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Abstract—This paper studies the third-order characteristic
of nonsingular discrete memoryless channels and the Gaussian
channel with a maximal-power constraint. The third-order term
in our expansions employs a new quantity here called the
channel skewness, which affects the approximation accuracy more
significantly as the error probability decreases. For the Gaus-
sian channel, evaluating Shannon’s 1959 random coding bound
and Vazquez-Vilar’s 2021 meta-converse bound in the central
limit theorem (CLT) regime enables exact computation of the
channel skewness. For discrete memoryless channels, this work
generalizes Moulin’s 2017 bounds on the asymptotic expansion
of the maximum achievable message set size for nonsingular
channels from the CLT regime to include the moderate deviations
(MD) regime, thereby refining Altuğ and Wagner’s 2014 MD
result. For an example binary symmetric channel and most
practically important (n, ǫ) pairs, including n ∈ [100, 500] and
ǫ ∈ [10−10

, 10−1], an approximation up to the channel skewness
is the most accurate among several expansions in the literature. A
derivation of the third-order term in the type-II error exponent
of binary hypothesis testing in the MD regime is also included;
the resulting third-order term is similar to the channel skewness.

Index Terms—Moderate deviations, large deviations, discrete
memoryless channel, Gaussian channel, hypothesis testing, dis-
persion, skewness.

I. INTRODUCTION

The fundamental limit of channel coding is the maxi-

mum achievable message set size M∗(n, ǫ) given a channel

PY |X , a blocklength n, and an average error probability ǫ.
Since determining M∗(n, ǫ) exactly is difficult for arbitrary

triples (PY |X , n, ǫ), the literature investigating the behavior

of M∗(n, ǫ) studies three asymptotic regimes: the central limit

theorem (CLT) regime, where the error probability bound is

kept constant and analyses bound the convergence of rate

to capacity as n grows; the large deviations (LD) regime,

also called the error exponent regime, where the rate is kept

constant and analyses bound the convergence of error proba-

bility to zero as n grows; and the moderate deviations (MD)

regime, where the error probability decays sub-exponentially

to zero, and the rate approaches the capacity more slowly

than O(1/
√
n). Provided more resources (in this case the

blocklength), we would typically expect to see improvements
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in both the achievable rate and the error probability, an

effect not captured by asymptotics that fix either rate or error

probability. Emerging applications in ultra-reliable low-latency

communication such as tele-surgery and tactile internet have

delay constraints as small as 1 ms [2], which corresponds

to blocklengths of a few hundreds, and error probability

constraints as small as 10−9. The fact that the accuracy

of asymptotic expansions deteriorates at short blocklengths

further motivates interest in refining the asymptotic expansions

of the maximum achievable channel coding rate.

A. Literature Review

Channel coding analyses in the CLT regime fix a target

error probability ǫ ∈ (0, 1) and approximate logM∗(n, ǫ) as

the blocklength n approaches infinity. Examples of such results

include Strassen’s expansion [3] for discrete memoryless chan-

nels (DMCs) with capacity C, positive ǫ-dispersion Vǫ (defined

in [4, Sec. IV]), and maximal error probability constraint ǫ,
showing

logM∗(n, ǫ) = nC −
√

nVǫQ
−1(ǫ) +O(log n). (1)

Polyanskiy et al. [4] and Hayashi [5] revisit Strassen’s re-

sult, showing that the same asymptotic expansion holds for

the average (over the codebook and channel statistics) error

probability constraint, deriving lower and upper bounds on the

coefficient of the logn term, and extending the result to Gaus-

sian channels with maximal and average power constraints. In

all asymptotic expansions below, the average error probability

criterion is employed.

For channel coding in the LD regime, one fixes a rate

R = logM
n strictly below the channel capacity and seeks

to characterize the minimum achievable error probability

ǫ∗(n,R) as the blocklength n approaches infinity. In this

regime, ǫ∗(n,R) decays exponentially with n. For R above

the critical rate, [6, Ch. 5] derives the error exponent E(R),
where

ǫ∗(n,R) = e−nE(R)+o(n). (2)

Bounds on the o(n) term in (2) appear in [7]–[10]. For the

Gaussian channel with a maximal-power constraint, Shannon

[11] derives LD-regime achievability and converse bounds

with an o(n) term that is tight up to an O(1) gap. Erseghe [12]

gives an alternative proof of these LD approximations using

the Laplace integration method. A recent paper by Vazquez-

Vilar [13] derives refined non-asymptotic converse bounds

for the Gaussian channel under maximal and average power

constraints and analyzes these bounds in the LD regime.

http://arxiv.org/abs/2203.01418v3
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The CLT and LD asymptotic approximations in (1) and (2),

respectively, become less accurate as the (n, ǫ) pair gets farther

away from the regime that considered in their derivation. For

example, the CLT approximation falls short if ǫ is small since

there is a hidden Q−1(ǫ)2 term inside the O(log n) term, and

Q−1(ǫ) approaches ∞ as ǫ approaches 0. To better understand

this phenomenon, consider the class of nonsingular channels,

which is the class of DMCs PY |X for which there exist

channel inputs x1, x2 ∈ X and a channel output y ∈ Y for

which PY |X(y|x1) > PY |X(y|x2) > 0 and the focus in this

work. Recall that in the CLT regime, the third-order O(log n)
term is equal to 1

2 logn + O(1) [4], [14] for all nonsingular

channels. In this work, we show that when ǫn decays sub-

exponentially to zero, the third-order term becomes roughly
1
2 logn+SQ−1(ǫn)

2 ≈ 1
2 logn+2S log 1

ǫn
, where the S term,

which is the channel skewness defined shortly. As this equation

makes clear, the O(1) term in the CLT expansion depends

on ǫn through the function Q−1(ǫn)
2, which can dominate

the 1
2 logn term for ǫn small enough. For example, for ǫn

polynomially decaying to zero, i.e., ǫn = 1
nr for some r > 0,

the coefficient 1
2 of logn in [4] becomes inaccurate. Further,

if ǫn decays more quickly, then this inaccuracy becomes more

extreme. For example, for ǫn = exp{−n1/2}, the second-order

term becomes
√
2V n3/4, and the third-order term becomes

2S
√
n. Similarly, the LD approximation falls short if the

rate R is large since the second-order term o(n) in the error

exponent grows arbitrarily large as the rate approaches the

capacity.

The inability of the CLT and LD regimes to provide accurate

approximations for a wide range of (n, ǫ) pairs and the hope

of deriving more accurate (yet computable) approximations

to the finite blocklength rate motivate the study of the MD

regime, which simultaneously considers low error probabilities

and high achievable rates. For DMCs with positive dispersion

V and a sequence of sub-exponentially decaying ǫn values,

Altuğ and Wagner [15] and Polyanskiy et al. [16] show that

logM∗(n, ǫn) = nC −
√

nVǫnQ
−1(ǫn) + o(

√
nQ−1(ǫn)). (3)

This result implies that the CLT approximation to the max-

imum achievable message set size logM∗(n, ǫn) ≈ nC −√
nV Q−1(ǫn) as in (1), remains valid in the MD regime,

leaving open the rate of convergence to that bound.

To discuss the accuracy of the CLT approximation (1),

for any given channel, fix an average error probability ǫ and

blocklength n. We define the channel’s non-Gaussianity as

ζ(n, ǫ) , logM∗(n, ǫ)− (nC −
√

nVǫQ
−1(ǫ)), (4)

which captures the third-order term in the expansion of

logM∗(n, ǫ) around nC.

According to Strassen’s expansion (1), ζ(n, ǫ) = O(log n).
Subsequent works include several refinements to that result.

The results of [4] imply that the non-Gaussianity of a DMC

with finite input alphabet X and output alphabet Y is bounded

as

O(1) ≤ ζ(n, ǫ) ≤
(

|X | − 1

2

)

logn+O(1). (5)

Further, restricting the class of channels considered enables

further improvements to (5). We next briefly define several

channel characteristics and the corresponding refinements.

Each definition relies on the channel transition probability

kernel [PY |X(y|x)] from x to y, with rows corresponding to

channel inputs and columns corresponding to channel outputs.

See Section II-E for formal definitions. Singular channels are

channels for which all entries in each column of the transition

matrix are 0 or p for some constant p ∈ (0, 1]; nonsingular

channels are channels that do not satisfy this property. While

the binary symmetric channel (BSC) is nonsingular, the binary

erasure channel (BEC) is singular. Gallager-symmetric chan-

nels are channels whose output alphabet can be partitioned

into subsets so that for each subset of the transition probability

kernel that uses inputs as rows and outputs of the subset as

columns has the property that each row (respectively, column)

is a permutation of each other row (respectively, column) [6,

p. 94]. Both the BSC and BEC are Gallager-symmetric. Cover–

Thomas-symmetric channels [17, p. 190] are the channels for

which all rows (and respectively columns) of the transition

probability kernel are permutations of each other; the family

of Cover–Thomas symmetric channels is a subset of the class

of Gallager-symmetric channels. The BSC is Cover–Thomas-

symmetric; the BEC is not. For Gallager-symmetric, singular

channels, ζ(n, ǫ) = O(1) [8]. For nonsingular channels, the

random coding union (RCU) bound improves the lower bound

in (5) to 1
2 logn+O(1) [18, Cor. 54]. For DMCs with positive

ǫ-dispersion, Tomamichel and Tan [14] improve the upper

bound to 1
2 logn + O(1). A random variable is called lattice

if it takes values on a lattice with probability 1 and is called

non-lattice otherwise. For nonsingular channels with positive

ǫ-dispersion and non-lattice information density, Moulin [19]

shows1

ζ(n, ǫ) ≥ 1

2
logn+ S Q−1(ǫ)2 +B + o(1) (6)

ζ(n, ǫ) ≤ 1

2
logn+ S Q−1(ǫ)2 +B + o(1), (7)

where S, S. B, and B are constants that depend on the channel

parameters. It is possible to extend Moulin’s expansions in (6)–

(7) to all DMCs with lattice information densities. To do that,

we should use the continuity-corrected Edgeworth expansion

given in [20, Ch. 3.16] instead of the standard Edgeworth ex-

pansion for non-lattice random variables. We can further refine

the achievability bound in (6) by considering the tie-breaking

strategy from [21]. Specifically, Haim et al. [21, Sec. IV]

argue that if there is a tie between k messages in the largest

information density, then an equiprobable random decoding

rule among ties succeeds with probability 1
k ; analyzing [21,

Th. 1] instead of the RCU bound in the CLT regime would

improve B in (6).

In [4], Polyanskiy et al. consider the Gaussian channel with

a maximal-power constraint P , under which every codeword

1There is a sign error in [19, eq. (3.1)-(3.2)], which then propagates through
the rest of the paper. The sign of the terms with Sk(P ∗

X
) should be positive

rather than negative in both equations. The error in the achievability result
originates in [19, eq. (7.15) and (7.19)], where it is missed that Sk(−X) =
−Sk(X) for any random variable X . The error in the converse result also
stems from the sign error in [19, eq. (6.8)].
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has power less than or equal to nP , showing for the CLT

domain that the non-Gaussianity ζ(n, ǫ, P ) is bounded as

O(1) ≤ ζ(n, ǫ, P ) ≤ 1

2
logn+O(1). (8)

Tan and Tomamichel [22] improve (8) to

ζ(n, ǫ, P ) =
1

2
logn+O(1), (9)

which means that in the CLT regime, the non-Gaussianity of

the Gaussian channel is the same as that of nonsingular DMCs

with positive ǫ-dispersion.

The MD result in (3) can be expressed as

ζ(n, ǫn) = o(
√
nQ−1(ǫn)). (10)

Polyanskiy and Verdú [16] show (10) using the MD result

in [23, Th. 3.7.1]. While that MD result is tight enough to

prove several second-order MD asymptotics in information

theory, it is not tight enough to refine the third- and higher-

order terms. Polyanskiy and Verdú also extend (10) to the

Gaussian channel with a maximal power constraint. In [24],

Chubb et al. extend the second-order MD expansion in (10)

to quantum channels. In [25, Th. 2], the current authors derive

an asymptotic expansion of the maximum achievable rate for

variable-length stop-feedback codes, where ǫn = 1√
n log n

. In

[26, Lemma 3], Sakai et al. derive a third-order asymptotic

expansion for the minimum achievable rate of lossless source

coding, where ǫn decays polynomially with n; this third-order

expansion can be extended to all MD sequences using the tools

presented here. A second-order MD analysis of lossy source

coding appears in [27].

Since binary hypothesis testing (BHT) is closely related

to several information-theoretic problems and admits a CLT

approximation similar to that of channel coding [4], BHT is

a topic of some interest in this work. Refined asymptotics

for BHT receive significant attention from the information

theory community. If the type-I error probability is a constant

1 − α ∈ (0, 1) independent of the number of samples n
(i.e., in the Stein regime), the minimum achievable type-II

error probability β is a function of α and n, and a CLT

approximation to the type-II error exponent, − logβα, appears

in [3, Sec. 2] and [4, Lemma 58]. In [3], Strassen considers

testing P⊗n against Q⊗n and identifies the skewness term

in the type-II error exponent. To do this, he relies on the

Edgeworth expansion given in (17), below. In [4, Lemma 58],

Polyanskiy et al. extend Strassen’s result to the case of

independent but not necessarily identical distributions but do

not derive a bound on the skewness term. In [19, Th. 18],

Moulin refines [4, Lemma 58] by deriving the skewness term

in the semistrong non-lattice and lattice cases.2 In the LD

(or Chernoff) regime, where both error probabilities decay

exponentially, the type-I and type-II error exponents appear

in, e.g., [17, eq. (11.196)-(11.197)]. A second-order MD

analysis of BHT appears in [28]. In [29, Th. 11], Chen et

al. derive the third-order asymptotic expansion of the type-

II error probability region in the CLT regime for composite

2There is a typo in [19, eq. (6.8)]. The sign of the third term in [19, eq.
(6.8)] should be plus rather than minus.

hypothesis testing that considers a single null hypothesis and

k alternative hypotheses. The second-order term in their result

includes an extension of the Q−1(·) function to k-dimensional

Gaussian random vectors.

Casting optimal coding problems in terms of hypothesis

testing elucidates the fundamental limits of coding. In [30,

Th. 5], Shannon et al. use a BHT result to derive lower bounds

on the error probability in channel coding in the LD regime.

Polyanskiy et al. derive a converse result [4, Th. 27] in channel

coding using the minimax of the type-II error probability

of BHT, the βα function; they call this converse the meta-

converse bound. Kostina and Verdú prove a converse result

[31, Th. 8] for fixed-length lossy compression of stationary

memoryless sources using the βα function. This result is

extended to lossless joint source-channel coding in [32]. For

lossless data compression, Kostina and Verdú give lower and

upper bounds [31, eq. (64)] on the minimum achievable

codebook size in terms of βα. For lossless multiple access

source coding, also known as Slepian–Wolf coding, Chen et al.

derive a converse result [29, Th. 19] in terms of the composite

hypothesis testing version of the βα function. Composite

hypothesis testing is also used in a random access channel

coding scenario to decide whether any transmitter is active

[33]. The works in [4], [29], [31]–[33] derive second- or third-

order asymptotic expansions for their respective problems by

using the asymptotics of the βα function.

B. Contributions of This Work

The accuracy of Strassen’s CLT approximation (1), giving

ζ(n, ǫ) = O(log n), decreases significantly when the block-

length n is small and the error probability ǫ is small. As

discussed earlier, this problem arises because of the hidden

Q−1(ǫ)2 term inside the non-Gaussianity (4) [19]. Recall that

Q−1(ǫ)2 approaches 2 log 1
ǫ , which in turn grows without

bound as ǫ → 0. To capture this phenomenon, we define the

channel skewness operationally as

S , lim
ǫ→0

lim inf
n→∞

ζ(n, ǫ)− 1
2 logn

Q−1(ǫ)2
. (11)

The channel skewness serves as the third-order fundamental

channel characteristic after channel capacity and dispersion

[4, Sec. IV]. The skewness of the information density (see

(16), below) plays a critical role in characterizing the channel

skewness. Throughout the paper, we use S and S to represent

upper and lower bounds on the channel skewness S. Our

contributions in this paper are summarized as follows.

• We study nonsingular DMCs with positive dispersion,

showing that the MD-regime lower and upper bounds on

the non-Gaussianity in (6)–(7) hold up to the skewness

term; this result justifies why the skewness approxima-

tions remain accurate even for error probabilities as small

as 10−10 and blocklengths as short as n ≤ 500.

• For Cover–Thomas-symmetric channels [17, p. 190] (e.g.,

the BSC), the lower and upper bounds in (6)–(7) match,

and we derive the term that is one order higher than the

channel skewness.

• We compute the channel skewness of the Gaussian chan-

nel with a maximal-power constraint by deriving refined
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bounds in the CLT regime; the resulting approximations

have an accuracy similar to that of Shannon’s LD approx-

imations from [11].

• We derive tight bounds on the minimum achievable type-

II error probability for BHT in the MD regime; our

bounds yield a fourth-order asymptotic expansion that

includes the third and fourth central moments of the log-

likelihood ratio. The converse in our refined result for

Cover–Thomas-symmetric channels (described in the pre-

vious bullet) is a direct application of this expansion. Our

expansion is also potentially useful in other applications,

such as extending the results from [29], [31]–[34], which

rely on the BHT asymptotics, to the MD regime.

We next detail each of these contributions.

A sequence of error probabilities {ǫn}∞n=1 is said to be a

small-to-moderate deviations (SMD) sequence if

lim
n→∞

1

n
log

1

ǫn
= lim

n→∞
1

n
log

1

1− ǫn
= 0. (12)

Since Q−1(1 − ǫ) = −Q−1(ǫ) and lim
ǫ→0

Q−1(ǫ)√
2 log 1

ǫ

= 1 [35,

Lemma 5.2], the condition in (12) is equivalent to Q−1(ǫn) =
o(
√
n). The family of SMD sequences includes all error

probability sequences except for the LD sequences, which

approach 0 or 1 exponentially quickly. It therefore extends

the family of MD error probability sequences to include, for

example, sequences that sub-exponentially approach 1, e.g.,
1
nr , exp{−ns}, 1− 1

nr , 1−exp{−ns} with r > 0 and s ∈ (0, 1)
and sequences in the CLT regime (where ǫn = ǫ ∈ (0, 1) is

a constant independent of n). We show in Theorems 1–2 in

Section III-A, below, that if the channel is nonsingular with

positive dispersion and the error probability sequence {ǫn} is

SMD (12), then ζ(n, ǫn) in (10) is bounded as

ζ(n, ǫn) ≥
1

2
log n+ S Q−1(ǫn)

2

+O

(

Q−1(ǫn)
3

√
n

)

+O(1) (13)

ζ(n, ǫn) ≤
1

2
log n+ S Q−1(ǫn)

2

+O

(

Q−1(ǫn)
3

√
n

)

+O(1), (14)

where the constants S and S are the same ones as in (6)–

(7). The bounds (13)–(14) generalize (6)–(7) to non-constant

error probabilities ǫn at the expense of not bounding the

constant term; (13)–(14) do not require the assumption that

the information density is non-lattice as in [19]. The non-

Gaussianity ζ(n, ǫ) gets arbitrarily close to O(
√
n) as the

decay of ǫn approaches exponential decay, rivaling the dis-

persion term in (1). Thus, refining the third-order term as we

do in (13)–(14) is especially significant in the MD regime. The

achievability bound (13) arises from analyzing the RCU bound

in [4, Th. 16]; the converse bound (14) uses the non-asymptotic

converse bound in [14, Prop. 6] and the saddlepoint result in

[19, Lemma 14]. For ǫn in the MD regime (i.e., (12) holds with

either ǫn → 0 or ǫn → 1), neither the Berry-Esseen theorem

used in [4] nor the refined Edgeworth expansion used in [19]

to treat the constant ǫ case is sharp enough for the precision in

(13)–(14). We replace these tools with the MD bounds found

in [36, Ch. 8]. In our analysis of the RCU bound, we also

refine [4, Lemma 47], which is commonly used in CLT regime

approximations, giving Theorems 7–8.

