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Abstract—This paper studies the third-order characteristic
of nonsingular discrete memoryless channels and the Gaussian
channel with a maximal-power constraint. The third-order term
in our expansions employs a new quantity here called the
channel skewness, which affects the approximation accuracy more
significantly as the error probability decreases. For the Gaus-
sian channel, evaluating Shannon’s 1959 random coding bound
and Vazquez-Vilar’s 2021 meta-converse bound in the central
limit theorem (CLT) regime enables exact computation of the
channel skewness. For discrete memoryless channels, this work
generalizes Moulin’s 2017 bounds on the asymptotic expansion
of the maximum achievable message set size for nonsingular
channels from the CLT regime to include the moderate deviations
(MD) regime, thereby refining Altug and Wagner’s 2014 MD
result. For an example binary symmetric channel and most
practically important (n,¢) pairs, including n € [100, 500] and
€ € [107'°,107'], an approximation up to the channel skewness
is the most accurate among several expansions in the literature. A
derivation of the third-order term in the type-II error exponent
of binary hypothesis testing in the MD regime is also included;
the resulting third-order term is similar to the channel skewness.

Index Terms—Moderate deviations, large deviations, discrete
memoryless channel, Gaussian channel, hypothesis testing, dis-
persion, skewness.

I. INTRODUCTION

The fundamental limit of channel coding is the maxi-
mum achievable message set size M*(n,e) given a channel
Py|x, a blocklength n, and an average error probability e.
Since determining M *(n,€) exactly is difficult for arbitrary
triples (Py|x,n,€), the literature investigating the behavior
of M*(n, €) studies three asymptotic regimes: the central limit
theorem (CLT) regime, where the error probability bound is
kept constant and analyses bound the convergence of rate
to capacity as n grows; the large deviations (LD) regime,
also called the error exponent regime, where the rate is kept
constant and analyses bound the convergence of error proba-
bility to zero as n grows; and the moderate deviations (MD)
regime, where the error probability decays sub-exponentially
to zero, and the rate approaches the capacity more slowly
than O(1/y/n). Provided more resources (in this case the
blocklength), we would typically expect to see improvements
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in both the achievable rate and the error probability, an
effect not captured by asymptotics that fix either rate or error
probability. Emerging applications in ultra-reliable low-latency
communication such as tele-surgery and tactile internet have
delay constraints as small as 1 ms [2], which corresponds
to blocklengths of a few hundreds, and error probability
constraints as small as 1079 The fact that the accuracy
of asymptotic expansions deteriorates at short blocklengths
further motivates interest in refining the asymptotic expansions
of the maximum achievable channel coding rate.

A. Literature Review

Channel coding analyses in the CLT regime fix a target
error probability € € (0,1) and approximate log M*(n,€) as
the blocklength n approaches infinity. Examples of such results
include Strassen’s expansion [3] for discrete memoryless chan-
nels (DMCs) with capacity C, positive e-dispersion V; (defined
in [4, Sec. IV]), and maximal error probability constraint e,
showing

VnV.Q !

Polyanskiy et al. [4] and Hayashi [5] revisit Strassen’s re-
sult, showing that the same asymptotic expansion holds for
the average (over the codebook and channel statistics) error
probability constraint, deriving lower and upper bounds on the
coefficient of the logn term, and extending the result to Gaus-
sian channels with maximal and average power constraints. In
all asymptotic expansions below, the average error probability
criterion is employed.

For channel coding in the LD regime, one fixes a rate
R = @ strictly below the channel capacity and seeks
to characterize the minimum achievable error probability
€*(n, R) as the blocklength n approaches infinity. In this
regime, €*(n, R) decays exponentially with n. For R above
the critical rate, [6, Ch. 5] derives the error exponent F(R),
where

log M*(n,e) = nC — €) + O(logn). (1)

6*(71, R) _ ean(R)+o(n). (2)
Bounds on the o(n) term in (2) appear in [7]-[10]. For the
Gaussian channel with a maximal-power constraint, Shannon
[11] derives LD-regime achievability and converse bounds
with an o(n) term that is tight up to an O(1) gap. Erseghe [12]
gives an alternative proof of these LD approximations using
the Laplace integration method. A recent paper by Vazquez-
Vilar [13] derives refined non-asymptotic converse bounds
for the Gaussian channel under maximal and average power
constraints and analyzes these bounds in the LD regime.
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The CLT and LD asymptotic approximations in (1) and (2),
respectively, become less accurate as the (n, €) pair gets farther
away from the regime that considered in their derivation. For
example, the CLT approximation falls short if € is small since
there is a hidden Q@ ~!(¢)? term inside the O(logn) term, and
Q1 (e) approaches oo as e approaches 0. To better understand
this phenomenon, consider the class of nonsingular channels,
which is the class of DMCs Py |x for which there exist
channel inputs z;,z2 € X and a channel output y € Y for
which Py x (y[z1) > Py|x(ylz2) > 0 and the focus in this
work. Recall that in the CLT regime, the third-order O(logn)
term is equal to = 1ogn + O(1) [4], [14] for all nonsingular
channels. In this work we show that when ¢, decays sub-
exponentially to zero, the third-order term becomes roughly
Tlogn+5Q e, )2 ~ 4 logn+2S10g— where the S term,
Wthh is the channel skewness defined shortly As this equation
makes clear, the O(1) term in the CLT expansion depends
on ¢, through the function @~ !(e,)?, which can dominate
the 1 5 logn term for €, small enough. For example, for ¢,
polynomlally decaying to zero, i.e., €, = ;= for some r > 0,
the coefficient % of logn in [4] becomes inaccurate. Further,
if €,, decays more quickly, then this inaccuracy becomes more
extreme. For example, for ¢, = exp{—n'/2}, the second-order
term becomes 2V n3/ 4, and the third-order term becomes
2Sy/n. Similarly, the LD approximation falls short if the
rate R is large since the second-order term o(n) in the error
exponent grows arbitrarily large as the rate approaches the
capacity.

The inability of the CLT and LD regimes to provide accurate
approximations for a wide range of (n,€) pairs and the hope
of deriving more accurate (yet computable) approximations
to the finite blocklength rate motivate the study of the MD
regime, which simultaneously considers low error probabilities
and high achievable rates. For DMCs with positive dispersion
V' and a sequence of sub-exponentially decaying €, values,
Altug and Wagner [15] and Polyanskiy et al. [16] show that

ViVe,Q7Hen) +o(vnQ ™ (en)). (3)

This result implies that the CLT approximation to the max-
imum achievable message set size log M*(n,¢,) ~ nC —
\/WQil(en) as in (1), remains valid in the MD regime,
leaving open the rate of convergence to that bound.

