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Abstract—Attention for transformers is a critical workload
that has recently received significant ‘attention’ as a target
for custom acceleration. Yet, while prior work succeeds in
reducing attention’s memory-bandwidth requirements, it creates
load imbalance between operators that comprise the attention
computation (resulting in severe compute under-utilization) and
requires on-chip memory that scales with sequence length (which
is expected to grow over time).

This paper ameliorates these issues, enabling attention with
nearly 100% compute utilization, no off-chip memory traffic
bottlenecks, and on-chip buffer size requirements that are inde-
pendent of sequence length. The main conceptual contribution is
to use a recently proposed abstraction—the cascade of Einsums—
to describe, formalize, and taxonomize the space of attention
algorithms that appear in the literature. In particular, we show
how Einsum cascades can be used to infer non-trivial lower
bounds on the number of passes a kernel must take through its
input data, which has implications for either required on-chip
buffer capacity or memory traffic. We show how this notion can
be used to meaningfully divide the space of attention algorithms
into several categories and use these categories to inform our
design process.

Based on the above characterization, we propose FuseMax—a
novel mapping and binding of attention onto a spatial array-style
architecture. On attention, in an iso-area comparison, FuseMax
achieves an average 6.7× speedup over the prior state-of-the-art,
FLAT, while using 79% of the energy. Similarly, on full end-to-
end transformer inference, FuseMax achieves an average 5.3×

speedup over FLAT using 83% of the energy.
Index Terms—Tensor algebra, Extended Einsums, Spatial ar-

chitectures, Attention

I. INTRODUCTION

Over the past few years, transformers [52] have emerged as

the model architecture of choice for a wide range of machine

learning applications, from natural language processing [13],

[17], [48], [49] to computer vision [18], [33] to speech

recognition [4], [26]. This rise has been accompanied by a

corresponding wave of proposals for accelerating transformers

in both software [12], [14], [15] and hardware [28], [62].

This work was partially funded by NSF grants CNS-1954521, CNS-
1942888, CNS-2154183, CCF-8191902, and CCF-2217099; as well as by
an Intel gift and a Microsoft Research PhD fellowship.

Fortunately, many of the layers (projections, fully con-

nected layers, etc.) used by transformers look very similar to

prior generations of machine learning models. Their resource-

intensive tensor products can be described and evaluated with

existing tensor algebra accelerator modeling tools [29], [35],

[41], and many of the other layers (e.g., layer normalization)

have negligible impact on performance and can be safely

ignored.

However, the attention layer [52]—usually described as a

matrix multiplication, a softmax, and then another matrix

multiplication—does not fit into either of these boxes. For

example, the softmax is both memory intensive (featuring low

algorithmic reuse) and compute intensive (featuring exponen-

tiation and division). Furthermore, attention’s characteristics

preclude many “free lunches” often used to improve efficiency

in other DNN models. For example, because all tensors are

a function of the model inputs, there is no opportunity to

amortize memory access costs with an increased batch size.

Additionally, since none of the operands can be computed

before the inputs are given, compression/strength reduction

techniques (e.g., quantization [22], [60], sparsity [34], [46],

[53], etc.) must be applied dynamically, leading to more

complicated algorithms and hardware designs.

To illustrate the difficulty in accelerating attention, consider

the state-of-the-art accelerator for attention: FLAT [28]. FLAT

uses fusion to reduce attention memory bandwidth bottlenecks

on a spatial architecture (e.g., a TPU [27]). Specifically, FLAT

maps attention’s matrix multiplications to the 2D spatial array

and softmax operations to a separate 1D array. While FLAT’s

design does make attention compute bound, it becomes com-

pute bottlenecked in the 1D array (the softmax), causing

severe under utilization of the 2D array. While one could add

additional PEs to the 1D array, this results in corresponding

area costs.

Making matters worse, FLAT requires that the entire vector

over which the softmax is performed be buffered on chip.

This vector is proportional to the sequence length, which is

growing rapidly with time (e.g., Google reports 10 million
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length sequences in research, which would require 100s of

MegaBytes to buffer [44]). When the vector/sequence length

grows beyond allowable buffer capacity, FLAT is forced

to spill, which contributes significantly to attention energy

consumption and can even make attention memory-bandwidth

bound.

This paper. We address the above challenges by propos-

ing a novel spatial architecture – FuseMax – to accelerate

attention, with particular emphasis on removing bottlenecks

imposed by the softmax. Our architecture addresses all of the

aforementioned issues associated with FLAT. Namely:

• FuseMax is compute bound, but provides almost 100%

utilization of both the 2D and 1D arrays throughout the

attention layer, without adding additional PEs to the 1D

array.

• FuseMax’s on-chip memory requirements are invariant

to sequence length and require no extra spills to memory

regardless of sequence length.

The paper’s technical core is split into three parts.

First, Section III demonstrates a novel analysis on kernels

that uses the recently proposed cascade of Einsums abstrac-

tion [35]. In a nutshell, an Einsum defines an iteration space

over tensors and what computation is done on and between

tensors at each point in the iteration space. A cascade of

Einsums is a sequence of dependent Einsums that can be used

to describe and specify a larger kernel.

While prior work [35], [39] provides a precise definition

for Einsums, a major contribution in our work is to show how

this definition can be leveraged to inform accelerator design.

Specifically, we recognize that the cascade makes explicit pre-

cisely what dependencies there are between Einsums. We show

how this can be used to make non-trivial deductions about a

kernel’s allowed fusion granularity and algorithmic minimum

per-tensor live footprint. The relationship between the live

footprint and the buffer capacity, in turn, has implications for

the required data movement.

In more detail, this analysis provides insight into the number

of passes an algorithm performs, i.e., the number of times a

given element of an input must be revisited after visiting every

other element of the input. Normally, one strives to choose

a dataflow that exploits maximal reuse in a given element

(or tile of elements) to avoid having frequently reload it.

However, some algorithms preclude this strategy. In this work,

we describe how to count the number of passes a cascade

requires and present two methods for reducing the number

of passes. In general, fewer passes is preferable; although,

interestingly, we find that decreasing the number of passes can

increase the required compute. Given that an Einsum cascade

is mapping/scheduling agnostic, this analysis provides insight

given any possible scheduling of the cascade onto hardware.

Next, Section IV applies the cascade of Einsums abstraction

to describe and formalize the attention kernel. Using the notion

of passes introduced in Section III, we taxonomize the space

of numerically stable attention proposals that appear in the

literature. For example, in a naı̈ve implementation of attention,

one must traverse the entire softmax input to build the softmax

denominator and only after that can one revisit and scale each

input (softmax numerator) by the denominator. Because this

analysis is performed on the cascade of Einsums, our lower

bounds on passes hold for any choice of mapping, including

applications of fusion. For example, despite using fusion,

FLAT employs a 3-pass cascade and its reliance on large on-

chip buffering is a symptom of trying to avoid three passes-

worth of DRAM traffic. We, then, show how transforming the

attention cascade reduces the number of passes required.

Additionally, we find that expressing attention as a cascade

of Einsums reveals that optimizations that were previously

conflated can actually be applied separately. We specifically

call out one that is used by 1-pass algorithms to eliminate the

need for a second pass after the final softmax denominator

has been calculated. We recognize that this optimization has

the added benefit of decreasing the required divisions, which

is not only useful for but can be applied to 2- and 3-pass

cascades as well.

Finally, Section V uses the insights from Section IV as a

starting point to develop a novel mapping and binding for

attention that can be lowered to a spatial architecture. We

call our architecture FuseMax. FuseMax adopts the 1-pass

attention cascade used in FlashAttention-2 [14]. However,

despite using the cascade from FlashAttention-2, binding this

cascade to a spatial architecture is non-trivial. In particular,

FlashAttention-2 binds the cascade onto a GPU, an archi-

tecture that features homogeneous PEs, each with relatively

large per-PE storage, and expensive inter-PE communication.

Spatial architectures feature opposite characteristics: heteroge-

neous PEs, each with smaller per-PE storage, and cheap (but

restricted) inter-PE communication. Specifically, the networks

that connect the PEs within the 2D array allow efficient

communication primarily between neighbors. We overcome

these differences and demonstrate a novel mapping and bind-

ing for the 1-pass cascade that achieves high utilization

for entire transformer layers. Our architecture requires only

minimal changes to a standard spatial architecture and is

performance/energy robust to long sequence lengths (e.g., 1M

tokens and beyond).

To summarize, we make the following contributions:

• We show how cascades of Einsums can be used to inform

accelerator design, both in terms of reasoning about

compute requirements and per-tensor live footprints. We

formalize lower bounds on the number of passes a cas-

cade imposes given any possible mapping of the cascade

onto hardware.

