problem is ill-posed — there exists an in�nite number of pigment
mixtures and ambient lighting conditions that are able to generate any given color. There are

4The dimension terminology here is not to be confused with dimension types in CoolerSpace. Dimensions in CoolerSpace

refer to matrix dimensions.

18



algorithms of pigment mixing that operate on tristimulus colors like MixBox [Sochorová and
Jamriška 2021]. These algorithms make several assumptions about the constraints of pigment
mixture and the ambient lighting. The outputs are not principled, even though they approximate
artists’ expectations.We cannot use these algorithms in a physically rigorous programming language
like CoolerSpace.

8 Optimizing CoolerSpace Programs

The translated ONNX program is optimized using equality saturation [Tate et al. 2009; Willsey
et al. 2021]. The technique consists of a saturation phase, where a set of equivalent programs are
enumerated using rewrite rules, each of which replaces an expression with a semantically equivalent
one; the two expressions might have di�erent run-time costs. Then, in the extraction phase, the
program with the cheapest cost is chosen.
The rationale of using such an optimization strategy is discussed in Sec. 4. While equality

saturation as an optimization technique is established, this section focuses on describing the
speci�c design decisions we made in applying the technique to optimize CoolerSpace programs.
Rewrite Rules. We design a small set of tensor algebra rewrite rules. The rules are designed

for the ONNX operations used in the translational semantics (Tbl. 3). A list of rewrite rules can be
found in the supplemental material.
Part of the rules are adapted from TASO [Jia et al. 2019], which investigates rewrite rules for

tensor algebra containing up to four operators. Those rules are not only overkill for our purposes
(because CoolerSpace uses a subset of tensor algebra), but also do not support operations that are
unique to color programming. Speci�cally, we include rewrite rules for the tensor exponentiation
operator, which is important for implementing non-linear color space transformations.

Cost Function. In the extraction phase we need to compare the di�erent programs yielded by
the saturation phase. We implement a cost function that estimates the run-time cost of a given
program; we do so empirically by calculating the total number of operations the program performs.
We will show in Sec. 9 that even with these coarse-grain estimates we can still get statistically
signi�cant speedups. Better estimates will further improve performance.
Our cost function also enables constant propagation, which color programs commonly bene�t

from. Although the popular ONNX Runtime library [Developers 2021] performs constant propaga-
tion, it does so only when an entire sub-expression consists of only computations on constants.
This is not always the form un-optimized ONNX programs are in.

We adjust our cost function to accommodate ONNX Runtime’s constant propagation require-
ments. During equality saturation, we �ag each tensor in the input program to indicate whether
it is a constant. For instance, M1, M2, and M3 in Tbl. 3 are constant matrices, and will be �agged
as such. During extraction, our cost function assigns a cost of 0 to any sub-expression that can
be pre-computed using only constant values. The cheapest programs will be those that have
sub-expressions consisting of only computations on constants. This matches ONNX Runtime’s
requirements for constant propagation, and enables more aggressive constant propagation.

Implementation. We implement our optimizer using egg [Willsey et al. 2021], an e-graph-based
equality saturation tool. We extend egg’s interface to implement the cost function and rewrite rules,
which are heavily modi�ed from TENSAT’s [Yang et al. 2021] usage of egg. We also implement
converters between egg’s LISP-like string input and ONNX programs.

9 Experimental Setup

Benchmarking Programs. There is no standard benchmark for evaluating CoolerSpace, so we
design six programs that are commonly seen in color programming to assess the overhead and
optimization capabilities of CoolerSpace. These programs are also tailored to exercise the entirety

19



of CoolerSpace’s type system. We brie�y describe how they exercise di�erent syntactic features,
typing rules, translational semantics, and optimization cases in CoolerSpace. The supplemental
material contains the source code of all the programs.

Color Space Conversion (SpaceConv) is a program that converts an input image in sRGB
space to an image in opRGB space. CoolerSpace abstracts away the complexity of applying and
removing gamma from sRGB and opRGB. sRGB and opRGB are non-adjacent in Fig. 4; therefore,
this casting requires an intermediate step in ONNX that can be eliminated by our optimizer.

Original Deuteranopia Tritanopia

Fig. 7. Color blindness simulation. Original image courtesy of Simon Amarasingham [Amarasingham 2019].

Color Blindness Simulation (ColorBlindness) simulates dichromatic color vision.
Example outputs of the program can be found in Fig. 7. While most images are originally encoded in
the sRGB space, principled color blindness simulation must be done in the LMS space. CoolerSpace
automatically handles the implementation logic of casting from sRGB to LMS and back. In the LMS
space, the image is projected using a transformation matrix corresponding to a particular color
blindness type [Viénot et al. 1999]. The program also demonstrates CoolerSpace’s ability to treat
colors as geometric objects and to cast them with a transformation matrix of the Matrix type.

Adapted to D65Original Image

Fig. 8. Chromatic adaptation simulation. Original image courtesy of Trish Hartman [Hartmann 2012].

Chromatic Adaptation (Adaptation) is a program that simulates how the visual system
adapts to the illuminant of a scene and preserves constant color perception across di�erent illumi-
nants [Stockman and Brainard 2010]. Chromatic adaptation is the basis of white balancing in the
camera image processing pipeline [Rowlands 2020].
Our implementation takes as input two Light spectra representing the original and target

illuminants, as well as an input image in sRGB space. It then applies the classic von Kries trans-
formation matrix [Rowlands 2020] in LMS space to calculate the adapted image. This program
exercises the casting between the Light type and the Tristimulus Color Types. The output of the
program is shown in Fig. 8, where the original image, captured under the CIE Standard Illuminant
D35 (estimated), is adapted to the CIE Standard Illuminant D65 (typical daylight).