To discuss the accuracy of the CLT approximation (1),
for any given channel, fix an average error probability e and
blocklength n. We define the channel’s non-Gaussianity as

¢(n,€) —/nV.Q™! )

which captures the third-order term in the expansion of
log M*(n, €) around nC.

According to Strassen’s expansion (1), {(n,€) = O(logn).
Subsequent works include several refinements to that result.
The results of [4] imply that the non-Gaussianity of a DMC
with finite input alphabet X and output alphabet ) is bounded
as

log M™*(n,e,) =nC —

£ log M*(n,€) —

0(1) < C(n,e) < (m - —) logn+0(1).  (5)

Further, restricting the class of channels considered enables
further improvements to (5). We next briefly define several
channel characteristics and the corresponding refinements.

Each definition relies on the channel transition probability
kernel [Py |x (y|z)] from z to y, with rows corresponding to
channel inputs and columns corresponding to channel outputs.
See Section II-E for formal definitions. Singular channels are
channels for which all entries in each column of the transition
matrix are 0 or p for some constant p € (0, 1]; nonsingular
channels are channels that do not satisfy this property. While
the binary symmetric channel (BSC) is nonsingular, the binary
erasure channel (BEC) is singular. Gallager-symmetric chan-
nels are channels whose output alphabet can be partitioned
into subsets so that for each subset of the transition probability
kernel that uses inputs as rows and outputs of the subset as
columns has the property that each row (respectively, column)
is a permutation of each other row (respectively, column) [6,
p. 94]. Both the BSC and BEC are Gallager-symmetric. Cover—
Thomas-symmetric channels [17, p. 190] are the channels for
which all rows (and respectively columns) of the transition
probability kernel are permutations of each other; the family
of Cover—-Thomas symmetric channels is a subset of the class
of Gallager-symmetric channels. The BSC is Cover—Thomas-
symmetric; the BEC is not. For Gallager-symmetric, singular
channels, ¢(n,e) = O(1) [8]. For nonsingular channels, the
random coding union (RCU) bound improves the lower bound
in (5) to % logn—+0(1) [18, Cor. 54]. For DMCs with positive
€- dispersion Tomamichel and Tan [14] improve the upper
bound to 3 logn + O(1). A random variable is called lattice
if it takes Values on a lattice with probability 1 and is called
non-lattice otherwise. For nonsingular channels with positive
e-dispersion and non-lattice information density, Moulin [19]
shows!

C(n,e) = "(e)> + B+ o(1)

((n,e) <

where S, S. B, and B are constants that depend on the channel
parameters. It is possible to extend Moulin’s expansions in (6)—
(7) to all DMCs with lattice information densities. To do that,
we should use the continuity-corrected Edgeworth expansion
given in [20, Ch. 3.16] instead of the standard Edgeworth ex-
pansion for non-lattice random variables. We can further refine
the achievability bound in (6) by considering the tie-breaking
strategy from [21]. Specifically, Haim et al. [21, Sec. IV]
argue that if there is a tie between k& messages in the largest
information density, then an equiprobable random decoding
rule among ties succeeds with probability %; analyzing [21,
Th. 1] instead of the RCU bound in the CLT regime would
improve B in (6).

In [4], Polyanskiy et al. consider the Gaussian channel with
a maximal-power constraint P, under which every codeword

logn+SQ~ (6)

(N

)—INJI)—I

5 logn +9Q7H(e)* + B +o(1),

IThere is a sign error in [19, eq. (3.1)-(3.2)], which then propagates through
the rest of the paper. The sign of the terms with Sk(P ) should be positive
rather than negative in both equations. The error in the achievability result
originates in [19, eq. (7.15) and (7.19)], where it is missed that Sk(—X) =
—Sk(X) for any random variable X. The error in the converse result also
stems from the sign error in [19, eq. (6.8)].



has power less than or equal to nP, showing for the CLT
domain that the non-Gaussianity ((n, €, P) is bounded as

O(1) <((n,e, P) < %logn+0(1). (8)
Tan and Tomamichel [22] improve (8) to
1
C(n,e, P) = 51ogn—|—0(1)7 )

which means that in the CLT regime, the non-Gaussianity of
the Gaussian channel is the same as that of nonsingular DMCs
with positive e-dispersion.

The MD result in (3) can be expressed as

((n,en) = o(VNQ ™ (€n))-

Polyanskiy and Verdd [16] show (10) using the MD result
in [23, Th. 3.7.1]. While that MD result is tight enough to
prove several second-order MD asymptotics in information
theory, it is not tight enough to refine the third- and higher-
order terms. Polyanskiy and Verdu also extend (10) to the
Gaussian channel with a maximal power constraint. In [24],
Chubb et al. extend the second-order MD expansion in (10)
to quantum channels. In [25, Th. 2], the current authors derive
an asymptotic expansion of the maximum achievable rate for
variable-length stop-feedback codes, where €, = \/nllom. In
[26, Lemma 3], Sakai et al. derive a third-order asymptotic
expansion for the minimum achievable rate of lossless source
coding, where ¢,, decays polynomially with n; this third-order
expansion can be extended to all MD sequences using the tools
presented here. A second-order MD analysis of lossy source
coding appears in [27].

Since binary hypothesis testing (BHT) is closely related
to several information-theoretic problems and admits a CLT
approximation similar to that of channel coding [4], BHT is
a topic of some interest in this work. Refined asymptotics
for BHT receive significant attention from the information
theory community. If the type-I error probability is a constant
1 —a € (0,1) independent of the number of samples n
(i.e., in the Stein regime), the minimum achievable type-II
error probability S is a function of « and n, and a CLT
approximation to the type-II error exponent, — log 3, appears
in [3, Sec. 2] and [4, Lemma 58]. In [3], Strassen considers
testing P®" against Q®" and identifies the skewness term
in the type-II error exponent. To do this, he relies on the
Edgeworth expansion given in (17), below. In [4, Lemma 58],
Polyanskiy er al. extend Strassen’s result to the case of
independent but not necessarily identical distributions but do
not derive a bound on the skewness term. In [19, Th. 18],
Moulin refines [4, Lemma 58] by deriving the skewness term
in the semistrong non-lattice and lattice cases.> In the LD
(or Chernoff) regime, where both error probabilities decay
exponentially, the type-I and type-II error exponents appear
in, e.g., [17, eq. (11.196)-(11.197)]. A second-order MD
analysis of BHT appears in [28]. In [29, Th. 11], Chen et
al. derive the third-order asymptotic expansion of the type-
IT error probability region in the CLT regime for composite

(10)

2There is a typo in [19, eq. (6.8)]. The sign of the third term in [19, eq.
(6.8)] should be plus rather than minus.

hypothesis testing that considers a single null hypothesis and
k alternative hypotheses. The second-order term in their result
includes an extension of the Q~!(-) function to k-dimensional
Gaussian random vectors.