Since both the Edgeworth expansion and the LD result used

in [19] take distinct forms for lattice and non-lattice random

variables, the constant terms B and B in (6)–(7) depend on

whether the information density ı(X ;Y ) is a lattice or non-

lattice random variable. In [19], Moulin focuses primarily

on channels with non-lattice information densities; the only

example channel with a lattice information density that he

studies is the BSC, which he analyzes separately in [19, Th. 7].

Our analysis shows that a single proof holds for lattice and

non-lattice cases if we do not attempt to bound the O(1) term.

For Cover–Thomas-symmetric channels, S = S = S, and

we refine (13)–(14) in Theorem 3 in Section III-B below by

deriving the coefficient of the O
(

Q−1(ǫn)
3

√
n

)

term. For the

BSC and a wide range of (n, ǫ) pairs, our asymptotic approx-

imation for the maximum achievable rate using terms up to

the channel skewness, i.e., ζ(n, ǫ) ≈ 1
2 logn + S Q−1(ǫ)2,

is more accurate than both of Moulin’s bounds from (6)

and (7); the accuracy of our approximation is similar to

that of the saddlepoint approximations in [9], [10], which

are achievability bounds. Moreover, for the BSC with an

(n, ǫ) pair satisfying ǫ ∈ [10−10, 10−1] and n ∈ [100, 500],

including the O
(

Q−1(ǫn)
3

√
n

)

term from Theorem 3 in our

approximation yields a less accurate approximation than is

obtained by stopping at the channel skewness (see Fig. 1).

This highlights the importance of channel skewness relative

to the higher-order terms in characterizing the channel.

Theorem 5, in Section III-D, below, derives lower and

upper bounds on the non-Gaussianity of the Gaussian channel

with a maximal-power constraint in the CLT regime. Our

bounds yield the channel skewness term exactly. We derive

these bounds by analyzing Shannon’s random coding bound in

[11, eq. 19] and Vazquez-Vilar’s meta-converse bound in [13,

Th. 3] in the CLT regime. The achievability bound uses a tight

approximation to a quantile of the noncentral t-distribution,

and the converse bound uses the asymptotic expansion of

the minimum type-II error probability for a test between two

Gaussian distributions. The prior techniques from [4, Th. 54]

and [22] are not sharp enough to derive the channel skewness.

Using the MD results in [36, Ch. 8] and the strong LD

results in [37], in Theorem 4 in Section III-C, below, we derive

the asymptotics of BHT in the MD regime, characterizing the

minimum achievable type-II error of a hypothesis test that

chooses between two product distributions given that the type-

I error is an SMD sequence (12). Our result refines [28] to the

third-order term.

A summary of the literature on the asymptotic expansions

in channel coding for both DMCs and the Gaussian channel

for different error probability regimes appears in Table I.

The LD regime seeks expressions of the form ǫ∗(n,R) ≈
K
nr exp{−nE(R)}. In Table I, E(R), r, and K are called the

second-, third-, and fourth-order terms.

The remainder of the paper is organized as follows. We

define notation and give preliminaries needed to formally
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TABLE I
THE SUMMARY OF THE LITERATURE AND OUR CONTRIBUTIONS FOR THE ASYMPTOTIC EXPANSIONS IN CHANNEL CODING

Paper Channel Bound Regime Order of expansion Requires latticeness Skewness term

[3]–[5] DMC Ach + Conv CLT 2 ✗ ✗

[18, Th. 53] Nonsingular DMC Ach CLT 3 ✗ ✗

[14] Nonsingular DMC Conv CLT 3 ✗ ✗

[19] Nonsingular DMC Ach + Conv CLT 4 ✓ ✓

[15], [16] DMC Ach + Conv MD 2 ✗ ✗

[7] Singular + Nonsingular DMC Ach LD 3 ✗ ✗

[9] Nonsingular DMC Ach LD 4 ✗ ✗

Theorems 1–2 Nonsingular DMC Ach + Conv CLT + MD 3 ✗ ✓

[22] Gaussian Ach CLT 3 - ✗

[4, Th. 54] Gaussian Conv CLT 3 - ✗

[11], [12] Gaussian Ach + Conv LD 4 - ✗

[13] Gaussian Conv LD 4 - ✗

Theorem 5 Gaussian Ach + Conv CLT 4 - ✓

present our results in Section II. Section III presents and

discusses the main results. Proofs of the main results appear

in Sections IV–VI.

II. NOTATION AND PRELIMINARIES

A. Notation

For any k ∈ N, we let [k] , {1, . . . , k}. We denote random

variables by capital letters (e.g., X) and realizations of random

variables by lowercase letters (e.g., x). We use boldface letters

(e.g., x) to denote vectors, calligraphic letters (e.g., X ) to

denote alphabets and sets, and sans serif font (e.g., A) to

denote matrices. The i-th entry of a vector x is denoted by xi,

and the (i, j)-th entry of a matrix A is denoted by Ai,j . The

n×n identity matrix is denoted by In. For a symmetric matrix

A supported on X × X and a subset B ⊆ X , AB denotes the

|X | × |X | matrix where (AB)x,x′ = Ax,x′ for x, x′ ∈ B and

(AB)x,x′ = 0, otherwise. For a vector x supported on X , xB
is defined similarly. The row space of a matrix A is denoted

by row(A).

The sets of real numbers and complex numbers are denoted

by R and C, respectively. All-zero and all-one vectors are

denoted by 0 and 1, respectively. A vector inequality x ≤ y

for x,y ∈ Rd is understood element-wise, i.e., xi ≤ yi for

all i ∈ [d]. We denote the inner product
∑d

i=1 xiyi by 〈x,y〉.
We use ‖ · ‖∞ and ‖·‖2 to denote the ℓ∞ and ℓ2 norms, i.e.,

‖x‖∞ , max
i∈[d]

|xi| and ‖x‖2 ,
√

〈x,x〉. The multivariate

normal distribution with mean µ and covariance matrix Σ is

denoted by N (µ,Σ).

The set of all distributions on the channel input alphabet X
(respectively the channel output alphabet Y) is denoted by P
(respectively Q). The support of a vector h ∈ R|X | is denoted

by supp(h) , {x ∈ X : hx 6= 0}. We write X ∼ PX to

indicate that X is distributed according to PX ∈ P . Given

a distribution PX ∈ P and a transition probability kernel

PY |X from X to Y , we write PX × PY |X to denote the

joint distribution of (X,Y ), and PY to denote the marginal

distribution of Y , i.e., PY (y) =
∑

x∈X PX(x)PY |X(y|x) for

all y ∈ Y . Given a transition probability kernel PY |X , the

distribution of Y given X = x is denoted by PY |X=x. For an

arbitrary vector h supported on X , h → PY |X → h̃ denotes

the relationship h̃y =
∑

x∈X hxPY |X(y|x) for all y ∈ Y .

For a sequence x = (x1, . . . , xn), the empirical distribution

(or type) of x is denoted by

P̂x(x) =
1

n

n
∑

i=1

1{xi = x}, ∀x ∈ X . (15)

The set of length-n types is denoted by Pn = {PX ∈
P : nPX(x) ∈ Z ∀x ∈ X}. A lattice random variable is a

random variable taking values in {a + kd : k ∈ Z}, where

d ∈ R+ is the span of the lattice. We say that a random

vector X = (X1, . . . , Xn) is non-lattice if each of Xi, i ∈ [n]
is non-lattice, and Xi is lattice if each of Xi, i ∈ [n] is lattice.

The case where some of the coordinates of X are lattice and

the rest of the coordinates are non-lattice is excluded in this

paper. We measure information in nats, and logarithms and

exponents have base e.

As is standard, f(n) = O(g(n)) means

lim supn→∞

∣

∣

∣

f(n)
g(n)

∣

∣

∣ < ∞, and f(n) = o(g(n)) means

limn→∞
∣

∣

∣

f(n)
g(n)

∣

∣

∣ = 0. We use Q(·) to represent the

complementary Gaussian cumulative distribution function

(CDF) Q(x) , 1√
2π

∫∞
x

exp
{

− t2

2

}

dt and Q−1(·) to

represent its functional inverse.

The skewness of a random variable X is denoted by

Sk(X) ,
E
[

(X − E [X ])3
]

Var [X ]
3/2

. (16)

Recall that the residual in the Berry–Esseen theorem has the

form c√
n

E[|X−E[X]|3]
Var[X]3/2

for a global constant c > 0 (e.g., [38,

Ch. XVI.5, Th. 1]), which is quite similar to Sk(X). The

skewness Sk(X) appears in the asymptotically tight residual

known as the Edgeworth expansion [39, p. 7] (see also [38,

Ch. XVI.4, Th. 1])

P

[

1
√

nVar [X1]

n
∑

i=1

(Xi − E [X1]) ≤ x

]

= Q(−x) +
Sk(X1)

6
√
n

(1− x2)φ(x) + o

(

1√
n

)

, (17)

where the random variables Xi, i ∈ [n], are independent

and identically distributed (i.i.d.) and non-lattice, and φ(·)
is the standard Gaussian density. The skewness of a random

variable plays a critical role in our expansions of the maximum

achievable channel coding rate.
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B. Definitions Related to Information Density

The relative entropy between distributions P and Q on a

common alphabet, the second and third central moments of

the log-likelihood ratio, and the skewness of the log-likelihood

ratio are denoted by

D(P‖Q) , E

[

log
P (X)

Q(X)

]

(18)

V (P‖Q) , Var

[

log
P (X)

Q(X)

]

(19)

T (P‖Q) , E

[

(

log
P (X)

Q(X)
−D(P‖Q)

)3
]

(20)

S(P‖Q) ,
T (P‖Q)

V (P‖Q)3/2
, (21)

where X ∼ P . Let PX ∈ P and QY ∈ Q, and let PY |X be

a transition probability kernel from X to Y . The conditional

versions of the above quantities are denoted by

D(PY |X‖QY |PX) ,
∑

x∈X
PX(x)D(PY |X=x‖QY ) (22)

V (PY |X‖QY |PX) ,
∑

x∈X
PX(x)V (PY |X=x‖QY ) (23)

T (PY |X‖QY |PX) ,
∑

x∈X
PX(x)T (PY |X=x‖QY ) (24)

Sk(PY |X‖QY |PX) ,
T (PY |X‖QY |PX)

V (PY |X‖QY |PX)3/2
. (25)

Let (X,Y ) ∼ PX ×PY |X . The information density is defined

as

ı(x; y) , log
PY |X(y|x)
PY (y)

, ∀x ∈ X , y ∈ Y. (26)

In the remainder of the paper, we assume that the channel

PY |X is clear from the context and is fixed, and we eliminate

it from the input arguments of quantities such as mutual

information and dispersion. We define the following moments

of the random variable ı(X ;Y ).

• The mutual information

I(PX) , E [ı(X ;Y )] = D(PY |X‖PY |PX), (27)

• the unconditional information variance

Vu(PX) , V (PX × PY |X‖PX × PY )

= Var [ı(X ;Y )] , (28)

• the unconditional information third central moment

Tu(PX) , T (PX × PY |X‖PX × PY ) (29)

= E
[

(ı(X ;Y )− I(PX))3
]

, (30)

• the unconditional information skewness

Sku(PX) , Sk(ı(X ;Y )) =
Tu(PX)

Vu(PX)3/2
, (31)

• the conditional information variance

V (PX) , V (PY |X‖PY |PX) = E [Var [ı(X ;Y )|X ]] , (32)

• the conditional information third central moment

T (PX) , T (PY |X‖PY |PX), (33)

• the conditional information skewness

Sk(PX) ,
T (PY |X‖PY |PX)

V (PY |X‖PY |PX)3/2
, (34)

• the reverse dispersion [18, Sec. 3.4.5]

Vr(PX) , E [Var [ı(X ;Y )|Y ]] . (35)

C. Discrete Memoryless Channel

A DMC is characterized by a finite input alphabet X , a

finite output alphabet Y , and a transition probability kernel

PY |X , where PY |X(y|x) is the probability that the output of

the channel is y ∈ Y given that the input to the channel is

x ∈ X . The n-letter input-output relation of a DMC is

Pn
Y |X(y|x) =

n
∏

i=1

PY |X(yi|xi). (36)

We proceed to define the channel code.

Definition 1: An (n,M, ǫ)-code for a DMC PY |X comprises

an encoding function

f : [M ] → Xn, (37)

and a decoding function

g : Yn → [M ], (38)

that satisfy an average error probability constraint

1− 1

M

M
∑

m=1

Pn
Y |X(g−1(m)|f(m)) ≤ ǫ. (39)

The maximum achievable message set size M∗(n, ǫ) under

the average error probability criterion is defined as

M∗(n, ǫ) , max{M : ∃ an (n,M, ǫ)-code}. (40)

D. Definitions Related to the Optimal Input Distribution

The capacity of a DMC PY |X is

C , max
PX∈P

I(PX). (41)

We denote the set of capacity-achieving input distributions by

P† , {PX ∈ P : I(PX) = C}. (42)

Even if there are multiple capacity-achieving input distribu-

tions (|P†| > 1), the capacity-achieving output distribution

is unique (PX , P ′
X ∈ P† implies

∑

x∈X PX(x)PY |X(y|x) =
∑

x∈X P ′
X(x)PY |X(y|x) for all y ∈ Y) [6, Cor. 2 to Th. 4.5.2].

We denote the unique capacity-achieving output distribution

by Q∗
Y ∈ Q; Q∗

Y satisfies Q∗
Y (y) > 0 for all y ∈ Y for which

there exists an x ∈ X with PY |X(y|x) > 0 [6, Cor. 1 to

Th. 4.5.2]. For any P †
X ∈ P†, it holds that V (P †

X) = Vu(P
†
X)

[4, Lemma 62].

Define

Vmin , min
P †

X∈P†

V (P †
X) (43)
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Vmax , max
P †

X∈P†

V (P †
X). (44)

The ǫ-dispersion [4] of a channel is defined as

Vǫ ,

{

Vmin if ǫ < 1
2

Vmax if ǫ ≥ 1
2 .

(45)

The set of dispersion-achieving input distributions is defined as

P∗ ,
{

P †
X ∈ P† : V (P †

X) = Vǫ

}

. (46)

Any P †
X ∈ P† satisfies D(PY |X=x‖Q∗

Y ) = C for each x ∈ X
with P †

X(x) > 0, and D(PY |X=x‖Q∗
Y ) ≤ C for all x ∈ X [6,

Th. 4.5.1]. Hence, the support of any capacity-achieving input

distribution is a subset of

X † = {x ∈ X : D(PY |X=x‖Q∗
Y ) = C}. (47)

The support of any dispersion-achieving input distribution is

a subset of

X ∗ ,
⋃

P∗
X∈P∗

supp(P ∗
X) ⊆ X †. (48)

While analyzing the set P∗ is sufficient to derive the second-

order term in (1) for logM∗(n, ǫn) with an SMD sequence

ǫn, further quantities are needed to describe the optimal third-

order term. The quantities below are used to describe the

input distribution that achieves our lower bound S on the

channel skewness S in (11); they also appear in [19]. Given

a fixed DMC PY |X , the gradient and the Hessian of the

mutual information I(PX) evaluated at PX are given by [19,

eq. (2.28)-(2.29)]

∇I(PX)x = D(PY |X=x‖PY )− 1 (49)

∇2I(PX)x,x′ = −
∑

y∈Y

PY |X(y|x)PY |X(y|x′)

PY (y)
(50)

for (x, x′) ∈ X 2. The matrix −∇2I(P †
X) is the same for all

P †
X ∈ P† and is positive semidefinite. See [19, Sec. II-D and

II-E] for other properties of −∇2I(P †
X). We define

J , −∇2I(P †
X)x,x′ . (51)

The matrices JX † and JX ∗ play an important role in our results

and their proofs.

The following notation is used in our results in Sec-

tion III-A.

v(PX) , ∇V (PX) (52)

v(PX)x ,
∑

x′∈X
PX(x′)

∂V (PY |X=x′‖PY )

∂PX(x)
(53)

for x ∈ X , and

A0(PX) ,
1

8Vǫ
v(PX)⊤J̃v(PX), (54)

A1(PX) ,
1

8Vǫ
v(PX)⊤J̃v(PX), (55)

where

J̃ , J+X ∗ − 1

1⊤J+X ∗1
(J+X ∗1)(J

+
X ∗1)

⊤, (56)

and J+X ∗ denotes the Moore-Penrose pseudo-inverse3 of JX ∗ .

One important property of A0(PX) and A1(PX) is that for

Cover–Thomas-symmetric channels, A0(PX) = A1(PX) =
0 under the equiprobable input distribution, which remains

optimal in terms of skewness. See [19, Lemma 2] for more

properties of these quantities.

E. Singularity of a DMC

The following definition divides DMCs into two groups

for which the non-Gaussianity behaves differently. An input

distribution-channel pair (PX , PY |X) is singular [7, Def. 1] if

for all (x, x, y) ∈ X ×X ×Y such that PX ×PY |X(x, y) > 0
and PX × PY |X(x, y) > 0, it holds that

PY |X(y|x) = PY |X(y|x). (57)

We define the singularity parameter [19, eq. (2.25)]

η(PX) , 1− Vr(PX)

Vu(PX)
, (58)

which is a constant in [0, 1]. The pair (PX , PY |X) is singular

if and only if η(PX) = 1 [40, Remark 1]. A channel PY |X
is singular if and only if η(P ∗

X) = 1 for all P ∗
X ∈ P∗; it is

nonsingular otherwise. An example of a singular channel is

the BEC. Our focus in this paper is on nonsingular channels.

III. MAIN RESULTS

Our first result describes the lower and upper bounds on the

non-Gaussianity of nonsingular channels in the SMD regime,

refining the expansion in (10). For symmetric channels, we

further refine these bounds up to the O
(

Q−1(ǫ)3√
n

)

term.

We then derive tight lower and upper bounds for the non-

Gaussianity of the Gaussian channel with a maximal-power

constraint in the CLT regime, giving the exact expression for

the channel skewness for that channel. Our last result is a

fourth-order asymptotic expansion (i.e., an expansion up to

the O
(

Q−1(ǫ)3√
n

)

term) for the logarithm of the minimum

achievable type-II error probability for binary hypothesis tests

between two product distributions in the SMD regime.

A. Nonsingular Channels

Theorem 1 is our achievability result.

Theorem 1: Suppose that ǫn is an SMD sequence (12) and

that PY |X is a nonsingular DMC with Vmin > 0. It holds that

ζ(n, ǫn) ≥
1

2
logn+ SQ−1(ǫn)

2 +O

(

Q−1(ǫn)
3

√
n

)

+O(1),

(59)

where

S , max
P∗

X∈P∗

(

Sku(P
∗
X)

√

Vǫn

6
+A0(P

∗
X) +

1− η(P ∗
X)

2(1 + η(P ∗
X))

)

.

(60)

3Given that A = UΣV⊤ is the singular value decomposition of A, A+ ,
VΣ−1U⊤ . The expression in (56) is the compact version of [19, Lemma 1
(iv)-(v)].
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Proof: The proof consists of two parts and extends the

argument in [19] to allow sequences {ǫn} that decrease 0 or

increase to 1 as permitted by (12). The first part analyzes

a particular relaxation [18, Th. 53] of the RCU bound [4,

Th. 16] for an arbitrary distribution PX ∈ P . This approach

is used in the CLT regime for a third-order analysis in [18,

Th. 53] and a fourth-order analysis in [19]; a slightly different

relaxation of the RCU bound comes up in the LD regime

[7]. To bound the probability P [ı(X;Y) ≤ τ ], we replace

the Edgeworth expansion in [19, eq. (5.30)], which gives the

refined asymptotics of the Berry-Esseen theorem, with its MD

version from [36, Ch. 8, Th. 2]. Note that the Edgeworth

expansion yields an additive remainder term O
(

1√
n

)

to the

Gaussian term. This remainder is too large for ǫn ≤ 1√
n

in (12) since it would dominate the Gaussian term in the

Edgeworth expansion. Therefore, an MD result that yields a

multiplicative remainder term (1 + o(1)) is desired. We apply

the LD result from [37, Th. 3.4] to bound the probability

P
[

ı(X;Y) ≥ ı(X;Y) ≥ τ
]

that appears in the relaxed RCU

bound, where X denotes the transmitted random codeword

and X denotes an independent codeword drawn from the same

distribution. This bound replaces the bounds in [19, eq. (7.25)-

(7.27)] and refines the LD bound [4, Lemma 47] used in

[18, Th. 53]. We show an achievability result as a function

of I(PX), Vu(PX), and Sku(PX). If PX = P ∗
X ∈ P∗,

the resulting bound is (59) with A0(P
∗
X) replaced by zero.

