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Abstract
Computing equilibrium concentrations of molecular complexes is generally analytically intractable
and requires numerical approaches. In this work we focus on the polymer-monomer level, where
indivisible molecules (monomers) combine to form complexes (polymers). Rather than employing
free-energy parameters for each polymer, we focus on the athermic setting where all interactions
preserve enthalpy. This setting aligns with the strongly bonded (domain-based) regime in DNA
nanotechnology when strands can bind in di!erent ways, but always with maximum overall bonding—
and is consistent with the saturated configurations in the Thermodynamic Binding Networks (TBNs)
model. Within this context, we develop an iterative algorithm for assigning polymer concentrations to
satisfy detailed-balance, where on-target (desired) polymers are in high concentrations and o!-target
(undesired) polymers are in low. Even if not directly executed, our algorithm provides e!ective insights
into upper bounds on concentration of o!-target polymers, connecting combinatorial arguments
about discrete configurations such as those in the TBN model to real-valued concentrations. We
conclude with an application of our method to decreasing leak in DNA logic and signal propagation.
Our results o!er a new framework for design and verification of equilibrium concentrations when
configurations are distinguished by entropic forces.
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1 Introduction

In general, chemical equilibria of complex chemical systems are not analytically solvable and
numerical tools are required for analysis. Such tools include NUPACK [19] for thermodynamic
analysis of nucleic-acid systems, as well as more abstract platforms that support domain-
level abstraction and free energy specification [14] including via rule-based modeling [13],
and software for computing steady-state concentrations of chemical reaction networks [9,
12]. However, engineers often want a deeper understanding of the equilibrium than what
analytically opaque numerical calculations can provide. Moreover, we often seek to understand
infinite classes of designs such as logic circuits constructed from gate modules or parameterized
constructions. For example, there is a growing body of work on leak in DNA-based systems,
exhibiting a family of schemes parameterized by a “redundancy parameter” meant to
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decrease leak arbitrarily at the cost of additional system components [15, 6, 17, 1, 18, 16].
It is proven that producing o!-target species necessarily decreases the overall number of
separate complexes—the change controlled by the redundancy parameter—and thus incurs an
entropic penalty. However, due to system complexity, the relationship between this rigorously
proven thermodynamic unfavorability and the actual concentrations of o!-target species
often remains implicit.

Properties of equilibria of abstract coupled chemical reactions have been extensively
explored in the chemical reaction network theory literature (e.g., [8], Chapter 14, for detailed-
balance equilibria), including establishing the conditions on the rate constants and structure
of the networks necessary for detailed balance [7, 4]. Full explicit-parameter schemes have
been developed to characterize the entire space of equilibria (e.g., [11]), but these analytical
approaches have severe limitations. For large systems the resulting explicit formulas are
unwieldy and o!er no e!ective guidance on how to choose the parameters so that o!-target
concentrations remain below a desired bound.

In this paper we are interested in the following problem: Our chemical species are
complexes (termed polymers) made up of indivisible units called monomers. We assume there
are finitely many possible polymers, and among these we are given a set of on-target species
that we want to have desired equilibrium concentrations, and all other o!-target species to
have some su"ciently low equilibrium concentrations. Our task is to determine a consistent
detailed-balance equilibrium, and therefore the concentrations of the monomers that would
lead to this equilibrium. Note that our interest in setting equilibrium concentrations rather
than solving for them (based on initial concentrations or total monomer concentrations, for
example) is misaligned with most computational approaches. For instance, it can be seen as
the reverse problem to NUPACK 3’s concentrations tool which takes the concentrations
of the monomers (strands) and returns the corresponding equilibrium concentrations of the
polymers (complexes).

While having the flexibility to set monomer concentrations may appear to simplify
the problem in the same way that finding some detailed-balance equilibrium is easier than
computing the one consistent with input monomer concentrations, the complexity comes from
simultaneously ensuring that o!-target polymers remain in low concentration. Consider the
natural approach of taking logarithms of all concentrations, thereby converting the detailed-
balance equations (balancing each reaction) into a linear system amenable to standard
linear solvers. When we fix the concentrations of on-target polymers, the remaining (o!-
target) concentrations are typically under-determined. The linear system then describes
an unbounded a"ne subspace, and there is no obvious way to extract upper bounds on
o!-target species’ concentrations without leaving the linear framework. Our solution is an
iterative algorithm that assigns concentrations to o!-target polymers in decreasing order
of concentration, ensuring that each o!-target species remains below a desired threshold
concentration when possible. Importantly, terminating the algorithm at any iteration still
provides valid upper bounds for all remaining o!-target polymers.

In the most general formulation of the monomer-polymer equilibrium concentration
problem, the polymer free energies can be assigned arbitrarily incorporating binding strength,
geometric constraints, etc. In this work, we focus on the simpler athermic case rather than
tackling the problem in its full generality. Our allowed polymers are such that all possible
reactions between them are enthalpy-neutral. This model is consistent with systems of strong
fully-complementary DNA domains in which domain-level bonds can only switch binding
partners but not de-hybridize. Thermodynamic Binding Network (TBN) [6, 2] saturated
configurations capture this condition, but our setting is more general without a built-in



H. Akef and M. Hhan and D. Soloveichik 3

notion of domains (binding sites).
The main result of this paper is Algorithm 1 and Theorem 5.4 showing how starting with

desired concentrations of on-target polymers (already in detailed balance), we can set the
concentrations of o!-target polymers to satisfy detailed balance and thus thermodynamic
equilibrium. In Section 4 we explain the apparent di"culties in balancing reactions which
our approach needed to overcome.

If, rather than computing exact concentrations of o!-target polymers, it is su"cient to
bound them, then we refer the reader to Section 6. In Section 7 we apply our framework to
the analysis of systems in the TBN model specifically, connecting the combinatorial notions
of stability and entropy loss in the TBN model to equilibrium concentrations. In Section 8,
we show applications of our method to the analysis of a simple TBN AND gate, as well
as a parameterized family of signal propagation systems (translator cascades) from prior
work. For the translator cascade, we argue that tuning concentrations of on-target polymers
according to our framework is essential for leak to decrease exponentially with the redundancy
parameter. We conclude with a discussion of future work (Section 9), including a formulation
of new combinatorial conditions in the TBN model to make our framework easily applicable.

2 Model

Let N denote the set of nonnegative integers. Given a finite set A, we define NA as the set
of functions f : A → N.

A multiset M over the finite set A is described by its counting function fM ↑ NA, where
for each element a ↑ A, the value fM (a) indicates how many times a appears in M . We
often write M ↑ NA to mean that M is a multiset over A, and we denote the count of a ↑ A

in M by M [a]. The notation a ↑ M means that M [a] ↓ 1. The cardinality of a multiset M ,
denoted |M |, is the total number of elements in the multiset |M | =

∑
a→A M [a]. For two

multisets M and M ↑ over A, we define their union M + M ↑ as the multiset whose counting
function is the pointwise sum (M + M ↑)(a) = M [a] + M ↑[a] for all a ↑ A. For example, let
M = {a, a, b, c}. Then, M [a] = 2, M [b] = 1, M [c] = 1, and M [d] = 0 for all d /↑ {a, b, c}.
Also, the cardinality of M is |M | = 2 + 1 + 1 = 4. Finally, note that M could also be written
as the union {a, b} + {a, c}, for example.