Casting optimal coding problems in terms of hypothesis
testing elucidates the fundamental limits of coding. In [30,
Th. 5], Shannon et al. use a BHT result to derive lower bounds
on the error probability in channel coding in the LD regime.
Polyanskiy et al. derive a converse result [4, Th. 27] in channel
coding using the minimax of the type-II error probability
of BHT, the f3, function; they call this converse the meta-
converse bound. Kostina and Verdd prove a converse result
[31, Th. 8] for fixed-length lossy compression of stationary
memoryless sources using the [, function. This result is
extended to lossless joint source-channel coding in [32]. For
lossless data compression, Kostina and Verdu give lower and
upper bounds [31, eq. (64)] on the minimum achievable
codebook size in terms of (. For lossless multiple access
source coding, also known as Slepian—Wolf coding, Chen et al.
derive a converse result [29, Th. 19] in terms of the composite
hypothesis testing version of the 3, function. Composite
hypothesis testing is also used in a random access channel
coding scenario to decide whether any transmitter is active
[33]. The works in [4], [29], [31]-[33] derive second- or third-
order asymptotic expansions for their respective problems by
using the asymptotics of the 3, function.

B. Contributions of This Work

The accuracy of Strassen’s CLT approximation (1), giving
¢(n,e) = O(logn), decreases significantly when the block-
length n is small and the error probability e is small. As
discussed earlier, this problem arises because of the hidden
Q~(¢)? term inside the non-Gaussianity (4) [19]. Recall that
Q'(€)* approaches 2log %, which in turn grows without
bound as € — 0. To capture this phenomenon, we define the
channel skewness operationally as
¢(n,e) — 3 logn

Q1P
The channel skewness serves as the third-order fundamental
channel characteristic after channel capacity and dispersion
[4, Sec. IV]. The skewness of the information density (see
(16), below) plays a critical role in characterizing the channel
skewness. Throughout the paper, we use S and S to represent
upper and lower bounds on the channel skewness S. Our
contributions in this paper are summarized as follows.

e« We study nonsingular DMCs with positive dispersion,
showing that the MD-regime lower and upper bounds on
the non-Gaussianity in (6)—(7) hold up to the skewness
term; this result justifies why the skewness approxima-
tions remain accurate even for error probabilities as small
as 10710 and blocklengths as short as n < 500.

o For Cover-Thomas-symmetric channels [17, p. 190] (e.g.,
the BSC), the lower and upper bounds in (6)—(7) match,
and we derive the term that is one order higher than the
channel skewness.

o We compute the channel skewness of the Gaussian chan-
nel with a maximal-power constraint by deriving refined

(1)

A 7. ..
S = lim lim inf
e—0 n—oo



bounds in the CLT regime; the resulting approximations
have an accuracy similar to that of Shannon’s LD approx-
imations from [11].
o We derive tight bounds on the minimum achievable type-
I error probability for BHT in the MD regime; our
bounds yield a fourth-order asymptotic expansion that
includes the third and fourth central moments of the log-
likelihood ratio. The converse in our refined result for
Cover-Thomas-symmetric channels (described in the pre-
vious bullet) is a direct application of this expansion. Our
expansion is also potentially useful in other applications,
such as extending the results from [29], [31]-[34], which
rely on the BHT asymptotics, to the MD regime.
We next detail each of these contributions.
A sequence of error probabilities {e,}72 ; is said to be a
small-to-moderate deviations (SMD) sequence if

1
lim —log — = lim —log

=0. (12
n—oo N €n n—oo M, 1—e€,
Since Q~1(1 — ¢) = —Q~'(¢) and l1m% = 1 [35,
og +

Lemma 5.2], the condition in (12) is equivalent to Q~!(e,,) =
o(v/n). The family of SMD sequences includes all error
probability sequences except for the LD sequences, which
approach O or 1 exponentially quickly. It therefore extends
the family of MD error probability sequences to include, for
example, sequences that sub-exponentially approach 1, e.g.,
L exp{—n*},1-L 1—exp{—n°} withr > Oand s € (0,1)
and sequences in the CLT regime (where €, = ¢ € (0,1) is
a constant independent of n). We show in Theorems 1-2 in
Section III-A, below, that if the channel is nonsingular with
positive dispersion and the error probability sequence {¢,} is
SMD (12), then ((n, Gn) in (10) is bounded as

C(n,en) > logn—i—SQ (Gn
+ O < 3 +0(1 (13)
C(n,en) < logn+SQ (en
Q l(en)
+0 (T) + O( ), (14)

where the constants S and S are the same ones as in (6)—
(7). The bounds (13)—(14) generalize (6)—(7) to non-constant
error probabilities €, at the expense of not bounding the
constant term; (13)—(14) do not require the assumption that
the information density is non-lattice as in [19]. The non-
Gaussianity ((n,e) gets arbitrarily close to O(y/n) as the
decay of €, approaches exponential decay, rivaling the dis-
persion term in (1). Thus, refining the third-order term as we
do in (13)—(14) is especially significant in the MD regime. The
achievability bound (13) arises from analyzing the RCU bound
in [4, Th. 16]; the converse bound (14) uses the non-asymptotic
converse bound in [14, Prop. 6] and the saddlepoint result in
[19, Lemma 14]. For €,, in the MD regime (i.e., (12) holds with
either ¢, — 0 or ¢, — 1), neither the Berry-Esseen theorem
used in [4] nor the refined Edgeworth expansion used in [19]
to treat the constant € case is sharp enough for the precision in

(13)—(14). We replace these tools with the MD bounds found
in [36, Ch. 8]. In our analysis of the RCU bound, we also
refine [4, Lemma 47], which is commonly used in CLT regime
approximations, giving Theorems 7-8.

Since both the Edgeworth expansion and the LD result used
n [19] take distinct forms for lattice and non-lattice random
variables, the constant terms B and B in (6)—(7) depend on
whether the information density +(X;Y") is a lattice or non-
lattice random variable. In [19], Moulin focuses primarily
on channels with non-lattice information densities; the only
example channel with a lattice information density that he
studies is the BSC, which he analyzes separately in [19, Th. 7].
Our analysis shows that a single proof holds for lattice and
non-lattice cases if we do not attempt to bound the O(1) term.

For Cover—-Thomas-symmetric channels, S = S =S, and
we refine (13)—(14) in Theorem 3 in Section III-B below by
\/(ﬁ )?

deriving the coefficient of the O (Q term. For the

BSC and a wide range of (n, €) pairs, our asymptotic approx-
imation for the maximum achievable rate using terms up to
the channel skewness, i.e., ((n,e) ~ $logn + SQ ()2,
is more accurate than both of Moulin’s bounds from (6)
and (7); the accuracy of our approximation is similar to
that of the saddlepoint approximations in [9], [10], which
are achievability bounds. Moreover, for the BSC with an
(n,€) pair satisfying ¢ € [1071°,1071] and n € [100, 500],
including the O (&\/%")3) term from Theorem 3 in our
approximation yields a less accurate approximation than is
obtained by stopping at the channel skewness (see Fig. 1).
This highlights the importance of channel skewness relative
to the higher-order terms in characterizing the channel.