• We use cascades of Einsums, and the observation about

pass lower bounds, to provide a taxonomy and precise

specification of numerically stable attention algorithms

in the literature. Orthogonally, we show how previously

entangled attention optimizations can be applied across

attention algorithms.

• We propose a novel mapping and binding for attention

for a spatial architecture—which we call FuseMax—that

achieves high utilization for both 2D and 1D array PEs,
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and has memory traffic requirements that are independent

of sequence length.

• We evaluate FuseMax on BERT [17], TrXL [13], T5 [49],

and XLM [13] and demonstrate a 6.7× speedup on

attention with 79% of the energy and a 5.3× speedup on

full end-to-end inference with 83% of the energy relative

to FLAT.

II. BACKGROUND

In this section, we describe the concepts and terminology

used in the remainder of the paper.

A. Tensors

This paper focuses on algebraic computations on tensors,

where a tensor is a multidimensional array. A tensor’s rank

refers to a specific dimension of the tensor, while the tensor’s

shape is the set of valid coordinates for each of the tensor’s

ranks. We use the notation N -tensor to denote a tensor with

N ranks, where a 0-tensor is a scalar, a 1-tensor is a vector,

a 2-tensor is a matrix, etc.

We adopt the format-agnostic fibertree abstraction of ten-

sors, where a tensor is represented as a tree of fibers, as

detailed in prior work [25], [35], [38], [43], [51], [55], [57],

[58], using the specific version described in TeAAL [35,

Section 2.1]. In this abstraction, a fiber consists of the set of

coordinates for a given rank with common coordinates for all

higher-level ranks. Each coordinate is coupled with a payload.

The payload may contain a reference to a fiber in the next

lower rank, or to a leaf data value.

B. Traditional Einsums

An Einsum expression defines a computation on a set of

tensor operands using an iteration space that specifies the set

of points where the computations are performed [35], [39]. For

example, we describe matrix-matrix multiplication (GEMM)

with the following Einsum:

Zm,n = Ak,m ×Bk,n (1)

where A and B are input 2-tensors of shape K × M and

K×N , respectively. Z is an output 2-tensor with shape M×N .

Throughout this paper, we use the same symbol for both the

shape and name of a rank (e.g., rank K in A has a shape of

K).

The iteration space of this Einsum is [0,K) × [0,M) ×
[0, N). An evaluation of this Einsum must: (1) walk every

(k,m, n) point in the iteration space; and, at each point (2)

project into the data space of all input tensors, (3) multiply

the corresponding data values, and (4) place the result at the

corresponding data point in Z. If a value already exists at an

(m,n) point in Z (due to computation at the same (m,n) point

for a different k in the iteration space), reduce the two values

together using addition. Note that the Einsum specifies what

to compute; it does not indicate the order in which one walks

the iteration space. These aspects are left to the mapping [9],

[35], [41].

We also note that we can view the iteration space itself as

a tensor. In the example above, this tensor has shape K ×
M × N . Therefore, we define a special fibertree—called the

iteration space fibertree or is-fibertree—that is the fibertree

representation of this iteration space tensor.

C. Extended Einsums

Traditional Einsums sufficiently express standard tensor

algebra, including those supported in Basic Linear Algebra

Subprograms (BLAS) [19], [30] and tensor network con-

tractions [1]. However, they cannot handle more complex

computations. The recently proposed Extended General Ein-

sums notation (EDGE) [39], extends Einsums to handle graph

algorithm computations. We find this abstraction useful for

also expressing complex tensor algebra computations and use

its notation throughout the paper. We now briefly summarize

the portions of EDGE that we leverage.

1) User-Defined Computations: EDGE separates computa-

tions into three “actions”: map (
∧

), reduce (
∨

), and populate

(=) [39]. Map specifies the pair-wise computation between the

shared ranks of two tensors, reduce specifies the computation

for the reduction step of an Einsum, and default populate (=)

places a computed value from the right-hand side (RHS) of

the Einsum to its location on the left-hand side (LHS).

Each map and reduce action contains two operations: merge

and compute. Compute defines the operation to apply between

two data values, and can be any user-defined function. Merge

specifies which regions of the iteration space to touch; execu-

tion will not need to access the data space corresponding to

culled points. Together, merge and compute precisely define

the computations in an Einsum. Common merge operations

include intersection (+), which touches points with non-zero

values in both operands; and union (,), which touches points

where at least one of the operands is non-zero.

The full EDGE specification for GEMM is then:

Zm,n = Ak,m ·Bk,n ::
∧

k

×(+)
∨

k

+(,), (2)

where
∧

k specifies a map action between A and B on the

k rank and the intersection merge operator (+) culls k points

where at least one operand is zero. The compute operator (×)

multiplies the data values of coordinates surviving intersection.

The reduce action (
∨

k) on the k rank gathers all non-empty

points in the k rank and reduces them using addition (+).

In this work, we use three user-defined computations:

1) Maximum (max(,)) takes the maximum of two values.

Suppose we have the following expression: Zm = Am ·
Bm ::

∧

m max(,). The union merge operator (,) filters

out any m coordinates where both operands contain 0
(and places 0 in the output). The max compute operator

then returns the maximum of the two operands.

2) Divide (÷(←)) divides two data values. Given the

following expression, Zm = Am · Bm ::
∧

m ÷(←),
the merge operator (←) only touches m points where

there is a non-zero value in the B operand (see [39,
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Appendix]), and the compute operator divides the data

value in A with the data value in B.

3) Subtraction and Exponentiation: To apply the expo-

nential to an expression that subtracts two tensors,

we use the following expression: Zm = Am ·
Bm ::

∧

m sub-then-exp(�). The user-defined operator

(sub-then-exp) performs Am minus Bm then applies

the exponential to the result. The merge operator, �, is

EDGE’s “pass-through” operator, which touches all m
points in the iteration space.

In addition to map and reduce, EDGE enables the expression

of user-defined unary operations on tensors. For example, we

can express the application of the non-linear, sigmoid function

(σ) on each element of a tensor A as Zm = σ(Am).
2) Shorthand Notation: Throughout this paper, we take

advantage of EDGE’s shorthand notation [39] in the following

ways:

• We drop all reduce actions that consist of add and

union in the compute and merge operator, respectively

(
∨

+(,)). Thus, Zm = Ak,m ::
∨

k +(,) becomes

Zm = Ak,m.

• We express all map actions using infix notation; that is,

Ak,m ·Bk,n ::
∧

k ×(+) becomes Ak,m ×Bk,n.

• When max is part of a map action (Am · Bm ::
∧

m max(,)), we replace it with the following shorthand:

max(Am, Bm).
• When ÷ is part of a map action (Am ·Bm ::

∧

m ÷(←)),
we replace it with the following: Am/Bm.

• When sub-then-exp is part of the map action (Am ·Bm ::
∧

m sub-then-exp(�)), we replace it with the shorthand

eAm−Bm .

• We can express rank variable expressions with only one

valid coordinate (e.g., Si:i=2) using just the coordinate

(in this case, S2).

3) Filtering Rank Expressions: EDGE also enables express-

ing Einsums that touch only a subset of the data space of their

constituent tensors. For example, we may express the prefix

sum of a tensor Ak with the following Einsum:

Si+1 = Ak:k≤i

For each coordinate i, Si+1 is built by reducing together the

subset of A whose coordinates are ≤ i. Note that this definition

of prefix sum computes the entire sum for a given i without

iteratively reusing the previous sum.

4) Expressing Iterative Computations: EDGE expresses

recursion and iteration through generative/iterative ranks. We

use the term standard ranks to differentiate non-iterative ranks

from iterative ranks. We can express the iterative prefix sum

as follows:
Si+1 = Si +Ai (3)

� : i ≥ K (4)

Here, S is a tensor with the iterative rank, I , ranging from 0
to K (inclusive). Statement 4 indicates the stopping condition

for the iterative expression (when i is greater than or equal to

K).

5) Cascades of Einsums: TeAAL [35] introduces the con-

cept of cascades of Einsums, which expresses directed acyclic

graphs (DAGs) of Einsum expressions as a sequence of sub-

Einsums. One can view the unrolled iterative expression in

Einsum 3 as a cascade:

S1 = S0 +A0

S2 = S1 +A1

...

SK = SK−1 +AK

Finally, we use the EDGE Initialization label to specify

computations that initialize tensors, which occur once. We use

the EDGE Extended Einsum(s) label to specify the computa-

tion that occurs on each iteration of a cascade of Einsums [39].

For example, see (Einsum) Cascade 5.