The linear combination of multisets with nonnegative integers is defined analogously: For
multisets M1, ..., Mn and a1, ..., an ↑ N,

∑n
i=1 ai · Mi corresponds to the counting function∑n

i=1 ai ·Mi [a]. Let M1, M2 ↑ NS be two multisets over the same set S. The di!erence M1 ↔M2

is defined as the multiset M ↑ NS such that for every a ↑ S, (M1 ↔ M2)[a] = M1[a] ↔ M2[a]
provided that M1[a] ↓ M2[a] for all a ↑ S.

We also define the intersection of a multiset with a set. Given a multiset M over A and a
subset S ↗ A, the intersection M ↘ S is a multiset over A defined by (M ↘ S)[a] = M [a] if
a ↑ S, otherwise (M ↘ S)[a] = 0. For instance, {a, a, b, c} ↘ {a, c} = {a, a, c}.

The main object of this paper is an abstract model of monomers and polymers, motivated
by systems in DNA nanotechnology. This model captures how simple indivisible molecules
(monomers) combine to form complexes (polymers) under specific physical and chemical
constraints.

↭ Definition 2.1. Let !
0

be a finite set of monomers, and ! ≃ N!0
be a finite set of

polymers over these monomers, where each polymer P ↑ ! is a multiset of monomers.

Let x
0

↑ (0, 1)!0 represent the vector of concentrations for all monomers, and let x ↑ (0, 1)!

represent the vector of concentrations for all polymers (also called configuration). The
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relationship between monomer and polymer concentrations is governed by mass conservation.
Specifically, we require

x
0 = A · x (1)

where A ↑ N|!0|↓|!| is a matrix such that each entry Aij specifies the number of monomers
of type i in polymer j.

For example, the polymer P = {m1, m1, m2, m3} contains two copies of m1, one of m2,
and one of m3. Note that we will be interested in cases where the set of polymers of interest
! is a finite (proper) subset of all possible polymers over !

0.
In DNA nanotechnology the monomers are typically DNA strands with di!erent sequences.

Polymers are analogous to a multistranded DNA structure composed of multiple DNA strands.
We use the term polymer rather than “complex” in order to better emphasize their composition
from monomers and to be consistent with the TBN literature.

To model the equilibrium behavior of such systems, we use the free energy formulation
in the notation of Dirks et al. [5], where the equilibrium concentrations are obtained by
minimizing the following free energy function (corresponding to the pseudo-Helmholtz free
energy used throughout chemical reaction network theory literature [10, 8]):

g(x) =
∑

P →!
xP (log xP ↔ log !P ↔ 1) (2)

where xP denotes the concentration of polymer P , and !P is its partition function corres-
ponding to the exponential of the polymer’s negative free energy. The minimization is subject
to the mass conservation constraint given in Equation (1).

In this work, we focus on athermic systems where all interactions are equally favored
enthalpically. Thus we assume that

∑
P →! xP · log !P is constant for all configurations x

satisfying mass conservation (Equation (1)), yielding a simplified cost function that is entirely
entropic:

g(x) =
∑

P →!
xP (log xP ↔ 1). (3)

This function serves as the objective of our optimization problem. Its minimizer under the
constraint of Equation (1) corresponds to the equilibrium concentration of polymers.

Understanding the equilibrium requires us to formalize how polymers can transform into
one another. We do so by defining reconfigurations and the reactions they induce.

↭ Definition 2.2. Two multisets of polymers M1, M2 ↑ N!
are reconfigurations of each other,

written M1 ⇐= M2, if for every monomer m ↑ !
0
, the total count of m is the same in M1 as

in M2; i.e.,
∑

P →! M1[P ] · P [m] =
∑

P →! M2[P ] · P [m]. Whenever M1 ⇐= M2, we also define

reaction M1 → M2.

We occasionally use Greek alphabets to denote the reactions. Note that while ⇐= is a binary
relation, a reaction ω : M1 → M2 is an ordered pair representing a directed transformation
between the multisets. Our arguments will refer to reactants (left-hand side) and products

(right-hand side) of particular reactions.1
An important property of the minimum of Equations (2) and (3) is that it satisfies detailed

balance over reactions [10, 8]. For us (Equation (3)), for any single reaction ω : M1 → M2,

1 All reactions are of course reversible, but we treat each direction as a separate reaction.
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the equilibrium concentrations satisfy:
∏

P →M1

xP
M1[P ] =

∏

P →M2

xP
M2 [P ]

.

We say that a reaction ω is balanced when this equality holds. This notion of balance will be
central to our characterization of equilibrium concentrations formed by on-target polymers,
which we explore next.

The fact that balance leads to the minimum of the free energy is well-established, and we
present its sketch in Appendix B for the completeness of the paper.

3 Characterizing On-target Polymers

We now define the set S of on-target polymers—intuitively, these are the high-concentration
polymers whose equilibrium concentration we set as input to our algorithm.

↭ Definition 3.1. Let S ≃ ! be a set of polymers, and let µ : S → (0, 1] be a function

assigning a concentration exponent to each polymer in S. We say that S is on-target with

concentration exponents µ if:

1. For every polymer P ↑ !, there are multisets of polymers M ↑ NS
and M ↑

↑ N!
where

M ↑
contains P such that M ⇐= M ↑

.

2. For any two multisets M1, M2 ↑ NS
, if M1 ⇐= M2, then their concentration exponents are

equal µ(M1) = µ(M2). Here, the concentration exponent of a multiset M is defined as

µ(M ) =
∑

P →M M [P ] · µ(P ).

While presented in terms of restricting S, another (perhaps more apropos) interpretation
of the first condition is that we are restricting ! to be only those polymers that can be
obtained via a reconfiguration of polymers over S. The interpretation of the second condition
is that every reaction among polymers in S is in detailed balance. More precisely:
↭ Remark 3.2. Let 0 < c < 1, and suppose every on-target polymer P ↑ S has concentration
c

µ(P ). Then every reaction M1 → M2, where M1, M2 ↑ NS , satisfies c
µ(M1) = c

µ(M2) and thus
the product of the concentrations of the left-hand side polymers is equal to the product of
the concentrations of the right-hand side polymers.23

If S = ! then we are done, being guaranteed that all reactions are in detailed balance.
However, the case of interest is where we do not know the concentration exponents of all
polymers—making it the goal of this paper to compute them or bound them to ensure that
the equilibrium concentration of o!-target polymers is small.

We now define canonical reactions, which are the reactions with reactants from S. These
reactions can generate polymers outside of S from polymers in S. Each canonical reaction
has key quantities we call imbalance and novelty which will play a key role in our algorithm.

↭ Definition 3.3. For an on-target set S with µ, a reaction ω : M1 → M2 is called canonical
if all its reactants are over S (i.e., M1 ↑ NS

). Then the imbalance of ω is defined as

k(ω) := µ(M1)↔µ(M̂2), where M̂2 := M2 ↘S. The novelty of ω is defined by l(ω) := |M2 ↔M̂2|.