We then optimize the bound over PX using the second-,

first- and zeroth-order Taylor series expansions respectively of

I(PX), Vu(PX), and Sku(PX) around P ∗
X ∈ P∗. Interestingly,

the right-hand side of (59) is achieved using

PX = P ∗
X + h∗ ∈ P , (61)

instead of a dispersion-achieving input distribution P ∗
X ∈ P∗

to generate i.i.d. random codewords; here

g = −Q−1(ǫn)

2
√

nVǫn

v(P ∗
X) (62)

h∗ = J̃g. (63)

Note that despite being in the neighborhood of a dispersion-

achieving P ∗
X , our choice of PX in (61) might not belong to

P∗. This behavior is not seen between the first- and second-

order optimal input distributions since every dispersion-

achieving distribution is also capacity-achieving.

See Section IV-D for the details of the proof.

The input distribution in (61) is chosen by setting PX =
P ∗
X +h for a value of h for which P ∗

X +h ∈ P and h → 0 as

n → ∞; we then optimize the direction and the scaling of h

with respect to the RCU bound. Intuitively, the above strategy

is useful since it acknowledges both that the input distribution

may vary with n and that it cannot stray too far from the

choice that optimizes the first- and second-order achievable

rate. The optimal deviation h∗ from the dispersion-achieving

distribution is solved by the optimization problem

sup
h : supp(h)⊆X †

h⊤1=0, h
X†\X∗≥0

(

g⊤h− 1

2
h⊤JX †h

)

. (64)

The optimization in (64) is convex but does not have a closed-

form solution in general. Following [19, Appendix B], we get

an optimization problem with a closed-form solution by further

restricting the support of h as supp(h) ⊆ X ∗. This reduces

(64) to

sup
h : supp(h)⊆X ∗

h⊤1=0, h∈row(JX∗ )

(

g⊤h− 1

2
h⊤JX ∗h

)

. (65)

In [19, Lemma 1], Moulin shows that (63) is the unique h∗ that

achieves (65), and 1
2g

⊤J̃g = A0(P
∗
X)Q−1(ǫn)

2 is the optimal

value of the quadratic form in (65). In [19, Appendix B (ii)],

Moulin shows that if X † = X ∗, the values of the objectives in

(64) and (65) are equal, implying that restricting supp(h) to

X ∗ does not yield a penalty in the achievable skewness term.

In the second-order MD result in [15], Altuğ and Wagner

apply the non-asymptotic bound in [6, Cor. 2 on p. 140], which

turns out to be insufficiently sharp for the derivation of the

third-order term.

Recall from (45) that Vǫn can be either Vmin or Vmax.

We require the condition Vmin > 0 in Theorem 1, which

implies that Vǫn > 0 for all ǫn sequences, since the MD

(Theorem 6 in Section IV-B) and LD (Theorems 7 and 8

in Section IV-C) results apply only to random variables with

positive variances. In the CLT regime, [4, Th. 45 and 48]

and [14, Prop. 9-10] derive bounds on the non-Gaussianity

of DMCs with Vǫn = 0. If Vǫn = 0, the scaling of the non-

Gaussianity changes depending on whether or not the DMC is

exotic [4, p. 2331] (most DMCs do not satisfy the definition

of an exotic DMC), and whether ǫn is less than, equal to,

or greater than 1
2 . A summary of the non-Gaussianity terms

under these cases appears in [14, Fig. 1].

Theorem 2 is our converse result.

Theorem 2: Under the conditions of Theorem 1,

ζ(n, ǫn) ≤
1

2
logn+ SQ−1(ǫn)

2 +O

(

Q−1(ǫn)
3

√
n

)

+O(1),

(66)

where

S , max
P∗

X∈P∗

(

Sku(P
∗
X)

√

Vǫn

6
+

1

2
+A0(P

∗
X)−A1(P

∗
X)

)

.

(67)

Proof: The proof of Theorem 2 combines the converse

bound from [14, Prop. 6], which relaxes the meta-converse

bound [4, Th. 27], with a saddlepoint result from [19,

Lemma 14], which gives the saddlepoint solution to a

quadratic form that arises after taking the Taylor series ex-

pansion of the main quantity in [14, Prop. 6]. Combining

these results and not deriving the O(1) term in (66) yields a

much simpler proof than that in [19]. While [19, proof of Th.

4] relies on the asymptotic expansion of the β1−ǫ function,

the use of [14, Prop. 6] allows us to bypass this part. In

the application of [14, Prop. 6], similar to [14, eq. (6)], we

use an auxiliary n-letter output distribution that is a convex

combination of product distributions; see equation (178), in

Section IV-E, below, for details.

The main difference between our proof technique in Sec-

tion IV-E below and that in [14] is that we set the first
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term in (178) as (Q∗
Y + h̃)n ∈ Qn, where Q∗

Y is the

unique capacity-achieving output distribution, and h̃ satisfies
∥

∥

∥h̃

∥

∥

∥

∞
= O

(

Q−1(ǫn)√
n

)

. The direction of h̃ is found by

solving a single-letter minimax problem involving the quan-

tities D(PY |X‖QY |PX) and V (PY |X‖QY |PX), where the

maximization is over PX ∈ P and the minimization is over

QY ∈ Q; here PX is assumed to be close to P ∗
X , and QY is

assumed to be close to Q∗
Y . See Section IV-E for details.

B. Refined Results for Symmetric Channels

If the channel satisfies |P∗| = 1, A0(P
∗
X) = A1(P

∗
X) = 0,

and η(P ∗
X) = 0, then our achievability (59) and converse (66)

bounds yield the channel skewness (11)

S =
Sku(P

∗
X)

√
Vmin

6
+

1

2
. (68)

Cover–Thomas-symmetric channels [17, p. 190] satisfy all

three conditions;4 the BSC is an example of a Cover–Thomas

symmetric channel.

Theorem 3 below, refines the achievability and converse re-

sults in Theorems 1–2 for Cover–Thomas-symmetric channels.

Theorem 3: Let PY |X be a Cover–Thomas-symmetric chan-

nel with ǫ-dispersion (45) V > 0. If {ǫn}∞n=1 is an SMD

sequence (12), then

ζ(n, ǫn)

=
1

2
logn+ SQ−1(ǫn)

2 − 3(µ4 − 3V 2)V − 4µ2
3

72V 5/2

Q−1(ǫn)
3

√
n

+O

(

Q−1(ǫn)
4

n

)

+O (1) , (69)

where S is the skewness (68) under the uniform input distri-

bution P ∗
X , and µk = E

[

(ı(X ;Y )− C)k
]

is the k-th central

moment of the information density under X ∼ P ∗
X .

Further, if ǫn satisfies Q−1(ǫn) = O(n1/6), which is

equivalent to lim
n→∞

− 1
n1/3 log

1
min{ǫn,1−ǫn} > 0 (e.g., [35,

Lemma 5.2]), then the O
(

Q−1(ǫn)
3

√
n

)

term is dominated by

the O(1) term, giving

ζ(n, ǫn) =
1

2
logn+ S Q−1(ǫn)

2 +O(1). (70)

Proof: See Appendix G.

For the BSC with crossover probability 0.11, Fig. 1 com-

pares asymptotic expansions for the maximum achievable rate,
log2 M∗(n,ǫn)

n , dropping o(·) and O(·) terms except where

noted otherwise. The curves plotted in Fig. 1 include The-

orems 1 and 2 both with and without the leading term of

O
(

Q−1(ǫn)
3

√
n

)

computed, various other asymptotic expansions

in the CLT and LD regimes, and the non-asymptotic bounds

from [4, Th. 33 and 35]. The leading term of O
(

Q−1(ǫn)
3

√
n

)

in

Theorems 1 and 2 is given in Theorem 3, below. Among all

of these asymptotic expansions, Theorems 1 and 2 ignoring

the O(·) terms are the closest to the non-asymptotic bounds

for most (n, ǫ) pairs shown, which highlights the significance

4Channels that (i) are Cover–Thomas weakly symmetric, (ii) have |X | =
|Y| and (iii) have a positive definite J satisfy the same three conditions [19,
Prop. 6].

of the channel skewness in obtaining accurate approximations

to the finite blocklength coding rate in the medium n, small

ǫ regime. Since Moulin’s fourth-order CLT approximation

requires the information density to be non-lattice, and the BSC

has a lattice information density, Moulin uses a different ap-

proach to bound the O(1) term for the BSC. Note that includ-

ing the O
(

Q−1(ǫn)
3

√
n

)

term from Theorem 3 does not improve

the accuracy because the blocklength n ∈ [100, 500] chosen

in the example is too small, which makes the O
(

Q−1(ǫn)
3

√
n

)

term comparable to the skewness term.

In [8], Altuğ and Wagner show that in the LD regime, the

prefactors in the lower and upper bounds on the exponentially

decaying error probability for Gallager-symmetric channels

have the same order; that order depends on whether the chan-

nel is singular or nonsingular. Extending the analysis in [19,

Sec. III-C-2)] to any Gallager-symmetric channel shows that

Gallager-symmetric channels satisfy A0(P
∗
X) = A1(P

∗
X) = 0.

Note that η(P ∗
X) is not necessarily zero (see [19, Sec. III-C-2)]

for a counterexample), which means that for some Gallager-

symmetric channels, (59) and (66) are not tight up to the

O(1) term. The findings in [8] suggest that Theorem 1 or

Theorem 2 or both could be improved for some channels. The

achievability bounds in [7], [8] bound the error probability

from above as

ǫ ≤ P [D] + (M − 1)P
[

Dc ∩ {ı(X;Y) ≥ ı(X;Y)}
]

, (71)

where

D ,

{

log
Pn
Y |X(Y|X)

Qn
Y (Y)

< τ

}

(72)

QY (y) , c

(

∑

x∈X
PX(x)PY |X(y|x)1/1+ρ

)1+ρ

, y ∈ Y. (73)

Here QY is the tilted output distribution, ρ ∈ [0, 1], τ ∈ R,

and c > 0 is a normalization constant. Our achievability bound

uses a special case of (73) with ρ = 0, giving QY = PY .

Whether the more general bound in (73) yields an improved

bound in the MD regime is a question for future work.

C. Refined Asymptotics of BHT

Before describing Theorem 4, below, we introduce binary

hypothesis tests, which play a fundamental role in many

coding theorems in the literature.

Let P and Q be two distributions on a common alphabet

X . Consider the binary hypothesis test

H0 : X ∼ P (74)

H1 : X ∼ Q. (75)

A randomized test between those two distributions is defined

by a probability transition kernel PW |X : X → {0, 1}, where

0 indicates that the test chooses H0, i.e., X ∼ P , and 1
indicates that the test chooses H1, i.e., X ∼ Q. We define the

minimum achievable type-II error compatible with the type-I

error bounded by 1− α as [4, eq. (100)]

βα(P,Q) , min
PW |X : P[W=0|H0]≥α

P [W = 0|H1] . (76)
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Fig. 1. Achievable rate vs. average error probability for BSC(0.11): The expansions from Theorems 1–3, excluding the O(·) terms, are shown for the BSC(0.11)
with ǫ ∈ [10−10, 10−1] and n = {100, 250, 500}. The upper and lower boundaries of the shaded region correspond to the non-asymptotic bounds in [4,

Th. 33 and 35]; the CLT approximation that takes ζ(n, ǫ) = 1

2
logn is from [18, Th. 53]; Moulin’s results are (6)–(7); the saddlepoint approximation is an

achievability bound and is from [9, Th. 1] and [10, Sec. III-D].

The minimum in (76) is achieved by the Neyman-Pearson

test (e.g., [4, Lemma 57]),

PW |X(0|x) =











1 if log dP
dQ (x) > γ

τ if log dP
dQ (x) = γ

0 if log dP
dQ (x) < γ

, (77)

where log dP
dQ (x) is the log-likelihood ratio evaluated at x ∈ X ,

dP
dQ denotes the Radon-Nikodym derivative, and τ and γ are

chosen so that α = P [W = 0|H0].
Let P (n) =

∏n
i=1 Pi and Q(n) =

∏n
i=1 Qi, where Pi and

Qi are distributions on a common alphabet X .

Define Zi , log dPi

dQi
(Xi), where Xi ∼ Pi for i ∈ [n], and

Di , E [Zi] = D(Pi‖Qi) (78)

Vi , Var [Zi] = V (Pi‖Qi) (79)

µk,i , E
[

(Zi −Di)
k
]

, k ≥ 3 (80)

Ski , Sk(Pi‖Qi) =
µ3,i

V
3/2
i

(81)

for i ∈ [n]. Define Zi , log dPi

dQi
(Xi), where Xi ∼ Qi for

i ∈ [n], and the cumulant generating function of Zi

κi(s) , logE
[

exp{sZi}
]

, i ∈ [n]. (82)

Let

D ,
1

n

n
∑

i=1

Di V ,
1

n

n
∑

i=1

Vi (83)

Sk ,
1

n

n
∑

i=1

Ski µk ,
1

n

n
∑

i=1

µk,i, k ≥ 3, (84)

κ(s) ,
1

n

n
∑

i=1

κi(s). (85)

Theorem 4, below, refines [19, Th. 18] by considering SMD

sequences and also by deriving the coefficient of
Q−1(ǫn)

3

√
n

in

the type-II error exponent.

Theorem 4: Let Pi and Qi be distributions on a common

alphabet X , and let Pi be absolutely continuous with respect

to Qi for i ∈ [n]. Let {ǫn}∞n=1 be an SMD sequence (12).

Assume that

(A) Zi satisfies Cramér’s condition for i ∈ [n], i.e.,

E [exp{sZi}] < ∞ for s ∈ R in the neighborhood of 0;

(B) V > 0;

(C) there exist positive constants β0, β1, and c > 1 such that

β0 < |κ(s)| < β1 for all s ∈ D , {s′ ∈ R : |s′| < c},

and that κ(s) is analytic in D;

(D) if the sum
∑n

i=1 Zi is non-lattice, then there exist a finite

integer ℓ, a sequence {wn}∞n=1 satisfying wn

logn → ∞, and

non-overlapping index sets I1, I2, . . . , Iwn ⊂ [n], each

having size ℓ, such that
∑

i∈Ij

Zi is non-lattice for j ∈ [wn]. (86)

Then, it holds that

− log β1−ǫn(P
(n), Q(n))
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= nD −
√
nV Q−1(ǫn) +

1

2
logn+

(

Sk
√
V

6
+

1

2

)

Q−1(ǫn)
2

− 3(µ4 − 3V 2)V − 4µ2
3

72V 5/2

Q−1(ǫn)
3

√
n

+O

(

Q−1(ǫn)
4

n

)

+O (1) . (87)

Proof: See Section V.

Example distributions {(Pi, Qi)}ni=1 that satisfy conditions

(A)–(C) in Theorem 4 include the set of pairs {(Pi, Qi)}ni=1

where Var [Zi] > 0 for all i ∈ [n] and X is finite. For

example, if Pi = Bernoulli(pi) and Qi = Bernoulli(qi)
with pi, qi ∈ (0, 1) and pi 6= qi for all i ∈ [n], then

conditions (A)–(C) are satisfied. One needs to check condition

(D) separately in the case where
∑n

i=1 Zi is non-lattice.

If P1, . . . , Pn, Q1, . . . , Qn are such that Zi is a continuous

random variable for all i ∈ [n], then condition (D) is always

satisfied, and one needs to check condition (A) separately for

each Zi. The conditions (A)–(D) are satisfied for the Gaussian

(Pi, Qi) pairs with positive variances and Pi 6= Qi for all

i ∈ [n]. To highlight the purpose of condition (D), consider

the sum of n−1 Bernoulli random variables and one Gaussian

random variable, where condition (D) is violated. The resulting

sum is non-lattice, but its behavior is still very close to a lattice

random variable, in this case a binomial.

In Fig. 2 below, we compare the asymptotic expansion in

Theorem 4 with the true values from the Neyman-Pearson

lemma, the CLT approximation from [4], and the LD approx-

imation from [17] for BHT between two i.i.d. Bernoulli dis-

tributions. The first three terms on the right-hand side of (87)

constitute the CLT approximation of BHT, and are shown in [4,

Lemma 58] in the CLT regime. The coefficient of Q−1(ǫn)
2

in the fourth term of (87) is the skewness for BHT. The fifth

term in (87) gives the fourth-order characteristic of BHT. A

direct application of Theorem 4 to the meta-converse bound

[4, Th. 27] shows the converse part of Theorem 3. Together

with the achievability bound of Theorem 3, this implies that

the fourth-order characteristic of Cover–Thomas-symmetric

channels and BHT are the same in the sense that C, V, S,

and µ4 in Theorem 3 are the same as D,V, Sk
√
V

6 + 1
2 , and µ4

in (87) evaluated at P (n) = Pn
Y |X=x and Q(n) = (Q∗

Y )
n; here

x ∈ X is arbitrary, and Q∗
Y is the capacity-achieving output

distribution.

In Theorem 4, conditions (A) and (B) are used to apply the

MD result Lemma 1 (see Section IV-B, below) to the sum
∑n

i=1 Zi; conditions (C) and (D) are used to satisfy the con-

ditions of the LD results (Theorems 7 and 8 in Section IV-C

below) for the random variable
∑n

i=1 Zi. Note that if
∑n

i=1 Zi

is lattice, then each of the random variables Zi, i ∈ [n], is

lattice. In the non-lattice case, the sum
∑n

i=1 Zi can be non-

lattice even if one of more of the Zi is lattice. Condition

(D) of Theorem 4 requires that there are wn ≫ logn non-

overlapping, non-lattice partial sums of Z
n

, where each partial

sum is a sum of ℓ random variables. A condition similar to

condition (D) with ℓ ≤ 2 is introduced in [19, Def. 15] for the

same purpose.

D. Gaussian Channel

The output of the memoryless Gaussian channel in response

to the input X ∈ Rn is

Y = X+ Z, (88)

where the entries of Z are drawn i.i.d. from N (0, 1), inde-

pendent of X. The capacity and dispersion of the Gaussian

channel are given by

C(P ) ,
1

2
log(1 + P ) (89)

V (P ) ,
P (P + 2)

2(1 + P )2
. (90)

In addition to the average error probability constraint (39), an

(n,M, ǫ, P ) code for the Gaussian channel with a maximal-

power constraint requires that each codeword has power not

exceeding nP , i.e.,

‖f(m)‖22 ≤ nP, ∀m ∈ [M ]. (91)

The maximum achievable message set size M∗(n, ǫ, P ) is

defined similarly to (40); the corresponding non-Gaussianity

is defined as

ζ(n, ǫ, P ) , logM∗(n, ǫ, P )− (nC(P )−
√

nV (P )Q−1(ǫ)).
(92)

Theorem 5, below, gives lower and upper bounds on the non-

Gaussianity ζ(n, ǫ, P ) in the CLT regime.