Theorem 5, in Section III-D, below, derives lower and
upper bounds on the non-Gaussianity of the Gaussian channel
with a maximal-power constraint in the CLT regime. Our
bounds yield the channel skewness term exactly. We derive
these bounds by analyzing Shannon’s random coding bound in
[11, eq. 19] and Vazquez-Vilar’s meta-converse bound in [13,
Th. 3] in the CLT regime. The achievability bound uses a tight
approximation to a quantile of the noncentral ¢-distribution,
and the converse bound uses the asymptotic expansion of
the minimum type-II error probability for a test between two
Gaussian distributions. The prior techniques from [4, Th. 54]
and [22] are not sharp enough to derive the channel skewness.

Using the MD results in [36, Ch. 8] and the strong LD
results in [37], in Theorem 4 in Section III-C, below, we derive
the asymptotics of BHT in the MD regime, characterizing the
minimum achievable type-II error of a hypothesis test that
chooses between two product distributions given that the type-
I error is an SMD sequence (12). Our result refines [28] to the
third-order term.

A summary of the literature on the asymptotic expansions
in channel coding for both DMCs and the Gaussian channel
for different error probability regimes appears in Table I.
The LD regime seeks expressions of the form e*(n, R) =~
E exp{—nE(R)}. In Table I, E(R), r, and K are called the
second-, third-, and fourth-order terms.

The remainder of the paper is organized as follows. We
define notation and give preliminaries needed to formally



TABLE I
THE SUMMARY OF THE LITERATURE AND OUR CONTRIBUTIONS FOR THE ASYMPTOTIC EXPANSIONS IN CHANNEL CODING

Paper Channel Bound Regime Order of expansion Requires latticeness  Skewness term
[3]-[5] DMC Ach + Conv CLT 2 X X
[18, Th. 53] Nonsingular DMC Ach CLT 3 X X
[14] Nonsingular DMC Conv CLT 3 X X
[19] Nonsingular DMC Ach + Conv CLT 4 v v
[15], [16] DMC Ach + Conv MD 2 X X
[71 Singular + Nonsingular DMC Ach LD 3 X X
[9] Nonsingular DMC Ach LD 4 X X
Theorems 1-2 Nonsingular DMC Ach + Conv  CLT + MD 3 X v
[22] Gaussian Ach CLT 3 - X
[4, Th. 54] Gaussian Conv CLT 3 - X
[11], [12] Gaussian Ach + Conv LD 4 - X
[13] Gaussian Conv LD 4 - X
Theorem 5 Gaussian Ach + Conv CLT 4 - v

present our results in Section II. Section III presents and
discusses the main results. Proofs of the main results appear
in Sections IV-VL.

II. NOTATION AND PRELIMINARIES

A. Notation

For any k € N, we let [k] £ {1,...,k}. We denote random
variables by capital letters (e.g., X) and realizations of random
variables by lowercase letters (e.g., z). We use boldface letters
(e.g., x) to denote vectors, calligraphic letters (e.g., X) to
denote alphabets and sets, and sans serif font (e.g., A) to
denote matrices. The ¢-th entry of a vector x is denoted by z;,
and the (¢, 7)-th entry of a matrix A is denoted by A; ;. The
n % n identity matrix is denoted by |,,. For a symmetric matrix
A supported on X' x X and a subset B C X', Ag denotes the
|X| x |X| matrix where (Ag)y,or = Ay o for z, 2’ € B and
(AB)z. = 0, otherwise. For a vector x supported on X, x3
is defined similarly. The row space of a matrix A is denoted
by row(A).

The sets of real numbers and complex numbers are denoted
by R and C, respectively. All-zero and all-one vectors are
denoted by 0 and 1, respectively. A vector inequality x <y
for x,y € R< is understood element-wise, i.e., z; < y,; for
all i € [d]. We denote the inner product Zle x;y; by (X,y).
We use || - ||oc and |||, to denote the ¢, and ¢, norms, i.e.,
(B — max |z;| and [|x||, £ 1/(x,x). The multivariate

normal distribution with mean g and covariance matrix X is
denoted by N (u, X).

The set of all distributions on the channel input alphabet X
(respectively the channel output alphabet ))) is denoted by P
(respectively Q). The support of a vector h € RI* is denoted
by supp(h) £ {z € X: h, # 0}. We write X ~ Py to
indicate that X is distributed according to Px € P. Given
a distribution Py € P and a transition probability kernel
Py |x from X to ), we write Px X Py|x to denote the
joint distribution of (X,Y"), and Py to denote the marginal
distribution of Y, i.e., Py (y) = > cr Px(x)Py|x (y|z) for
all y € Y. Given a transition probability kernel Py |x, the
distribution of Y given X = z is denoted by Py |x—,. For an
arbitrary vector h supported on X, h — Py |x — h denotes
the relationship h, = Y owex haPyix (ylz) forall y € Y.

For a sequence x = (1, .. .,
(or type) of x is denoted by

1
SN 1wy = 2), X.
nz {z; =2}, Vze

=1

Zn ), the empirical distribution

Pe(x) = (15)
The set of length-n types is denoted by P, = {Px €
P:nPx(x) € Z Yax € X}. A lattice random variable is a
random variable taking values in {a + kd: k € Z}, where
d € Ry is the span of the lattice. We say that a random
vector X = (X7,...,X,,) is non-lattice if each of X;, i € [n]
is non-lattice, and Xj; is lattice if each of X, i € [n] is lattice.
The case where some of the coordinates of X are lattice and
the rest of the coordinates are non-lattice is excluded in this
paper. We measure information in nats, and logarithms and

exponents have base e.
ftn) = O(y(n))

As is standard,
< oo, and f(n) = o(g(n)) means

lim sup,, ‘ ;gz;
lim,, oo ’g(n = 0. We use Q(-) to represent the
complementary Gaussian cumulative distribution function
(CDF) Q(z) 2 = [Zexp —g}dt and Q7'(-) to
represent its functional inverse.