2 Note that we use symbol µ for concentration exponents because of the direct parallel to the standard
notion of chemical potential, which is expressed with logarithmic terms of concentration: chemical
potential µ = µ→ + RT ln(x), where x is the mole fraction.

3 Our base concentration c is smaller than one because the units of concentration are mole fractions—the
ratio of polymers to solvent molecules, and the derivation of the energy function Equation (2) only
holds in the regime of less polymer than solvent [5].
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Given the definition of multiset subtraction, the novelty l(ω) is always non-negative.
Intuitively, the imbalance of the reaction represents how far from detailed balance it is if

we consider only the polymers whose concentrations are known. The novelty is the number of
o!-target (new) polymers produced by the same reaction.

Intuitively, a large k(ω) means a larger bias of the reaction toward its reactants, i.e.,
elements of S, prior to assigning concentration exponents to o!-target polymers. This is
desired since it implies less pressure to make o!-target polymers and gives us more room to
maneuver in assigning concentrations to them.

Intuitively, a larger novelty l(ω) means that the canonical reaction is more entropically
favored to its products. Note that the term

∑
P →! xP log xP in Equation (3) is minimized

when the concentration is more “spread out” over the di!erent species (like Shannon entropy),
and thus there is an entropic force to generate new polymers. A large l(ω) is thus undesired.
As justified in the subsequent results, the ratio k(ω)/l(ω) captures the e!ective tradeo!
between imbalance and novelty.

Note that summing canonical reactions gives another canonical reaction. While on the
one hand this leads to infinitely many canonical reactions, on the other hand, this additive
property allows us to analyze the set of all canonical reactions using a Hilbert basis of finite

size. We explain how to employ the Hilbert basis in our algorithm to avoid the infinity of
canonical reactions in Appendix A.

The notion of stability of S, defined below, captures the idea that on-target polymers are
in higher concentration compared to o!-target polymers. Recall that concentration exponents
µ are ⇒ 1 for polymers in S (Definition 3.1). As shown later by Theorem 5.4, the following
definition ensures that all concentration exponents of polymers outside of S are greater than
1 by our algorithm. Since the base concentration c < 1, this implies that o!-target polymers
are in smaller concentration.

↭ Definition 3.4. The on-target set S with µ is called stable if, for every canonical reaction

ω with l(ω) ⇑= 0, the ratio k(ω)/l(ω) > 1.

While our formalism allows di!erent concentration exponents for di!erent polymers in S,
nearly all insight can be obtained from the simple case of uniform on-target concentration
exponents:

↭ Definition 3.5. The on-target set S with µ is called uniform if every polymer P ↑ S has

concentration exponent µ(P ) = 1.

4 Why Balancing is Nontrivial

Our main goal is to ensure that in equilibrium the concentration of on-target polymers is
much higher than the others. This section presents two examples illustrating why this is
nontrivial.

Consider a uniform set of on-target polymers S = {A, B, C, D}, aiming at the equilibrium
concentration xA = xB = xC = xD = c. For two o!-target polymers P1 and P2, suppose
that we figured out a canonical reaction

ω : 2A + B + C → P1 + P2.

This reaction is in detailed balance if and only if xP1 · xP2 = x
2
A · xB · xC = c

4
. At this

point, it is unclear how to balance xP1 and xP2 without inspecting the other reactions: For
example, the reaction ω is balanced by assigning xP1 = xP2 = c

2, but another canonical
reaction A + 2B + 2D → 2P1 would not be if it exists.
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The following example exhibits a di!erent potential problem. While Remark 3.2 shows that
reactions entirely within S are balanced, it is not clear that given our choice of concentration
exponents µ for S, the reactions involving polymers outside of S could be balanced at all.
Suppose there are two reactions

ε : A + B → P3 and ϑ : B + C + D → 2P3.

These reactions intuitively say that the o!-target polymer P3 is non-interacting to other
polymers in these reactions so that the above problem of balancing the concentrations over
o!-target polymers is absent.4 However, balancing the reaction ε suggests the concentration
xP3 = c

2 at equilibrium, but the reaction ϑ gives xP3 = c
1.5. In other words, it is unclear if

the concentrations of each of the polymers in S can be the same or even close to each other.
Despite these di"culties, our main result guarantees that the configuration on on-target

polymers we demand is in equilibrium without the above issue, and can be extended to the
configuration over all polymers at equilibrium, and ensures that the o!-target polymers
remain in very low concentration at equilibrium. Intuitively, we prove that there exists
a canonical reaction for which we can assign concentrations to product polymers without
creating conflicts with other reactions, and we provide a method to find this reaction.
Moreover, as we will see later, these assignments occur in order of decreasing concentration
allowing us to restrict the concentration of o!-target species.

5 Main Result: Concentration of O!-target Polymers

For the remainder, we fix !
0, !, and a particular set of on-target polymers S with concen-

tration exponents µ.
To systematically assign concentration exponents to all polymers, we will organize them

into hierarchical groups called levels. The process begins with a designated set of polymers S,
the on-target polymers, which are assigned initial concentration exponents via µ : S → R+.

All other polymers, called o!-target polymers, will be partitioned into level sets S1, S2, . . .,
constructed inductively based on how these polymers appear in certain canonical reactions.
At each level i, we will compute a scalar value µi that serves as the concentration exponent
for all polymers newly added at that level.

In this way, we gradually extend the initial function µ to a global function µ̄ : ! → R+

that assigns a concentration exponent to every polymer in the system. This inductive process
and the precise definitions of µi, Si, and µ̄ will be described in detail below.

↭ Definition 5.1. Given S0, ..., Si↔1, assume µ̄(P ) is assigned for any P ↑
⋃i↔1

j=0 Sj. For a

canonical reaction ω : M1 → M2, we define M̂2 := M2 ↘

(⋃i↔1
j=0 Sj

)
. The ith-level imbalance

of ω is defined as ki(ω) := µ̄(M1) ↔ µ̄(M̂2), and the ith-level novelty by li(ω) := |M2| ↔ |M̂2|.

While M̂2 technically depends on the level index i, we suppress this dependency in the notation
for simplicity; it will be clear from the context that it is updated at each level. Additionally,
by the definition of a canonical reaction, we have µ̄(M1) = µ(M1) in the expression above.

↭ Definition 5.2. Let µi = minω{ki(ω)/li(ω)} where the minimum is taken over all canonical

reactions ω with li(ω) ⇑= 0.
5

The canonical reactions achieving the minimum are termed

4 Looking ahead, these non-interacting polymers are indeed easier to assign concentrations to as shown in
Section 5.1.

5 The minimum can actually be taken over a finite subset of canonical reactions using Hilbert basis. We
refer the reader to Appendix A for more detail.
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i-levelizing canonical reactions. The ith level set Si is defined as the set of all polymers

P appearing in any i-levelizing reactions not already in
⋃i↔1

j=0 Sj. Every polymer P ↑ Si is

assigned concentration exponent µ̄(P ) := µi.