Theorem 5: Fix ǫ ∈ (0, 1) and P > 0. Then,

ζ(n, ǫ, P ) ≥ 1

2
logn+ S(P )Q−1(ǫ)2 +B(P ) +O

(

1√
n

)

(93)

ζ(n, ǫ, P ) ≤ 1

2
logn+ S(P )Q−1(ǫ)2 +B(P ) +O

(

1√
n

)

,

(94)

where

S(P ) =
6 + 6P + 4P 2 + P 3

6(1 + P )2(2 + P )
(95)

B(P ) =
P (3 + P )

3(1 + P )(2 + P )
+

1

2
log(2πV (P )) (96)

B(P ) =
P (5P + 9)

6(1 + P )(2 + P )
− 1 +

1

2
log

(

2πP

(1 + P )2

)

. (97)

Proof: The achievability bounds in (93), [11, eq. 58], and

[12, Th. 17] are fourth-order asymptotic expansions. They

analyze the same non-asymptotic achievability bound in [11,

eq. (19)]. The difference is that we analyze the tail probability

of the noncentral t-distribution in the CLT regime while [11]

and [12] analyze it in the LD regime. Our derivation uses the

Cornish-Fisher expansion of the noncentral t-distribution in

the CLT regime [41].

The converse bound (94) analyzes the novel meta-converse

bound from [13, Th. 3]

logM∗(n, ǫ, P )

≤ inf
σ2>1

− log β1−ǫ(N (
√
P1, In),N (0, σ2In)). (98)
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Fig. 2. Type-I vs. Type-II error probability for BHT: The expansion from Theorem 4, excluding the O(·) terms, is shown for Pi = Bern(0.6), Qi = Bern(0.2),
i = 1, . . . , n, n ∈ {100, 250, 500}. Our skewness approximation is compared with the true values obtained by the Neyman-Pearson lemma, the CLT

approximation from [4, Lemma 58], which consists of the terms up to 1

2
logn, and the first-order LD approximation from [17, Th. 11.7.1].

Since σ2 = 1+P is optimal for codes whose rate approaches

the capacity (see, e.g., [4]), we first let σ2 = 1+P+δn, where

δn is a sequence that approaches 0. Then we optimize the

value of δn with respect to (98) by analyzing the βα function

in the CLT regime using [19, Th. 18]. Not setting δn = 0 is

crucial to prove the tightness of the skewness S(P ). The δ∗n
that achieves the minimum in (98) is

δ∗n = −Q−1(ǫ)√
n

√

2P

P + 2
. (99)

Recall that [19, Th. 18] is the CLT version of Theorem 4.

Therefore, replacing [19, Th. 18] with Theorem 4 shows that

the expansion in (94) holds in the MD regime as well up to

the skewness term S(P )Q−1(ǫn)
2.

See Section VI for the proof details.

Theorem 5 yields the channel skewness of the Gaussian

channel as S(P ) since the lower and upper bounds on the

Q−1(ǫ)2 term in (93)–(94) match.

In Fig. 3, the skewness approximations in Theorem 5 are

compared with Shannon’s non-asymptotic bounds and the LD

approximations from [11], the CLT approximation from [4]

using the achievability bound proved in [22], and Vazquez-

Vilar’s novel non-asymptotic converse bound [13, Th. 3]. For

the shown (n, ǫ, P ) triples, our skewness approximation (94)

is the closest to the novel non-asymptotic converse bound in

[13, Th. 3]; our skewness approximation (93) is the closest to

Shannon’s non-asymptotic achievability bound for ǫ ' 10−4;

for ǫ / 10−4, Shannon’s LD approximation becomes the

closest.

Since the noncentral t-distribution is not a sum of indepen-

dent random variables, Petrov’s MD expansion in Theorem 6

below, does not apply. The proof of Theorem 6 relies on all

moments of the random variable being finite; however, the n-

th and higher order moments of the noncentral t-distribution

with n degrees of freedom are undefined. Therefore, one needs

to find another method to derive the asymptotic expansion of

the CDF of the noncentral t-distribution in the MD regime.

However, since the Cornish-Fisher expansions in general have

the same skewness term in the CLT and MD regimes (see

Lemma 1, below), we conjecture that the achievability bound

in (94) holds up to the S(P )Q−1(ǫn)
2 term in the MD regime.

In [4, Th. 41], Polyanskiy et al. show the converse in (98)

for codes with an equal-power constraint, i.e., each codeword

has power nP exactly; where σ2 is set to the capacity-

achieving output variance, σ2 = 1 + P . Then, Polyanskiy et

al. invoke the inequality (see [11, eq. (83)])

M∗(n, ǫ, P ) ≤ M∗ (n+ 1, ǫ, P )eq (100)

to get a converse bound for the maximal-power constraint,

where M(n, ǫ, P )eq is the maximum achievable message set

size for the equal-power constraint.5 Since Vazquez-Vilar’s

5In [13, eq. (23)], a slightly tighter version, which states that

M∗(n, ǫ, P ) ≤ M∗
(

n+ 1, ǫ, nP

n+1

)

eq
, is proved.
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converse (98) does not need to apply (100), it is a refinement

to that of Polyanskiy et al. for the maximal-power constraint.

Shannon’s non-asymptotic cone-packing converse in [11,

eq. 15] is the tightest known converse bound under the equal-

power constraint (see, e.g., [13]). It coincides with Polyanskiy

et al.’s meta-converse [4, Th. 28] applied with the optimal aux-

iliary output distribution [42, Sec. VI-F]. The converse bounds

in [11], [12] both analyze Shannon’s cone-packing converse in

[11, eq. (20)]. Analyzing Shannon’s cone-packing converse in

combination with the inequality in [13, eq. (23)] using the CLT

approximation for the noncentral t-distribution tails, we derive

a converse bound with S(P ) in (94) unchanged and B(P )
replaced with B(P )Sh = B(P ) + 1 + C(P ) − P

2(1+P ) ; note

that B(P )Sh > B(P ) for all P > 0. This result implies that in

the CLT regime, Vazquez-Villar’s converse for the maximal-

power constraint is sharper than Shannon’s converse combined

with the inequality in [13, eq. (23)].

IV. PROOFS OF THEOREMS 1 AND 2

We begin by giving the preliminary definitions for quantities

related to the moments of a random variable X .

A. Moment and Cumulant Generating Functions

Below, we dedicate the letters s and t to real scalars and z
to complex scalars. The moment generating function (MGF)

of X is defined as

φ(z) , E [exp{zX}] , z ∈ C. (101)

The j-th central moment is denoted by

µj , E
[

(X − E [X ])j
]

. (102)

The cumulant generating function (CGF) of X is defined as

κ(z) , logφ(z) =

∞
∑

j=1

κj
zj

j!
, (103)

where κj is called the j-th cumulant of X , and there exists a

one-to-one relationship between κj and the central moments

up to the order j. For example,

κ1 = E [X ] (104)

κ2 = µ2 (105)

κ3 = µ3 (106)

κ4 = µ4 − 3µ2
2. (107)

We use φ(X)(·) and κ(X)(·) to denote the MGF and CGF of

X when the random variable is not clear from context. The

j-th cumulant of cX is given by κ
(cX)
j = cjκ

(X)
j , and the

CGF of X + Y , where X and Y are independent, is

κ(X+Y )(z) = κ(X)(z) + κ(Y )(z). (108)

The MGF and CGF are naturally extended to d-dimensional

random vectors. Let S be a d-dimensional random vector. The

MGF and CGF of S are denoted by

φ(z) , E [exp{〈z,S〉}] , z ∈ C
d, (109)

κ(z) , logφ(z). (110)

Next, we present the supporting results used to bound the

probability terms that appear in the proofs of Theorems 1

and 2.

B. MD Asymptotics

Theorem 6, stated next, is an MD result that bounds the

probability that the sum of n independent but not necessarily

identical random variables normalized by a factor 1√
n

deviates

from the mean by o(
√
n). The resulting probability is an SMD

sequence (12).

Theorem 6 (Petrov [36, Ch. 8, Th. 2]): Let X1, . . . , Xn

be independent random variables. Let E [Xi] = 0 for i =

1, . . . , n, κj = 1
n

∑n
i=1 κ

(Xi)
j for j ≥ 2, and Sk = κ3

κ
3/2
2

.

Define

Sn ,
1√
nκ2

n
∑

i=1

Xi (111)

Fn(x) , P [Sn ≤ x] . (112)

Suppose that there exist positive constants t0 and H1, . . . , Hn

such that the MGF satisfies

φ(Xi)(t) ≤ Hi (113)

for all t ∈ R such that −t0 < t < t0 and i = 1, . . . , n,

lim sup
n→∞

1

n

n
∑

i=1

H
3/2
i < ∞ (114)

lim inf
n→∞

κ2 > 0. (115)

Let x > 0 and x = o(
√
n). Then, it holds that

1− Fn(x) = Q(x) exp

{

x3

√
n
λn

(

x√
n

)}(

1 +O

(

1 + x√
n

))

(116)

Fn(−x) = Q(x) exp

{−x3

√
n
λn

(−x√
n

)}(

1 +O

(

1 + x√
n

))

,

(117)

where

λn(x) ,
∞
∑

i=0

aix
i (118)

is Cramér’s series whose first two coefficients are

a0 =
Sk

6
(119)

a1 =
κ4κ2 − 3κ2

3

24κ3
2

. (120)

The condition in (113) is called Cramér’s condition. Petrov

presents (113) for complex functions as “in the circle {z ∈
C : |z| ≤ t0}, φ(Xi)(z) is analytic and |φ(Xi)(z)| ≤ Hi.”

However, this is equivalent to (113) (see e.g., [43, Th. 1.7.1]).

Note that Cramér’s condition also implies that all moments of

Xi are finite.

Let X1, . . . , Xn be supported on a common finite alphabet

with Var [Xi] > σ2 > 0 for all i ∈ [n]. Then, there exists an

H > 0 such that (113) is satisfied with Hi ≤ H for all i ∈ [n];
and κ2 > σ2 > 0. Therefore, the conditions of Theorem 6 are

satisfied for this class of random variables, which is the case

in the application of Theorem 6.

The O(·) terms in (116)–(117) constitute a bottleneck in

deriving the O(1) terms in (59) and (66); that is, one needs
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Fig. 3. Achievable rate vs. average error probability for a Gaussian channel: The expansions from Theorem 5, excluding the O(·) term, are shown for the
Gaussian channel with P = 10, n = 400, and ǫ ∈ [10−5, 10−3]. Shannon’s non-asymptotic bounds are from [11, eq. (20)]; Vazquez-Vilar’s non-asymptotic
bound is from [13, Th. 3] where the variance of the auxiliary output distribution is optimized numerically; Shannon’s LD approximations are from [11,
eq. (51), (58)]; Polyanskiy et al.’s CLT approximation that takes ζ(n, ǫ, P ) = 1

2
logn is from [4], [22].

to compute the leading term of the O(·) terms in (116)–

(117) in order to compute the O(1) terms in our achievability

and converse bounds. In the CLT regime, i.e., x = O(1),
Theorem 6 reduces to the Berry-Esseen theorem for the sum

of independent random variables without explicitly giving

the constant, that is, the
(

1 +O
(

1√
n

))

term in (116)–(117)

dominates the exp{·} term.

Inverting Theorem 6 (that is, obtaining an expansion for x
in terms y where Fn(−x) = Q(y)) is advantageous in many

applications. For Q(y) = ǫn, where {ǫn}∞n=1 is an SMD

sequence of probabilities (12), Lemma 1, below, gives the

corresponding sequence of quantiles. In the CLT regime, in

which Fn(−x) ∈ (0, 1) is equal to a value independent of

n, that expansion is known as the Corner-Fisher theorem [44,

Sec. 8], which inverts the Edgeworth expansion. Note that [44,

Sec. 8] applies under the assumption that the elements in the

sum are i.i.d. and strongly non-lattice random variables; these

assumptions need not hold for our application.

Lemma 1: Let X1, . . . , Xn satisfy the conditions in Theo-

rem 6. Let y , Q−1(ǫn) = o(
√
n). Suppose that Fn(−x) =

Q(y) = ǫn, then

x = y − b0y
2

√
n

+
b1y

3

n
+O

(

y4

n3/2

)

+O

(

1√
n

)

, (121)

where

b0 ,
Sk

6
(122)

b1 ,
3κ4κ2 − 4κ2

3

72κ3
2

. (123)

Proof: See Appendix A.

A weaker version of Lemma 1, with only the first two terms in

(121) and with ǫn decaying polynomially with n, is proved in

[26, Lemma 7]. We use Theorem 6 and Lemma 1 to bound the

probability P [ı(X;Y) ≤ τ ], where τ is a threshold satisfying

the condition in Theorem 6, and the resulting probability is

an SMD sequence (12). Although the MD approximation to

the CDF of the normalized sum in Theorem 6 is seemingly

different than the CLT approximation to the same CDF (the

Edgeworth expansion), their inverted theorems, i.e., Lemma 1

and the Cornish-Fisher theorem [44, Sec. 8], respectively, have

similar forms; for continuous random variables, the Cornish-

Fisher theorem admits the formula in (121), where O
(

1√
n

)

is replaced by b0√
n
+O

(

1
n

)

. This is the main reason why the

channel skewness bounds computed in the CLT regime extend

to the MD regime without change.

C. Strong LD Asymptotics

For the results in this section, we consider a sequence of

d-dimensional random vectors Sn = (Sn,1, . . . , Sn,d), n =
1, 2, . . . . Let φn(·) denote the MGF of Sn, and let κn(·) be

the normalized CGF of Sn denoted by

φn(z) , φ(Sn)(z) (124)

κn(z) ,
1

n
logφn(z). (125)

The Fenchel–Legendre transform of κn(·) is given by

Λn(x) , sup
t∈Rd

{〈t,x〉 − κn(t)} , (126)
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where x ∈ Rd. The quantity (126) is commonly known as the

rate function in the LD literature [23, Ch. 2.2].

Theorem 7, below, is a strong LD result for an arbitrary

sequence of random vectors Sn in R
d; here, strong refers to

the fact that Theorem 7 characterizes the exact prefactor in

front of the LD exponent.

Theorem 7 (Chaganty and Sethuraman [37, Th. 3.4]): Let

{an}∞n=1 be a bounded sequence of d-dimensional vectors.

Assume that the following conditions hold.

Smoothness (S): κn(z) is bounded below and above, and is

analytic in Dd, where D , {z ∈ C : |z| < c} and c is a finite

constant.

Non-Degenerate (ND): There exist a real sequence {sn}∞n=1

and constants c0 and c1 that satisfy

∇κn(sn) = an (127)

0 < c0 < sn,j < c1 < c for all j ∈ [d] and n ≥ 1, (128)

where c is the constant given in condition (S), and the Hessian

matrix ∇2κn(sn), which is a covariance matrix of a tilted

distribution obtained from Sn, is positive definite with a

minimum eigenvalue bounded away from zero for all n.

Non-Lattice (NL): There exists δ0 > 0 such that for any given

δ1 and δ2 such that 0 < δ1 < δ0 < δ2

sup
t : δ1<‖t‖∞≤δ2

∣

∣

∣

∣

φn(sn + it)

φn(sn)

∣

∣

∣

∣

= o
(

n−d/2
)

, (129)

where i =
√
−1 is the imaginary unit. Then,

P [Sn ≥ nan] =
ENL

nd/2
exp{−nΛn(an)}(1 + o(1)), (130)

where

ENL ,
1

(2π)d/2

(

d
∏

j=1

sn,j

)

√

det(∇2κn(sn))

. (131)

Condition (S) of Theorem 7 is a smoothness assumption

for the CGF κn, which is a generalization of Cramér’s con-

dition that appears in the LD theorem for the sum of i.i.d.

random vectors [23, Th. 2.2.30]. Condition (S) implies that

all moments of the tilted distribution obtained from Sn are

finite. Condition (ND) is used to ensure that Sn is a non-

degenerate random vector, meaning that it does not converge

in distribution to a random vector with ℓ < d dimensions, and

that the rate function Λn(an) is bounded and does not decay

to zero. The latter follows from the boundedness condition

in (128), and implies that the probability of interest is in

the LD regime. The ratio
φn(sn+it)
φn(sn)

in (129) is equal to the

characteristic function of a random vector that is obtained by

tilting Sn by sn [37]. A random variable is non-lattice if and

only if its characteristic function satisfies |φ(it)| < 1 for all

real t 6= 0 [38, Ch. XV, Sec. 1, Lemma 4]. Therefore, since

tilting does not affect the support of a distribution, condition

(NL) requires Sn to be a non-lattice random vector. Condition

(NL) is used to guarantee that the absolute value of that

characteristic function decays to zero quickly enough outside

a neighborhood of the origin, which makes the random vector

Sn behave like a sum of n non-lattice random vectors.

Let X be a random codeword that is independent of both

the transmitted codeword X and the channel output Y. If

ı(X;Y) and ı(X;Y) are non-lattice, we apply Theorem 7

to the sequence of 2-dimensional non-lattice random vec-

tors (ı(X;Y), ı(X;Y) − ı(X;Y)) to bound the probability

P
[

ı(X;Y)) ≥ ı(X;Y) ≥ τn
]

for some sequence τn.

When applied to the sum of n i.i.d. random variables Sn =
∑n

i=1 Ai, κn in (125) reduces to the CGF of A1 as

κ(z) = logE [exp{〈z,A1〉}] . (132)

In our application, since A1 = (ı(X1;Y1), ı(X1;Y1) −
ı(X1;Y1)) has a finite support, the expectation in (132) is

bounded, and all moments of A1 are finite; therefore, condi-

tion (S) of Theorem 7 is satisfied. Further, the characteristic

function of the sum of n i.i.d. random vectors is equal

to n-th power of the characteristic function of one of the

summands. Therefore, the left-hand side of (129) decays to

zero exponentially quickly for the sum of i.i.d. non-lattice

random vectors. This means that in our application, condition

(NL) of Theorem 7 is satisfied with room to spare.

We use the following strong LD result to bound the proba-

bility P
[

ı(X;Y)) ≥ ı(X;Y) ≥ τn
]

with lattice ı(X;Y) and

ı(X;Y).
Theorem 8: Suppose that Sn = (Sn,1, . . . , Sn,d), and

Sn,j is a lattice random variable with span hn,j , i.e.,

P [Sn,j ∈ {bn,j + khn,j : k ∈ Z}] = 1 for some bn,j , such that

there exist positive constants hj and hj satisfying hj < hn,j <

hj for all j ∈ [d], n ≥ 1. Assume that conditions (S) and

(ND) in Theorem 7 hold, and replace condition (NL) by the

following.

Lattice (L): There exists λ > 0 such that, for any given δ

satisfying 0 < δ < λ,

sup
t : δj<|tj |≤ π

hn,j
for j∈[d]

∣

∣

∣

∣

φn(sn + it)

φn(sn)

∣

∣

∣

∣

= o
(

n−d/2
)

. (133)

If nan is in the range of the random vector Sn, then

P [Sn ≥ nan] =
EL

nd/2
exp{−nΛn(an)}(1 + o(1)), (134)

where

EL ,
1

(2π)d/2
√

det(∇2κn(sn))





d
∏

j=1

hn,j

1− exp{−sn,jhn,j}



 .

(135)

Proof: The one-dimensional lattice case, i.e., d = 1, is

proved in [45, Th. 3.5]. The proof of the d-dimensional lattice

case follows by inspecting the proofs for the d-dimensional

non-lattice random vectors in [37, Th. 3.4] and the one-

dimensional lattice random variables in [45, Th. 3.5]. Specif-

ically, in the proof of [37, Th. 3.4], we replace [37, Th.

2.4] by extending the lattice result in [45, Th. 2.10] to d-

dimensional random vectors. The modification in the proof

yields Theorem 8. The full proof of Theorem 8 appears in

Appendix B.