D. Mapping and Binding

While the cascade of Einsums specifies what computation

is required, the mapping and binding describe how it should

occur [9], [35], [41], [51]. We use the concept of logical tasks

to define these terms. A logical task is a grouping of points

in the iteration spaces of all Einsums. Tasks are defined such

that each point in the iteration spaces is assigned to exactly

one task. Logical tasks can be as small as a single point or as

large as an entire iteration space. In the final schedule, each

logical task must be assigned to exactly one compute unit that

finishes the given task before moving onto the next task.

The mapping, therefore, describes a task graph, a directed,

acyclic graph whose nodes are logical tasks and edges are

dependencies between the tasks. Mapping specifications typ-

ically include aspects such as loop order, partitioning, and

work scheduling (sequential vs. parallel operations) [35]. Thus,

the dependencies in the task graph can be true dependencies

(enforced by the cascade) or additional ordering constraints

imposed by the mapping specification.

The binding describes how the tasks are bound to the

actual hardware, including which compute unit each task is

associated with, when that task will be executed, and where

the inputs and outputs are stored in the memory hierarchy.

This binding must obey the dependencies present in the task

graph and the physical limitations of the architecture but is

otherwise unconstrained.

E. Tensor Algebra Accelerators

In recent years, the popularity of domain-specific tensor

algebra accelerators has increased. A typical accelerator based

on a spatial architecture consists of off-chip main memory,

an on-chip shared global buffer, various scratchpads, and

a 1D and/or 2D processing engine (PE) array where each

PE contains compute units [9], [27], [28], [38], [62]. This

design minimizes memory transfer latency while maximizing

compute utilization [7]–[9], [11], [27]. Various tools enable the

quick modeling and design space exploration of tensor algebra

accelerators, including Timeloop [41] and Accelergy [56],

GAMMA [61], and DOSA [23].
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III. PASSES PERFORMED BY A CASCADE OF EINSUMS

Our first contribution is to demonstrate a novel analysis that

can be applied to a cascade of Einsums. The key insight is

that cascades of Einsums provide a precise description of the

iteration space for each Einsum and the data space for each

constituent tensor, enabling us to derive the algorithmic min-

imum live footprint for each tensor, with implications for the

allowed fusion schedules and required buffer capacity/memory

traffic. Because this analysis relies only on the cascade of

Einsums, it holds for any choice of mapping and binding.

A. Calculating the Number of Passes

We will apply our analysis to attention in Section IV.

To illustrate ideas, we first start with a simple pedagogical

example, shown in Cascade 1.

Y = Ak ×Bk (5)

Z = Y ×Ak (6)

Cascade 1: An example 2-pass cascade.

Einsum 5 performs a dot product between Ak and Bk, and

Einsum 6 multiplies the first Einsum’s result Y by Ak again

to produce Z. If we want to minimize data traffic of Ak, we

need to choose a dataflow for each Einsum that keeps Ak

stationary and fuses the two Einsums together. In other words,

the dataflow must finish using the first element of Ak before

moving onto the next. However, such a dataflow does not exist

for this cascade. Any implementation must visit every element

of Ak to compute Y before it can revisit any element of Ak

to compute Z.

We define a pass that a cascade performs over a particular

fiber of a particular rank and tensor to be a traversal of every

element of that fiber. Each time an element must be revisited

after visiting every other element of that fiber, there is an

additional pass. For example, Cascade 1 performs two passes

over the K rank of Ak.

Since an Einsum’s iteration space can also be represented as

a fibertree (i.e., an is-fibertree – see Section II-B), we extend

our definition of an iteration space for a cascade of Einsums

by considering its iteration space to be the sequence of the

is-fibertrees for each Einsum. Now, in a scenario where fibers

for a particular rank exist in multiple is-fibertrees; in each,

they project to the same tensor; and there is a dependency

such that all of the elements of the earlier is-fibertree’s fiber

must be read before any element can be read again by the

later is-fibertree (for all mappings of the cascade), we refer to

that read-read sequence as creating an additional pass. When

there is a sequence of N such read-read dependencies, we

say the cascade is an (N +1)-pass cascade. For our example,

Cascade 1 requires two passes of the K rank.

B. Implications of the Number of Passes

The number of passes a cascade performs is relevant be-

cause it restricts possible fusion schedules. Einsums within a

pass can be fused at will, producing and consuming a tile of the

intermediate at a time. Einsums in different passes cannot be

fused. Revisiting Cascade 1, Einsums 5 and 6 cannot be fused

on the K rank. Any implementation must visit all elements of

the K fiber of A to produce Y before it can visit any of the

elements of that fiber to produce Z.

This analysis also provides a non-trivial lower bound on the

tensors’ live footprints. For example, the algorithmic minimum

live footprint for tensor A is a fiber of shape K. In other words,

an architecture must either have enough buffer space to hold

an entire K fiber of A or spill and reload that fiber, incurring

memory traffic proportional to the shape of K. We note that

this analysis is mapping independent. There is no dataflow for

this cascade that enables a smaller live footprint.

C. Reducing the Number of Passes via Reassociation

Given the restrictions that multi-pass cascades place on

the allowed dataflows and tensor live footprints, it can be

beneficial to manipulate the cascade to reduce the number of

passes required. Crucially, these manipulations are functionally

equivalent and only change how Z is computed. In this section,

we will present two methods for doing so, though we leave

a full analysis of the space of pass-reduction approaches to

future work.

1) Deferring the Multiplication by Y : First, we recognize

that, by the distributive property, Einsum 6 can be factored to

perform the reduction of Ak first, before multiplying the result

by Y . Doing so, we get the following cascade:

Y = Ak ×Bk (7)

X = Ak (8)

Z = Y ×X (9)

Cascade 2: A reassociation of Cascade 1 that defers the Y× to compute Z
with 1-pass of the K rank.

Now, because there is no read-after-write dependency be-

tween Einsums 7 and 8, both Einsums can be included in

the same pass. In fact, because Einsum 8 reduces away the

K rank, Cascade 2 is a 1-pass cascade with respect to this

rank. This reassociation actually provides a second benefit over

Cascade 1: Einsum 9 now only requires one multiplication (as

opposed to K multiplications in Einsum 6).

2) Iteratively Constructing Y and Z: Alternatively, we can

iteratively construct Y and Z as we perform the pass through

Ak. To do so, we will take a similar approach to the prefix-

sum (see Sections II-C3-II-C4) and build intermediate Y s and

Zs.

RYi+1 = Ak:k≤i ×Bk:k≤i (16)

RZi+1 = RYi+1 ×Ak:k≤i (17)

Just like with the prefix sum, this version requires a lot of extra

compute, but, because Y = RYK and therefore Z = RZK ,

the final result is the same.
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Initialization:

RYi:i=0 = 0 (10)

RZi:i=0 = 0 (11)

Extended Einsums:

RYi+1 = RYi +Ai ×Bi (12)

RZi+1 = RZi ×
RYi+1

RYi

+RYi+1 ×Ai (13)

Z = RZK (14)

� : i ≥ K (15)

Cascade 3: A reassociation of Cascade 1 that iteratively constructs Y and Z
with 1-pass of the K rank.

We remove this extra work by making the I ranks of RYi+1

and RZi+1 iterative. This is shown in Cascade 3. Iterative

RYi+1 (Einsum 12) looks very similar to the iterative prefix-

sum. However, computing RZi+1 is a little more complicated.

To derive the expression for RZi+1, we start by introducing

one more intermediate Si, which is the prefix sum for Ak:

Si = Ak:k≤i−1 (18)

Now, we can combine Einsums 17 and 18 to write RZi in

terms of this prefix-sum:

RZi = RYi × Si (19)

Dividing both sides by RYi, we derive an alternate definition

for Si:

Si =
RZi

RYi

Si+1 can also be written using this alternative definition:

Si+1 =
RZi

RYi

+Ai (20)

We can combine Einsums 19 and 20 to compute RZi+1 in

terms of RZi (i.e., iteratively):

RZi+1 = RYi+1 ×
(

RZi

RYi

+Ai

)

Distributing RYi+1 and performing some reassociation, we get

Einsum 13.

Cascade 3 is also a 1-pass cascade, performing one pass of

the K rank of Ak (indexed with the variable i) and iteratively

building RYi+1 and RZi+1. Unfortunately, unlike Cascade 2,

Cascade 3 does require extra compute over the original Cas-

cade 1. However, memory bandwidth-limited workloads can

afford to trade off extra compute for reduced memory traffic,

and Cascade 3 may still provide benefit.

(a) Encoder architecture (b) Required compute

Fig. 1: Overview of transformer encoder inference.