At the heart of this inductive construction is the requirement that each i-levelizing
reaction maintains balance with respect to the assigned concentration exponents. That is,
for every reaction ω : M1 → M2 used to define level Si, the assigned exponents ensure the
reaction remains detailed balanced, c

µ̄(M1) = c
µ̄(M2). This holds because each polymer in M2

that already appeared in previous levels contributes its already-defined exponent, while newly
introduced polymers in Si all receive the same value µi. Decomposing M2 into previously
levelized polymers M̂2 and new polymers in Si, we obtain:

µ̄(M1) = µ̄(M̂2) + ki(ω) = µ̄(M̂2) + µi · li(ω) = µ̄(M̂2) + µi · (|M2| ↔ |M̂2|) = µ̄(M2),

ensuring that the total concentration exponent on both sides of the reaction is equal. This
confirms that the assignment of µi for polymers in level Si is consistent with the balance
requirements dictated by the underlying reactions.

The full procedure for determining the level sets Si and the corresponding concentration
exponents µi is formally specified in Definitions 5.1 and 5.2 and carried out through the
step-by-step process described in Algorithm 1. This algorithm inductively builds the extended
concentration exponent function µ̄ by identifying polymers that can be levelized at each step
and assigning them an appropriate exponent value based on their participation in canonical
reactions.

While the algorithm itself does not explicitly state a stopping condition, its termination
is ensured by the structure of the level construction process. Each time a new level Si is
defined, it includes at least one polymer not present in any previous level. Since the set of all
polymers ! is finite by assumption, only finitely many levels can be introduced. As a result,
the inductive process must terminate after assigning a level and concentration exponent to
each polymer, thus completing the definition of the extended function µ̄.

For us, canonical reactions represent the simplest meaningful interactions and serve as
building blocks for more complex behavior. Their central role for our results is motivated by
the following lemma:

↭ Lemma 5.3. Let x
0

↑ (0, 1)!0
be a vector of concentrations of the monomers. If all

canonical reactions are balanced at configuration x ↑ (0, 1)!
, then the cost function g(x) is

minimum subject to A · x = x
0
.

Proof. We will show that any arbitrary reaction can be decomposed into a canonical reaction.
Consequently, if detailed balance holds for all canonical reactions, it follows that detailed
balance holds for all reactions. Per Appendix B, the cost function g reaches its minimum—
under the constraint A·x = x

0—when all reactions are balanced. This confirms the statement
of the lemma.

Consider an arbitrary non-canonical reaction ω : M1 + P → M2 with P /↑ S where
M1 + P denotes the union of two multisets M1 and {P}. According to the first condition of
Definition 3.1, there exists a canonical reaction ε : M ↑

1 → M ↑
2 + P that produces P . Now,

apply ε and ω sequentially on the reactants M1 + M ↑
1 . This gives rise to a new reaction:

ϑ : M1 + M ↑
1 → M1 + (M ↑

2 + P ) = (M1 + P ) + M ↑
2 → M2 + M ↑

2 .

Therefore, the reaction ω, when catalyzed by M ↑
2 (i.e., adding M ↑

2 to reactants and products)
and using the inverse of the canonical reaction ε, can be replaced by the reaction ϑ, which
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involves fewer reactant polymers outside of S than ω did originally:

(M1 + P ) + M ↑
2 = M1 + (M ↑

2 + P ) → M1 + M ↑
1 → M2 + M ↑

2 .

By repeating this procedure, ω decomposes into a canonical reaction. This concludes the
proof. ↫

With this groundwork in place, we now state our main theorem, which characterizes the
equilibrium distribution of the entire polymer system, both on-target and o!-target, in terms
of their assigned levels.

↭ Theorem 5.4. Let S be the stable set of on-target polymers with concentration exponents

µ : S → (0, 1]. For the extended concentration exponent µ̄ : ! → R+
generated by Algorithm 1

and for any 0 < c < 1, there are monomer concentrations x
0

↑ (0, 1)!0
such that the

configuration x ↑ (0, 1)!
with each polymer P ↑ ! at concentration c

µ̄(P )
is the minimum

of g(x) subject to A · x = x
0

(i.e., Equations (1) and (3)). Furthermore, µ̄(P ) ↓ µ1 > 1 for

all P /↑ S.

In this configuration, every o!-target polymer has strictly lower concentration than any
on-target polymer. This is because concentrations scale exponentially with the extended
exponent µ̄(P ), and o!-target polymers are assigned strictly larger exponents than the shared
minimal value µ of the on-target set S. As a result, for 0 < c < 1, o!-target concentrations
are exponentially suppressed.

Algorithm 1 Calculating level sets and concentration exponents. The repeat loop will terminate
because there are finitely many polymers. The Hilbert basis implementation avoiding the infinite set
! is discussed in Appendix A.

1: Input: A set of level-0 polymers S0 = S with µ(·) and all canonical reactions ”
2: Output: Sets of level-i polymers Si and concentration exponents µ̄(·)
3: Set i ⇓ 0, Sj ⇓ ⇔ for all j ↑ N
4: repeat

5: i ⇓ i + 1
6: for each canonical reaction ω : M1 → M2 ↑ ” do

7: M̂2 ⇓ the multiset of all level ⇒ (i ↔ 1) polymers in M2.
8: ki(ω) ⇓ µ̄(M1) ↔ µ̄(M̂2) and li(ω) ⇓ |M2| ↔ |M̂2|

9: Compute µi = minω{ki(ω)/li(ω)} where min is taken over ω ↑ ” with li(ω) ⇑= 0.
10: for each ω : M1 → M2 ↑ ” such that µi = ki(ω)/li(ω) do

11: Append ω to the set of i-levelizing reactions
12: Append all polymers P in M2 that are not in M̂2 to Si and assigns µ̄(P ) = µi

13: until All polymers are included in ↖
i
j=0Sj

14: return The sets Si and the concentration exponents µ̄(·)

Proof of Theorem 5.4. We use a proof by contradiction to show that each canonical reaction
must be balanced in the configuration with [P ] = c

µ̄(P ), which su"ces to conclude the proof
thanks to Lemma 5.3.

Suppose that there exists a canonical reaction ω : M1 → M2. We consider two cases
µ̄(M1) < µ̄(M2) or µ̄(M1) > µ̄(M2). Recall all polymers are levelized.
Case 1: µ̄(M1) < µ̄(M2). Let t be the top level among the polymers in M2. Note that
µ̄(P ) = µt for each P ↑ St. Since µt is defined as the minimum of kt(ω↑)/lt(ω↑) over all
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canonical reactions ω
↑
↑ ” with lt(ω↑) ⇑= 0, we must have:

µt ⇒
kt(ω)
lt(ω) = µ̄(M1) ↔ µ̄(M̂2)

lt(ω) <
µ̄(M2) ↔ µ̄(M̂2)

lt(ω) = µt

which is a contradiction.
Case 2: µ̄(M1) > µ̄(M2). Let εP be the levelizing reaction including P as product for each
polymer P ↑ M2. Consider a canonical reaction

∑
P M2[P ] · εP : M ↑

1 → M ↑
2 + M2 obtained by

summing M2[P ] copies of εP which includes M2 as products.6 By applying M2 → M1 to this
reaction, we have a canonical reaction ε : M ↑

1 → M ↑
2 + M2 → M ↑

2 + M1 such that

µ̄(M ↑
1 ) = µ̄(M ↑

2 ) + µ̄(M2) < µ̄(M ↑
2 ) + µ̄(M1).