If Sn = (Sn,1, . . . , Sn,d) is a sum of n i.i.d. random vectors,

where

Sn,j =

n
∑

i=1

Ai,j , j ∈ [d], (136)
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and A1,j is a lattice random variable with span hj for j ∈ [d],
then it holds that

sup
δj<|tj |≤ π

hj

∣

∣

∣

∣

φ(X1,j )(sj + itj)

φ(X1,j)(sj)

∣

∣

∣

∣

< 1, j ∈ [d]. (137)

The bound (137) follows from [38, Ch. 15, Sec. 1, Lemma

4] since
φ(A1,j )(sj+itj)

φ(A1,j )(sj)
is a characteristic function of a lattice

random variable with span hj . The condition in (133) modifies

the condition in (129) for lattice random vectors by consider-

ing a single period of that characteristic function. If Sn is an

i.i.d. sum, then the left-hand side of (133) decays exponentially

with n, and condition (L) is satisfied. Note that if hn,j → 0
for all (n, j) pairs, then Sn converges to a non-lattice random

vector, and the prefactor EL converges to the prefactor for the

non-lattice random vectors, ENL.

Although the strong LD theorems (Theorems 7 and 8) are

used only for the sum of independent random variables in this

paper, their applications extend to Gaussian-like distributions

that do not necessarily arise from a sum, and to the sum

of weakly dependent random vectors. An example in the

first distributional family is the multidimensional noncentral

t-distribution, which appears in the analysis of the Gaussian

channel. In [37], the multidimensional F -distribution is also

given as an example. Examples in the second family include

the information density ı(X;Y) for constant-composition

codes. One drawback of the use of Theorems 7 and 8 is that

they require knowledge of an expansion of the MGF of the

random vector, which might not be available in some cases.

In [7, Lemma 3], Altuğ and Wagner derive a non-asymptotic

upper bound on the probability P [Sn ≥ nan] as

P [Sn ≥ nan] ≤
EAW

n
exp{−nΛn(an)}, (138)

where Sn =
∑n

i=1 Ai is a sum of n i.i.d. 2-dimensional

random vectors; the random variables Ai,1 and Ai,2 satisfy

max{|Ai,1|, |Ai,2|} ≤ B almost surely for some B < ∞ and

can be either lattice or non-lattice. Comparing (138) to (130)

and (134), we see that (138) is asymptotically tight in the order

of the prefactor. However, the constant EAW depends on an

unspecified universal constant. Since our achievability proof

in Section IV-D relies only on the fact that the prefactor in

the LD bound is a bounded constant (see (156), below) and

that ı(X ;Y ) is bounded for DMCs, (138) is also applicable in

our achievability proof. If one seeks to derive the O(1) term

in (59), the tightness of the prefactor used in the probability

bound is important.

D. Proof of Theorem 1

The proof consists of two parts and follows steps similar

to the achievability proof in [19]. First, we derive a refined

asymptotic achievability bound for an arbitrary input distribu-

tion PX ∈ P . Then, we optimize that achievability bound over

all PX ∈ P .

Lemma 2: Suppose that ǫn is an SMD sequence (12). Fix

some PX ∈ P such that (PX , PY |X) is a nonsingular pair and

Vu(PX) > 0 for all n. It holds that

logM∗(n, ǫn)

≥ nI(PX)−
√

nVu(PX)Q−1(ǫn) +
1

2
logn

+Q−1(ǫn)
2

(

Sku(PX)
√

Vu(PX)

6
+

1− η(PX)

2(1 + η(PX))

)

+O

(

Q−1(ǫn)
3

√
n

)

+O(1). (139)

We require Vu(PX) > 0 in order to apply Theorems 6–8.

Proof of Lemma 2: We generate M i.i.d. codeword ac-

cording to the input distribution Pn
X and employ a maximum

likelihood decoder. Let W be the transmitted message that is

equiprobably distributed on [M ], and let Ŵ be the decoder

output. Define the random variables

Z , ı(X;Y) (140)

Z , ı(X;Y), (141)

where (X,X,Y) is distributed according to

PX,X,Y(x,x,y) = Pn
X(xn)Pn

X(x)Pn
Y |X(y|x). The random

variable Z represents the information density obtained from

a random codeword that is independent of both transmitted

codeword X and the received channel output Y.

1) Error analysis: Fix a threshold value τn

τn , nI(PX)−
√

nVu(PX)tn, (142)

with tn to be specified in (149), below. Define the event

D , {Z < τn}. (143)

We weaken the RCU bound from [4, Th. 16] and bound the

average error probability as

P

[

Ŵ 6= W
]

≤ E
[

min
{

1,M − 1P
[

Z ≥ Z|X,Y
]}]

(144)

≤ P [D] + (M − 1)P
[

Z ≥ Z ≥ τn
]

. (145)

Define the function

h(x) ,
1√
2π

exp

{

−Q−1(x)2

2

}

(146)

and the sequences

hn ,
1

√

nVu(PX)
h(ǫn) (147)

ǫ̃n , ǫn − hn. (148)

Below, we show that the first and second terms in (145) are

bounded by ǫ̃n and hn, respectively. Here, hn is chosen so

that logM is maximized up to the O(Q−1(ǫn)
2) term given

that the right-hand side of (145) is equal to ǫn.

We set tn in (142) as

P [D] = P

[

Z − nI(PX)
√

nVu(PX)
≤ −tn

]

= ǫ̃n. (149)

Since the channel is a DMC, the random variables ı(Xi;Yi)
are supported on a finite alphabet, thereby satisfying Cramér’s

condition in (113). Further, since, by assumption, Vu(PX) > 0,

Theorem 6 and Lemma 1 are applicable. Applying the MD

result in Lemma 1 to (149), we get

tn = Q−1(ǫ̃n)−
Sku(PX)Q−1(ǫ̃n)

2

6
√
n
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+O

(

Q−1(ǫ̃n)
3

n

)

+O

(

1√
n

)

. (150)

We compute the first two derivatives of the Q−1(x) function as

(Q−1)′(x) =
1

Q′(Q−1(x))
=

−1

h(x)
(151)

(Q−1)′′(x) = −Q−1(x)

h(x)2
. (152)

By taking the Taylor series expansion of Q−1(·) around ǫn
and using (150)–(152), we get

tn = Q−1(ǫn)−
Sku(PX)Q−1(ǫn)

2

6
√
n

+O

(

Q−1(ǫn)
3

n

)

+O

(

1√
n

)

. (153)

Next, we bound the probability P
[

Z ≥ Z ≥ τn
]

. Define the

random vector U , (U1, U2) = (Z,Z−Z). and the sequence

an = (an,1, an,2) =
(τn
n
, 0
)

. (154)

Applying Theorems 7 or 8 (depending on whether ı(X ;Y ) is

non-lattice or lattice), we get

P
[

Z ≥ Z ≥ τn
]

= P [U ≥ nan] (155)

≤ E

n
exp{−nΛ(an)}(1 + o(1)), (156)

where

E =

{

ENL if ı(X ;Y ) is non-lattice

EL if ı(X ;Y ) is lattice.
(157)

Λ(an) = sup
sn∈R2

{〈an, sn〉 − κ(sn)} (158)

κ(sn) =
1

n
logE [exp{〈sn,U〉}] . (159)

Note that the functions κ(·) and Λ(·) do not depend on n
since U is an i.i.d. sum. The rate function Λ(an) has the

Taylor series expansion

Λ(an) = I(PX) + (an,1 − I(PX)) +
(an,1 − I(PX))2

(1 + η(PX))Vu(PX)

+O(|an,1 − I(PX)|3) (160)

= an,1 +
1

n

Q−1(ǫn)
2

1 + η(PX)
+O

(

Q−1(ǫn)
3

n3/2

)

+O

(

1

n

)

.

(161)

In the application of Theorems 7 and 8, conditions (S),

(NL), and (L) are already satisfied since U1 and U2 have finite

supports. The verification of condition (ND) and the derivation

of (161) appear in Appendix C.

We set

logM = nI(PX)−
√

nVu(PX)Q−1(ǫn) +
1

2
logn

+Q−1(ǫn)
2

(

Sku(PX)
√

Vu(PX)

6
+

1− η(PX)

2(1 + η(PX))

)

+O

(

Q−1(ǫn)
3

√
n

)

+O(1). (162)

We put (142) into (153), and then (154) into (156) to bound the

probability P
[

Z ≥ Z ≥ τn
]

. Then, from the expansion (161),

we get

MP
[

Z ≥ Z ≥ τn
]

≤ hn, (163)

where hn is defined in (147). Combining (145), (149), and

(163) completes the proof of Lemma 2.

To complete the proof of Theorem 1, it only remains to

maximize the right-hand side of (139) over PX ∈ P . The

following arguments extend the proof of [19, Lemma 9] to

the MD regime. Define

G(PX) , −
√

Vu(PX)Q−1(ǫn). (164)

Let h be a vector whose components approach zero with a

rate O
(

Q−1(ǫn)√
n

)

satisfying h⊤1 = 0. Let f(h) be the right-

hand side of (139) evaluated at PX = P ∗
X + h ∈ P for some

P ∗
X ∈ P∗. We expand f(h) by using the second-, first-, and

zeroth-order Taylor series expansions of I(PX), G(PX), and

Sku(PX) and η(PX), respectively

f(h) , nI(P ∗
X) + nh⊤∇I(P ∗

X) +
n

2
h⊤∇2I(P ∗

X)h

+O(n‖h‖3∞) +
√
nG(P ∗

X) +
√
nh⊤∇G(P ∗

X )

+
√
nO(‖h‖2∞) +

1

2
logn

+Q−1(ǫn)
2

(

Sku(P
∗
X)

√

Vu(P ∗
X)

6
+

1− η(P ∗
X)

2(1 + η(P ∗
X))

)

+O

(

Q−1(ǫn)
3

√
n

)

+O(1) (165)

= nh⊤∇I(P ∗
X) +

n

2
h⊤∇2I(P ∗

X)h

+
√
nh⊤∇G(P ∗

X) + b, (166)

where b is the right-hand side of (139) evaluated at PX = P ∗
X .

Here, the terms involving the first derivatives of Sku(PX) and

η(PX) are absorbed in the O(·) terms in (165).

For every h such that P ∗
X + h is a valid probability

distribution, h⊤∇I(P ∗
X) ≤ 0 by (49) and [6, Th. 4.5.1];

equality holds if and only if h is supported on X †. Therefore,

for any valid h and n large enough,

f(h)

≤ sup
h′ : h′⊤1=0
supp(h′)⊆X †

h′

X†\X∗≥0

{

− n

2
h′⊤JX †h′ +

√
nh′⊤∇G(P ∗

X ) + b

}

.

(167)

Instead of maximizing over all valid h as in (167), we further

restrict supp(h) to X ∗, which yields the optimization problem

sup
h′ : h′⊤1=0
supp(h′)⊆X ∗

{

− n

2
h′⊤JX ∗h′ +

√
nh′⊤∇G(P ∗

X) + b

}

.

(168)

The following arguments follow from the proof of [19,

Lemma 9]. For any h′ in the kernel of JX ∗ , the first two

terms in (167) are zero. Therefore, the optimal h∗ must lie in

the row space of JX ∗ . From [19, eq. (2.48)], h′⊤∇Vu(P
∗
X) =
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h′⊤∇V (P ∗
X) for any feasible h′. Thus, the problem captured

by (168) reduces to (65), whose solution is given in (63). See

Appendix D for details. Notice that if X † = X ∗ holds, then

the right-hand sides of (167) and (168) are equal, meaning that

for DMCs with X † = X ∗, (63) yields the optimal direction

(up to the skewness term) with respect to maximizing the RCU

bound.

Combining the value of b and the value of (65) gives the

maximum of (139) over all input distributions PX ∈ P and

completes the proof of Theorem 1.

E. Proof of Theorem 2

The proof analyzes Tomamichel and Tan’s non-asymptotic

converse bound from [14, Prop. 6] using techniques from [19].

The main difference between our proof and Moulin’s proof

in [19] is that while Moulin analyzes the meta-converse bound

[4, Th. 27], we analyze a relaxation of the meta-converse

given in Lemma 4, below. In general, the analysis of the

meta-converse is more involved since it requires splitting the

code into subcodes according to the types of the codewords

and then carefully combining the bounds for each subcode.

The advantage of Lemma 4 over the meta-converse bound

is that the optimization problem in Lemma 4 can be con-

verted into a simpler single-letter minimax problem as we

show in Lemma 3, and the type-splitting step is avoided. A

similar simplification to a single-letter problem using the meta-

converse is possible (i) under the average error probability

criterion for channels that satisfy certain symmetry conditions

[4, Th. 28] (e.g., Cover–Thomas-symmetric channels satisfy

these symmetry conditions) and (ii) under the maximal error

probability criterion for arbitrary DMCs [4, Th. 31]. While

both approaches yield the same upper bound S on the skew-

ness (in the CLT regime in Moulin’s work and in the MD

regime in our work), we note that Lemma 4 is not tight enough

to obtain the tightest O(1) term in the converse (66), which

we do not focus on here.

We define the divergence spectrum [46, Ch. 4], [14], which

gives a lower bound on the minimum type-II error probability

of the binary hypothesis test, β1−ǫ(P,Q),

Dǫ
s(P‖Q) , sup

{

γ ∈ R : P

[

log
P (X)

Q(X)
≤ γ

]

≤ ǫ

}

, (169)

where ǫ ∈ (0, 1), P,Q ∈ P , and X ∼ P .

We define the function ξǫn : P × P → R in (172) below,

where P
(o)
X → PY |X → P

(o)
Y . The function ξǫn is related

to the asymptotic expansion of the divergence spectrum. In

particular, for PX ∈ P and P ∗
X ∈ P∗, it evaluates to

ξǫn(PX , PX) = nI(PX)−
√

nV (PX)Q−1(ǫn)

+
Sk(PX)

√

V (PX)

6
Q−1(ǫn)

2 (170)

ξǫn(P ∗
X , P ∗

X) =

nC −
√

nVǫnQ
−1(ǫn) +

Sku(P
∗
X)

√

Vǫn

6
Q−1(ǫn)

2. (171)

Note that by [19, Lemma 2], Sku(P
∗
X) = Sk(P ∗

X).
The main tools to prove Theorem 2, presented below,

are Lemma 3, which gives an asymptotic expansion of the

divergence spectrum in the MD regime and Lemma 4, which

gives a channel coding converse based on the divergence

spectrum.

Lemma 3: Let a > 0. Define Q(a) , {QY ∈ Q : QY (y) ≥
a ∀y ∈ Y and ∃QX ∈ P such that QX → PY |X → QY }.

Assume that {ǫn}∞n=1 is an SMD sequence (12).

(i) Then, for n large enough, there exist constants K1 and

K2 that depend only on PY |X and a such that

max
x∈Xn

QY ∈Q(a)

∣

∣

∣Dǫn
s (PY|X=x‖Qn

Y )− ξǫn(P̂x, QX)
∣

∣

∣

≤ K1
|Q−1(ǫn)|3√

n
+K2. (173)

(ii) Let P̂x → PY |X → Q̂x for all x ∈ Xn. For n large

enough, there exist constants K3 and K4 that depend only on

PY |X such that

max
x∈Xn

∣

∣Dǫn
s (PY|X=x‖Q̂n

x)− ξǫn(P̂x, P̂x)
∣

∣

≤ K3
|Q−1(ǫn)|3√

n
+K4. (174)

Proof: See Appendix E.

Note that the argument of the absolute value on the left side

of (173) depends on x only through its empirical distribution

Px ∈ Pn. By Lemma 3 (i), for P
(o)
Y such that P

(o)
Y (y) >

0 for all y ∈ Y , ξǫn(P̂x, P
(o)
X ) = Dǫn

s (PY|X=x‖(P (o)
Y )n) +

O
(

Q−1(ǫn)
3

√
n

)

+O(1).

Lemma 4 ( [14, Prop. 6]): Let ǫn be any sequence in (0, 1)
and PY |X be a DMC. Then, for any δn ∈ (0, 1− ǫn), we have

logM∗(n, ǫn)

≤ min
Q

(n)
Y ∈Qn

max
x∈Xn

Dǫn+δn
s (PY|X=x‖Q(n)

Y )− log δn, (175)

where PY|X=x =
∏n

i=1 PY |X=xi
.

Define

ρn , max

{

c0|Q−1(ǫn)|√
n

,
log2(n)√
n|Q−1(ǫn)|

}

, (176)

where c0 > 0 is a sufficiently large constant that will be

determined later. Define the set of input distributions

P∗(ν) , {PX ∈ P : ‖PX − P ∗
X‖∞ ≤ ν for some P ∗

X ∈ P∗} .
(177)

The auxiliary output distribution

Q
(n)
Y

∗
=

1

2
(Q∗

Y + h̃)n +
1

2

∑

P̂x∈Pn

1

|Pn|
Q̂n

x, (178)

which is a convex combination of product distributions, is

inspired by Hayashi [5, Th. 2] and Tomamichel and Tan

[14, eq. 6]. Here, Q∗
Y is the unique capacity-achieving output

distribution, and P̂x → PY |X → Q̂x. The vector h̃, supported

on Y , is intended to be optimized under the constraints that

its entries sum to 0 and h̃ → 0. The first term in (178) targets

the sequences x ∈ Xn in the maximization in (175) such that

the corresponding empirical distribution is close to P ∗
X in the

sense that P̂x ∈ P∗(ρn), where ρn is given in (176). The
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ξǫn(P
(i)
X , P

(o)
X ) , nD(PY |X‖P (o)

Y |P (i)
X )−

√

nV (PY |X‖P (o)
Y |P (i)

X )Q−1(ǫn)

+
Sk(PY |X‖P (o)

Y |P (i)
X )

√

V (PY |X‖P (o)
Y |P (i)

X )

6
Q−1(ǫn)

2 (172)

second term in (178) targets the sequences x ∈ Xn that are

far away from P ∗
X , i.e., P̂x /∈ P∗(ρn).

We upper bound the right-hand side of (175) by setting the

auxiliary output distribution Q
(n)
Y to Q

(n)
Y

∗
and get

logM∗(n, ǫn) ≤ max
x∈Xn

Dǫn+δn
s (PY|X=x‖Q(n)

Y

∗
)− log δn.

(179)

To bound the right-hand side of (179), we present three

auxiliary lemmas.

The following lemma by Tomamichel and Tan bounds

Dǫn
s (P‖Q) where Q is a convex combination of distribitions.

Lemma 5 ( [14, Lemma 3]): Let ǫn be any sequence in

(0, 1). Let I be a countable index set. Let q be a distribution

on I. Let P, {Qi}i∈I be distributions on a common alphabet.

Let Q =
∑

i∈I q(i)Q
i. Then,

Dǫn
s (P‖Q) ≤ inf

i∈I
{Dǫn

s (P‖Qi)− log q(i)}. (180)

Define

∆x , D(PY |X=x‖Q∗
Y )− C ∀x ∈ X (181)

h(i) , P
(i)
X − P ∗

X (182)

h(o) , P
(o)
X − P ∗

X (183)

ṽx , V (PY |X=x‖Q∗
Y ) ∀x ∈ X (184)

g , −Q−1(ǫn)

2
√

Vǫn

v(P ∗
X) (185)

g̃ , −Q−1(ǫn)

2
√

Vǫn

ṽ (186)

Γ(h(i),h(o)) ,
1

2
h(o)⊤JX ∗h(o) + g⊤h(o)

− h(i)⊤(JX †h(o) − g̃), (187)

where P ∗
X is a dispersion-achieving input distribution, and

v(P ∗
X) is defined in (53). Recall the definitions of J and J̃ from

(51) and (56). The quadratic form Γ(h(i),h(o)) arises after

taking the second-order Taylor series expansion of the function

ξǫn(P
(i)
X , P

(o)
X ) around the point (P ∗

X , P ∗
X). Lemma 6, below,

gives the saddlepoint solution to the minimax of Γ(h(i),h(o)),
where the maximization is over h(i) and the minimization is

over h(o).

Lemma 6 ( [19, Lemma 14]): Consider the minimax prob-

lem

min
h(o) : supp(h(o))⊆X ∗

h(o)⊤1=0
h(o)∈row(JX∗ )

max
h(i) : supp(h(i))⊆X †

h(i)⊤1=0
h

(i)

X†\X∗
≥0

Γ(h(i),h(o)). (188)

The point (h(i)∗,h(o)∗), where h(i) = J̃g and h(o) = J̃g̃, and

g = g+ g̃, admits the saddlepoint property

Γ(h(i),h(o)∗) = Γ(h(i)∗,h(o)∗) ≤ Γ(h(i)∗,h(o)) (189)

for all feasible h(i) and h(o). The value of the saddlepoint is
1
2g

⊤J̃g − 1
2g

⊤J̃g.