IV. TAXONOMIZING ATTENTION AS EINSUM CASCADES

Our second contribution is to apply the cascade of Einsums

abstraction and the notion of passes to transformer models to

describe, taxonomize, and highlight trade-offs in the space of

attention implementations. This section first looks at the trans-

former model as a whole, identifying attention as an important

kernel (Section IV-A). We then give an overview of attention

and a “straightforward” (but inefficient) algorithm for softmax

by writing them as cascades of Einsums (Sections IV-B-

IV-C). Finally, we show how optimizations to softmax can be

described by modifying the cascades and provide a taxonomy

of the space using the number of passes required by each

cascade (Sections IV-D-IV-E).

A. Transformers

Transformer models generally follow the architecture de-

fined in [52]. Our work, which addresses the impact of long

sequence lengths during self-attention, focuses on the encoder

architecture.1 Figure 1a gives an overview. The transformer

first projects the input (by multiplying it by weight tensors) to

form a query, key, and value. Self-attention is made up of three

operations: a matrix multiplication of the query and key, a

softmax on the result, and another matrix multiplication, which

combines the softmax output with the value. The attention

output is then deprojected (again, multiplying by a weight

tensor), normalized, passed through a two-layer feed-forward

neural network (FFN), and normalized once more.

As the sequence length grows, the relative importance of the

different operations changes. Figure 1b shows that at shorter

sequence lengths, the weight-times-activation “linear” layers

are a larger fraction of the total required compute, while at

long sequence lengths, the attention operation dominates. In

all cases, the additional non-linearities (e.g., the normalization,

the ReLU between the FFN layers, etc.) have negligible

impact. In the next section, we focus on describing attention

more precisely, and use our analysis to understand prior work

on efficient implementations.

1During the decoder phase, inference is severely bottlenecked on the
memory traffic required to read the KV cache [24], and therefore the on-
chip accelerator design has less impact on performance.
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B. Redefining Attention’s “Matrix Multiplications”

In the original transformer paper [52], the kernel was

described with the following equation:

Attention(Q,K, V ) = softmax

(

QKT

√
dk

)

V (21)

However, this equation says almost nothing about what the

inputs Q, K, and V look like or what iteration space needs

to be traversed. We clarify these points by rewriting the above

as a cascade of Einsums, with the exception of the softmax,

whose cascade we will explore in Section IV-C. The first step

is to give each of the ranks names: M and P are the sequence

lengths for Q and K/V , respectively, and E and F are the

embeddings for Q/K and V , respectively.

QKm,p =
1√
E

×Qe,p ×Ke,m (22)

Am,p = softmax(QKm,p) (23)

AVf,p = Am,p × Vf,m (24)

Here, Einsums 222,3 and 24 look like matrix multiplications.

Taking Einsum 24 as an example, for each point in the iteration

space F ×M×P , we perform a multiplication using elements

from two 2-tensors (Am,p and Vf,m) to produce a 2-tensor

output (AVf,p), which requires reducing across the inputs’

shared rank M . Einsums 22-24 can be modified to refer to

the full batched, multi-head self attention [52] by adding the

batch (B) and head (H) ranks to all tensors. This changes

the characteristics of the kernel. Adding the B and H ranks

means that Einsums 22 and 24 behave like many independent

matrix multiplications instead of one monolithic matrix multi-

plication. The challenges with attention, described in Section I,

still follow clearly from this modification. Because all tensors

contain a B rank, the matrix multiplications are all unique to

the specific batch’s inputs. Therefore, none of these tensors can

be computed before the inputs are given, and there is no data

sharing between the different elements in the batch. Hence, to

simplify notation, we assume the presence of the B and H
ranks but omit writing them throughout the rest of paper.

C. Softmax as a Cascade of Einsums

We now apply the same precise notation to the softmax. A

softmax [5] over a 1-tensor is traditionally expressed with the

following equation:

Am =
eIm

∑

k e
Ik

(25)

2Einsums do not require the transpose, since this information is implicit in
the indices.

3In Einsum 22, we also substitute E for dk following the notation defined
in Section II-B, where the shape of a rank is also its rank name.

In the context of attention, this operation becomes two dimen-

sional and can be expressed using the following cascade with

input QKm,p:

SNm,p = eQKm,p (26)

SDp = SNm,p (27)

Am,p = SNm,p/SDp (28)

For each point in the iteration space (m, p), we exponentiate

QKm,p to generate the softmax numerator (SNm,p in Ein-

sum 26), reduce SNm,p with addition to produce the softmax

denominator (SDp in Einsum 27), and finally, divide the

numerator and denominator to produce the final result (Am,p

in Einsum 28).

1) Improving Numerical Stability: Because eQKm,p can

easily become extremely large, the above formulation suffers

from overflow. Therefore, practical implementations [2], [42]

often prefer the numerically stable variant that replaces Ein-

sum 26 with:

GMp = QKm,p ::
∨

m

max(,) (29)

SNm,p = eQKm,p−GMp (30)

and drop the 1√
E

term when computing QKm,p.4 To compute

the global maximum5 GMp, we reduce QKm,p with the op-

erator max (instead of +). Notice that subtracting GMp from

QKm,p in the exponent is equivalent to dividing by eGMp , and

because the 1

eGMp
term appears in both the numerator (SNm,p

via Einsum 30) and denominator (SDp via Einsum 27), the

result (Am,p) stays the same. This construction improves

numerical stability by bounding the values of the softmax

numerator SNm,p to the range (0, 1].

D. Optimizing Softmax Compute

We now describe an optimization to attention that reduces

compute requirements, specifically division. This optimization

was used in FlashAttention-2 [14]. We point out that it can

be applied more broadly, i.e., to any cascade we discuss in

Section IV-E. Einsum 28 requires M×P divisions. While this

is the best we can do for an independent softmax, we note that

attention does not use the softmax in isolation [52]. Instead, it

subsequently multiplies the result, Am,p, and another tensor,

Vf,m, per Einsum 24, reproduced here:

AVf,p = Am,p × Vf,m

To optimize the full attention cascade, we can refactor Ein-

sums 28 and 24 by, instead, first combining SNm,p and

Vf,m (Einsum 31) and reducing across the M rank and then

performing the division (Einsum 32), as follows:

SNVf,p = SNm,p × Vf,m (31)

AVf,p = SNVf,p/SDp (32)

4The 1√
E

term was introduced to bound the magnitude of SNm,p [52].

Because the numerically stable softmax variant already accomplishes this, the
scaling is often omitted [12], [14], [15].

5“Global” here refers to over the entire M fiber.
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3-pass 2-pass 1-pass

PyTorch [42] TileFlow [62] FlashAttention [15]
TensorFlow [2] Choi et al. [12] FlashAttention-2 [14]

FLAT [28] Rabe and Staats [47]
E.T. [6]

TABLE I: Classifying prior attention algorithms.

This reassociation does F × P divisions instead of M × P
divisions. Since M is the sequence length and F is an em-

bedding dimension (i.e., M 	 F ), this reassociation reduces

the required divisions (by a factor of M
F

).

E. Optimizing Softmax Live Footprint and Memory Traffic

We now apply the analysis described in Section III to

analyze attention’s live footprint and memory traffic. We

consider the exact attention literature, omitting works that

either do not model/evaluate the softmax or include approx-

imation strategies that improve performance at the cost of

reduced accuracy (increased perplexity). We discuss the latter

in Section VII.

We find that existing approaches to attention can be clas-

sified as either 3-pass, 2-pass, or 1-pass cascades, where an

N -pass cascade performs N passes of a given M fiber. See

Table I. Next, we describe the key ideas of each.

1) 3-Pass Attention Cascades: The 3-pass cascade is the

straightforward, numerically stable cascade that we already

discussed in Section IV-C1, namely Einsums 29-30 followed

by Einsums 27-28, reproduced in Cascade 4 for clarity.

QKm,p = Qe,p ×Ke,m /* Pass 1 */ (33)

GMp = QKm,p ::
∨

m

max(,) (34)

SNm,p = eQKm,p−GMp /* Pass 2 */ (35)

SDp = SNm,p (36)

Am,p = SNm,p/SDp /* Pass 3 */ (37)

AVf,p = Am,p × Vf,m (38)

Cascade 4: The 3-pass attention cascade.

In Pass 1, we compute QKm,p and GMp; in Pass 2, we

compute SNm,p and SDp; and in Pass 3, we compute Am,p

and AVf,p. Notice that we must finish an entire M fiber of

Einsum 34 (reading an entire M fiber of QKm,p) before

GMp is ready to start Einsum 35 (where we must read the

same M fiber of QKm,p again). Similarly, we must finish an

entire M fiber of Einsum 36 (reading an entire M fiber of

SNm,p) before SDp is ready to start Einsum 37 (where we

must read the same M fiber of SNm,p again). To summarize,

as a consequence of the dependencies between Einsums, this

cascade must perform three passes over each M fiber. This

holds for any choice of mapping (including ones that perform

fusion).