20



Color Interpolation (Interpolation) is a program that linearly interpolates the colors
of two di�erent sRGB images. As mentioned in Sec. 3, programmers often attempt to interpolate
colors in the sRGB color space, which is neither perceptually nor physically linear. This program
demonstrates that CoolerSpace performs arithmetic operations on non-linear and non-perceptual
color spaces in linear space for physical accuracy.

Pigment Mixing (Mixing) uses the Pigment type to simulate mixing two sets of pigments
under typical daylight [Henderson and Hodgkiss 1963]. The mixing algorithm follows the Kubelka-
Munk model [Kubelka 1948; Kubelka and Munk 1931] introduced in Sec. 2. Pigment mixing is
commonly simulated in digital painting apps [Sochorová and Jamriška 2021]. Pigment mixing is a
complex phenomenon to accurately model. CoolerSpace abstracts away the complexity of the K-M
model and allows the programmer to simulate pigment mixing through the mix(·) function and
the Pigment type. The mix(·) function and the Pigment type ensure that the pigment mixing
simulation is done in the spectral space, with the correct spectral types as inputs.
LAB to HSV Conversion (LAB2HSV) converts an image in LAB space to an image in HSV

space. LAB and HSV are complex, perceptual color spaces. Translating images to and from these
spaces involve multiple expensive and non-linear operations [Lindbloom 2017]. This program
demonstrates CoolerSpace’s ability to handle complicated programs.

Experimental Environment. The programs are compiled and run on two machines. Machine
1 has two Nvidia GeForce RTX 2080 GPU (8GB VRAM each), an Intel Xeon Silver 4114 CPU, and
64GB DRAM. Machine 2 is equipped with two Nvidia GeForce RTX 4090 GPUs (24GB VRAM each),
an AMD Ryzen 9 7900X3D 12-Core Processor CPU, and 128GB of DRAM. While both machines
have two GPUs, only one is utilized during testing.
Python 3.11, ONNX Runtime 1.16, CUDA 11.8, and egg 0.9.4 are used during execution. The

compiler and optimizer are run on a single core of the CPU. The optimized ONNX programs are
run on either the CPU or the GPU, depending on the exact comparison being made.
To get statistically meaningful results, we compile, optimize, and run each CoolerSpace pro-

gram 100 times. Both the unoptimized and optimized ONNX �les are executed. The one-tailed
t-test [Lakens 2017] is used to test the statistical signi�cance of our speed-ups.

Comparison Against Existing Solutions. We also benchmark CoolerSpace against existing
Python solutions. CoolerSpace’s performance across the six benchmark programs is compared to
equivalent programs written with the Colour-Science library [Developers 2015] and Numba [Lam
et al. 2015]. Colour-Science 0.4.4, Numba 0.59, and NumPy 1.25.2 are used.
Colour-Science is chosen as a benchmarking target as it is a commonly used Python library in

the color science community. However, it naturally comes with the Python interpreter overhead.
To construct a stronger baseline, we also choose to benchmark CoolerSpace against Numba, a
compiler capable of translating Python and Numpy code into machine code [Lam et al. 2015].
Numba lacks the overhead of the Python interpreter.

10 Results

We perform an empirical analysis on two CoolerSpace programs to demonstrate how Cool-

erSpace’s type system enforces correctness (Sec. 10.1). CoolerSpace is capable of type checking,
compiling, and optimizing a program with a minimal amount of overhead (Sec. 10.2). Even un-
optimized CoolerSpace programs are faster than existing python solutions (Sec. 10.3), and the
optimizations bring up to a further 1.4 × speed-up (Sec. 10.4).

21



10.1 Case Study on the Type System

We provide an empirical study of two CoolerSpace programs. We show CoolerSpace statically
prevents programmers from specifying physically or perceptually unprincipled operations; Cool-
erSpace is also able to use type information to accurately translate user code.
ColorBlindness. Prog. 8 shows the source code for the ColorBlindness program. Prog. 7

is the source code for the corresponding program written in Colour-Science and NumPy. In the
Colour-Science program, the colorblind function takes as input an image and a colorblind
matrix of the NumPy array type. The user makes the assumption that the input image is of the
sRGB type, and manually invokes speci�c operations to translate the image to the XYZ space (line
3), then to the LMS space (line 5). The operations on lines 3 and 5 take raw NumPy arrays as input.
No information on the color space of the input image is recorded. As a result, Colour-Science and
NumPy are unable to validate the encoding of their input.

1 def colorblind(image: np.ndarray, colorblind_matrix: np.ndarray):

2 # Convert image from sRGB to XYZ

3 xyz_image = colour.sRGB_to_XYZ(image)

4 # Convert image from XYZ to LMS

5 lms_image = xyz_image @ xyz_to_lms

6 # Apply single-plane color blindness transformation

7 lms_image_modulated = lms_image @ colorblind_matrix

8 # Convert image back to sRGB and return

9 xyz_image_modulated = lms_image_modulated @ lms_to_xyz

10 return colour.XYZ_to_sRGB(xyz_image_modulated)

Program 7. Colour-Science ColorBlindness code.

On lines 2 and 3 of the CoolerSpace program (Prog. 8), the programmer speci�es the color space
and dimensions of the input data (sRGB); on line 5, the programmer also speci�es an sRGB to LMS
casting, which CoolerSpace types check to con�rm that the image is indeed in the sRGB space.
This transformation is then implemented correctly behind the scenes.