In (188), the constraints h(i)⊤1 = 0 and h(o)⊤1 = 0 are

due to P
(i)
X , P

(o)
X , and P ∗

X being distributions. The constraints

supp(h(i)) ⊆ X † and h
(i)

X †\X ∗ ≥ 0 are due to the optimality of

P ∗
X . The constraints supp(h(o)) ⊆ X ∗ and h(o) ∈ row(JX ∗)

are by our choice.

Define the function

ψǫn∗(P ∗
X) , ξǫn(P ∗

X , P ∗
X) +Q−1(ǫn)

2(A0(P
∗
X)−A1(P

∗
X)).

(190)

The following lemma bounds ξǫn(PX , PX) for PX ∈ P that

are sufficiently far away from the set of dispersion-achieving

input distributions.

Lemma 7: Let ǫn be an SMD sequence. There exist con-

stants c0 > 0 and c1 > 0 such that for all ρn ≥ c0|Q−1(ǫn)|√
n

and for all PX /∈ P∗ (ρn),

ξǫn(PX , PX)

≤ max
P∗

X∈P∗
ψǫn∗(P ∗

X)− c1
√
nρn|Q−1(ǫn)|(1 + o(1)). (191)

Proof: The proof extends the result in [19, Lemma 9 (iii)]

to SMD sequences and uses the quadratic decay property of

mutual information, which is formalized in [47, Th. 1]. See

Appendix F for details.

We bound the right-hand side of (179) in two steps.

1) We optimize the value of the perturbation h̃ in the

auxiliary distribution given in (178). To do this, we take

the Taylor series expansion of ξǫn(P
(i)
X , P

(o)
X ) around the

point (P ∗
X , P ∗

X) and then use Lemma 6.

2) We bound the right-hand side of (179) separately depend-

ing on whether P̂x ∈ P∗(ρn) or P̂x /∈ P∗(ρn). For the

case P̂x ∈ P∗(ρn), we apply Lemmas 5, 3, and 6 in

order. For the case P̂x /∈ P∗(ρn), we apply Lemmas 5,

3, and 7 in order.

In the following, we detail these two proof steps.

1) Optimization of the value of h̃: The minimax of the first

term nD(PY |X‖P (o)
Y |P (i)

X ) in (172) satisfies the saddlepoint

property (e.g., [48, Cor. 4.2])

D(PY |X‖Q∗
Y |PX) ≤ D(PY |X‖Q∗

Y |P †
X) ≤ D(PY |X‖QY |P †

X)
(192)

for all PX ∈ P , QY ∈ Q, where P †
X ∈ P† is a capacity-

achieving input distribution, and Q∗
Y is the capacity-achieving

output distribution; the minimax solution for the first term in

(172) is P
(i)
X = P

(o)
X = P †

X , and the saddlepoint value is

D(PY |X‖Q∗
Y |P †) = C.
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Let P ∗
X ∈ P∗ be a dispersion-achieving input distribution.

To set the perturbation h̃ in (175), we consider the problem

min
P

(o)
X ∈P :

∥

∥

∥
P

(o)
X −P∗

X

∥

∥

∥

∞
≤ρn

max
P

(i)
X ∈P :

∥

∥

∥
P

(i)
X −P∗

X

∥

∥

∥

∞
≤ρn

ξǫn(P
(i)
X , P

(o)
X ). (193)

To be able to apply Lemma 6, we further restrict the per-

turbation P
(o)
X − P ∗

X ∈ row(JX ∗), which yields the minimax

problem

min
P

(o)
X ∈P :

∥

∥

∥
P

(o)
X −P∗

X

∥

∥

∥

∞
≤ρn

supp(P
(o)
X −P∗

X )⊆X ∗

P
(o)
X −P∗

X∈row(JX∗ )

max
P

(i)
X ∈P :

∥

∥

∥
P

(i)
X −P∗

X

∥

∥

∥

∞
≤ρn

ξǫn(P
(i)
X , P

(o)
X ).

(194)

Note that (194) gives an upper bound on (193).

Assume that
∥

∥h(i)
∥

∥

∞ ≤ ρn,
∥

∥h(o)
∥

∥

∞ ≤ ρn and

supp(h(o)) ⊆ X ∗. In [19, Lemma 12], Moulin derives the

Taylor series expansion of ξǫn(P
(i)
X , P

(o)
X ) around the point

(P ∗
X , P ∗

X) and obtains

ξǫn(P
(i)
X , P

(o)
X ) = ξǫn(P ∗

X , P ∗
X) + nh(i)⊤∆+

n

2
h(o)⊤JX ∗h(o)

+
√
ng⊤h(o) −√

nh(i)⊤(JX
√
nh(o) − g̃)

+O(ρ2n
√
nQ−1(ǫn)). (195)

The term O(ρ2n
√
nQ−1(ǫn)) in (195) is bounded by

O
(

Q−1(ǫn)
3

√
n

)

+O(1).

The following arguments follow the steps in the proof of

[19, Prop. 30]. We decompose h(i) as h(i) = h
(i)

X † + h
(i)

X\X † .

Then, the right-hand side of (195) becomes

ξǫn(P
(i)
X , P

(o)
X ) = ξǫn(P ∗

X , P ∗
X) + nh

(i)

X\X †

⊤
∆

+
n

2
h(o)⊤JX ∗h(o) +

√
ng⊤h(o)

−√
n(h

(i)

X † + h
(i)

X\X †)
⊤(JX †

√
nh(o) − g̃)

+O

(

Q−1(ǫn)
3

√
n

)

+O(1). (196)

Consider the maximization of the right-hand side of (196)

over h(i). Note that maxx∈X\X † ∆x < 0 and h
(i)

X\X † ≥ 0.

The term nh
(i)

X\X †

⊤
∆ is negative for any nonzero h

(i)

X\X † .

Since ρn = o(1), it dominates the term −√
n(h

(i)

X † +

h
(i)

X\X †)
⊤(JX †

√
nh(o) − g̃) for n large enough. This means

that, for n large enough, the maximizer h(i) must satisfy

h
(i)

X\X † = 0. Therefore, we have

ξǫn(P
(i)
X , P

(o)
X ) ≤ ξǫn(P ∗

X , P ∗
X) + Γ(

√
nh(i),

√
nh(o))

+O

(

Q−1(ǫn)
3

√
n

)

+O(1). (197)

Lastly, we apply Lemma 6 to Γ(
√
nh(i),

√
nh(o)). A saddle-

point solution to the right-hand side of (197) ignoring the O(·)
terms is given by

h(i)∗ = −Q−1(ǫn)

2
√

nVǫn

J̃v(P ∗
X ) (198)

h(o)∗ = −Q−1(ǫn)

2
√

nVǫn

J̃ṽ, (199)

where v(P ∗
X) and ṽ are defined in (52) and (184), respectively.

Notice that h(o)∗ is uniquely defined even if the dispersion-

achieving P ∗
X is not unique in general. The value of the

saddlepoint without the O(·) terms is ψǫn∗(P ∗
X), which is

defined in (190). We set the perturbation vector h̃ supported

on Y such that h(o)∗ → PY |X → h̃.

2) Bounding the right-hand side of (179): We bound the

right-hand side of (179) separately for x ∈ Xn whose

empirical distribution is close to some P ∗
X and far away from

all P ∗
X .

Case 1: P̂x ∈ P∗(ρn). For this case, we apply Lemma 5

to the function Dǫn
s (PY|X=x‖Q(n)

Y

∗
) with Qi = (Q∗

Y + h̃)n

and q(i) = 1
2 and get

Dǫn
s (PY|X=x‖Q(n)

Y

∗
)

≤ Dǫn
s (PY|X=x‖(Q∗

Y + h̃)n) + log 2 (200)

≤ ξǫn(P̂x, P
∗
X + h(o)∗) +O

(

Q−1(ǫn)
3

√
n

)

+O (1) (201)

≤ max
P∗

X∈P∗
ψǫn∗(P ∗

X) +O

(

Q−1(ǫn)
3

√
n

)

+O (1) , (202)

where (201) follows from Lemma 3 (i) and the fact that

Q∗
Y (y) > 0 for all y ∈ Y , and (202) follows since (190)

is the saddlepoint value for P̂x ∈ P∗(ρn). Note that in (202),

the maximization over dispersion-achieving input distributions

is needed in case there are multiple dispersion-achieving input

distributions.

Case 2: P̂x /∈ P∗(ρn). For this case, we apply Lemma 5 to

the function Dǫn
s (PY|X=x‖Q(n)

Y

∗
) with Qi = Q̂n

x and q(i) =
1

2|Pn| and get

Dǫn
s (PY|X=x‖Q(n)

Y

∗
)

≤ Dǫn
s (PY|X=x‖Q̂n

x) + (|X | − 1) log(n+ 1) + log 2 (203)

≤ ξǫn(P̂x, P̂x) +O

(

Q−1(ǫn)
3

√
n

)

+O (1) +O(log n),

(204)

where in (203), we use the well-known bound on the number

of types |Pn| ≤ (n + 1)|X |−1. Inequality (204) follows from

Lemma 3 (ii).

We set the constant c0 > 0 in (176) as dictated by Lemma 7.

Then, for all P̂x /∈ P∗(ρn),

ξǫn(P̂x, P̂x) ≤ max
P∗

X∈P∗
ψǫn∗(P ∗

X)

− c1
√
nρn|Q−1(ǫn)|(1 + o(1)). (205)

By (176),
√
nρn|Q−1(ǫn)| ≥ log2 n. Hence, the O(log n) term

in (204) is dominated by the −c1
√
nρn|Q−1(ǫn)|(1 + o(1))

term in (205). This property, together with (204), ensures that

for all P̂x /∈ P∗(ρn),

Dǫn
s (PY|X=x‖Q(n)

Y

∗
) ≤ max

P∗
X∈P∗

ψǫn∗(P ∗
X) +O

(

Q−1(ǫn)
3

√
n

)

+O (1) . (206)
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From (202) and (206), we conclude that

max
x∈Xn

Dǫn
s (PY|X=x‖Q(n)

Y

∗
) ≤ max

P∗
X∈P∗

ψǫn∗(P ∗
X)

+O

(

Q−1(ǫn)
3

√
n

)

+O (1) .

(207)

Finally, we set the parameter δn in (179) so that

log δn = −Q−1(ǫn)
2

2
− 1

2
logn. (208)

We replace ǫn in (207) with ǫn + δn. Expanding the Taylor

series of Q−1(·) around ǫn completes the proof of Theorem 2.

V. PROOF OF THEOREM 4

Assume that the random variable
∑n

i=1 Zi is lattice with

span h > 0. Let γ and γ satisfy

P

[

n
∑

i=1

Zi ≥ γ

]

= 1− ǫn ≥ 1− ǫn (209)

P

[

n
∑

i=1

Zi ≥ γ

]

= 1− ǫn ≤ 1− ǫn, (210)

where γ and γ are in the range of
∑n

i=1 Zi, γ − γ = h, and

ǫn ≤ ǫn ≤ ǫn. Let λ ∈ [0, 1] satisfy

P

[

n
∑

i=1

Zi ≥ γ

]

λ+ P

[

n
∑

i=1

Zi ≥ γ

]

(1− λ) = 1− ǫn.

(211)

By the Neyman-Pearson Lemma (see [4, eq. (101)]),

β1−ǫn(P
(n), Q(n))

= P

[

n
∑

i=1

Zi ≥ γ

]

λ+ P

[

n
∑

i=1

Zi ≥ γ

]

(1 − λ). (212)

Define the asymptotic expansion

χ(ǫ) , D −
√

V

n
Q−1(ǫ) +

Sk
√
V

6n
Q−1(ǫ)2

− 3(µ4 − 3V 2)V − 4µ2
3

72V 5/2

Q−1(ǫ)3

n3/2

+O

(

Q−1(ǫ)4

n2

)

+O

(

1

n

)

. (213)

By conditions (A) and (B) of Theorem 4, the conditions

of Theorem 6 are satisfied for the sum
∑n

i=1 Zi. We apply

Lemma 1 to (209)–(210), and get the asymptotic expansions

γ = nχ(ǫn) (214)

γ = nχ(ǫn). (215)

From the Taylor series expansion of χ(·) around ǫn, (214)–

(215), and γ − γ = O(1), it holds that

γ = nχ(ǫn) +O(1) (216)

γ = nχ(ǫn) +O(1). (217)

The arguments above also hold in the non-lattice case (i.e.,

h = 0) with γ = γ.

Next, we evaluate the probability P
[
∑n

i=1 Zi ≥ γ
]

in (212)

separately in the lattice and non-lattice cases.

1) Lattice case: We here apply Theorem 8 to evaluate the

probability of interest. By [19, Appendix D],

κ(1) = 0 (218)

κ′(1) = D (219)

κ′′(1) = V (220)

κ′′′(1) = µ3. (221)

From (216), we have 1
nγ = D + o(1). Therefore, by (219),

condition (ND) of Theorem 7 is satisfied with s = 1 + o(1).
Condition (S) of Theorem 7 is satisfied by condition (C) of

Theorem 4. Therefore, it only remains to verify condition (L)

of Theorem 8 in the one-dimensional case. Since
∑n

i=1 Zi is

lattice with span h, each Zi is also lattice with a span that is

a multiple of h. By [45, p. 1687], we have

sup
δ<|t|≤π

h

∣

∣

∣

∣

φi(s+ it)

φi(s)

∣

∣

∣

∣

≤ c1 < 1, i ∈ [n] (222)

for every 0 < δ ≤ π
h , where φi(·) is the MGF of Zi. Since

Z1, . . . , Zn are i.i.d., the MGF φ(·) of
∑n

i=1 Zi satisfies

sup
δ<|t|≤π

h

∣

∣

∣

∣

φ(s+ it)

φ(s)

∣

∣

∣

∣

= sup
δ<|t|≤π

h

∣

∣

∣

∣

∣

n
∏

i=1

φi(s+ it)

φi(s)

∣

∣

∣

∣

∣

(223)

≤ cn1 = o(n−1/2). (224)

Therefore, condition (L) of Theorem 8 is satisfied. Applying

Theorem 8 to P
[
∑n

i=1 Zi ≥ γ
]

, we have

P

[

n
∑

i=1

Zi ≥ γ

]

= exp

{

−nΛ(an)−
1

2
logn+O(1)

}

,

(225)

where

Λ(an) = sup
t∈R

{tan − κ(t)} (226)

an = χ(ǫn) +O

(

1

n

)

. (227)

We expand the Taylor series of Λ(·) around D as

Λ(an) = Λ(D) + (an −D)Λ′(D) +
(an −D)2

2
Λ′′(D)

+
(an −D)3

6
Λ′′′(D) +O(|an −D|4). (228)

By [19, Appendix D],

Λ(D) = D (229)

Λ′(D) = 1 (230)

Λ′′(D) =
1

V
(231)

Λ′′′(D) = − µ3

V 3
. (232)

Combining (225) and (229)–(232), we get

Λ(an) = an +
Q−1(ǫn)

2

2n
+O

(

Q−1(ǫn)
4

n2

)

+O

(

1

n

)

.

(233)

By (216)–(217), the asymptotic expansion on the right-hand

side of (225) also holds for the probability P
[
∑n

i=1 Zi ≥ γ
]

.

Combining (212), (225), and (233) completes the proof for the

lattice case.
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2) Non-lattice case: The proof for the non-lattice case

is identical to the proof for the lattice case except for the

verification of condition (NL) in Theorem 7. Define

S̃j ,
∑

i∈Ij

Zi, j ∈ [wn], (234)

where S̃j are non-lattice by condition (D) of Theorem 4. By

[45, p. 1687],

sup
j∈[wn]

sup
δ<|t|≤λ

∣

∣

∣

∣

∣

φ̃j(s+ it)

φ̃j(s)

∣

∣

∣

∣

∣

≤ c2 < 1 (235)

for every 0 < δ < λ, where φ̃j denotes the MGF of S̃j . Since

Z1, . . . , Zn are i.i.d., we have

sup
δ<|t|≤λ

∣

∣

∣

∣

φ(s+ it)

φ(s)

∣

∣

∣

∣

= sup
δ<|t|≤λ

∣

∣

∣

∣

∣

∣

wn
∏

j=1

φ̃j(s+ it)

φ̃j(s)

∣

∣

∣

∣

∣

∣

· 1 (236)

≤ cwn

2 (237)

= o(n−1/2), (238)

where (236) follows since
φ̃j(s+it)

φ̃j(s)
is a characteristic function

of a non-lattice random variable [45], (237) follows from

(235), and (238) follows from condition (D) and c2 < 1. This

verifies condition (NL) of Theorem 7. Applying Theorem 7 in

a way that is similar to (225) completes the proof.

VI. PROOF OF THEOREM 5

We begin by presenting the preliminary definitions of the

subsets of an n-dimensional sphere. A centered, unit sphere

embedded in Rn (the manifold dimension is n− 1) is defined

as

S
n−1 , {x ∈ R

n : ‖x‖ = 1}. (239)

A centered, unit-radius spherical cap embedded in Rn is

defined as

cap(x, a) , {y ∈ R
n : 〈x,y〉 ≥ a, ‖y‖2 = 1}, (240)

where x ∈ S
n−1 is the center point of the cap, and a ∈ [−1, 1]

defines the size of the cap, which is equal to the cosine of

the half-angle of the cap. For example, cap(x,−1) = Sn−1

and cap(x, 0) is a half-sphere. We use Area(·) to denote the

surface area of an (n− 1)-dimensional manifold embedded in

Rn. For example, the surface area of a unit sphere is

Area(Sn−1) =
2π

n
2

Γ(n2 )
, (241)

where Γ(·) denotes the Gamma function. Below, we use X̂ ,
X

‖X‖2
to denote the projection of X onto Sn−1.

A. Shannon’s Random Coding Bound

Shannon’s random coding bound from [11] can viewed as

a relaxation of the RCU bound (144), but the relaxation is

different than the one in (145). We generate M indepen-

dent codewords uniformly distributed on the power sphere√
nPSn−1. Since all codewords lie on the power sphere and

since the maximum likelihood decoding rule is equal to the

minimum-distance decoder for the Gaussian channel, (144) is

equivalent to

ǫ ≤ P

[

M
⋃

m=2

{〈X̂(m), Ŷ〉 ≥ 〈X̂(1), Ŷ〉}|W = 1

]

. (242)

We bound the right-hand side of (242) by

P

[

〈X̂, Ŷ〉 < a
]

+MP

[

〈X̂, Ŷ〉 ≥ 〈X̂, Ŷ〉 ≥ a
]

(243)

for some a ∈ [−1, 1] to be determined later. Here, X is uni-

formly distributed on
√
nPSn−1, Y = X+ Z, Z ∼ N (0, In)

and is independent of X, and X is distributed identically to

X and is independent of X and Y. The bound in (243) is

exactly equal to [11, eq. (19)] and [12, eq. (61)]. Both of [11]

and [12] set the threshold a to satisfy

P

[

〈X̂, Ŷ〉 ≥ a
]

=
1

M
(244)

to analyze the bound in the LD regime. We here set a slightly

differently for the CLT regime, namely, as

P

[

〈X̂, Ŷ〉 < a
]

= ǫ̃ = ǫ− 1
√

2πnV (P )
exp

{

−Q−1(ǫ)2

2

}

,

(245)

which is the same choice that we make in (148).