2) 2-Pass Attention Cascades: We now briefly summarize

the 2-pass cascade, deferring details due to space. Rather than

computing the global max and then starting the softmax (as

in the 3-pass cascade), the 2-pass cascade first partitions the

input, computes a per-partition local max and applies it to form

a variant of SNm,p whose elements are likewise partitioned

and adjusted by the local max. Analogously, each partition gets

a local denominator (also adjusted by the same local max).

While this is occurring, it builds the global max from the

local max values. Next, in a second pass, it uses the global

max to correct the per-partition numerators and denominators

and compute the softmax output.

3) 1-Pass Attention Cascades: While prior work proposes

multiple different 1-pass cascades [14], [15], [47], the main

ideas are the same in each. Rather than using the per-partition

local max to compute the local numerator and denominator,

instead keep a running max that represents the max value seen

so far. Each time a new running max is computed, also adjust

previous results (e.g., numerator-times-V , denominator, etc.)

with this max.

This transformation can be described more precisely using

the reassociations presented in Section III-C. First, we modify

Cascade 4 to multiply the softmax numerator-times-V and

then compute the division (as described in Section IV-D).

This reassociation combines the second and third passes of

Cascade 4 (see Section III-C1). To ensure numerical stability,

we cannot use the same strategy to combine the first and

second passes. So we instead use the iterative approach (see

Section III-C2).

We are now ready to describe FlashAttention-2’s 1-pass

cascade (shown as Cascade 5). We later use it to build

FuseMax. Note the evidently increased compute relative to

the 3-pass cascade. We will carefully design the binding in

Section V to hide these overheads on a spatial architecture.

We will start by expressing the partitioning of both of

the inputs Ke,m and Vf,m into M1 chunks of M0 elements

each (Einsums 39-40). After computing BQKm1,m0,p, this

allows us to perform operations like maximum on individual

M0 fibers, rather than on the whole tensor (Einsum 45).

The problem is, of course, that the local maximum is not

necessarily the same for all M0 fibers and so will not just

cancel nicely like the global maximum.

We resolve this by instead using the running maximum

(RMm1,p)—the global maximum of all inputs seen so far—

instead of the local maximum. We recognize that M1 can also

serve as an iterative rank, and iteratively build up RMm1,p.

After initializing RMm1:m1=0,p to −∞ (Einsum 41), we com-

pute a new running maximum RMm1+1,p using the running

maximum computed in the previous iteration RMm1,p and the

new local maximum LMm1,p (Einsum 46).

We can now use the running maximum to compute a local

numerator SLNm1,m0,p (Einsum 47), a local denominator

SLDm1,p (Einsum 48), and even the softmax numerator-

times-V SLNVf,m1,p (Einsum 49) using the partitioned

BVf,m1,m0 (Einsum 40).

Now consider the softmax denominator. Eventually, we

would like to reduce SLDm1,p into a 1-tensor, but because

its values may have been computed with different maximums,

we cannot simply use addition. Instead, by introducing a
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Initialization:

BKe,m1,m0 = Ke,m1×M0+m0 (39)

BVf,m1,m0 = Vf,m1×M0+m0 (40)

RMm1:m1=0,p = −∞ (41)

RDm1:m1=0,p = 0 (42)

RNVm1:m1=0,p = 0 (43)

Extended Einsums:

BQKm1,m0,p = Qe,p ×BKe,m1,m0 (44)

LMm1,p = BQKm1,m0,p ::
∨

m0

max(,) (45)

RMm1+1,p = max(RMm1,p, LMm1,p) (46)

SLNm1,m0,p = eBQKm1,m0,p−RMm1+1,p (47)

SLDm1,p = SLNm1,m0,p (48)

SLNVf,m1,p = SLNm1,m0,p ×BVf,m1,m0 (49)

PRMm1,p = eRMm1,p−RMm1+1,p (50)

SPDm1,p = RDm1,p × PRMm1,p (51)

RDm1+1,p = SLDm1,p + SPDm1,p (52)

SPNVf,m1,p = RNVf,m1,p × PRMm1,p (53)

RNVf,m1+1,p = SLNVf,m1,p + SPNVf,m1,p (54)

AVf,p = RNVf,M1,p/RDM1,p (55)

� : m1 ≥ M1 (56)

Cascade 5: A 1-pass attention cascade. Note that M1 is used as a standard
rank (e.g., to access BQKm1,m0,p) and as an iterative rank (e.g., to access
RMm1,p). The stopping condition for all iterative ranks is m1 ≥ M1
(Statement 56).

new running denominator RDm1,p with iterative rank M1,

we can correct the old denominator RDm1,p to the new

running maximum RMm1+1,p and then perform the addition.

We start by initializing the running denominator at the start

of the computation to 0 (Einsum 42). Then, at each point

m1, the correction factor PRMm1,p allows us to correct the

previous running denominator RDm1,p with the new maxi-

mum (Einsum 51). In other words, RDm1,p is downscaled

by eRMm1,p . SPDm1,p “switches” the downscaling factor on

RDm1,p to eRMm1+1,p by multiplying RDm1,p by e
RMm1,p

e
RMm1+1,p

(PRMm1,p). Once SLDm1,p and SPDm1,p have the same

maximum, they can be combined to produce the new running

denominator RDm1+1,p (Einsum 52). We can do the same to

compute the running numerator-times-V (Einsums 43, 53-54).

Finally, AVf,p can be computed by dividing the final

numerator-times-V by the final denominator. By construction,

at this point, RNVf,M1,p and RDM1,p are both downscaled

by the same maximum RMM1,p (conveniently, also the global

maximum) and can be correctly combined.

V. MAPPING AND BINDING ATTENTION

Based on the framework from Section IV, we now describe

FuseMax, an efficient mapping and binding of an attention

algorithm (specifically the 1-pass cascade in Cascade 5) to a

spatial array-style architecture. To enable maximum flexibility

while binding, FuseMax’s mapping places each iteration space

point in its own logical task.

The goal when binding a cascade onto hardware is to fully

utilize all available compute units. In our evaluation of prior

work (Figure 6 and Section VI-B), we observe that at short

sequence lengths, the 2D PE array is under-utilized because

it must wait for the 1D PE array to compute the softmax. At

longer sequence lengths, both arrays are under-utilized since

the workload becomes memory-bandwidth limited.

FuseMax’s binding addresses these issues to achieve full

utilization on both the 1D and 2D PE arrays. First, we decrease

the compute performed by the 1D array by (1) applying

the division reduction optimization (Section IV-D) and (2)

sharing the other operations (sum/max/exp) between the 1D

and 2D arrays. Similarly, we ensure that the workload is never

memory-bandwidth limited by deeply fusing all Einsums in

the cascade to restrict the live footprint to only what can be

buffered on-chip. No matter the sequence length, our dataflow

is never forced to spill any of its intermediates off-chip.

Architecture. FuseMax is a spatial array architecture based

on the TPUv2/TPUv3 [37, Figure 1(e)]. The off-chip DRAM

and a large global buffer both feed data to connected 2D and

1D arrays (see Figure 2). We set parameters to match the cloud

configuration in prior work [28].

Fig. 2: Spatial array architecture assumed for FuseMax.

Figure 3 shows the evolution of the 2D PE array archi-

tecture, from a fixed-dataflow multiply-accumulate TPU PE

(Figure 3a) to a flexible-dataflow multiply-accumulate PE

(Figure 3b) to a FuseMax PE (Figure 3c). Note, although both

the 1D and 2D PE arrays in FuseMax perform exponentiation,

we implement exponentiation with 6 sequential multiply-

accumulate operations [36], [53] and therefore do not require

a dedicated exponentiation unit.

Mapping. Prior attention accelerators [28], [62] explore

fusing many of attention’s loop nests together. However,

because these accelerators all use multi-pass cascades, the

algorithmic minimum live footprint of some tensors (e.g.,
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(a) TPU [27] PE (b) FLAT [28] PE (c) FuseMax PE

Fig. 3: 2D PE architecture evolution.

QKm,p) is O(M), meaning that for long sequence lengths,

intermediates cannot be buffered on chip.