1 # Inputs

2 image = cs.create_input("image", [1080, 1920], cs.sRGB)

3 colorblind_matrix = cs.create_input("colorblind_matrix", [3, 3], cs.Matrix)

4 # Convert image to LMS

5 image_lms = cs.LMS(image)

6 # Apply single-plane color blindness transformation

7 colorblind_image_lms = cs.matmul(image_lms, colorblind_matrix)

8 # Convert back

9 colorblind_image = cs.sRGB(colorblind_image_lms)

Program 8. CoolerSpace ColorBlindness code.

In line 7 of Prog. 7 and Prog. 8, the programmers apply the single-plane color blindness transforma-
tion matrix to the LMS image. In the Colour-Science implementation, the matrix multiplication has
no guarantee that the user-input colorblind_matrix is 3× 3. The NumPy program may crash
during execution if an incorrect array is provided. Since the dimension of colorblind_matrix
is speci�ed in line 3 of Prog. 8, the CoolerSpace program is guaranteed to run successfully.

Interpolation. Prog. 9 is the CoolerSpace implementation of the sRGB interpolation. It is
similar in function to the sRGB light addition program (Prog. 3) from Sec. 3. The operations in line 5
of Prog. 9 are interpreted as physical operations, as sRGB is not a perceptual color space. As a result,
CoolerSpace performs the addition and multiplication operations in a linear, gamma-removed
space behind the scenes.

22



1 # Inputs

2 image1 = cs.create_input("image1", [1080, 1920], cs.sRGB)

3 image2 = cs.create_input("image2", [1080, 1920], cs.sRGB)

4 # Interpolate between the two images 50/50

5 mixed = image1 * 0.5 + image2 * 0.5

Program 9. CoolerSpace interpolation code.

To achieve an equivalent program in NumPy, as seen in Prog. 10, considerably more code is
required. The additional code is error-prone. The programmer needs to manually specify the gamma
removal and application procedures in lines 3, 4, and 9. Gamma values vary by color space. In
NumPy, there is no guarantee that the input images are represented in sRGB space. There is not
even a guarantee that the two input images are of the same encoding. The end result would be an
interpolated image that is physically and perceptually inaccurate.

1 def interpolate(image1: np.ndarray, image2: np.ndarray):

2 # Remove gamma of sRGB color space

3 image1_linear = (image1 / 255) ** 2.2

4 image2_linear = (image2 / 255) ** 2.2

5 # Interpolate 50/50

6 image_avg = image1_linear * 0.5 + image2_linear * 0.5

7 # Re-apply gamma

8 return image_avg ** (1 / 2.2) * 255

Program 10. NumPy interpolation code.

10.2 Compilation and Optimization Time

Compilation and optimization are both one-time costs. Still, we show that these one-times costs
are minimal. Fig. 9 compares the average compilation and optimization times for each program,
which are all less than 3 seconds with low variance one machine 1. The standard deviations of
the two processes are below 0.014ms and 0.077ms, respectively. On machine 2, compilation and
optimization are faster. The average compilation time is less than 1.5 seconds with low variance.
The standard deviations of compilation and optimization are 0.001ms and 0.23ms respectively.

The LAB2HSV program has a notably higher compilation time in comparison to the other �ve
programs on both machines. This is because the compiled ONNX program has a signi�cantly higher
ONNX operation count: 67, as opposed to about 15 in others.

The optimization time is generally longer than compilation time, but still below 3 seconds even
for the worst test case scenario. Mixing and Interpolation are more expensive to optimize as
they have a higher number of e-nodes and e-classes in their saturated e-graphs. Note that equality
saturation is a worst-case exponential time algorithm, and a timeout is usually used to limit the
optimization time. In our experiments, we place no such limits.

10.3 Comparison with Existing Libraries

Even unoptimized CoolerSpace programs are faster than programs written using existing libraries
by several times. Fig. 10 compares the performance of CoolerSpace’s unoptimized ONNX ex-
ecutables with Numba and Colour-Science. We report the CPU comparison results here since
both baseline implementations are CPU-based. CoolerSpace’s has a 4.4× geomean speed-up over
Numba, and a 5.7× geomean speed-up over Colour-Science on machine 1. On machine 2, Cool-
erSpace has 3.4× and 2.1× geomean speedups over Colour-Science and Numba. All speed-ups are
signi�cant (Ħ < 0.01), with the exception of LAB2HSV on machine 2.

23



Adaptation

Colorblindness
SpaceConv

Interpolation
Mixing

LAB2HSV
0.0
0.5
1.0
1.5
2.0
2.5
3.0

Ti
m

e 
(s

)

Compilation
Optimization

(a) Machine 1

Adaptation

Colorblindness
SpaceConv

Interpolation
Mixing

LAB2HSV
0.0
0.5
1.0
1.5
2.0
2.5
3.0

Ti
m

e 
(s

)

Compilation
Optimization

(b) Machine 2

Fig. 9. Compilation and optimization time by program.

Adaptation

Colorblindness
SpaceConv

Mixing
Interpolation

LAB2HSV
0

1

2

3

4

5

6

7

8

Ti
m

e 
(s

)

Unoptimized CoolerSpace
Numba
Colour-Science

(a) Machine 1

Adaptation

Colorblindness
SpaceConv

Mixing
Interpolation

LAB2HSV
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ti
m

e 
(s

)
Unoptimized CoolerSpace
Numba
Colour-Science

(b) Machine 2

Fig. 10. CoolerSpace average program execution time on CPU benchmarked against other Python solutions.