Using the same steps as [11, eq. (16)-(17)] and [12, Ap-

pendix G], we express the probability (245) in terms of a CDF

of a noncentral t-distribution with noncentrality parameter√
nP and n− 1 degrees of freedom as6

P

[

〈X̂, Ŷ〉 < a
]

= P

[

ρ <
√
n− 1

a√
1− a2

]

, (246)

where ρ ∼ noncentral−t(n− 1,
√
nP ), which is defined as

A1 +
√
nP

√

1
n−1

∑n
i=2 A

2
i

, (247)

where A1, . . . , An are i.i.d. N (0, 1).

Due to spherical symmetry, 〈X̂, Ŷ〉 is independent of

〈X̂, Ŷ〉, and from [11, Sec. IV],

P

[

〈X̂, Ŷ〉 ≥ b
]

=
Area(cap(x0, b))

Area(Sn−1)
for b ∈ (−1, 1),

(248)

where x0 is any point on the unit-sphere. Shannon proves the

following asymptotic expansion of (248)

vn(b) ,
1

n
log

Area(cap(x0, b))

Area(Sn−1)
(249)

=
1

2
log(1 − b2)

− 1

2n
logn− 1

2n
log(2πb2(1 − b2)) +O

(

1

n2

)

.

(250)

To find the value of a in (245) as a function of ǫ, we first

derive a Cornish-Fisher expansion of the random variable ρ.

Fisher and Cornish [41] extend the Cornish-Fisher expansion

6To see this, set X to (
√
nP, 0, . . . , 0) and use spherical symmetry.
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of the random variables with known cumulants that do not

need to be sums of independent random variables; they give

the expansions for t and chi-squared distributions as examples.

Van Eeden [49] uses the same technique for the noncentral t-
distribution, where the noncentrality parameter is fixed and

the number of degrees of freedom approaches infinity. In our

application, ρ has a noncentrality parameter
√
nP growing to

infinity.

To extend [49] to the case where the noncentrality parameter

also grows with n, we realize that a sufficient condition

for the expansion in [41] to be valid is that the random

variable is continuous and its first s + 1 cumulants satisfy

κj = O
(

1

n
j
2
−1

)

, j ≤ s + 1, which holds in our application

(see (253)–(255)). Therefore, the expansion in [49] extends to

the case with a noncentrality parameter
√
nP with the change

of corresponding cumulant expansions.

The version that we are interested in is studied in a recent

paper [50, Th. 6.2], where an asymptotic expansion of the tail

probability of the noncentral t-distribution with noncentrality

parameter
√
nP is provided. Inverting that result using the

Lagrange inversion theorem also verifies the following result.

From [41], [44], [49], the quantile t of ρ at the value ǫ̃
admits the expansion

ǫ̃ = P [ρ < t] (251)

t = κ1 −
√
κ2

(

Q−1(ǫ̃)− Sk

6
(Q−1(ǫ̃)2 − 1)

)

+O

(

1

n

)

,

(252)

where κ1 = E [ρ], κ2 = Var [ρ], and Sk =
E[(ρ−κ1)

3]
κ
3/2
2

is the

skewness.

From the moments of the noncentral t-distribution [51]

and Taylor series expansions, we calculate the asymptotic

expansions for κ1, κ2, and Sk as

κ1 =
√
nP +

3

4

√

P

n
+O

(

n−3/2
)

(253)

κ2 =

(

1 +
P

2

)

+
2 + 19P

8

n
+O

(

n−3/2
)

(254)

Sk =
12

√
P + 5P 3/2

√
2n (2 + P )3/2

+O
(

n−3/2
)

(255)

and check that the fourth cumulant satisfies κ4 = O(n−1).
Applying the Taylor series expansion to Q−1(ǫ̃), we get

Q−1(ǫ̃) = Q−1(ǫ) +
1

√

nV (P )
+O

(

1

n

)

. (256)

Juxtaposing (246) and (251), we note

a =

t√
n−1

√

1 + t2

n−1

. (257)

Substituting (253)–(256) into (252), and the latter into (257),

we get

a =

√
P√

1 + P
− 1√

n

√
2 + PQ−1(ǫ)√
2(1 + P )3/2

+
1

n

18
√
P + 28P 3/2 + 10P 5/2

12(1 + P )5/2(2 + P )

− Q−1(ǫ)2

n

24
√
P + 19P 3/2 + 4P 5/2

12(1 + P )5/2(2 + P )

− 1

n

√
2 + P√

2(1 + P )3/2
√

V (P )
. (258)

It only remains to find the asymptotic expansion of the prob-

ability P

[

〈X̂, Ŷ〉 ≥ 〈X̂, Ŷ〉 ≥ a
]

. Note that this probability is

in the LD regime. Using the analysis in [12, Sec. V-B], we

find the density of 〈X̂, Ŷ〉 as

f〈X̂,Ŷ〉(a) = exp{nun(a)} (259)

un(a) = u0(a) +
logn

2n
− u1(a)

2n
+O(n−2) (260)

u0(a) =
1

2
log(1− a2)− 2α2 + (αa)2 + αa

√

1 + (αa)2

+ log(αa+
√

1 + (αa)2) (261)

u1(a) = log(1 + (αa)2 + αa
√

1 + (αa)2)

+ 3 log(1 − a2) + log(2π), (262)

where α ,
√

P
4 .

In [12], the asymptotic expansion to the probability

P

[

〈X̂, Ŷ〉 ≥ 〈X̂, Ŷ〉 ≥ a
]

is derived using the Laplace inte-

gration method as

P

[

〈X̂, Ŷ〉 ≥ 〈X̂, Ŷ〉 ≥ a
]

=

∫ 1

a

f〈X̂,Ŷ〉(b)
Area(cap(x0, b))

Area(Sn−1)
db (263)

=

∫ 1

a

exp{ngn(b)}db (264)

= exp{ngn(a)}
(

1

−ng′n(a)
+O(n−2)

)

, (265)

where gn(b) = un(b) + vn(b) and g′n(a) is the derivative of

gn(·) evaluated at a.

Finally, equating the second term in (243) to
1√

2πnV (P )
exp

{

−Q−1(ǫ)2

2

}

, giving

M exp{ngn(a)}
1

−ng′n(a)
=

1
√

2πnV (P )
exp

{

−Q−1(ǫ)2

2

}

,

(266)

and using (258)–(262) along with several Taylor series expan-

sions, we complete the proof for the lower bound (93).

B. Vazquez-Vilar’s Converse

We here analyze the meta-converse bound in (98) in the

CLT regime. The arguments of the βα function in (98) satisfy

the conditions of [19, Th. 18]. Let PY = N (
√
P , 1), Q

(δn)
Y =

N (0, 1 + P + δn), and Z = log dPY

dQ
(δn)
Y

(Y ), where Y ∼ PY .

We compute

D(P, δn) , E [Z] = C(P + δn)−
δn

2(1 + P + δn)
(267)

V (P, δn) , Var [Z] =
P 2 + 2Pδn + 2P + δ2n

2(1 + P + δn)2
(268)
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µ3(P, δn) , E
[

(Z − E [Z])3
]

= −P 2(P + 3)

(1 + P )3
+O(δn)

(269)

S(P, δn) ,
µ3(P, δn)

V (P, δn)3/2
. (270)

Note that D(P, 0) = C(P ) and V (P, 0) = V (P ). Putting

(267)–(270) in [19, Th. 18] gives

F (δn) , − logβ1−ǫ(P
⊗n
Y , (Q

(δn)
Y )⊗n) (271)

= nD(P, δn)−
√

V (P, δn)Q
−1(ǫ) +

1

2
logn

+

(

S(P, δn)
√

V (P, δn)

6

)

(

Q−1(ǫ)2 − 1
)

+
1

2
Q−1(ǫ)2 +

1

2
log(2πV (P, δn)) + o(1). (272)

Next, we take the Taylor series expansion of (272) around

δn = 0 and get

F (δn) = nC(P )−
√

nV (P )Q−1(ǫ) +
1

2
logn

+
n

2
δ2n

1

2(1 + P )2
+
√
nδn

√
PQ−1(ǫ)

(1 + P )2
√

2(P + 2)

+

(

− P (P + 3)

3(1 + P )(2 + P )

)

(

Q−1(ǫ)2 − 1
)

+
1

2
Q−1(ǫ)2 +

1

2
log(2πV (P )) + o(1) +O(δn). (273)

Setting ∂F
∂δn

= 0 shows that the δ∗n that minimizes F (δn) is

given by

δ∗n = −Q−1(ǫ)√
n

√

2P

P + 2
. (274)

Evaluating F (δ∗n) completes the proof of (94).

C. Shannon’s Cone-Packing Converse

In [11, eq. (15)], Shannon derives a converse bound for the

Gaussian channel with an equal-power constraint using a cone-

packing idea, which is equal to Polyanskiy’s later minimax

bound [4, Th. 28]. Shannon’s bound is still the tightest known

bound for any error probability. We here analyze [11, eq. (15)]

in the CLT regime.

Shannon’s cone-packing converse for the equal-power case

is given by

ǫ ≥ P

[

〈X̂, Ŷ〉 < a∗
]

, (275)

where a∗ satisfies

1

M
=

Area(cap(x0, a
∗))

Area(Sn−1)
. (276)

To evaluate (275), we express a∗ in terms of ǫ using the

Cornish-Fisher expansion in (252). Then, we plug the value

of a∗ into (276) and write the right-hand side of (276) using

the asymptotic expansion in (250). After several Taylor series

expansions, combining (275) and (276) yields the bound on

the right-hand side of (94) for the equal-power constraint

with S(P ) unchanged and B(P ) replaced with B(P ) + 1.

Combining this converse with [13, eq. (23)], which is a

refinement of (100), we get a converse bound for the maximal-

power constraint with S(P ) in (94) unchanged and B(P )
replaced with B(P ) + 1 + C(P )− P

2(1+P ) .

VII. CONCLUSION

This paper investigates the third-order characteristic of

nonsingular DMCs, the Gaussian channel with a maximal-

power constraint, and binary hypothesis tests, defining a new

term, the channel skewness for this purpose. Since the channel

skewness is multiplied by Q−1(ǫ)2 in the asymptotic expan-

sion of the logarithm of the maximum achievable message

set size, including the channel skewness term in the approx-

imation is particularly important to accurately approximate

non-asymptotic bounds in the small-ǫ regime. In most of the

paper (except the Gaussian channel extension), we derive tight

bounds on the non-Gaussianity (4) in the MD regime. We show

in Theorems 1–2 that Moulin’s CLT approximations in (6)–

(7) up to the skewness terms remain valid when the constant

ǫ is replaced by an SMD sequence ǫn (12). For a BSC(0.11)

and most pairs (n, ǫ) pairs satisfying ǫ ∈ [10−10, 10−1] and

n ∈ [100, 500], we observe that our skewness approximation

in Theorems 1-2 is more accurate than the CLT approximation

from [4] and the state-of-the-art LD approximations from [9],

[10]. While the prefactor in those LD approximations requires

solution of a different optimization problem for each (n, ǫ)
pair, our skewness approximations are easily computable, and

the skewness term informs us about the accuracy of the CLT

approximation for a particular channel. For Cover–Thomas-

symmetric channels, our bounds determine the channel skew-

ness S exactly; in Theorem 3, we refine Theorems 1–2 by

computing the term that is one order higher than the channel

skewness.

By analyzing Shannon’s random coding bound in [11]

and Vazquez-Vilar’s meta-converse bound in [13] in the CLT

regime, we exactly compute the channel skewness for the

Gaussian channel with a maximal-power constraint. Theo-

rem 4 implies that the converse bound generalizes to SMD

sequences. We leave to future work the MD analysis of the

achievability bound for the Gaussian channel, which calls

for new tools for approximating the probabilities of sums of

dependent random variables.

Our techniques also apply to BHT in the MD regime,

where the third- and fourth-order terms in the type-II error

probability exponent have forms similar to the third- and

fourth-order terms in the expansion of the logarithm of the

maximum achievable message set size for Cover–Thomas-

symmetric channels. For example, the skewness of the log-

likelihood ratio in BHT plays the role of information skewness

in channel coding. Using our new MD approximations to

BHT, several information-theoretic results that rely on BHT

asymptotics such as [29], [31]–[33] can be extended to the

MD regime.

The asymptotic expansions in (130) and (134) for the tail

probability of the d-dimensional Gaussian-like random vectors

(Theorems 7 and 8, respectively) are quite useful and may

find many applications within and beyond information theory.

For example, together with Theorem 6, one can prove an MD
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version of the asymptotics of the rate-distortion function in

[31]. A lossless source coding asymptotics result is already

proven in [26] by applying Theorem 6, which was one of the

motivations for the analysis in the current paper. Theorems 7–

8 can also be used to refine the asymptotic expansions for

several network information theory problems, including the

characterization of the performance of the multiple access

channel; for these problems in particular, the challenging

task for the extension to the MD regime is to prove the d-

dimensional version of Theorem 6. As Theorems 7–8 apply

to Gaussian-like distributions that are not necessarily the

sum of independent random vectors, they could allow the

refinements of the performance of constant-composition codes

and universal codes (e.g., the maximum empirical mutual

information decoder) in channel coding.

APPENDIX A

PROOF OF LEMMA 1

For y = O(1), Lemma 1 states that Fn(−x) =

Q(x)
(

1 +O
(

1√
n

))

. By the Taylor series expansion of Q(y),

we solve

x = y +O

(

1√
n

)

, (277)

which confirms the statement of the lemma for finite y.

Next, we focus on the cases y → ∞ or y → −∞ with

y ∈ o(
√
n). We here prove the case where y → ∞. The case

y → −∞ follows similarly using (116). From (117), we have

Fn(−x) = Q(x) exp

{

− a0
x3

√
n
+ a1

x4

n

−O

(

x5

n3/2

)

+O

(

x√
n

)}

. (278)

Let x = y+δ where δ/y → 0. Substituting Fn(−x) = Q(y)
into (278), we get

Q(y + δ)

Q(y)

= exp

{

a0
x3

√
n
− a1

x4

n
+O

(

y5

n3/2

)

+O

(

y√
n

)}

. (279)

As y → ∞, we have the asymptotic expansion [52, eq.

26.2.12]

Q(y) =
1√
2π

exp

{

−y2

2

}

1

y

(

1−O

(

1

y2

))

. (280)

Substituting (280) into the left-hand side of (279) and taking

the logarithm of both sides of (279), we get

−δy − δ2

2
− δ

y
+O

(

δ2

y2

)

= a0
y3√
n
+ a0

3y2δ√
n

+ a0
3yδ2√

n
+ a0

δ3√
n
− a1

y4

n

+O

(

y5

n3/2

)

+O

(

y3δ

n

)

+O

(

y√
n

)

. (281)

Equating the coefficients of y3

√
n

and y4

n of both sides of (281),

we get

b0 = a0 (282)

b1 =
5

2
a20 + a1, (283)

which completes the proof.

APPENDIX B

PROOF OF THEOREM 8

First, for lattice random vectors, we prove two auxiliary

results that are similar to those in [37], [45].

Lemma 8: Let Yn ∈ R
d be a lattice random vector taking

values in the d-dimensional lattice Πd
j=1{khn,j : k ∈ Z},

where hn,j > 0 is the span in coordinate j. Assume that

hn,j → 0 for all j ∈ [d] as n → ∞. Let bn be a sequence

satisfying 0 < lim infn→∞ bnhn,j < ∞ for all j ∈ [d].
Suppose that Yn converges in distribution to a random vector

Y with a well-defined probability distribution function fY
satisfying

sup
n≥1,y∈Rd

1
∏d

j=1 hn,j

P [Yn = y] ≤ M (284)

for some M < ∞, and if yn is in the range of Yn and yn

converges to y, then

1
∏d

j=1 hn,j

P [Yn = yn] → fY(y). (285)

Then, as n → ∞
d
∏

j=1

1− exp{−bnhn,j}
hn,j

E



exp







−bn

d
∑

j=1

Yn,j







1{Yn ≥ 0}





= fY(0)(1 + o(1)). (286)

Proof of Lemma 8: The proof extends [45, Th. 2.10] to the

multidimensional scenario. We use arguments similar to those

in [45, Th. 2.10]. Let

In , E



exp







−bn

d
∑

j=1

Yn,j







1{Yn ≥ 0}



 (287)

=
∞
∑

k1=0

· · ·
∞
∑

kd=0

exp







−bn

d
∑

j=1

kjhn,j







P [Yn = (k1hn,1, . . . , kdhn,d)] . (288)

Fix some integer N > 0. We bound In as

In ≥
N−1
∑

k1=0

· · ·
N−1
∑

kd=0

exp







−bn

d
∑

j=1

kjhn,j







P [Yn = (k1hn,1, . . . , kdhn,d)] . (289)

Using the assumption in (285), we get

lim inf
n





d
∏

j=1

1− exp{−bnhn,j}
hn,j



 In

≥ fY(0) lim inf
n

d
∏

j=1

(1− exp{−Nbnhn,j}). (290)
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Similarly, using assumption (284) from the same statement of

the lemma, we bound In as

In ≤
N−1
∑

k1=0

· · ·
N−1
∑

kd=0

exp







−bn

d
∑

j=1

kjhn,j







P [Yn = (k1hn,1, . . . , kdhn,d)] (291)

+M
∏

j = 1dhn,j

∞
∑

k=N

exp{−kbnhn,j}, (292)

giving

lim sup
n





d
∏

j=1

1− exp{−bnhn,j}
hn,j



 In

≤ fY(0) +M lim sup
n

M

d
∏

j=1

exp{−Nbnhn,j}. (293)

Letting N → ∞ and using the fact that 0 < lim infn bnhn,j <
∞ for all j, we conclude that

lim
n→∞





d
∏

j=1

1− exp{−bnhn,j}
hn,j



 In = fY(0). (294)

Lemma 9: Let Yn be a lattice random vector as defined in

Lemma 8. Let Yn converge in distribution to Y. Let φn(·)
and φ(·) be the MGF of Yn and Y, respectively. Assume that

there exists an integrable function f∗ such that

sup
n

|φn(it)|1{‖t‖∞ ≤ βn} ≤ f∗(t) (295)

for each t ∈ Rd, and

sup
βn,j<tj≤π/hn,j : j∈d

|φn(it)| = o





d
∏

j=1

hn,j



 (296)

for some βn,j → ∞ for all j ∈ [d]. Then, the conditions in

(284)–(285) hold for Yn and Y.

Proof of Lemma 9: The proof follows steps identical to the

proof of [45, Th. 2.9], where the inversion formula for the one-

dimensional case is replaced by the one for the d-dimensional

case.

We are now equipped to complete the proof of Theorem 8.

Using the identity in [37, eq. (3.6)], we get

P [Sn ≥ nan] = exp{−nΛn(an)}

E



exp







−√
n

d
∑

j=1

Yn,j1{Yn ≥ 0}









 , (297)

where Yn = (Yn,1, . . . , Yn,d), Yn = Dn
S∗

n−nan√
n

, Dn is the

diagonal matrix with the diagonal entries sn,1, . . . , sn,d, and

S∗
n is the tilted version of Sn, defined as

dFS∗
n
(y) =

exp{y⊤sn}
φn(sn)

dFSn(y) ∀y ∈ R
d. (298)

It follows that Yn is also lattice with a span vector
1√
n
(sn,1hn,1, . . . , sn,dhn,d). From [37, Lemma 3.1] and Con-

ditions (S) and (ND) in Theorem 7, it follows that Yn

converges to Y ∼ N (0,Dn∇2κn(sn)Dn) in distribution.

Therefore, the density of Y satisfies

fY(0) =
1

(2π)d/2
1

∏d
j=1 sn,j

√

det(∇2κn(sn))
. (299)

Applying Lemma 8 with fY(0) from (299), bn =
√
n, and

hn,j replaced with 1√
n
sn,jhn,j , we obtain (134).

To complete the proof, it only remains to verify the condi-

tions of Lemma 8. By Lemma 9, (295)–(296) are sufficient.

The condition in (295) holds with βn =
√
nδ for some

δ > 0 by [37, Lemma 3.1] and Conditions (S) and (ND).