The skewness of a random variable X is denoted by

A E [(X _E[X])g] )

means

Sk(X) = (16)
Var [X]*/?
Recall that the residual in the Berry—Esseen theorem has the
E[|X-E[X]]°]

form WW for a global constant ¢ > 0 (e.g., [38,

Ch. XVL5, Th. 1]), which is quite similar to Sk(X). The
skewness Sk(X) appears in the asymptotically tight residual
known as the Edgeworth expansion [39, p. 7] (see also [38,
Ch. XVI.4, Th. 1])

(X; —E[X4]
\/nVar [X1] Z i)

k(X 1
— Q)+ SG(ﬁ” (1= 2%)6(@) +0 <%) ,
where the random variables X;, ¢ € [n], are independent
and identically distributed (i.i.d.) and non-lattice, and ¢(-)
is the standard Gaussian density. The skewness of a random
variable plays a critical role in our expansions of the maximum
achievable channel coding rate.

a7)



B. Definitions Related to Information Density

The relative entropy between distributions P and ) on a
common alphabet, the second and third central moments of
the log-likelihood ratio, and the skewness of the log-likelihood
ratio are denoted by

D(P|Q) £ E PEX;] (18)
V(PHQ) Var [1 P( ;] (19)
T(PQ) £ _(bgg%%—lxpmw)W 20)
S(PIQ) = %, 1)

where X ~ P. Let Px € P and Qy € Q, and let Py x be
a transition probability kernel from X to ). The conditional
versions of the above quantities are denoted by

D(Pyx||Qy|Px) £ Z;KPX D(Py|x=|Qy) (22)
re

V(Pyx||Qy|Px) £ ZXPX(x)V(PY\X:m”QY) (23)
re

T(Pyx|lQy|Px) £ Z;KPX T(Py|x=[IQy) (24
re

Sk(Py x| Qy Py & XA 23

V(Pyx||Qy |Px )32

Let (X,Y) ~ Px x Py|x. The information density is defined
as
Pyix (yle)
N Y|x\Y
1(x;y) = log , YVeeX ye). (26)
(@:9) Py (y)

In the remainder of the paper, we assume that the channel
Py |x is clear from the context and is fixed, and we eliminate
it from the input arguments of quantities such as mutual
information and dispersion. We define the following moments
of the random variable +(X;Y).

o The mutual information

I(Px) £ E[i(X;Y)] = D(Py x| Py|Px), 27
« the unconditional information variance
Vu(Px) £ V(Px x Py x||Px x Py)
= Var i(X;Y)], (28)
« the unconditional information third central moment
Tu(Px) & T(Px x Py |x||Px x Py) (29)
=E[0(X:Y) = I(Px)], G0
« the unconditional information skewness
Sku(Px) £ Sk(¢(X;Y)) = %, @3

the conditional information variance

V(Px) £ V(Py|x|Py|Px) = E[Var [(X;Y)|X]], (32)

o the conditional information third central moment

T(Px) = T(Py x| Py|Px), (33)
« the conditional information skewness
Sk(Py) 2 T(Py x| Py|Px) 7 (34)
V(Py x| Py|Px)3/?
o the reverse dispersion [18, Sec. 3.4.5]
Vi(Px) £ E[Var [((X;Y)|Y]]. (35)

C. Discrete Memoryless Channel

A DMC is characterized by a finite input alphabet X, a
finite output alphabet )/, and a transition probability kernel
Py |x, where Py|x(y|) is the probability that the output of
the channel is y € ) given that the input to the channel is
x € X. The n-letter input-output relation of a DMC is

H Py x (yilzi).

1=1

y\x Y|X (36)

We proceed to define the channel code.
Definition 1: An (n, M, €)-code for a DMC Py | x comprises
an encoding function

f: [M] — X", (37)
and a decoding function
g: V" — [M], (38)
that satisfy an average error probability constraint
Z Py x (g g ' (m)[f(m)) <e. (39)

The maximum achievable message set size M*(n,€) under
the average error probability criterion is defined as

M*(n,e) 2 max{M: 3an (n, M, e)-code}.  (40)
D. Definitions Related to the Optimal Input Distribution
The capacity of a DMC Py |x is
= I(Py). 41
Rep ) “

We denote the set of capacity-achieving input distributions by
P& {Px eP: I(Px)=C} 42)

Even if there are multiple capacity-achieving input distribu-
tions (|PT| > 1), the capacity-achieving output distribution
is unique (Px, Py € PT implies }° . Px (z)Py|x(ylz) =
> wex Px () Py x (y|z) forally € Y) [6, Cor. 2 to Th. 4.5.2].
We denote the unique capacity-achieving output distribution
by Q% € Q; Q3 satisfies Q3-(y) > 0 for all y € Y for which
there exists an x € X with Pyx(y[x) > 0 [6, Cor. 1 to

Th. 4.5.2]. For any P}, € PT, it holds that V(P}) = V,(P})
[4, Lemma 62].
Define
Vigin 2 min V(P}) (43)

Plept



Vinax 2 max V(P}). (44)
Plept
The e-dispersion [4] of a channel is defined as
min if 1
y o Vmn i<y (45)
Vmax if € > bR

The set of dispersion-achieving input distributions is defined as

P2 {PLe Pl V(P =V.}. (46)

Any P)T( € P satisfies D(Py|x—,[|Q}) = C foreach z € X
with Pl (z) > 0, and D(Py|x—,[Q%) < C forall z € X [6,
Th. 4.5.1]. Hence, the support of any capacity-achieving input

distribution is a subset of
X' ={z € X: D(Py|x=.|Q3) = C}. (47)

The support of any dispersion-achieving input distribution is
a subset of

X2 | supp(Py) € AT,
P e

(48)

While analyzing the set P* is sufficient to derive the second-
order term in (1) for log M*(n,¢,) with an SMD sequence
€n, further quantities are needed to describe the optimal third-
order term. The quantities below are used to describe the
input distribution that achieves our lower bound S on the
channel skewness S in (11); they also appear in [19]. Given
a fixed DMC Py |y, the gradient and the Hessian of the
mutual information I(Px) evaluated at Px are given by [19,
eq. (2.28)-(2.29)]

VI(Px)e = D(Py|x—z||Py) — 1 (49)
P )P,
V2I(Px)x,x/ _ Z Y| X y|:17 Y|X( |z') (50)
yey )
for (z,2") € X2. The matrix —V2I(P)T() is the same for all

P)T( € P and is positive semidefinite. See [19, Sec. II-D and
II-E] for other properties of —V?I (P)T() We define

£ _V2I(P) (51

)m,;ﬂ"

The matrices Jy+ and Jy~ play an important role in our results
and their proofs.

The following notation is used in our results in Sec-
tion III-A.

v(Px) £ VV(Px) (52)
— N OV (Py|x = Py)

for x € X, and

Ao(Px) & g-v(Px) Iv(Px), (54)
1 -
Au(Px) & 7V (Px) V(Py), (55)
where

SN S 1 A L (56)

17J3.1

and J}. denotes the Moore-Penrose pseudo-inverse® of Jy-.
One important property of Ag(Px) and A;(Px) is that for
Cover—Thomas-symmetric channels, Ao(Px) = A;(Px) =
0 under the equiprobable input distribution, which remains
optimal in terms of skewness. See [19, Lemma 2] for more
properties of these quantities.