Therefore this case is reduced to Case 1, leading once again to a contradiction.
The “Furthermore” part is proven in Corollary 6.4. ↫

5.1 Non-Interacting O!-target Polymers
Our main theorem implies that if the on-target polymers S and the corresponding con-
centration exponents µ are chosen appropriately, the equilibrium exists with the extended
concentration exponents µ̄ consistent with µ. In this section, we show that µ̄ exponents
for non-interacting o!-target polymers P can be assigned in a particularly easy way. Non-
interacting o!-target polymers are those that can be independently made by a canonical
reaction:

↭ Corollary 5.5. Let S be a stable set of on-target polymers. Suppose that an o!-target

polymer P /↑ S is a product of a canonical reaction ωP : MP → M ↑
P + P for some multisets

MP and M ↑
P from S.

7
Then µ̄(P ) = µ(MP ) ↔ µ(M ↑

P).

Proof. By Theorem 5.4, the reaction ωP is in detailed balance, c
µ̄(MP ) = c

µ̄(M →
P+P ), and we

take the logarithm of both sides. ↫

The same idea extends further. At any point of the execution of the algorithm, suppose
that the extended concentration exponents of the set of polymers S̄ have been already
assigned. For a non-interacting polymer P outside of S̄ with the reaction ωP : MP → M ↑

P +P

for multisets MP and M ↑
P from S̄, we can assign µ̄(P ) = µ̄(MP ) ↔ µ̄(M ↑

P). This assignment is
valid by the same reason to the corollary.

↭ Example 5.6. Consider the set of monomers and polymers given by !
0 = {a, b, c}

and ! = {A, B, C, X, Y, Z}; where A = {a, a}, B = {a, b}, C = {c}, X = {a, a, a, b},
Y = {b, b, c, c}, and Z = {b, b, c, c, c}. Consider the uniform on-target set S = {A, B, C}.
Instead of inspecting all canonical reactions, we can focus on three canonical reactions

ω : A + B → X, ε : 3B + 2C → X + Y, ϑ : A + 2B + 3C → X + Z.

Here X is the non-interacting o!-target polymer in ω, thus µ̄(X) = 2. After assigning µ̄(X),
Y and Z become non-interacting o!-target polymers in ε and ϑ, respectively, so that we
derive µ̄(Y ) = 3 and µ̄(Z) = 4.

6 Here we use the linear combination of reactions in a standard way; for example, for ω : N1 → N2 and
ε : N ↑

1 → N ↑
2 , the reaction 2 · ω + ε denotes the reaction 2N1 + N ↑

1 → 2N2 + N ↑
2 .

7 Note that there may be other reactions involving P with other o!-target polymers.
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6 Framework for Upper-Bounding O!-target Polymers

Often we are only interested in an upper bound on the concentration of an o!-target
undesired polymer. In this case, rather than generating its exact equilibrium concentration
via Algorithm 1, we can more e"ciently compute an upper bound by narrowing our focus to
reactions that directly produce P instead of examining the full set of canonical reactions.
This leads to a simpler surrogate quantity that approximates µ̄(P ) from below.

↭ Definition 6.1. For P /↑ ↖
i↔1
j=0Sj, let µ̃i(P ) = minω{ki(ω)/li(ω)} where the minimum is

taken over all canonical reactions ω that include P as a product.

Since P has not yet been levelized by construction, any such reaction ω producing P ,
obviously involves at least one unlevelized polymer, ensuring li(ω) ⇑= 0.

Intuitively, µ̃i(P ) captures a conservative estimate of the exponent with which polymer P

can grow in concentration at level i, based only on reactions that actually produce P . Since
it is defined as a minimum over a subset of possible reactions, it is easier to compute than
the full concentration exponent µ̄(P ), yet is still meaningful for analysis:

↭ Theorem 6.2. For any polymer P /↑ ↖
i↔1
j=0Sj, µ̄(P ) ↓ µ̃i(P ) ↓ µi.

↭ Lemma 6.3. For a canonical reaction ω with li+1(ω) ⇑= 0, it holds that ki(ω)/li(ω) ⇒

ki+1(ω)/li+1(ω).

Proof. Note that µi ⇒ ki(ω)/li(ω) by definition of µi. Let n be the count of level-i product
polymers in ω, which must be smaller than li+1(ω). Then we have

ki+1(ω)
li+1(ω) = ki(ω) ↔ nµi

li(ω) ↔ n
= ki(ω) ↔ nµi

li(ω) ↔ n
↓

ki(ω) ↔ n(ki(ω)/li(ω))
li(ω) ↔ n

= ki(ω)
li(ω) .

↫

Proof of Theorem 6.2. Since all polymers will eventually be levelized, there exists a j-
levelizing canonical reaction ω that includes P as a product for some j ↓ i. Then, µ̃i(P ) ⇒

ki(ω)/li(ω) ⇒ kj(ω)/lj(ω) = µ̄(P ) where the first inequality follows from Definition 6.1, and
the second follows from Lemma 6.3.

Furthermore, the value µ̃i(P ) is computed by taking the minimum of ki(ω)/li(ω) only
over canonical reactions that produce P (and have li(ω) ⇑= 0). In contrast, µi is defined as the
minimum over all canonical reactions, regardless of whether they produce P or not. In other
words, the set of reactions considered when computing µ̃i(P ) is a subset of those considered
for µi, making the search space for µ̃i(P ) more restricted. Since a minimum over a smaller
set cannot be smaller than the minimum over a larger set, we conclude that µ̃i(P ) ↓ µi. ↫

To summarize, µ̃i(P ) serves as a computationally e"cient lower bound on µ̄(P ). When
used alongside Theorem 5.4, this upper bounds the equilibrium concentration of P .

The usefulness of Theorem 6.2 extends beyond individual estimates. It contributes to
structural insights about level assignments during the iterations of our algorithm. Specifically,
after levelizing up through Si↔1, we know that any unlevelized polymer P /↑ ↖

i↔1
j=0Sj satisfies

µ̄(P ) ↓ µi > µi↔1. This inequality ensures that polymers awaiting level assignment must
exhibit smaller concentrations. In particular, because the first level imbalance k1 and
novelty l1 are precisely identical to k and l defined in Definition 3.3, we derive µ̄(P ) ↓ µi ↓

minω{k(ω)/l(ω)} > 1 and the following corollary.

↭ Corollary 6.4. µ̄(P ) > 1 for all P /↑ S.
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7 Concentrations of Polymers in the TBN Model

While the TBN model is combinatorial in nature, quantifying over discrete (saturated) con-
figurations, at the end we are most often interested in determining real-valued concentrations,
which are accessible to (bulk) wet-lab experiment. The framework developed in this paper
helps to bridge this gap between combinatorics of discrete configurations and concentrations.8

Consider a saturated (i.e., maximally bonded) configuration M in the TBN model.
Quantified over all saturated reconfigurations M ↑ ⇐= M , the key quantity of interest in the
TBN model is the “entropy” of M ↑, defined as the number of polymers in M ↑ (i.e., |M ↑

|).
The TBN model defines the “stable” configurations to be those that have maximum entropy
among all saturated configurations.