From [37, eq. (3.8) and (3.21)], we have

|φ(Yn)(it)| ≤
∣

∣

∣

∣

φn(sn + iDnt/
√
n)

φn(sn)

∣

∣

∣

∣

, (300)

where φn denotes the MGF of Sn. Rewriting Condition (L)

implies that (300) is bounded by o( 1
nd/2 ) for t such that√

nδj < |tj | ≤ π
√
n

sn,jhn,j
. Since the span of Yn scales as

O
(

1√
n

)

, the o
(

1
nd/2

)

bound verifies (296), which completes

the proof.

APPENDIX C

PROOF OF (161)

From (142) and (154), we get an → (I(PX), 0) as n → ∞.

To evaluate the gradient and the Hessian of Λ(an), we start

from the equation in condition (ND)

∇κ(sn) = an. (301)

Viewing an as a vector-valued function of sn and differenti-

ating both sides of (301) with respect to sn, we get

Jsn(an) = ∇2κ(sn), (302)

where Jsn(an) ,

[

∂an,1

∂sn,1

∂an,1

∂sn,2
∂an,2

∂sn,1

∂an,2

∂sn,2

]

is the Jacobian of an with

respect to sn.

Differentiating the equation Λ(an) = 〈sn,∇κ(sn)〉−κ(sn)
with respect to sn, we get a 2-dimensional row vector

Jsn(Λ(an)) = s⊤n∇2κ(sn). (303)

Applying the function inversion theorem and using (302), we

reach

Jan(Λ(an)) = Jsn(Λ(an))Jan(sn) (304)

= s⊤n∇2κ(sn)(∇2κ)−1(sn) (305)

= s⊤n , (306)

equivalently

∇Λ(an) = sn. (307)

Differentiating (307) with respect to an, we get

∇2Λ(an) = ∇(∇Λ(an)) (308)

= Jan(sn) (309)

= (∇2κ)−1(sn). (310)
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We would like to obtain the Taylor series expansion of Λ(·)
around a = (I(PX), 0). By direct computation, we get

Λ(a) = I(PX) (311)

∇Λ(a) = (1, 1) (312)

∇κ((1, 1)) = a, (313)

giving sn → s , (1, 1), which verifies condition (ND). Define

T , (T1, T2) (314)

T1 , log
PY |X(Y |X)

PY (Y )
(315)

T2 , log
PY |X(Y |X)

PY |X(Y |X)
, (316)

where PX,X,Y (x, x, y) = PX(x)PX(x)PY |X(y|x). We have

∇2κ(s) = Cov(T̃)−1, (317)

where T̃ is distributed according to the tilted distribution

PT̃ = exp{〈s,T〉}PT =
PY |X(Y |X)

PY (Y )
PT, (318)

and PT denotes the distribution of T. We compute the inverse

of the covariance matrix of T̃ as

Cov(T̃)−1 =

[

2
1+η(PX )

1
1+η(PX )

1
1+η(PX )

1
1−η(PX )2

]

1

Vu(PX)
. (319)

From (311), (312), and (319), we get

Λ(an) = I(PX) + (an,1 − I(PX))

+
1

2
(an,1 − I(PX))2Cov(T̃)−1

1,1 +O(|an,1 − I(PX)|3)
(320)

= an,1 +
1

n

Q−1(ǫn)
2

1 + η(PX)
+O

(

Q−1(ǫn)
3

n3/2

)

+O

(

1

n

)

.

(321)

APPENDIX D

SOLUTION OF (65)

We solve the convex optimization problem in (65) by

writing the Lagrangian

L(h, λ) = h⊤g− 1

2
h⊤JX ∗h− λh⊤1. (322)

The Karush–Kuhn–Tucker condition ∇L(h, λ) = 0 gives

JX ∗h = g− λ1 (323)

h⊤1 = 0, (324)

where J is given in (51). Since h belongs to row(JX ∗)
by assumption, the Lagrangian in (322) depends on g only

through its projection onto row(JX ∗). Therefore, without loss

of generality, assume that g ∈ row(JX ∗).
The equation (323) has a solution since both g and 1 are

in the row space of JX ∗ . Solving the system of equations in

(323) and (324), we get the dual variable

λ∗ =
1⊤J+X ∗g

1⊤J+X ∗1
. (325)

Plugging (325) in (324), we get

h∗ = J̃g (326)

= −Q−1(ǫn)

2
√

nVǫn

J̃v(P ∗
X), (327)

where J̃ and v are given in (56) and (52). An equivalent

characterization of (327) in terms of the eigenvalue decom-

position of JX ∗ is given in [19, Lemma 1 (v)]. The value of

the supremum in (65) is 1
2g

⊤J̃g = A0(P
∗
X)Q−1(ǫn)

2, where

A0(·) is given in (54).

APPENDIX E

PROOF OF LEMMA 3

Define

Dx,QY , D(PY |X‖QY |P̂x) (328)

Vx,QY , V (PY |X‖QY |P̂x) (329)

Tx,QY , T (PY |X‖QY |P̂x). (330)

(i) First consider the case Vx,QY = 0. In this case, the ran-

dom variable log
PY|X=x(Y)

Qn
Y (Y) =

∑n
i=1 log

PY |X(Yi|xi)

QY (Yi)
, where

Y ∼ PY|X=x, is almost surely equal to nDx,QY , and the

inequality in (173) trivially holds for any SMD sequence ǫn.

Next, consider the case Vx,QY > 0. The random variable
∑n

i=1 log
PY |X (Yi|xi)

QY (Yi)
is a sum of n independent, but not

necessarily identically distributed random variables. Since

QY (y) ≥ a > 0 for all y ∈ Y , it follows for each x ∈ X
that log

PY |X (Y |x)
QY (Y ) is a bounded random variable, hence all of

its cumulants are finite.

Notice that the distribution of the random variable
1
n

∑n
i=1 log

PY |X(Yi|xi)

QY (Yi)
depends on x only through

its type P̂x. Let κk(P̂x, QY ) be k-th cumulant of
1
n

∑n
i=1 log

PY |X(Yi|xi)

QY (Yi)
, and let κk(x,QY ) be the k-th

cumulant of log
PY |X (Y |x)
QY (Y ) . Then, we have

κk(P̂x, QY ) =
∑

x∈X
P̂x(x)κk(x,QY ) (331)

Hence, there exist constants ck such that

max
P̂x∈Pn

QY ∈Q(a)

∣

∣

∣κk(P̂x, QY )
∣

∣

∣ ≤ ck, k ≥ 1. (332)

In particular,

κ1(P̂x, QY ) =
1

n
E

[

n
∑

i=1

log
PY |X(Yi|xi)

QY (Yi)

]

= Dx,QY (333)

κ2(P̂x, QY ) =
1

n
Var

[

n
∑

i=1

log
PY |X(Yi|xi)

QY (Yi)

]

= Vx,QY

(334)

κ3(P̂x, QY ) = E





(

1

n

n
∑

i=1

log
PY |X(Yi|xi)

QY (Yi)
−Dx

)3




= Tx,QY . (335)

Note that Cramér’s condition (113) in Theorem 6 is satisfied

since log
PY |X(Y |x)
QY (Y ) is a bounded random variable for all x ∈
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X , and (115) is satisfied since Vx,QY > 0. Applying Lemma 1

by setting Xi to log
PY |X(Yi|xi)

QY (Yi)
gives (173). The universality

of the constants in (173) follows from the uniform bound on

the cumulants in (332).

(ii) Similar to part (i), the case where V (P̂x) = 0 trivially

follows. Suppose that V (P̂x) > 0. Let κi(P̂x) be the i-th

cumulant of 1
n

∑n
i=1 log

PY |X(Yi|xi)

Q̂x(Yi)
, which is a sum of n

independent random variables. We compute

κ1(P̂x) = D(PY |X‖Q̂x|P̂x) = I(P̂x) (336)

κ2(P̂x) = V (PY |X‖Q̂x|P̂x) = V (P̂x) (337)

κ3(P̂x) = T (PY |X‖Q̂x|P̂x) = T (P̂x). (338)

Next, following the steps in the proof of [4, Lemma 46]

and using the notation ‖Z‖k = E
[

|Z|k
]1/k

, we get for every

PX ∈ P
∥

∥

∥

∥

log
PY |X(Y |X)

PY (Y )
−D(PY |X‖PY |PX)

∥

∥

∥

∥

k

(339)

≤
∥

∥

∥

∥

log
1

PY |X(Y |X)

∥

∥

∥

∥

k

+

∥

∥

∥

∥

log
1

PY (Y )

∥

∥

∥

∥

k

+ I(PX) (340)

≤ 2|Y|
(

k

e

)

+ log |Y| < ∞. (341)

Since the k-th cumulant is a polynomial function of the first

k central moments, (341) implies that there exist constants dk
such that

max
P̂x∈Pn

|κk(P̂x)| ≤ dk, k ≥ 1. (342)

Applying Lemma 1 by setting Xi to log
PY |X(Yi|xi)

Q̂x(Yi)
gives

(174). The universality of the constants in (174) follows from

the uniform bound on the cumulants in (342).

APPENDIX F

PROOF OF LEMMA 7

The proof follows the proof of [19, Lemma 9 (iii)] closely.

The difference is that we consider SMD sequences ǫn, which

means that Q−1(ǫn) is not necessarily O(1). Fix any sequence

of distributions PX,n /∈ P∗(ρn) such that PX,n → P ′
X ∈ P .

Define

P0,n , argmin
P̃X∈P†

∥

∥

∥PX,n − P̃X

∥

∥

∥

2
(343)

P1,n , argmin
P̃X∈P∗

∥

∥

∥PX,n − P̃X

∥

∥

∥

2
(344)

P2,n , argmin
P̃X∈P∗

∥

∥

∥P0,n − P̃X

∥

∥

∥

2
(345)

δn , ‖PX,n − P0,n‖∞ (346)

νn , ‖PX,n − P1,n‖∞ . (347)

and

G(PX,n) ,

{

−
√

V (PX,n) if ǫn ≤ 1
2

√

V (PX,n) otherwise
(348)

L(PX,n) ,
S(PX,n)

√

V (PX,n)

6
. (349)

Note that

νn ≥ ρn (350)

ξǫn(PX,n) , ξǫn(PX,n, PX,n)

= nI(PX,n) +
√
nG(PX,n)|Q−1(ǫn)|

+ L(PX,n)Q
−1(ǫn)

2. (351)

We analyze ξǫn(PX,n) according to cases based on the value

of νn.

Case 1: νn ≥ a for some constant a > 0, equivalently,

P ′
X /∈ P∗. There are two sub-cases.

Case 1.a: δn ≥ b for some constant b > 0, equivalently,

P ′
X /∈ P†. Then, by the continuity of I(·), I(PX) ≤ C′ for

some C′ < C. Hence,

ξǫn(PX) ≤ nC′ + o(n), (352)

and the claim in (191) holds.

Case 1.b: δn → 0 and νn ≥ a, equivalently, P ′
X ∈ P†

but P ′
X /∈ P∗. In this case, by the continuity of V (·), there

exists some V ′ such that V ′ > Vǫn if ǫn < 1
2 , and V ′ < Vǫn

if ǫn > 1
2 .7 Hence,

ξǫn(PX) ≤ nC −
√
nV ′Q−1(ǫn) + o(

√
nQ−1(ǫn)), (353)

and the claim holds.

Case 2: νn → 0, equivalently P ′
X ∈ P∗. There are two

sub-cases depending on whether P0,n ∈ P∗.

Case 2.a: P0,n ∈ P∗, which implies δn = νn. By the

quadratic decay property of mutual information from [47,

Th. 1] and the fact that ‖x‖2 ≥ ‖x‖∞, there exists a constant

α > 0 such that

I(PX,n) ≤ C − αν2n. (354)

The property in (354) is claimed in the proof of [4, Th. 48].

In [47, Th. 1], Cao and Tomamichel close a gap in the proof

of (354). From the Taylor series expansion of G(PX,n) and

L(PX,n) around P0,n, we get

G(PX,n) ≤ G(P0,n) + ‖∇G(P0,n)‖1 νn + o(νn) (355)

L(PX,n) = L(P0,n) + o(νn). (356)

Then,

ξǫn(PX,n) ≤ nC −
√

nVǫnQ
−1(ǫn) (357)

− nαν2n +
√
n ‖∇G(P0,n)‖1 νn|Q−1(ǫn)|

+ L(P0,n)Q
−1(ǫn)

2 (358)

+ o(
√
nνnQ

−1(ǫn)). (359)

The terms in (358) form a second-order polynomial of νn with

a strictly negative leading coefficient. We fix a constant c1 > 0
to be determined later. Then, there exists a constant c01 > 0

such that for all νn ≥ c01|Q−1(ǫn)|√
n

,

− nαν2n +
√
n ‖∇G(P0,n)‖1 νn|Q−1(ǫn)|

+ L(P0,n)Q
−1(ǫn)

2

≤
(

max
P∗

X∈P∗
(L(P ∗

X) +A0(P
∗
X)−A1(P

∗
X))

)

Q−1(ǫn)
2

7The case ǫn = 1
2

belongs to Case 1.a since P∗ = P† if ǫn = 1
2

.
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− c1
√
nνn|Q−1(ǫn)|, (360)

and the claim holds for c0 ≥ c01.

Case 2.b: P0,n /∈ P∗. The analysis of this sub-case is from

[19, eq. (B.9)–(B.14)]. This sub-case implies that P∗ 6= P†.

Since V (PX) = P⊤
X ṽ for all PX ∈ P†, where ṽ is defined

in (184), the projection of ∇G(P ∗
X) onto ker(JX †) is a vector

g0 6= 0 independent of P ∗
X ∈ P∗. By the extremal property

of P∗, there exists a constant c′ > 0 such that

(P0,n − P2,n)
⊤g0 ≤ −c′ ‖g0‖2 ‖P0,n − P2,n‖2 . (361)

By the triangle inequality,

νn ≤ ‖PX,n − P2,n‖∞ (362)

≤ ‖PX,n − P0,n‖∞ + ‖P0,n − P2,n‖∞ . (363)

Let

λ ,
1

2

c′ ‖g0‖2
c′ ‖g0‖2 +

√

|X |maxP∗
X∈P∗ ‖∇G(P ∗

X)‖2
∈
(

0,
1

2

)

.

(364)

Then, one of the following two statements is true.

1) ‖PX,n − P0,n‖ ≥ λνn: In this case, PX is sufficiently far

away from P†.

2) ‖P0,n − P2,n‖ ≥ (1 − λ)νn ≥ λνn > ‖PX,n − P0,n‖∞:

In this case, PX,n may be arbitrarily close to P†, but it

is sufficiently far away from P∗.

In case 1), by [47, Th. 1],

I(PX,n) ≤ C − αλ2ν2n, (365)

and from the Taylor series expansion

G(PX,n) ≤ G(P1,n) + ‖∇G(P1,n)‖1 νn + o(νn) (366)

L(PX,n) = L(P1,n) + o(1). (367)

Applying the arguments in Case 2.a with (365)–(367), we

conclude that there exists a constant c02 > 0 such that for

νn ≥ c02|Q−1(ǫn)|√
n

, the claim holds for c0 ≥ c02.

In case 2), we expand G(PX,n) as

G(PX,n) = G(P2,n) + (PX,n − P0,n + P0,n

− P2,n)
⊤∇G(P2,n) + o(νn) (368)

≤ G(P2,n) + (P0,n − P2,n)
⊤g0

+ ‖∇G(P2,n)‖2 ‖PX,n − P0,n‖2 + o(νn) (369)

≤ G(P2,n)− (c′ ‖g0‖2 ‖P0,n − P2,n‖2
− ‖∇G(P2,n)‖2 ‖PX,n − P0,n‖2) + o(νn)

(370)

≤ G(P2,n)− νn
(

c′(1− λ) ‖g0‖2
− λ

√

|X | max
P∗

X∈P∗
‖∇G(P ∗

X)‖2
)

+ o(νn) (371)

= G(P2,n)−
c′

2
‖g0‖2 νn + o(νn). (372)

Here, (370) follows from (361). (371) follows since

‖P0,n − P2,n‖2 ≥ ‖P0,n − P2,n‖∞ ≥ (1 − λ)νn and

‖PX,n − P0,n‖2 ≤
√

|X | ‖PX,n − P0,n‖∞, and (372) follows

from (364).

From I(PX,n) ≤ C, L(PX,n) = L(P1,n)+o(1), and (372),

we get

ξǫn(PX,n) ≤ nC −
√

nVǫnQ
−1(ǫn) + L(P1,n)Q

−1(ǫn)
2

−√
nνn

c′

2
‖g0‖2 |Q−1(ǫn)|+ o(

√
nνnQ

−1(ǫn)).

(373)

Since the right-hand side of (373) decays linearly with νn
with the scaling

√
nQ−1(ǫn), there exists a constant c03 > 0

such that for νn ≥ c03|Q−1(ǫn)|√
n

, the claim in (191) holds for

c0 ≥ c03 and some constant c1 satisfying 0 < c1 < c′

2 ‖g0‖2.

By setting c0 = max{c01, c02, c03} and ρn ≥ c0|Q−1(ǫn)|√
n

,

we conclude that (191) holds for all PX.n /∈ P∗(ρn).

APPENDIX G

PROOF OF THEOREM 3

Proof of the achievability: To prove the achievability, we

derive the coefficient of O
(

Q−1(ǫn)
3

√
n

)

in Lemma 2, and

invoke the refined Lemma 2 with PX = P ∗
X . For this purpose,

we need to modify the proof of Lemma 2 at two steps. First,

using Lemma 1, the expansion for tn in (153) is refined as

tn = Q−1(ǫn)−
SkuQ

−1(ǫn)
2

6
√
n

+
3(µ4 − 3V 2)V − 4µ2

3

72V 3

Q−1(ǫn)
3

n

+O

(

Q−1(ǫn)
4

n3/2

)

+O

(

1√
n

)

. (374)

Second, we refine the expansion in (161) by computing the

third-order gradient ∇3Λ(an). Taking the gradient of (310),

we get

∇3Λ(an)i,j,k = −
∑

(a,b,c)∈[2]3

∇3κ(sn)a,b,c(∇2κ)−1(sn)a,i

·(∇2κ)−1(sn)b,j(∇2κ)−1(sn)c,k, (i, j, k) ∈ [2]3. (375)

In the case η(P ∗
X) = 0, the inverse of the Hessian (∇2κ)−1(s)

in (317) becomes

(∇2κ)−1(s) =

[

2 1
1 1

]

1

V
, (376)

and we compute

∇3κ(s)1,1,1 = µ3 (377)

∇3κ(s)1,1,2 = −µ3 (378)

∇3κ(s)1,2,2 = µ3 (379)

∇3κ(s)2,2,2 = 0. (380)

Note that (377)–(380) is sufficient to determine ∇3κ(s) since it

is a symmetric order-3 tensor. From (375)–(380), we compute

∇3Λ(a)1,1,1 = −2µ3

V 3
. (381)

Using (376) and (381), we refine (161) as

Λ(an) = an,1 +
(an,1 − I(P ∗

X))2

V
− 1

6
(an,1 − I(P ∗

X))3
2µ3

V 3

+O(|an,1 − I(P ∗
X)|4) (382)
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= an +
Q−1(ǫn)

2

n
+O

(

Q−1(ǫn)
4

n2

)

+O

(

1

n

)

.

(383)

Following the steps in the proof Lemma 2 and using (374)

and (383) completes the proof.

Proof of the converse: Set Q
(n)
Y = (Q∗

Y )
n, where Q∗

Y

is the equiprobable capacity-achieving output distribution.

Since Cover–Thomas-symmetric channels have rows that are

permutation of each other, we have that β1−ǫn(PY|X=x, Q
(n)
Y )

is independent of x ∈ Xn. By [4, Th. 28], we have

logM∗(n, ǫn) ≤ − log β1−ǫn(PY|X=x, Q
(n)
Y ), (384)

where x = (x0, . . . , x0) for some x0 ∈ X . Applying The-

orem 4 to the right-hand side of (384) completes the proof.
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