E. Singularity of a DMC

The following definition divides DMCs into two groups
for which the non-Gaussianity behaves differently. An input
distribution-channel pair (Px, Py| x) is singular [7, Def. 1] if
for all (z,7,y) € X x X x Y such that Px x Py|x(z,y) >0
and Py x Py|x(¥,y) > 0, it holds that

Py x(y|z) = Py x (y|T). (57)
We define the singularity parameter [19, eq. (2.25)]
Vi(Px)
Py)&1— 58
n(Px) Vi(Px)’ (58)

which is a constant in [0, 1]. The pair (Px, Py |x) is singular
if and only if n(Px) = 1 [40, Remark 1]. A channel Py|x
is singular if and only if n(P%) = 1 for all P} € P*; it is
nonsingular otherwise. An example of a singular channel is
the BEC. Our focus in this paper is on nonsingular channels.

III. MAIN RESULTS

Our first result describes the lower and upper bounds on the
non-Gaussianity of nonsingular channels in the SMD regime,
refining the expansion in (10). For symmetric channels, we
further refine these bounds up to the O (Q \/(_E)
We then derive tight lower and upper bounds for the non-
Gaussianity of the Gaussian channel with a maximal-power
constraint in the CLT regime, giving the exact expression for
the channel skewness for that channel. Our last result is a
fourth-order asymptotic expansion (i.e., an expansion up to
the O (Q \f(é ik term) for the logarithm of the minimum
achievable type-II error probability for binary hypothesis tests
between two product distributions in the SMD regime.

term.

A. Nonsingular Channels

Theorem 1 is our achievability result.
Theorem 1: Suppose that €,, is an SMD sequence (12) and
that Py-|x is a nonsingular DMC with Vi, > 0. It holds that

—1 3
Glnen) > logn + 507 (@) +0 (L2l 4 oq)
(59)
where
. Sk (P YV, L 1-n(Py)
ﬁ‘z»%*( 6 *AO(PX)U(Hn(P;»)'

(60)

3Given that A = UXVT is the singular value decomposition of A, AT £
VI ~-1UT. The expression in (56) is the compact version of [19, Lemma 1

(iv)-()1.



Proof: The proof consists of two parts and extends the
argument in [19] to allow sequences {e,} that decrease O or
increase to 1 as permitted by (12). The first part analyzes
a particular relaxation [18, Th. 53] of the RCU bound [4,
Th. 16] for an arbitrary distribution Px € P. This approach
is used in the CLT regime for a third-order analysis in [18,
Th. 53] and a fourth-order analysis in [19]; a slightly different
relaxation of the RCU bound comes up in the LD regime
[7]. To bound the probability P [.(X;Y) < 7], we replace
the Edgeworth expansion in [19, eq. (5.30)], which gives the
refined asymptotics of the Berry-Esseen theorem, with its MD
version from [36, Ch. 8, Th. 2]. Note that the Edgeworth

expansion yields an additive remainder term O (%) to the
1

Gaussian term. This remainder is too large for ¢, <
in (12) since it would dominate the Gaussian term in the
Edgeworth expansion. Therefore, an MD result that yields a
multiplicative remainder term (1 4+ o(1)) is desired. We apply
the LD result from [37, Th. 3.4] to bound the probability
P [o(X;Y) > +(X;Y) > 7| that appears in the relaxed RCU
bound, where X denotes the transmitted random codeword
and X denotes an independent codeword drawn from the same
distribution. This bound replaces the bounds in [19, eq. (7.25)-
(7.27)] and refines the LD bound [4, Lemma 47] used in
[18, Th. 53]. We show an achievability result as a function
of I(Px), Vu(Px), and Sku(Px) If Py = P;( e P,
the resulting bound is (59) with Ay (P%) replaced by zero.
We then optimize the bound over Py using the second-,
first- and zeroth-order Taylor series expansions respectively of
I(Px), Vu(Px), and Sk, (Px ) around P} € P*. Interestingly,

the right-hand side of (59) is achieved using
Px =Px+h"eP, (61)

instead of a dispersion-achieving input distribution P35 € P*
to generate i.i.d. random codewords; here

o _Qil(en) *
8= 5 v v v(Px) (62)
h* = Jg. (63)

Note that despite being in the neighborhood of a dispersion-
achieving P%, our choice of Px in (61) might not belong to
P*. This behavior is not seen between the first- and second-
order optimal input distributions since every dispersion-
achieving distribution is also capacity-achieving.

See Section IV-D for the details of the proof. [ |

The input distribution in (61) is chosen by setting Px =
P% +h for a value of h for which Py +h € P andh — 0 as
n — oo; we then optimize the direction and the scaling of h
with respect to the RCU bound. Intuitively, the above strategy
is useful since it acknowledges both that the input distribution
may vary with n and that it cannot stray too far from the
choice that optimizes the first- and second-order achievable
rate. The optimal deviation h* from the dispersion-achieving
distribution is solved by the optimization problem

(gTh — %hTJXTh) .

0

sup (64)
h: supp(h)g)\’T

E
h71=0, byt pu>

The optimization in (64) is convex but does not have a closed-
form solution in general. Following [19, Appendix B], we get
an optimization problem with a closed-form solution by further
restricting the support of h as supp(h) € X*. This reduces
(64) to

sup (65)

h: supp(h)CX™

h'"1=0, herow(Jy=)
In [19, Lemma 1], Moulin shows that (63) is the unique h* that
achieves (65), and %g—r]g = Ao(P%)Q ™ (en)? is the optimal
value of the quadratic form in (65). In [19, Appendix B (ii)],
Moulin shows that if XT = X*, the values of the objectives in
(64) and (65) are equal, implying that restricting supp(h) to
X* does not yield a penalty in the achievable skewness term.

In the second-order MD result in [15], Altug and Wagner
apply the non-asymptotic bound in [6, Cor. 2 on p. 140], which
turns out to be insufficiently sharp for the derivation of the
third-order term.

Recall from (45) that V., can be either Viin or Viax.
We require the condition Vi, > 0 in Theorem 1, which
implies that V., > 0 for all ¢, sequences, since the MD
(Theorem 6 in Section IV-B) and LD (Theorems 7 and 8
in Section IV-C) results apply only to random variables with
positive variances. In the CLT regime, [4, Th. 45 and 48]
and [14, Prop. 9-10] derive bounds on the non-Gaussianity
of DMCs with V., = 0. If V. = 0, the scaling of the non-
Gaussianity changes depending on whether or not the DMC is
exotic [4, p. 2331] (most DMCs do not satisfy the definition
of an exotic DMC), and whether ¢, is less than, equal to,
or greater than % A summary of the non-Gaussianity terms
under these cases appears in [14, Fig. 1].

Theorem 2 is our converse result.