FuseMax leverages fusion in conjunction with the 1-pass

cascade to eliminate the memory traffic of these tensors,

regardless of the sequence length. Specifically, we partition

on both M and P (forming M1,M0 and P2, P1, P0), and

maximally fuse all levels in the attention loopnest as shown

in Mapping 1. That is, all Einsums in Cascade 5 are fused

except for the last (which is fused to the rest only on P2).

for p2 ...:

for m1 ...:

for p1 ...:

parallel_for p0 ...:

parallel_for m0 ...:

(RNV[:, m1 + 1, p2, p1, p0],

RD[m1 + 1, p2, p1, p0]) =

ComputeRNVTile(

Q[:, p2, p1, p0],

K[:, m1, m0], V[:, m1, m0])

for p1 ...:

parallel_for p0 ...:

AV[:, p2, p1, p0] =

ComputeAVTile(

RNV[:, m1 + 1, p2, p1, p0],

RD[m1 + 1, p2, p1, p0])

Mapping 1: The FuseMax mapping as a loopnest. We partition on both
M and P and map the innermost ranks M0 and P0 to the spatial
array PEs. ComputeRNVTile performs Einsums 44-54 from Cascade 5.
ComputeAVTile performs Einsum 55. Note that each Einsum represents
a loopnest: by writing all Einsums in ComputeRNVTile under a single
loopnest, we mean that we are maximally fusing those loopnests. Outer loops
over B and H (if performing batched multihead attention) are not shown.

While prior work implementing attention in hardware [28],

[62] does utilize the 2D spatial array for the tensor products, it

fails to do so for the softmax, choosing instead to use the 1D

array. Because there are far fewer total PEs in the 1D array

than the 2D array, the softmax becomes a bottleneck. FuseMax

improves utilization of the 2D spatial array by using it for

both the tensor products and the exponentiation operator in the

softmax. FuseMax parallelizes across the M0 and P0 ranks

throughout the attention kernel (see Mapping 1). We set M0×
P0 = # 2D Array PEs. The large spatial reductions required

when parallelizing across the M0 rank are easily handled by

the low-cost inter-PE communication network.

Binding. The dependencies between different Einsums in

our cascade necessitate a binding that implements fine-grain

pipeline parallelism to achieve high utilization of both the 1D

and 2D spatial arrays. Figure 4 shows the waterfall diagram

for FuseMax in the steady state. Time is broken into epochs.

Each epoch performs the same set of tile-granular operations

at specific tile-relative coordinates (given by a, b, c, d in the

figure). Across all epochs, the kernel evaluates all tiles and

each Einsum in Cascade 5 is mapped to either the 2D or 1D

array for all epochs (as shown in the figure).

A major design consideration when binding the attention

kernel is how to overcome the latency of fills and drains

to/from the spatial array. Consider a tile of QKm,p of shape

M0 × P0. Per Einsum 22, the iteration space to evaluate

this tile is E × M0 × P0 which becomes E cycles on the

spatial array. For the networks we evaluate, E = 64 or 128.

Assume E = 64. Using an output stationary dataflow, while

each PE performs 64 MACCs, it takes ∼ 256 cycles to both fill

and drain the spatial array. Without careful interleaving, this

combination of parameters causes low utilization because, for

example, the running max RMm1+1,p1,: cannot be computed

until a tile of QKm1,:,p1,: is completed and spatially reduced

(drained) to form the local max LMm1,p1,: (Einsums 45-46).

Our binding address the above issues with two levels of

interleaving. First, we interleave the construction of dependent

tiles across epochs. This is reminiscent of software pipelining.

For example, in Figure 4 the d-th tile of BQK and LM are

completed in Epoch i (as they correspond to a fill followed

by a drain and can be easily pipelined). The RM (which has

to wait for the drain) for tile d takes place in a later epoch.

Instead, Epoch i computes an earlier tile’s running maximum

RM [c].
Second, we interleave the construction of certain tiles within

an epoch at a fine (e.g., cycle-by-cycle) granularity. See the

notation ‘A|B’ in Figure 4. This is to ensure high utilization

of both the 2D and 1D PE arrays at all times. To make

this more clear, Figure 5 shows the start up and steady-state

interleaving of SLNV and BQK in the 2D array and SPNV
and RNV in the 1D array. In each cycle, a given PE in the

2D array computes a value for either BQK or SLNV and

this alternates cycle by cycle. Each neighbor-neighbor link in

the array is active in every cycle—carrying data for one of the

two operation types. By interleaving SLNV with BQK, the

1D PEs can concurrently compute SPNV and RNV .

Putting everything together, as Section VI-B will show, the

above enables high utilization of all 2D and 1D array PEs.

FuseMax on GPUs. FuseMax’s mapping and binding

cannot be directly applied to GPUs. FuseMax’s architec-

ture features heterogeneous PEs, each with smaller per-PE

storage, and cheap (but restricted) inter-PE communication.

Specifically, the networks that connect the PEs within the 2D

array allow efficient, fixed-latency communication primarily

between neighbors, including between the bottom of the

2D array and the 1D array. However, the GPU architecture

features opposite characteristics: homogeneous PEs, each with

relatively large per-PE storage, and expensive, loosely coupled

inter-PE communication. While concurrent work [50] has

explored using the GPU’s Tensor Cores to compute BQK and
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Fig. 4: FuseMax pipelining at a glance. Each tensor name (e.g., SLNV ) corresponds to the Einsum used to compute that tensor (see Cascade 5). a, b, c
and d denote tile-relative coordinates where a < b < c < d. If Epoch i produces tiles with coordinates a, b, c, d, Epoch i+ 1 produces tiles with identifiers
a+ 1, b+ 1, c+ 1, d+ 1. And so on. ‘A|B’ denotes ‘computing tile A is interleaved with computing tile B.’ ‘A → B’ denotes ‘computing tile A is done
before computing tile B.’ Computing AVf,p is not shown. The green and blue time periods making up an epoch take almost the same number of cycles.

Fig. 5: Intial pipeline fill (t = 0 to t = 2) and steady-state (t = 3 and t = 4) for the intra-epoch interleaving of SLNV |BQK and SPNV |RNV to
maximize 2D and 1D PE utilization, respectively, on a toy 2x2 array. Each color indicates a tensor and each number indicates a point in that tensor (e.g., the
point BV0 moves from the top left PE at t = 1 to the top right PE at t = 2). To reason about signal timing, we use input (but not output) latches for data
in each PE, so moving data appears on output wires. Some stationary tensors (e.g., BQK) and Einsums (e.g., SLD) are omitted for clarity.

SLNV and using software pipelining to hide the latency of the

other compute, the GPU’s loosely coupled threads require fre-

quent synchronization to maintain correctness. FuseMax takes

advantage of the tight coupling between the 2D and 1D arrays

to statically schedule compute between the arrays, enabling

high utilization across the board without sychronization.

VI. EVALUATION

In this section, we demonstrate how FuseMax’s cascade, ar-

chitecture, and binding work together to achieve improvements

in both performance and energy relative to the state of the art,

for both attention and end-to-end transformer inference.

A. Experimental Set-Up

First, we present the experimental setup details common to

all following subsections.

Workloads. We evaluate all accelerators and configurations

using the same transformer models used by FLAT [28]: BERT-

Base [17] (BERT), TrXL-wt103 [13] (TrXL), T5-small [49]

(T5), and XLM [13]. We omit FlauBERT [31] because it uses

the same hyperparameters as TrXL. We also note that though

T5 is an encoder-decoder model, we only evaluate the encoder

in this work. Following FLAT, we use a batch size B = 64
for all evaluations.
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(a) 1D PE array utilization

(b) 2D PE array utilization

Fig. 6: Utilization of the different PE arrays on the unfused baseline, FLAT, and three configurations building up FuseMax.

Fig. 7: 2D array utilization by Einsum across different configurations—FLAT (FL), +Cascade (+C), +Architecture (+A), and +Binding (+B)—and sequence
lengths on BERT.

Fig. 8: Speedup of attention for FLAT and three configurations building up FuseMax over an unfused baseline.

Fig. 9: Energy consumption of attention for FLAT and three configurations building up FuseMax over an unfused baseline.

Fig. 10: Speedup of transformer inference on FLAT and three configurations building up FuseMax over an unfused baseline.
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Fig. 11: Energy consumption of transformer inference on FLAT and three configurations building up FuseMax over an unfused baseline.

Modeling with Timeloop and Accelergy. We perform

our evaluation using two tools for tensor algebra accelerator

modeling and design space exploration: Timeloop [41] and

Accelergy [56]. We use these tools to build models of the

accelerator architectures at a 45nm technology node and

evaluate each Einsum individually. Results from individual

Einsums are combined using heuristics presented in prior work

for evaluating full cascades [35]. Together, these tools allow us

to evaluate execution time, energy, and area for all our designs.