Corresponding to the TBN literature [6], a multiset of polymers M is called TBN-stable

if any reaction M → M ↑ has |M | ↓ |M ↑
|. We say that a set S of polymers is TBN-stability

closed if every multiset M ↑ NS is TBN-stable and further any reaction M → M ↑ where
M ↑ contains a polymer outside of S (i.e., P ↑ M ↑ for some P /↑ S) satisfies |M | > |M ↑

|. In
other words, producing a polymer outside of a TBN-stability closed set S costs entropy. The
following lemma connects our notion of stability of on-target polymers (Definition 3.4) to
TBN-stability.

↭ Lemma 7.1. If S is TBN-stability closed and satisfies condition (1) of Definition 3.1, then

S is on-target with µ(P ) = 1 for all P ↑ S (i.e., uniform) and stable.

Proof. We first check S is on-target with µ. For a reaction ω : M1 → M2 where M1 and
M2 are multisets over S, µ(M1) = |M1| ↓ |M2| = µ(M2). Applying the same argument to
ω

↑ : M2 → M1 yields µ(M1) ⇒ µ(M2). Combining the two gives µ(M1) = µ(M2), proving S

with µ is an on-target set.
Now we will prove that uniform on-target S is stable. Consider a canonical reaction

ε : M ↑
1 → M ↑

2 with l(ε) > 0. By definition, we have k(ε) = µ(M ↑
1 ) ↔ µ(M̂ ↑

2 ) = |M ↑
1 | ↔ |M̂ ↑

2 |

and l(ε) = |M ↑
2 | ↔ |M̂ ↑

2 |. Therefore, the condition for S being stable, namely k(ε)/l(ε) > 1,
is implied by |M ↑

1 | > |M ↑
2 |. ↫

Thus, the polymers in the TBN-stability closed set S represent the intended “high-
concentration” polymers, while everything outside of S is considered undesired (o!-target).

Let canonical reaction ω be M → M ↑; we define |M | ↔ |M ↑
| to be the entropy loss e(ω) of

the reaction ω. Recall that during the first iteration of our algorithm, novelty l(ω) is the
number of o!-target polymers generated in canonical reaction ω. The imbalance k(ω) in the
first iteration can be understood in terms of the entropy loss of the reaction: the decrease in
the number of polymers of a reaction is exactly e(ω) = k(ω) ↔ l(ω). Thus to have an upper
bound on the concentration of o!-target polymers via Theorem 6.2, it is su"cient to find the
smallest ratio e(ω)/l(ω) of any reaction:

↭ Corollary 7.2. Let set S ≃ ! be a TBN-stability closed set of polymers. Let µ1 =
minω{e(ω)/l(ω)} + 1 minimized over all reactions ω : M → M ↑

where M ↑ NS
, M ↑

↑ N!

and l(ω) > 0. For any 0 < c < 1, there are monomer concentrations x
0

↑ (0, 1)!0
and

configuration x ↑ (0, 1)!
that minimizes g(x) subject to A · x = x

0
where x satisfies: each

polymer P ↑ S has concentration exactly c, and each polymer P ↑ ! \ S has concentration

not more than c
µ1 .

8 Of course, much of the heavy lifting in bridging this gap is done by the derivation [5] of the cost function
g(x), but our work expands on it beyond numerical simulation.
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In other words, if S is a TBN-stability closed set of polymers then we can assign
concentration c to each of them (uniform assignment). Then we consider the “worst” way to
generate any polymers outside of S (i.e., o!-target): the way that has the smallest entropy
loss and the largest novelty. The ratio of the entropy loss to novelty gives us an upper bound
on the concentration exponent µ1 of any o!-target polymer, bounding its concentration by
c

µ1 . The smallest entropy loss to generate o!-target polymers is already the key item of
interest in the TBN literature. Thus the above corollary helps to bootstrap concentration
bounding arguments via existing arguments based on entropy loss.

8 Example Applications

In this section we show several applications of our mathematical tools in the analysis of
existing systems of interest in the DNA molecular programming literature. We base our
arguments on previous results proving the entropy loss (quantity e(ω) of Corollary 7.2) of
the systems in producing o!-target (leak) species.

We note that while existing literature succeeds in characterizing entropy loss via TBN-like
combinatorial arguments, more work is needed to develop similarly rigorous combinatorial
arguments on novelty (quantity l(ω)); see also Discussion. In the examples to follow, we
claim to have identified the worst-case canonical reactions—i.e., having the least e(ω)/l(ω)
or k(ω)/l(ω) ratio—without proof.

We first consider the TBN AND gate introduced in prior work [6, 2] and recently
experimentally realized [16]. Figure 1 (left) shows the desired functionality of the AND
gate in which inputs A and B cooperate to produce C. We are interested in bounding the
concentration of C (leak) that can be produced in the absence of inputs A and B. Phrased
in our terminology, combinatorial TBN arguments have shown that S = {X, Y, Z} is TBN-
stability closed, as well as {X, Y, Z, A} and {X, Y, Z, B} where one of the two inputs is present.
This implies that any canonical reaction ω producing C has entropy loss e(ω) ↓ 1. However,
such arguments do not directly connect entropy loss to leak concentrations, justifying the
need for a tool like our Corollary 7.2.

To apply our framework to the TBN AND gate, we use Corollary 7.2. In the absence
of both inputs, take S = {X, Y, Z}. We claim that the worst-case canonical reaction ω

producing C is X + Y + Z → G1 + C shown in Figure 1 (middle). This reaction has entropy
loss e(ω) = 1 and novelty l(ω) = 2 since G1 and C are outside of S. Thus for any base
concentration 0 < c < 1, there is an equilibrium with [X] = [Y ] = [Z] = c where the leak
concentration is [C] ⇒ c

1.5.
Similarly, consider the case of having input B but no input A. We take S = {X, Y, Z, B}

and claim9 that the worst-case canonical reaction ω producing C is X + Y + Z + B →

G2 +G3 +C as shown in Figure 1 (right). This reaction has entropy loss e(ω) = 1 and novelty
l(ω) = 3 since G2, G3, and C are outside of S, yielding the equilibrium leak concentration of
[C] ⇒ c

1.33. Our analysis thus provides concrete polynomial upper bounds on leak, consistent
with the qualitative expectation of the TBN model that leak should become comparatively
negligible in the limit of decreasing c. The bound is smaller when both inputs are absent
than when B is present.

9 While we do not provide a formal proof that this reaction is worst-case, our confidence is based on the
observation that we cannot increase the novelty further without increasing the entropy loss in proportion.
For example, we can combine two copies of reaction ω to yield reaction ω↑ but then e(ω↑) = 2e(ω) and
l(ω↑) = 2l(ω), maintaining the same ratio.
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Figure 1 A TBN module implementing an AND gate. The presence of polymers A and B
represents input 1, while their absence represents input 0. (Left) The intended reaction pathway
generates the output polymer C when both A and B are present. (Middle) When both A and B
are absent, the worst-case canonical reaction is ω : X + Y + Z → G1 + C producing an erroneous
output C (leak). The entropy loss and novelty of the reaction are e(ω) = 1 and l(ω) = 2, resulting
in the concentration upper bound of C of c1.5 via Corollary 7.2. (Right) If only one input is present
(B), then the worst-case canonical reaction is ε : B + X + Y + Z → G2 + G3 + C with e(ε) = 1 and
l(ε) = 3, yielding the upper bound concentration of C of c1.33.