Adaptation, Colorblindness, SpaceConv, Interpolation, and LAB2HSV were run on 5K images. Mixing

was run on input sizes of 600 × 600 × 89. The error bars are 3 times the standard deviation of each set of

tests. Colour-Science does not have a mixing program benchmark, as the library does not implement the

Kubelka-Munk model. All Numba programs were compiled following the best practices recommended by

Numba (e.g., with the nopython flag) for best performance. The JIT compile time costs of Numba are

excluded from the time measurements.

These results do not demonstrate CoolerSpace’s optimization capabilities. Rather, the perfor-
mance gains are a product of the di�erences between the libraries’ software stacks. This evaluation
is meant to show that, compared to existing color programming systems, CoolerSpace not only
provides type safety guarantees but also does so without additional run-time overhead – in fact,
we provide a performance improvement.

10.4 Optimization E�ects

We have also benchmarked the GPU execution times of both our optimized and unoptimized
ONNX �les. Fig. 11 shows the speed-up of each GPU-run program under �ve di�erent image
resolutions. The only exceptions are Mixing and LAB2HSV, which use a smaller set of resolutions
to prevent out-of-memory issues during the run time. Our optimization yields a speed-up of about
12% (geometric mean) across all programs and all resolutions on machine 1. The speed-up is
about 15% on machine 2. A star in Fig. 11 indicates that the corresponding speedup is statistically

24



Adap
tation

Color
blindn

ess
Space

Conv
Interp

olatio
n

Mixin
g
LAB2

HSV
0.50

0.75

1.00

1.25

1.50

1.75

Sp
ee

d-
up

1920x1080
2560x1440
3200x1800
3840x2160

5120x2880
200x200
400x400
600x600

''''' ''''' ''''' ''''' ''

(a) Machine 1

Adap
tation

Color
blindn

ess
Space

Conv
Interp

olatio
n

Mixin
g
LAB2

HSV
0.50

0.75

1.00

1.25

1.50

1.75

Sp
ee

d-
up

1920x1080
2560x1440
3200x1800
3840x2160

5120x2880
200x200
400x400
600x600

''''' ''''' ''''' ''''' ''' ''''

(b) Machine 2

Fig. 11. Speed-ups by program under di�erent resolutions. The error bars represent one standard deviation. A

star above the bar indicates that the corresponding di�erence in runtime is statistically significant (Ħ < 0.01).

signi�cant. All programs show statistically signi�cant speedups on some resolutions except for
LAB2HSV on machine 1.

The speed-ups forColorBlindness andAdaptation are attributed to the reduction in operations.
This is because the original algorithms operate in the LMS space whereas the input images are in the
sRGB space, so a color space transformation is necessary; our optimization identi�es a reformulation
of the arithmetics to operate directly in the sRGB space. The speed-ups for SpaceConv,Mixing,
and Interpolation can be mostly attributed to constant folding. SpaceConv’s execution time is
dominated by a sequence of constant matrix multiplications, which are optimized away.
LAB2HSV at the highest resolution on machine 1 shows a signi�cant slowdown with high

variance after optimization. Further observation reveals a patch of 20 consecutive abnormally high
run-times in the optimized LAB2HSV results. Transient memory management issues likely are the
culprit, as this slowdown is not present on Machine 2. Machine 2 has 24GB of VRAM, as opposed
to machine 1’s 8GB of VRAM.
Further Optimizations. We choose to compile to ONNX because of practical considerations:

ONNX is a convenient IR that is also cross-platform. However, ONNX and ONNX Runtime are not
necessarily the most speed-e�cient options. Our experiments show that equivalent CuPy [Okuta
et al. 2017] code is 1.2× faster than corresponding CoolerSpace programs. The di�erence in
execution time is a product of the di�erent implementations of CuPy and ONNX Runtime and,
potentially, the GPU code generated by CuPy and ONNX Runtime. In principle, we could directly
compile to a more e�cient target such as CuPy (or further translate fromONNX IR to that). However,
such backend-speci�c and/or device-speci�c optimizations are out of the scope of the current paper,
which focuses on enforcing color program correctness without additional run-time overhead.

11 Related Works

Color Programing Libraries. Commonly used Python libraries by color scientists include
numpy [Harris et al. 2020], OpenCV [Bradski 2000], Pillow [Clark 2023], and Colour-Science [De-
velopers 2015]. Unlike CoolerSpace, however, Numpy, OpenCV, and Colour-Science provide only
a wrapper for tensor operations and color science algorithms without (type) checking physical
correctness. Pillow has a small set of informal “types” (referred to as “modes”) to track image
representation and to validate operations, but is much weaker than CoolerSpace. For instance,
Pillow can distinguish between RGB and RGBA, but not between actual color spaces: opRGB and

25



sRGB images are treated identically. Pillow also lacks types for other important physical objects
such as light and material properties. Finally, unlike all existing libraries, CoolerSpace is a meta-
programming library, which compiles a Python program into an optimized ONNX �le. Other
Python libraries perform no performance optimization.

Domain-Speci�c Languages. CoolerSpace is a programming system for color science. Several
domain-speci�c languages exist for the �eld of visual computing. All raise the level of programming
abstraction. Gator [Geisler et al. 2020] introduces a type system for expressing coordinate systems
in rendering. Simit [Kjolstad et al. 2016] is a language for physics simulation. Scenic [Fremont et al.
2019] is a language for probabilistically modeling a virtual scene. None of these domain speci�c
languages target color programming. CoolerSpace uses tensor shape information to check the
validity of operations. Similar static type checking systems for tensor shape are seen in array
programming languages [Joisha and Banerjee 2006; Slepak et al. 2014].
Tensor Representations and Optimizations. CoolerSpace compiles user programs into

tensor algebra represented by ONNX [Onnx 2018]. We chose ONNX because it is cross-platform
and has a vibrant user community [Danopoulos et al. 2021; Jin et al. 2020].