We perform floating-point division using the design in Xia et

al. [59], scaled down to a 45nm technology node [56].

Unfused Baseline. We build the unfused baseline by com-

bining the costs of three phases: QK (Einsum 22), the 3-pass

softmax (Cascade 4), and AV (Einsum 24). Because this base-

line is unfused, each phase can be scheduled independently,

but proceed sequentially and require outputs to be written

to memory between phases. We use Timeloop to search for

efficient mappings to perform QK and AV . Additionally, we

model the softmax for the unfused baseline by allowing the

accelerator to load the M fibers of the input on-chip one-by-

one (spilling if there is not enough space) before performing

the compute. We model the memory traffic, compute, and

energy required to perform all Einsums required for attention.

FLAT Baseline. Our main baseline is the state-of-the-

art attention accelerator FLAT [28]. Though we started with

the FLAT authors’ original code, we found and corrected a

number of bugs. Through private correspondence with the

FLAT authors, we verified the bugs were indeed bugs. We

also discovered a couple of larger conceptual errors, which

the authors told us to avoid by restricting FLAT to only search

through configurations without these issues.

Beyond correcting the FLAT codebase, we created and

validated a Timeloop model that reproduces the FLAT authors’

(corrected) code to within < 1% error. However, the FLAT

codebase does not model the cost to perform the softmax.

Specifically, their model ignores the cost of the data transfers

required for the softmax (between any levels of the memory

hierarchy) and uses 230 1D PEs for compute. When comparing

FuseMax and FLAT in this work, we augment our Timeloop

model to model softmax correctly per the 3-pass cascade

implicitly assumed by FLAT using only 256 1D PEs.

FuseMax Configurations. To demonstrate the sources of

the improvements achieved by FuseMax, we present three

configurations, one associated with each of the major changes

we propose: +Cascade uses the 1-pass cascade on the FLAT

architecture, +Architecture adds the FuseMax architecture but

implements a binding that fully produces and consumes one

M0×P0 tile of BQK before starting the next, and +Binding

adds FuseMax’s pipelined/interleaved binding.

Hardware parameters. Figure 2 shows the selected hard-

ware parameters. We chose the PE array dimension to match

FLAT’s cloud accelerator and then set the global buffer ca-

pacity so that the overall chip area was as close to FLAT’s as

possible. Also following FLAT, we use a 940 MHz frequency.

We use Accelergy to model the area of both designs and find

that FuseMax is 6.4% smaller.

B. Evaluating Attention

We now evaluate FuseMax to demonstrate the benefits it

provides on the attention kernel by comparing it to the two

baselines.

Utilization. Figure 6a shows the utilization of the 1D PE

array when performing attention. FLAT’s utilization drops for

sequence lengths ≥ 256K—it becomes memory bandwidth

limited because it must spill the QK and A tensors to memory.

By using a 1-pass cascade (+Cascade), FuseMax’s utilization

becomes independent of sequence length. We also note that

without the FuseMax binding (+Architecture), the 1D array is

forced to stall and utilization drops. Adding in this binding

(+Binding) enables FuseMax to fully utilize the 1D array

again.

Similarly, Figure 6b shows the utilization of the 2D array.

Because of the large amount of compute required for the

softmax, most configurations achieve poor utilization of this

array. In fact, because the 1-pass cascade increases the com-

pute required, +Cascade’s 2D array utilization is lower than

FLAT’s at short sequence lengths. On the other hand, FuseMax

(+Binding) achieves high utilization across the board and, at

long sequence lengths, reaches almost 100% utilization. Both

baselines achieve slightly higher utilization on XLM, which

can be attributed to the higher intensity caused by a larger

embedding dimension (E/F ).

Figure 7 explores this phenomenon in more detail, breaking

down the utilization by Einsum. FuseMax effectively hides

both the costs of the memory traffic and softmax compute,

allowing it to achieve high 2D array utilization while spending

most of the cycles on the tensor products.

Speedup. Figure 8 shows that FuseMax achieves an average

speedup of 10× over the unfused baseline and 6.7× over

FLAT. We note FuseMax achieves lower speedup on XLM

only because the baselines are able to achieve higher utilization

of the 2D array on this transformer (Figure 6b).
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Fig. 12: Pareto-optimal curves for FuseMax at sequence length 256K.

Energy. Figure 9 shows that FuseMax uses 77% the energy

of the unfused baseline and 79% the energy of FLAT.6 The

energy use of the unfused baseline and FLAT are dominated

by the DRAM access energy, the global buffer access energy,

and the QK and AV (Einsums 22 and 24) compute energy.

FuseMax achieves its energy savings by significantly reducing

the DRAM and global buffer access energies. In fact, ≥ 95%
of the energy used by FuseMax across all models and se-

quence lengths goes to the compute performed by the MACC

functional units in the 2D array.

C. Evaluating Transformer Inference

To evaluate the benefits of FuseMax on end-to-end trans-

former inference, we include the other required linear lay-

ers (Section IV-A). We use Timeloop to search for optimal

mappings for these linear layers and use the same mappings

for all three accelerator configurations. The attention modeling

remains the same as Section VI-B.

Speedup. Figure 10 shows the performance improvement

achieved by FuseMax. Across the sequence lengths tested,

FuseMax achieves an average speedup of 7.6× over the

unfused baseline and 5.3× over FLAT. As discussed in Sec-

tion IV-A, as sequence length grows, attention becomes a

larger fraction of the total required compute. Therefore, at 1M

tokens, FuseMax achieves an average 10× speedup over the

unfused baseline and 7.5× speedup over FLAT.

Energy. Figure 11 shows the energy reduction achieved by

FuseMax. Here, we see similar results: as attention becomes

a larger fraction of the kernel, the energy reduction increases.

FuseMax uses 82% of the unfused baseline and 83% of

FLAT’s energy during end-to-end inference.

D. Pareto-Optimality of FuseMax

We further observe that by varying the size of the PE array

(between 16×16 and 512×512) and setting the global and per-

6FLAT reports larger energy savings over the unfused baseline because it
only reports energy associated with DRAM traffic during the tensor products.

PE buffers to accommodate the resulting pipelined/interleaved

binding, we generate a family of designs for efficient trans-

former inference.

VII. RELATED WORK

Spatial architectures have been applied successfully to a

variety of domains in academia [9], [10], [40], [45] and

industry [3], [27]. Beyond FLAT [28] (discussed in the main

body of the paper), TileFlow [62] is a framework for modeling

and searching for efficient fused dataflows (including for atten-

tion) on spatial architectures. Though TileFlow does explore

a broader space of dataflows than FLAT, even implementing

the 2-pass softmax cascade (Section IV-E2), its dataflows

remain softmax-compute limited. Recent work has explored

the scheduling/compilation of a multi-Einsum kernels [21],

[54], [62]. However, these works explore a limited set of

transformations, making FuseMax’s inter-Einsum interleaving

not discoverable.

Quantization and sparsity have also been successfully ap-

plied to reduce the transformer inference compute and live

footprint. We view these schemes as complementary to our

work. GPTQ [20], AWQ [32], and LLM.int8() [16] quan-

tize model weights to 4 or 8 bits without significant ac-

curacy degradation. Outlier-aware quantization schemes like

GOBO [60] and OliVe [22] quantize both weights and ac-

tivations to a low-bit precision on specific hardware designs.

SpAtten [53] prunes entire tokens and heads, while Sanger [34]

and DOTA [46] use quantized or low-rank projected Q and K
tensors to estimate which values of QK and A can be safely

pruned. All of these algorithms are expressible as cascades of

Einsums, and therefore, may be combined with FuseMax to

improve performance and energy efficiency, though we leave

their specification and implementation to future work.

VIII. CONCLUSION

This paper advanced the state of the art in spatial accelerator

design for transformer inference. To do so, we expressed

attention and its variants as cascades of Einsums. We used

these cascades to reason about attention’s characteristics, in-

dependent of its mapping/scheduling. Using these principles,

we proposed FuseMax—an accelerator that uses deep fusion

and fine-grain pipelining to map attention onto a spatial

architecture. FuseMax achieves ∼ 100% utilization of both

PE arrays, demonstrating 6.7× speedup over the prior state-

of-the-art (FLAT) using 79% of the energy on attention and

5.3× speedup over FLAT using 83% of the energy on end-to-

end inference.