As the next example, we consider the “leakless” DNA strand displacement system
previously theoretically and experimentally studied [17]. That work focuses on a family
of “translator” modules that convert an input strand to an output strand of independent
sequence. The family is parameterized by the redundancy parameter N defined as the number
of bound domains in each fuel polymer Fi, such that the number of domains in each signal
Xi is N + 1. Leak is expected to decrease with decreasing overall concentration (as for the
AND gate), as well as with increasing redundancy N . The decrease of leak with increasing
N was confirmed by experiment, at least for small N . The reactions of the translator with
N = 3 are shown in Figure 2.

To apply our framework, we consider the system without toeholds, driven solely by
entropy; with long domains alone, we are in the enthalpy neutral (athermic) regime. Prior
work focused on the case where the system was prepared in a state with only fuel polymers
(Fi), all at equal concentration, and zero initial concentration of waste polymers (Wi). Let
on-target set be S = {Fi, Wi | i = 1, . . . , n} with uniform µ = 1. Rephrasing in our
terminology, ref. [15] proved that any canonical reaction ω : M → M ↑ where Xi ↑ M ↑ has
entropy loss e(ω) = N ↔ 1, and this fact was used to argue that by increasing N we can make
leak arbitrarily small. We now show that considering novelty in addition to entropy loss
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Figure 2 Translator cascade with redundancy parameter N = 3. Polymer X0 serves as input and
polymer Xn as output signal. The leak pathway with N + 1 fuels coming together to generate a
signal XN+1 in the absence of input is described in (a). Part (b) describes the intended reaction
for each i; iterating them for i = 1, ..., N + 1 produces XN+1 given input X0. Note that if several
translators are composed, then XN+1 is the input to the downstream translator and once the leak
signal is generated via the pathway shown in (a) it can propagate via intended reactions to the
output Xn of the last translator.

makes this argument problematic, and suggest an alternative parameter setting to arbitrarily
decrease leak.

Consider a cascade of two translators. Importantly, the number of fuels for a single
translator module is N + 1; i.e., Xi and Xj overlap in sequence for i < j < i + N + 1
but are completely sequence-independent for j = i + N + 1. We claim that the worst-case
leak pathway ω is where the first translator leaks resulting in the triggering of the second
translator. This pathway generates l(ω) = N + 3 new o!-target polymers: 1 for the leaked
upstream translator (all fuels coming together), N + 1 for the triggered fuels of the second
translator, and 1 for the output. Thus e(ω)/l(ω) = (N ↔ 1)/(N + 3). By Corollary 7.2, the
concentration of the leak product in the uniform setting is bounded above by c

4/3 for N = 3.
The bound tightens to c

2 with increasing N ; however, it does not get arbitrarily small. This
suggests that we do not decrease equilibrium leak concentration arbitrarily by increasing
“redundancy” N because while the entropy loss increases, the novelty increases as well.

To arbitrarily decrease leak, we propose to use positive initial concentrations of the waste
polymers Wi. The fuel polymers are denoted F1, ..., Fn, and the waste polymers produced
after translator triggering are W1, ..., Wn. Let X0 represent the input and Xn represent the



16 Computing and Bounding Equilibrium Concentrations in Athermic Chemical Systems

output. We have n = 2(N + 1) for two translators composed together. This cascade of length
n proceeds through the following reactions described in Figure 2:

Xi↔1 + Fi → Xi + Wi

for i = 1, ..., n.
We first consider the triggered system (with-input) showing at least a constant fraction

of the signal is propagated to the end as Xn. We then focus on the case without input and
bound the leak. Note that this analysis utilizes Theorem 5.4 directly rather than Corollary 7.2
because we will have di!erent concentration exponents µ for Fi and Wi in S.

For the triggered (with-input) system we define our on-target set as S = {Fi, Wi, X0, Xi |

i = 1, . . . , n}. We assign concentrations to the on-target polymers as follows: All fuel
concentrations are equal to 2c, and all waste concentrations are equal to c. These concen-
trations correspond to concentration exponents µ(Fi) = 1 + logc 2 and µ(Wi) = 1. Let the
concentration of the output in the final layer Xn be y and assign balancing concentrations of
the other Xi. Since [Fi]/[Wi] = 2, we have

∑n
i=0[Xi] < 2y, meaning that more than half of

the total signal (Xi) is at the output layer.
Now, we investigate the system without input. Let S = {Fi, Wi | i = 1, . . . , n}. For

the situation to properly correspond to the with-input case, we need to ensure that all
monomer concentrations are the same between the two cases, except removing the monomer
corresponding to input X0. Rather than thinking about specific monomers, we start in the
with-input case and conceptually run reactions Xi + Wi → Xi↔1 + Fi to completely push
all Xi to X0, and then remove X0 from the system.10 Since the total amount of all Xi is
less than 2y in the with-input case, this results in: [Fi] < 2c + 2y and [Wi] > c ↔ 2y. These
correspond to µ(Fi) > logc(2c + 2y) and µ(Wi) < logc(c ↔ 2y).

Recall that redundancy N results in entropy penalty N ↔ 1. We claim that the reaction
with the smallest imbalance-novelty ratio (i.e., worst-case) is reaction ε:

F1 + · · · + Fn → G + WN+2 + · · · + Wn + Xn,

where G is the “large polymer” formed after all F1, . . . , FN displace the top strand from
FN+1, and Xn is the leak output. The imbalance of this reaction is:

k(ε) =
n∑

i=1
µ(Fi) ↔

n∑

i=N+2
µ(Wi) > n logc(2c + 2y) ↔

n

2 logc(c ↔ 2y). (4)

We can ensure that k(ε) is at least a constant fraction of n for small enough c. For
example, if we let y ⇒ c/4, then k(ε) ↓ n/4 for any c ⇒ 0.0064. The novelty is independent
of n: l(ε) = 2 since G and Xn are not in S. Therefore, the imbalance-novelty ratio k(ε)/l(ε)
of the worst case reaction is at least n/8, which increases linearly with N (recall n = 2(N + 1)
for two translators composed together). Applying Theorem 5.4 leads to leak concentration
of at most c

n/8 = c
1/4+N/4. This upper bound11 implies smaller-than c concentration of leak

for N ↓ 4, with the leak exponentially decreasing for larger N .
To summarize, by increasing redundancy N in the appropriate regime, we maintain the

property that a constant fraction of the input is converted to output in the with-input case,
while arbitrarily (exponentially in N) decreasing leak in the without-input case.

10 More precisely, this ensures that the concentrations of monomers making up on-target polymers are the
same between the with-input and without-input case (other than X0).

11 Note that this upper bound is loose because of inequalities such as Equation (4).
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9 Discussion

Our results suggest a few important directions for future work. Given the central role of
worst-case canonical reactions—i.e., canonical reactions with the lowest imbalance-novelty
ratio (for Algorithm 1 and Theorem 5.4) or entropy loss-novelty ratio (Corollary 7.2)—it is
important to develop formal techniques to prove that a given canonical reaction is indeed
worst-case overall, at least or for a particular o!-target polymer (for Section 6). Note that
while combinatorial techniques in prior work in the TBN model have focused on proving
entropy loss, more work is needed to study the ratio directly, making our framework more
easily applicable. While we believe the canonical reactions highlighted in Section 8 are indeed
worst-case, the argument is informal.