CoolerSpace uses equality saturation to optimize tensor algebra [Tate et al. 2009]. Other tensor
optimization techniques are in principle applicable too [Chen et al. 2018; Kjolstad et al. 2017;
Susungi et al. 2018; Vasilache et al. 2018]. Our rewrite rules borrow from previous works on tensor
optimization [Jia et al. 2019; Yang et al. 2021] but include color speci�c rules. Our cost function is
based on a �rst-order estimation of operation counts; while empirically e�ective, future work can
consider integrating hardware-aware models [Ahrens et al. 2022; Anderson et al. 2021; Liu et al.
2022]. Our implementation is based on the egg library [Willsey et al. 2021] with an extension to
support constant propagation. While it is possible to use egg to implement constant propagation, it
requires serializing a large amount of constant values, which might increase memory usage and
optimization time. Our approach, by contrast, is symbolic.

Physical Unit Types. Researchers have previously explored the application of type theory to
physical units and dimensions [Allen et al. 2004; Dreiheller et al. 1986; Karr and Loveman 1978].
This line of research encodes both physical units (i.e., meters, liters, kilograms) and dimensions5

(i.e., length, volume, mass) as types. In physical unit types literature (also known as measurement
types), a measurement can generally be converted to units of the same dimension, but not to units
of other dimensions. For example, 1 minute can be converted to 60 seconds, as minutes and seconds
are both units of the time dimension. 1 minute cannot be converted to grams. Such a conversion is
nonsensical, as units of the time dimension cannot be converted to units of the mass dimension.
CoolerSpace also contains multiple dimensions, but unlike measurement types, CoolerSpace
allows conversion between units of di�erent dimensions. This topic is discussed further in the
Casting paragraph of Sec. 7.

Approximate Data Types and Information Flow Types. Both approximate [Sampson et al.
2011] and information �ow [Myers 1999; Sabelfeld and Myers 2003] types enforce unidirectional
information �ow. In EnerJ [Sampson et al. 2011], precise to approximate data �ow is allowed, but
the reverse is prohibited. Similarly, information �ow types prevent con�dential data from a�ecting
non-con�dential outputs. Non-con�dential data can a�ect con�dential data. CoolerSpace also
restricts data �ow in a unidirectional manner. Light values can be coerced to sRGB values, but
sRGB values can’t be coerced to Light values.

In approximate data types and information �ow type literature, the one directional information
�ow restrictions are designed to enforce best practices: it is feasible, if inadvisable, to openly share

5The dimension terminology here is not to be confused with dimension types in CoolerSpace. Dimensions in CoolerSpace

refer to matrix dimensions.

26



password hashes. By contrast, the restrictions on information �ow in CoolerSpace are informed
by mathematics and physics: it is mathematically impossible to derive light spectrum data from an
sRGB value because there are in�nitely many physical light spectra that correspond to the same
sRGB color. This topic is discussed further in the Casting paragraph of Sec. 7.

12 Conclusion

CoolerSpace’s type system prevents mathematically permissible but physically meaningless or
incorrect computations. CoolerSpace also automatically generates performance-optimized color
science programs using equality saturation. We see CoolerSpace as the �rst step, rather than
the �nal work, in raising the level of programming abstraction for physical sciences. Languages
should empower domain experts to express the physical meaning of their programs. Correctness
guarantees and performance optimizations should be left to the compiler and run-time system.

13 Acknowledgements

We would like to thank Professor Sreepathi Pai of the University of Rochester’s Computer Science
department for his feedback on our type system and soundness proofs. We would also like to thank
the anonymous reviewers of ASPLOS’24 and OOPLSA’24 for their constructive criticism and helpful
insight. The project is partially funded by NSF Award #2225860.

14 Data-Availability Statement

CoolerSpace has four artifacts: the CoolerSpace library [Chen 2024a], theONNX optimizer [Chen
and Chang 2024], a wrapper for the equality saturation rust library egg [Chang and Chen 2024;
Willsey et al. 2021], and a set of benchmarking programs [Chen 2024b]. The programs are open-
source and freely available on GitHub. Additionally, the all artifacts are available in Zenodo. The
artifacts are also available on Zenodo [Chen et al. 2024].

References

2011. Answer to "adding/mixing colors in HSV Space". https://stackover�ow.com/a/7388476.
2014. Answer to "Interpolate from one color to another". https://stackover�ow.com/a/21010385.
2016. Weird interpolation between colors in hsv? https://stackover�ow.com/q/37471461.
2021. How to calculate (a physical) ratio of colors to achieve a target color? https://math.stackexchange.com/q/4335003.
adriahf. 2016. Increase the velocity of the calculations. · Issue #302 · colour-science/colour. https://github.com/colour-

science/colour/issues/302
Willow Ahrens, Fredrik Kjolstad, and Saman Amarasinghe. 2022. Autoscheduling for sparse tensor algebra with an

asymptotic cost model. In Proceedings of the 43rd ACM SIGPLAN International Conference on Programming Language