Our work shows that cascades of Einsums provide a

powerful abstraction for representing and analyzing domain-

specific kernels. Future work may explore their application

to other attention variants (e.g., those exploiting quantization

and sparsity) or even other domains (e.g., fully homomorphic

encryption, scientific computing, relational algebra, etc.). Do-

ing so enables mapping-agnostic analysis and may elucidate

previously undiscovered cascades and schedules for these

algorithms.
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APPENDIX

A. Abstract

In this artifact, we provide Timeloop and Accelergy models

of the accelerator FuseMax, an accelerator for encoder-style

transformer inference. For ease-of-use, we provide a Docker

container and a set of Jupyter notebooks through which to run

the experiments. This artifact can be evaluated on an x86-84

machine with 5 GB of disk space.

B. Artifact check-list (meta-information)

• Algorithm: Timeloop/Accelergy model of the FuseMax accel-
erator and the baselines it was evaluated against

• Program: Python, Timeloop, Accelergy
• Run-time environment: Docker, Jupyter
• Hardware: x86-64 machine
• Output: Plots generated from scripts
• Experiments: Modeling of the five different accelerator design

points via Timeloop and Accelergy models
• How much disk space required (approximately)?: 5GB
• How much time is needed to prepare workflow (approxi-

mately)?: 20 minutes
• How much time is needed to complete experiments (approx-

imately)?: 9 hours
• Publicly available?: Yes
• Archived (provide DOI)?: Provided after evaluation

C. Description - How to access

The artifact is hosted on Github at https://github.com/

FPSG-UIUC/micro24-fusemax-artifact. Following the in-

structions in this repository will allow you to install

the relevant dependences, run the experiments, and dis-

play the graphs. System requirements can be found

at https://github.com/FPSG-UIUC/micro24-fusemax-artifact/

blob/main/README.md#system-requirements.

D. Installation

Installation instructions can be found at https:

//github.com/FPSG-UIUC/micro24-fusemax-artifact/blob/

main/README.md#installation.

E. Evaluation

Evaluation instructions can be found at https:

//github.com/FPSG-UIUC/micro24-fusemax-artifact/blob/

main/README.md#run-experiments.

F. Expected Results

Graphs will be displayed within

the Jupyter notebook and/or found in

workspace/outputs/generated/<timestamp

or default>/figs/. They can be compared with

Figures 6-12 in the paper or the corresponding figures in

workspace/outputs/pregenerated/figs/.

G. Methodology

Submission, reviewing and badging methodology:

• https://www.acm.org/publications/policies/

artifact-review-and-badging-current

• https://cTuning.org/ae

REFERENCES

[1] “Tensor network contractions,” ser. Lecture Notes in Physics, vol. 964.
Springer Cham, 2020.

[2] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: a system for large-
scale machine learning,” in OSDI’16.

[3] AWS. (2024) Trainium architecture. [Online]. Avail-
able: https://awsdocs-neuron.readthedocs-hosted.com/en/latest/general/
arch/neuron-hardware/trainium.html

[4] A. Baevski, H. Zhou, A. Mohamed, and M. Auli, “wav2vec 2.0: a
framework for self-supervised learning of speech representations,” in
NIPS ’20.

[5] J. S. Bridle, “Probabilistic interpretation of feedforward classification
network outputs, with relationships to statistical pattern recognition,” in
NATO Neurocomputing, 1989.

[6] S. Chen, S. Huang, S. Pandey, B. Li, G. R. Gao, L. Zheng, C. Ding,
and H. Liu, “E.t.: Re-thinking self-attention for transformer models on
gpus,” in SC’21.

[7] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam,
“Diannao: A small-footprint high-throughput accelerator for ubiquitous
machine-learning,” ACM Sigplan Notices, 2014.

[8] Y. Chen, Y. Xie, L. Song, F. Chen, and T. Tang, “A survey of accelerator
architectures for deep neural networks,” Engineering, 2020.

[9] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A spatial architecture for
energy-efficient dataflow for convolutional neural networks,” in ISCA’16.

[10] ——, “Eyeriss v2: A flexible and high-performance accelerator for
emerging deep neural networks,” in ArXiv, 2018.

[11] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen,
Z. Xu, N. Sun, and O. Temam, “Dadiannao: A machine-learning
supercomputer,” in MICRO’14.

[12] J. Choi, H. Li, B. Kim, S. Hwang, and J. H. Ahn, “Accelerating trans-
former networks through recomposing softmax layers,” in IISWC’22.

[13] A. Conneau and G. Lample, “Cross-lingual language model pretraining,”
in NIPS’19.

[14] T. Dao, “Flashattention-2: Faster attention with better parallelism and
work partitioning,” in ArXiv, 2023.

[15] T. Dao, D. Y. Fu, S. Ermon, A. Rudra, and C. Ré, “Flashattention: Fast
and memory-efficient exact attention with io-awareness,” in ArXiv, 2022.

[16] T. Dettmers, M. Lewis, Y. Belkada, and L. Zettlemoyer, “Llm.int8():
8-bit matrix multiplication for transformers at scale,” in ArXiv, 2022.

[17] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” in
NAACL’19.

[18] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly,
J. Uszkoreit, and N. Houlsby, “An image is worth 16x16 words:
Transformers for image recognition at scale,” in ICLR’21.

[19] I. S. Duff, M. A. Heroux, and R. Pozo, “An overview of the sparse basic
linear algebra subprograms: The new standard from the BLAS technical
forum,” in TOMS’02.

[20] E. Frantar, S. Ashkboos, T. Hoefler, and D. Alistarh, “GPTQ: Accurate
post-training compression for generative pretrained transformers,” in
ArXiv, 2022.

[21] M. Gilbert, Y. N. Wu, A. Parashar, V. Sze, and J. S. Emer, “Looptree: En-
abling exploration of fused-layer dataflow accelerators,” in ISPASS’23.

1472



[22] C. Guo, J. Tang, W. Hu, J. Leng, C. Zhang, F. Yang, Y. Liu, M. Guo,
and Y. Zhu, “Olive: Accelerating large language models via hardware-
friendly outlier-victim pair quantization,” in ISCA’23.

[23] C. Hong, Q. Huang, G. Dinh, M. Subedar, and Y. S. Shao, “DOSA:
Differentiable model-based one-loop search for DNN accelerators,” in
MICRO’23.

[24] C. Hooper, S. Kim, H. Mohammadzadeh, M. W. Mahoney, Y. S. Shao,
K. Keutzer, and A. Gholami, “Kvquant: Towards 10 million context
length llm inference with kv cache quantization,” in ArXiv, 2024.

[25] O. Hsu, M. Strange, R. Sharma, J. Won, K. Olukotun, J. S. Emer,
M. A. Horowitz, and F. Kjølstad, “The sparse abstract machine,” in
ASPLOS’23.

[26] W.-N. Hsu, B. Bolte, Y.-H. H. Tsai, K. Lakhotia, R. Salakhutdinov, and
A. Mohamed, “Hubert: Self-supervised speech representation learning
by masked prediction of hidden units,” TASLP’21.

[27] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers, R. Boyle, P.-l. Cantin,
C. Chao, C. Clark, J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb,
T. V. Ghaemmaghami, R. Gottipati, W. Gulland, R. Hagmann, C. R.
Ho, D. Hogberg, J. Hu, R. Hundt, D. Hurt, J. Ibarz, A. Jaffey,
A. Jaworski, A. Kaplan, H. Khaitan, D. Killebrew, A. Koch, N. Kumar,
S. Lacy, J. Laudon, J. Law, D. Le, C. Leary, Z. Liu, K. Lucke,
A. Lundin, G. MacKean, A. Maggiore, M. Mahony, K. Miller, R. Na-
garajan, R. Narayanaswami, R. Ni, K. Nix, T. Norrie, M. Omernick,
N. Penukonda, A. Phelps, J. Ross, M. Ross, A. Salek, E. Samadiani,
C. Severn, G. Sizikov, M. Snelham, J. Souter, D. Steinberg, A. Swing,
M. Tan, G. Thorson, B. Tian, H. Toma, E. Tuttle, V. Vasudevan, R. Wal-
ter, W. Wang, E. Wilcox, and D. H. Yoon, “In-datacenter performance
analysis of a tensor processing unit,” in ISCA’17.

[28] S.-C. Kao, S. Subramanian, G. Agrawal, A. Yazdanbakhsh, and T. Kr-
ishna, “Flat: An optimized dataflow for mitigating attention bottlenecks,”
in ASPLOS’23.

[29] H. Kwon, P. Chatarasi, M. Pellauer, A. Parashar, V. Sarkar, and T. Kr-
ishna, “Understanding reuse, performance, and hardware cost of DNN
dataflow: A data-centric approach,” in MICRO’19.

[30] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh, “Basic
linear algebra subprograms for fortran usage,” in TOMS’79.

[31] H. Le, L. Vial, J. Frej, V. Segonne, M. Coavoux, B. Lecouteux, A. Al-
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