Another promising avenue of research is to establish a more direct link between a polymer’s
monomer composition and its equilibrium concentration. Our current framework is e!ectively
reaction-centric, inferring concentrations based on how polymers transform into one another.
An alternative approach could be to derive concentration bounds directly from the structural
properties of the o!-target polymers, such as their size (monomer count) or degree of overlap
with one another (multiset di!erence). Nonetheless, we hope that a variety of structure-based
results could be proven based on a reduction to our canonical reaction framework.

Finally, this work has focused exclusively on the athermic case, where all molecular
interactions are enthalpically neutral. While this is a reasonable and useful abstraction
for systems with strong, saturated bonds, many real-world molecular systems, including
many popular in DNA molecular programming, involve a range of binding strengths and
enthalpic e!ects (e.g., from toehold binding). Extending our algorithmic framework to
incorporate user-specified #G’s for each polymer could significantly broaden its applicability,
and although this would complicate our algorithm, we do not anticipate any insurmountable
di"culties.
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A Hilbert Basis Implementation

This section recalls some results on Hilbert bases and explains how to use the Hilbert basis
in Algorithm 1. While this section makes the main theorem mathematically rigorous, most
readers can safely skip this section.

The main contents of this section are (1) the termination of Algorithm 1 and (2) the use
of minimum (versus infimum) in Definition 5.2. We address both concerns by showing that,
although there are infinitely many canonical reactions, we can always restrict our attention
to a finite subset of them in our analysis and algorithm.

For integral vectors v1, ..., vm ↑ Zn, the set C = {
∑m

i=1 bivi : b1, ..., bm ↓ 0} is called a
(rational polyhedral) cone, which is also known to be described by a system of inequalities
C = {v : B · v ⇒ 0} for some matrix B ↑ Zl↓n. It is known that the set C ↘ Zn has
a finite subset H(C) = {h1, ..., ht}, called Hilbert basis of C, that generates C ↘ Zn with
non-negative integer coe"cients, that is, for any v ↑ C ↘ Zn there are a1, ..., at ↑ N such
that v =

∑t
i=1 aihi.

The set of canonical reactions ” can be precisely described in terms of a rational polyhedral
cone. For a canonical reaction ω : M1 → M2, we define a vector

vω = (M1[P ] ↔ M2[P ])P →! ↑ Z|!|

capturing the stoichiometric change of concentrations due to reaction ω. Note that M1[P ↑] ↔

M2[P ↑] = ↔M2[P ↑] ⇒ 0 for P
↑

/↑ S, thus vω · eP → ⇒ 0 for eP → = (ϖP P →)P →! for the delta
function ϖij = 1 i! i = j. Definition 2.2 ensures that this vector must satisfy the condition
A · vω = 0. Combining these, the cone

C
S = {vω ↑ R|!| : A · vω ↓ 0 and A · vω ⇒ 0 and vω · eP ⇒ 0 for all P /↑ S}

https://reaktoro.org
https://concentrat.io/
https://doi.org/10.1101/2024.09.13.612990
https://doi.org/10.1073/pnas.1806859115
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characterizes the canonical relations: C
S

↘ Z|!| is the set of vectors vω. Therefore, there
exists a finite set of canonical reactions H that corresponds to the Hilbert basis H(CS).

The following lemma implies that for the purposes of our algorithm and analysis, we can
focus on the Hilbert basis H of canonical reactions.

↭ Lemma A.1. Let ω : M1 → M2 and ε : N1 → N2 be canonical reactions with li(ω), li(ε) ⇑= 0.

Then, for any a, b ↑ N, it holds that

ki(a · ω + b · ε)
li(a · ω + b · ε) ↓ min

(
ki(ω)
li(ω) ,

ki(ε)
li(ε)

)
. (5)

The equality holds only when a = 0, b = 0, or ki(ω)/li(ω) = ki(ε)/li(ε).

Proof. It is not hard to see that ki and li are linear, i.e., ki(a·ω+b·ε) = a·ki(ω)+b·ki(ε) and
li(a · ω + b · ε) = a · li(ω) + b · li(ε). Then, Equation (5) is identical to the mediant inequality,
which states that for p, q, r, s ↓ 0 with q, s ⇑= 0 it holds that min(p/q, r/s) ⇒ (p+r)/(q+s). ↫

Consider a canonical reaction ω = a1 · ϱ1 + ... + at · ϱt for a1, ..., at > 0 and ϱ1, ..., ϱt ↑ H.
If ω is i-levelizing, then the equality ki(ω)/li(ω) = µi = minj=1,..,t(ki(ϱj)/li(ϱj)) must hold,
and the equality condition above ensures that µi = ki(ϱj)/li(ϱj) for all j = 1, ..., t. In other
words, the set of i-levelizing reactions is






t∑

j=1
aj · ϱj : a1, ..., at ↑ N




 where {ϱ1, ..., ϱt} is the set of i-levelizing reactions in H.

This allows us to inspect the minimum over the finite set H instead of ” in Definition 5.2.
Similarly, as the Hilbert basis can be computed in finite time and implemented in [3], we can
run Algorithm 1 with guaranteed termination by computing the minimum over H.

B Detailed Balance and Equilibrium

Recall that A ↑ N|!0|↓|!| is the matrix such that each entry Aij specifies the number
of monomers of type i in polymer j, and that A · x = x

0 (Equation (1)) captures the
mass-conservation constraint.

↭ Theorem B.1. Let x
0

↑ (0, 1)!0
be a fixed vector of monomer concentrations. If all

reactions are balanced at the configuration x ↑ (0, 1)!
of polymer concentrations, then the

cost function g(x) is minimum subject to A · x = x
0
.

Proof. (Sketch) The function g is strictly convex since its Hessian H is positive definite
(specifically diagonal with Hjj = 1/xj > 0). Strict convexity of g implies that the local
minimum of g becomes the unique (global) minimum.

We associate a vector vω ↑ Z|!| with every reaction ω, capturing the net stoichiometric
e!ect of reaction ω.12 It is straightforward to show that the function g along with the direction
of vω has zero derivative at x if and only if the reaction ω is balanced at x. More explicitly, for
ω : M1 → M2, the P -th entry of the vector vω is (M1[P ] ↔ M2[P ]). The directional derivative
Dvωg(x) =

∑
P (M1[P ] ↔ M2[P ]) log xP = 0 implies that


P →M1

xP
M1[P ] =


P →M2

xP
M2 [P ]

holds, which means the reaction ω is balanced.

12 This is the same vector vω as defined in Appendix A. For example, (1, ↑1, 0, ...) corresponds to X1 → X2
for ” = {X1, X2, ...}.
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The set {x : A · x = 0} is spanned by the vectors vω for all reactions by Definition 2.2.
Therefore, if all reactions are balanced at x, then any directional derivative at x vanishes
and x is a critical point, which is the unique minimum. ↫
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