Design and Implementation. 269–285. https://doi.org/10.1145/3519939.3523442
Eric Allen, David Chase, Victor Luchangco, Jan-Willem Maessen, and Guy L. Steele. 2004. Object-oriented units of

measurement. In Proceedings of the 19th annual ACM SIGPLAN conference on Object-oriented programming, systems,

languages, and applications (New York, NY, USA, 2004-10-01) (Oopsla ’04). Association for Computing Machinery, 384–403.
https://doi.org/10.1145/1028976.1029008

Simon Amarasingham. 2019. Red and green Eclectus Parrots. https://www.�ickr.com/photos/22896868@N05/49257147352/
Luke Anderson, Andrew Adams, Karima Ma, Tzu-Mao Li, Tian Jin, and Jonathan Ragan-Kelley. 2021. E�cient automatic

scheduling of imaging and vision pipelines for the GPU. Proceedings of the ACM on Programming Languages 5, Oopsla
(2021), 1–28. https://doi.org/10.1145/3485486

Roy S Berns. 2016. Color science and the visual arts: a guide for conservators, curators, and the curious. Getty Publications.
https://doi.org/10.17613/d08z-ga34

G. Bradski. 2000. The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000).
David H Brainard and Andrew Stockman. 2010. Colorimetry. The Optical Society of America Handbook of Optics 3 (2010),

10–1.
Hans Brettel, Françoise Viénot, and John D Mollon. 1997. Computerized simulation of color appearance for dichromats.

Josa a 14, 10 (1997), 2647–2655. https://doi.org/10.1364/josaa.14.002647
Arthur D Broadbent. 2001. Basic principles of textile coloration. Vol. 132. Society of Dyers and Colorists Bradford.

27



Jiwon Chang and Ethan Chen. 2024. eggwrap. https://github.com/horizon-research/eggwrap
Ethan Chen. 2024a. CoolerSpace. https://github.com/horizon-research/CoolerSpace
Ethan Chen. 2024b. CoolerSpace Benchmarker. https://github.com/horizon-research/CoolerSpaceBenchmarker
Ethan Chen and Jiwon Chang. 2024. onneggs.
Ethan Chen, Jiwon Chang, and Yuhao Zhu. 2024. CoolerSpace Artifacts. https://doi.org/10.5281/zenodo.13621721
Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen Shen, Meghan Cowan, LeyuanWang, Yuwei

Hu, Luis Ceze, et al. 2018. {TVM}: An automated {End-to-End} optimizing compiler for deep learning. In 13th USENIX

Symposium on Operating Systems Design and Implementation (OSDI 18). 578–594. https://doi.org/10.5555/3291168.3291211
Adam Chlipala, Leaf Petersen, and Robert Harper. 2005. Strict bidirectional type checking. In Proceedings of the 2005 ACM

SIGPLAN International Workshop on Types in Languages Design and Implementation (Long Beach, California, USA) (Tldi
’05). Association for Computing Machinery, New York, NY, USA, 71–78. https://doi.org/10.1145/1040294.1040301

Je�rey Clark. 2023. Pillow. https://github.com/python-pillow/Pillow.
Dimitrios Danopoulos, Christoforos Kachris, and Dimitrios Soudris. 2021. Utilizing cloud FPGAs towards the open neural

network standard. Sustainable Computing: Informatics and Systems 30 (2021), 100520. https://doi.org/10.1016/j.suscom.
2021.100520

Colour Developers. 2015. Colour Science for Python. https://www.colour-science.org/.
ONNX Runtime Developers. 2021. ONNX Runtime. https://onnxruntime.ai/. Version: 1.16.
A Dreiheller, B Mohr, and M Moerschbacher. 1986. Programming pascal with physical units. ACM SIGPLAN Notices 21, 12

(Dec. 1986), 114–123. https://doi.org/10.1145/15042.15048
DR Duncan. 1940. The colour of pigment mixtures. Proceedings of the Physical Society 52, 3 (1940), 390.
Joshua Ebenezer. 2021. Computational speed for conversions · Issue #788 · colour-science/colour. https://github.com/colour-

science/colour/issues/788
Mark D Fairchild and Lisa Reni�. 1995. Time course of chromatic adaptation for color-appearance judgments. Josa A 12, 5

(1995), 824–833. https://doi.org/10.1016/s0042-6989(00)00050-x
Daniel J Fremont, Tommaso Dreossi, Shromona Ghosh, Xiangyu Yue, Alberto L Sangiovanni-Vincentelli, and Sanjit A

Seshia. 2019. Scenic: a language for scenario speci�cation and scene generation. In Proceedings of the 40th ACM SIGPLAN

Conference on Programming Language Design and Implementation. 63–78. https://doi.org/10.1145/3314221.3314633
Dietrich Geisler, Irene Yoon, Aditi Kabra, Horace He, Yinnon Sanders, and Adrian Sampson. 2020. Geometry types for graphics

programming. Proceedings of the ACM on Programming Languages 4, Oopsla (2020), 1–25. https://doi.org/10.1145/3428241
Romain Guy. 2017. Understanding color. https://www.youtube.com/watch?v=r8NeG0wmFXM
Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli Virtanen, David Cournapeau, Eric Wieser,

Julian Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van Kerkwijk,
Matthew Brett, Allan Haldane, Jaime Fernández del Río, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin
Sheppard, Tyler Reddy, Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. 2020. Array
programming with NumPy. Nature 585, 7825 (Sept. 2020), 357–362. https://doi.org/10.1038/s41586-020-2649-2

Trish Hartmann. 2012. Eleuthera Sunset. https://openverse.org/image/d693e7e7-d7aa-4801-96c5-56674e5715c6
ST Henderson and D Hodgkiss. 1963. The spectral energy distribution of daylight. British Journal of Applied Physics 14, 3