Theorem 2: Under the conditions of Theorem 1,

—1 €n 3
%) +0(1),
(66)

(gTh - %hTJX*h> .

Gl en) < plogn+5Q" e + 0

where

— Sky(Px)/ Ve 1
'y X n - ) *
S= pr;?é%* <—6 + 5 + Ao(Px) Al(PX))'
(67)

Proof: The proof of Theorem 2 combines the converse
bound from [14, Prop. 6], which relaxes the meta-converse
bound [4, Th. 27], with a saddlepoint result from [19,
Lemma 14], which gives the saddlepoint solution to a
quadratic form that arises after taking the Taylor series ex-
pansion of the main quantity in [14, Prop. 6]. Combining
these results and not deriving the O(1) term in (66) yields a
much simpler proof than that in [19]. While [19, proof of Th.
4] relies on the asymptotic expansion of the ;. function,
the use of [14, Prop. 6] allows us to bypass this part. In
the application of [14, Prop. 6], similar to [14, eq. (6)], we
use an auxiliary n-letter output distribution that is a convex
combination of product distributions; see equation (178), in
Section IV-E, below, for details.

The main difference between our proof technique in Sec-
tion IV-E below and that in [14] is that we set the first



term in (178) as (Q% + h)" € Q", where Qy is the
unique capacity-achieving output distribution, and h satisfies
Hh‘T = O(Q \/f")) The direction of h is found by
solvmg a single-letter minimax problem involving the quan-
tities D(Py|x||Qv|Px) and V(Py|x||Qy|Px), where the
maximization is over Px € P and the minimization is over
Qy € Q; here Py is assumed to be close to P3, and Qy is
assumed to be close to Q5. See Section IV-E for details. W

B. Refined Results for Symmetric Channels

If the channel satisfies |P*| = 1, Ao(P%) = A1 (P%) =0,
and n(P%) = 0, then our achievability (59) and converse (66)
bounds yield the channel skewness (11)

Sky(P%)vViin 1
6 2
Cover-Thomas-symmetric channels [17, p. 190] satisfy all
three conditions;* the BSC is an example of a Cover—Thomas
symmetric channel.
Theorem 3 below, refines the achievability and converse re-
sults in Theorems 1-2 for Cover—Thomas-symmetric channels.
Theorem 3: Let Py|x be a Cover-Thomas-symmetric chan-
nel with e-dispersion (45) V' > 0. If {€,}52, is an SMD
sequence (12), then

S = (68)

C(n,en)
a2\, 4,2 -1 3
logn + SQ ™" (en)* — 3 732‘;5)/‘2/ e \/(%n)
1 4
+O <Q 756”) ) +0(1) (69)

where S is the skewness (68) under the uniform input distri-
bution P, and p = E [(«(X;Y) — C)¥] is the k-th central
moment of the information density under X ~ Py.

Further, if ¢, satisfies Q@ '(¢,) = O(n'/%), which is
equivalent to lim — m > 0 (e.g., [35,

n— 00 e

Lemma 5.2]), then the O (TZ")) term is dominated by
the O(1) term, giving

1
1/31

((n,en) = glogn+SQ 7 (e) +0(1).  (70)

Proof: See Appendix G. [ ]

For the BSC with crossover probability 0.11, Fig. 1 com-
pares asymptotic expansions for the maximum achievable rate,
%, dropping o(-) and O(-) terms except where
noted otherwise. The curves plotted in Fig. 1 include The-
orems | and 2 both with and without the leading term of
0] &%) computed, various other asymptotic expansions
in the CLT and LD regimes, and the non-asymptotic bounds
from [4, Th. 33 and 35]. The leading term of O { &;”)%
Theorems 1 and 2 is given in Theorem 3, below. Among all
of these asymptotic expansions, Theorems 1 and 2 ignoring
the O(-) terms are the closest to the non-asymptotic bounds
for most (n, €) pairs shown, which highlights the significance

4Channels that (i) are Cover-Thomas weakly symmetric, (ii) have x| =
|| and (iii) have a positive definite J satisfy the same three conditions [19,
Prop. 6].

of the channel skewness in obtaining accurate approximations
to the finite blocklength coding rate in the medium n, small
e regime. Since Moulin’s fourth-order CLT approximation
requires the information density to be non-lattice, and the BSC
has a lattice information density, Moulin uses a different ap-
proach to bound the O(1) term for the BSC. Note that includ-
ing the O ( &\/%”)2 term from Theorem 3 does not improve
the accuracy because the blocklength n € [100,500] chosen
in the example is too small, which makes the O (&\/%")g)
term comparable to the skewness term.

In [8], Altug and Wagner show that in the LD regime, the
prefactors in the lower and upper bounds on the exponentially
decaying error probability for Gallager-symmetric channels
have the same order; that order depends on whether the chan-
nel is singular or nonsingular. Extending the analysis in [19,
Sec. III-C-2)] to any Gallager-symmetric channel shows that
Gallager-symmetric channels satisfy Ao (P%) = A1(P%) = 0.
Note that 77(P% ) is not necessarily zero (see [19, Sec. III-C-2)]
for a counterexample), which means that for some Gallager-
symmetric channels, (59) and (66) are not tight up to the
O(1) term. The findings in [8] suggest that Theorem 1 or
Theorem 2 or both could be improved for some channels. The
achievability bounds in [7], [8] bound the error probability
from above as

e<PD]+(M—-1)P[D°N{u(X;Y) >uX;Y)}, (71)

<T}

14p
x)Py|x y|$)1/1+p> ,ye . (73)

where

D

P2 (YX

Qy(Y)

vee(gee
TEX
Here Qy is the tilted output distribution, p € [0,1], 7 € R,
and ¢ > 0 is a normalization constant. Our achievability bound
uses a special case of (73) with p = 0, giving Qy = Py.
Whether the more general bound in (73) yields an improved
bound in the MD regime is a question for future work.

C. Refined Asymptotics of BHT

Before describing Theorem 4, below, we introduce binary
hypothesis tests, which play a fundamental role in many
coding theorems in the literature.

Let P and @ be two distributions on a common alphabet
X. Consider the binary hypothesis test

Hy: X ~P
Hy: X ~Q.
A randomized test between those two distributions is defined
by a probability transition kernel Py x: X — {0, 1}, where
0 indicates that the test chooses Hy, ie., X ~ P, and 1
indicates that the test chooses H1, i.e., X ~ (). We define the

minimum achievable type-II error compatible with the type-I
error bounded by 1 — «v as [4, eq. (100)]

Ba(P,Q) £ W =0|H].