(1963), 125. https://doi.org/10.1088/0508-3443/15/8/310
Zhihao Jia, Oded Padon, James Thomas, Todd Warszawski, Matei Zaharia, and Alex Aiken. 2019. TASO: optimizing deep

learning computation with automatic generation of graph substitutions. In Proceedings of the 27th ACM Symposium on

Operating Systems Principles. 47–62. https://doi.org/0.1145/3341301.3359630
Tian Jin, Gheorghe-Teodor Bercea, Tung D Le, Tong Chen, Gong Su, Haruki Imai, Yasushi Negishi, Anh Leu, Kevin O’Brien,

Kiyokuni Kawachiya, et al. 2020. Compiling onnx neural network models using mlir. arXiv preprint arXiv:2008.08272
(2020). https://doi.org/10.48550/arXiv.2008.08272

Ruth Johnston-Feller. 2001. Color science in the examination of museum objects: nondestructive procedures. Getty Publications.
https://doi.org/10.1002/col.10107

Pramod G Joisha and Prithviraj Banerjee. 2006. An algebraic array shape inference system for MATLAB®. ACM Transactions

on Programming Languages and Systems (TOPLAS) 28, 5 (2006), 848–907. https://doi.org/10.1145/1152649.1152651
Michael Karr and David B. Loveman. 1978. Incorporation of units into programming languages. 21, 5 (1978), 385–391.

https://doi.org/10.1145/359488.359501
Fredrik Kjolstad, Shoaib Kamil, Stephen Chou, David Lugato, and Saman Amarasinghe. 2017. The tensor algebra compiler.

Proceedings of the ACM on Programming Languages 1, Oopsla (2017), 1–29. https://doi.org/10.1145/3133901
Fredrik Kjolstad, Shoaib Kamil, Jonathan Ragan-Kelley, David IW Levin, Shinjiro Sueda, Desai Chen, Etienne Vouga, DannyM

Kaufman, Gurtej Kanwar, Wojciech Matusik, et al. 2016. Simit: A language for physical simulation. ACM Transactions on

Graphics (TOG) 35, 2 (2016), 1–21. https://doi.org/10.1145/2866569
Paul Kubelka. 1948. New contributions to the optics of intensely light-scattering materials. Part I. Josa 38, 5 (1948), 448–457.
Paul Kubelka and Franz Munk. 1931. An article on optics of paint layers. Z. Tech. Phys 12, 593-601 (1931), 259–274.

28



Daniël Lakens. 2017. Equivalence tests: A practical primer for t tests, correlations, and meta-analyses. Social psychological
and personality science 8, 4 (2017), 355–362. https://doi.org/10.1177/1948550617697177

Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. 2015. Numba: a LLVM-based Python JIT compiler. In Proceedings of the

Second Workshop on the LLVM Compiler Infrastructure in HPC (Austin, Texas) (Llvm ’15). Association for Computing
Machinery, New York, NY, USA, Article 7, 6 pages. https://doi.org/10.1145/2833157.2833162

Dmitry Lavrov. 2020. Reading 65^3 Iridas 3D LUT is incredibly slow. · Issue #573 · colour-science/colour. https:
//github.com/colour-science/colour/issues/573

Changjun Li, Zhiqiang Li, Zhifeng Wang, Yang Xu, Ming Ronnier Luo, Guihua Cui, Manuel Melgosa, Michael H Brill, and
Michael Pointer. 2017. Comprehensive color solutions: CAM16, CAT16, and CAM16-UCS. Color Research & Application

42, 6 (2017), 703–718. https://doi.org/10.1002/col.22131
Bruce Lindbloom. 2017. XYZ to LAB. http://www.brucelindbloom.com/index.html?Eqn%5FXYZ%5Fto%5FLab.html
Amanda Liu, Gilbert Louis Bernstein, Adam Chlipala, and Jonathan Ragan-Kelley. 2022. Veri�ed tensor-program optimization

via high-level scheduling rewrites. Proceedings of the ACM on Programming Languages 6, Popl (2022), 1–28. https:
//doi.org/10.1145/3498717

Steve Marschner and Peter Shirley. 2021. Chapter 14.6.1 Spectral Energy. In Fundamentals of Computer Graphics. AK
Peters/CRC Press, 357–382. https://doi.org/10.1201/9781439865521

Francisco Massa. 2021. [feature request] rgb2lab / rgb2hsv / rgb2gray and other color space conversions (maybe upstream
from kornia? or colorsys python core module?) · Issue #4029 · pytorch/vision. https://github.com/pytorch/vision/issues/
4029

Don McCurdy. 2022. Color management. https://threejs.org/docs/#manual/en/introduction/Color-management
Michael E Miller and Spicer. 2019. Color in Electronic Display Systems. Springer. https://doi.org/10.1007/978-3-030-02834-3
Andrew C. Myers. 1999. JFlow: practical mostly-static information �ow control. In Proceedings of the 26th ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages (San Antonio, Texas, USA) (Popl ’99). Association for
Computing Machinery, New York, NY, USA, 228–241. https://doi.org/10.1145/292540.292561

Ryosuke Okuta, Yuya Unno, Daisuke Nishino, Shohei Hido, and Crissman Loomis. 2017. CuPy: A NumPy-Compatible
Library for NVIDIA GPU Calculations. In Proceedings of Workshop on Machine Learning Systems (LearningSys) in The

Thirty-�rst Annual Conference on Neural Information Processing Systems (NIPS).
Onnx. 2018. Open Neural Network Exchange. https://github.com/onnx/onnx.
Matt Pharr, Wenzel Jakob, and Greg Humphreys. 2023. Physically based rendering: From theory to implementation. MIT

Press.
Charles Poynton. 2012. Digital video and HD: Algorithms and Interfaces. Elsevier. https://doi.org/10.1016/B978-0-12-391926-

7.50059-X
Andy Rowlands. 2017. Physics of digital photography. IOP Publishing. https://doi.org/10.1088/978-0-7503-2558-5
D Andrew Rowlands. 2020. Color conversion matrices in digital cameras: a tutorial. Optical Engineering 59, 11 (2020),

110801. https://doi.org/10.1117/1.oe.59.11.110801
A. Sabelfeld and A.C. Myers. 2003. Language-based information-�ow security. IEEE Journal on Selected Areas in Communi-

cations 21, 1 (2003), 5–19. https://doi.org/10.1109/jsac.2002.806121
Adrian Sampson, Werner Dietl, Emily Fortuna, Danushen Gnanapragasam, Luis Ceze, and Dan Grossman. 2011. EnerJ:

approximate data types for safe and general low-power computation. SIGPLAN Not. 46, 6 (jun 2011), 164–174. https:
//doi.org/10.1145/1993316.1993518

Gaurav Sharma. 2017. Color fundamentals for digital imaging. In Digital color imaging handbook. CRC press, 1–114.
Gaurav Sharma and Raja Bala. 2017. Digital color imaging handbook. CRC press.
Justin Slepak, Olin Shivers, and Panagiotis Manolios. 2014. An array-oriented language with static rank polymorphism.

In Programming Languages and Systems: 23rd European Symposium on Programming, ESOP 2014, Held as Part of the

European Joint Conferences on Theory and Practice of Software, ETAPS 2014, Grenoble, France, April 5-13, 2014, Proceedings

23. Springer, 27–46. https://doi.org/10.1007/978-3-642-54833-8_3
Šárka Sochorová and Ondřej Jamriška. 2021. Practical pigment mixing for digital painting. ACM Transactions on Graphics

(TOG) 40, 6 (2021), 1–11. https://doi.org/10.1145/3478513.3480549
van der Walt Stefan. 2017. Finding color space information about image · Issue #2175 · scikit-image/scikit-image. https:

//github.com/scikit-image/scikit-image/issues/2175
Andrew Stockman and David H Brainard. 2010. Color vision mechanisms. The Optical Society of America Handbook of

Optics 3 (2010), 11–1.
Adilla Susungi, Norman A Rink, Albert Cohen, Jeronimo Castrillon, and Claude Tadonki. 2018. Meta-programming for

cross-domain tensor optimizations. ACM SIGPLAN Notices 53, 9 (2018), 79–92. https://doi.org/10.1145/3278122.3278131
Ross Tate, Michael Stepp, Zachary Tatlock, and Sorin Lerner. 2009. Equality saturation: a new approach to optimization.

In Proceedings of the 36th annual ACM SIGPLAN-SIGACT symposium on Principles of programming languages. 264–276.
https://doi.org/10.1145/1480881.1480915

29



Varkor. 2018. Types for units of measure. https://varkor.github.io/blog/2018/07/30/types-for-units-of-measure.html
Nicolas Vasilache, Oleksandr Zinenko, Theodoros Theodoridis, Priya Goyal, Zachary DeVito, William S Moses, Sven

Verdoolaege, Andrew Adams, and Albert Cohen. 2018. Tensor comprehensions: Framework-agnostic high-performance
machine learning abstractions. arXiv preprint arXiv:1802.04730 (2018). https://doi.org/10.48550/arXiv.1802.04730

Françoise Viénot, Hans Brettel, and John D Mollon. 1999. Digital video colourmaps for checking the legibility of displays
by dichromats. Color Research & Application 24, 4 (1999), 243–252. https://doi.org/10.1002/(SICI)1520-6378(199908)24:
4<243::AID-COL5>3.0.CO;2-3

Brian A Wandell. 1995. Foundations of vision. sinauer Associates.
Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel Panchekha. 2021. Egg:

Fast and extensible equality saturation. Proceedings of the ACM on Programming Languages 5, Popl (2021), 1–29.
https://doi.org/10.1145/3434304

Günther Wyszecki and Walter Stanley Stiles. 2000. Color science: concepts and methods, quantitative data and formulae.
Vol. 40. John wiley & sons.

Yichen Yang, Phitchaya Phothilimthana, Yisu Wang, Max Willsey, Sudip Roy, and Jacques Pienaar. 2021. Equality saturation
for tensor graph superoptimization. Proceedings of Machine Learning and Systems 3 (2021), 255–268.

Received 2024-04-05; accepted 2024-08-18

30


	Abstract
	1 Introduction
	2 Background: Lights, Colors, and Materials
	3 Motivations
	4 CoolerSpace System Overview
	5 CoolerSpace Type System
	5.1 Overview
	5.2 Types in CoolerSpace
	5.3 Typing Rules

	6 CoolerSpace to ONNX Translation
	6.1 Translational Semantics
	6.2 Translational Soundness
	6.3 Type Soundness

	7 Type System Design Decisions
	8 Optimizing CoolerSpace Programs
	9 Experimental Setup
	10 Results
	10.1 Case Study on the Type System
	10.2 Compilation and Optimization Time
	10.3 Comparison with Existing Libraries
	10.4 Optimization Effects

	11 Related Works
	12 Conclusion
	13 Acknowledgements
	14 Data-Availability Statement
	References