(74)
(75)

(76)

min P
PW\X : P[W:()'H[)]Za
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Fig. 1. Achievable rate vs. average error probability for BSC(0.11): The expansions from Theorems 1-3, excluding the O(-) terms, are shown for the BSC(0.11)
with € € [1071%,1071] and n = {100, 250, 500}. The upper and lower boundaries of the shaded region correspond to the non-asymptotic bounds in [4,

Th. 33 and 35]; the CLT approximation that takes C(n,e) =
achievability bound and is from [9, Th. 1] and [10, Sec. III- D]

The minimum in (76) is achieved by the Neyman-Pearson
test (e.g., [4, Lemma 57]),

1 if log %(m) >y
Py x(Olz) =q 7 if log %(m) =7,
0 if log45(z) <y

where log a0 P (z) is the log-likelihood ratio evaluated at = € X,
E denotes the Radon-Nikodym derivative, and 7 and + are
chosen so that a = P [W = 0|Hp.

Let P™ = [, P and Q™ = [[_, Qi, where P; and
@; are distributions on a common alphabet X.

Define Z; = jgi (X;), where X; ~ P; for i € [n], and
D; £ E[Z;] = D(P;]|Q:) (78)

V; £ Var[Z;] = V(Pi]|Qy) (79)

i 2 E[(Zi — D)), k>3 (80)

Ski 2 Sk(P,[Q) = L35 81)

for i € [n]. Define Z; £ log %(Yi), where X; ~ Q; for

i € [n], and the cumulant generating function of Z;

ki(s) £ logE [exp{sZ;}], i€ [n]. (82)

Let

D2

SIP—‘
3|P—‘

2D VALV (83)

= 1ogn is from [18, Th. 53]; Moulin’s results are (6)—(7); the saddlepoint approximation is an

2l - sl Y
RICHS o
ni:l '

Theorem 4, below, refines [19, Th. 18] by considering SMD
sequences and also by deriving the coefficient of Q \/(5”)
the type-II error exponent.

Theorem 4: Let P; and (Q; be distributions on a common
alphabet X, and let P; be absolutely continuous with respect
to Q; for i € [n]. Let {€,}5>, be an SMD sequence (12).
Assume that
(A) Z; satisfies Cramér’s condition for ¢ € |[n], ie.,

E [exp{sZ;}] < oo for s € R in the neighborhood of 0;

B) V>0

(C) there exist positive constants 3y, 51, and ¢ > 1 such that
Bo < |K(s)] < By forall s € D& {s' € R: |s] < ¢},
and that x(s) is analytic in D;

(D) if the sum ) ", Z; is non-lattice, then there exist a finite
integer £, a sequence {wy, }72, satisfying
non-overlapping index sets Z;,Zs, . .. Iwn c [n], each
having size ¢, such that

Z Z; is non-lattice for j € [w,].
i€l
Then, it holds that

—log B, (P™, Q™)

(86)



=nD —VnVQ (en) + %1ogn+ (% + %) Q (en)

B(pa = 3V2)V — 43 Q' (en)®

72V5/2 vn

—1(, 4
+0 (W) +o(). 87)
Proof: See Section V. [ |

Example distributions {(P;, Q;)}, that satisfy conditions
(A)—(C) in Theorem 4 include the set of pairs {(F;, Q;)}"
where Var[Z;] > 0 for all ¢ € [n] and X is finite. For
example, if P, = Bernoulli(p;) and @; = Bernoulli(g;)
with p;,¢; € (0,1) and p; # ¢; for all ¢ € [n], then
conditions (A)—(C) are satisfied. One needs to check condition
(D) separately in the case where » . Z; is non-lattice.
If P,...,P,,Q1,...,Q, are such that Z; is a continuous
random variable for all ¢ € [n], then condition (D) is always
satisfied, and one needs to check condition (A) separately for
each Z;. The conditions (A)—(D) are satisfied for the Gaussian
(P;,Q;) pairs with positive variances and P; # @Q; for all
i € [n]. To highlight the purpose of condition (D), consider
the sum of n— 1 Bernoulli random variables and one Gaussian
random variable, where condition (D) is violated. The resulting
sum is non-lattice, but its behavior is still very close to a lattice
random variable, in this case a binomial.

In Fig. 2 below, we compare the asymptotic expansion in
Theorem 4 with the true values from the Neyman-Pearson
lemma, the CLT approximation from [4], and the LD approx-
imation from [17] for BHT between two i.i.d. Bernoulli dis-
tributions. The first three terms on the right-hand side of (87)
constitute the CLT approximation of BHT, and are shown in [4,
Lemma 58] in the CLT regime. The coefficient of Q~!(e,,)?
in the fourth term of (87) is the skewness for BHT. The fifth
term in (87) gives the fourth-order characteristic of BHT. A
direct application of Theorem 4 to the meta-converse bound
[4, Th. 27] shows the converse part of Theorem 3. Together
with the achievability bound of Theorem 3, this implies that
the fourth-order characteristic of Cover—Thomas-symmetric
channels and BHT are the same in the sense that C,V, S,
and p4 in Theorem 3 are the same as D, V, SkvV %, and [y
in (87) evaluated at P("™) = Py y_, and Q™ = (Q3)"; here
x € X is arbitrary, and Q)3 is the capacity-achieving output
distribution.

In Theorem 4, conditions (A) and (B) are used to apply the
MD result Lemma 1 (see Section IV-B, below) to the sum
Z?:l Z;; conditions (C) and (D) are used to satisfy the con-
ditions of the LD results (Theorems 7 and 8 in Section IV-C
below) for the random variable "' | Z;. Note thatif >, Z;
is lattice, then each of the random variables Z;, i € [n], is
lattice. In the non-lattice case, the sum Z?:l Z,; can be non-
lattice even if one of more of the Z; is lattice. Condition
(D) of Theorem 4 requires that there are w, > logn non-
overlapping, non-lattice partial sums of 7", where each partial
sum is a sum of ¢ random variables. A condition similar to
condition (D) with ¢ < 2 is introduced in [19, Def. 15] for the
same purpose.

11

o D. Gaussian Channel

The output of the memoryless Gaussian channel in response
to the input X € R" is

Y=X+7Z, (88)

where the entries of Z are drawn i.i.d. from A(0,1), inde-
pendent of X. The capacity and dispersion of the Gaussian
channel are given by

c(p) 2 %log(l +P) (89)
. P(P+2
V(P) 2 ﬁ. (90)

In addition to the average error probability constraint (39), an
(n, M, e, P) code for the Gaussian channel with a maximal-
power constraint requires that each codeword has power not
exceeding nP, i.e.,

If(m)||3 <nP, Ym e [M]. 1)

The maximum achievable message set size M*(n,¢, P) is
defined similarly to (40); the corresponding non-Gaussianity
is defined as

C(n,e, P) £ log M*(n,e, P) — (nC(P) — \/77,1/(1’:’)6271((69)2)j

Theorem 5, below, gives lower and upper bounds on the non-
Gaussianity ¢((n, €, P) in the CLT regime.
Theorem 5: Fix € € (0,1) and P > 0. Then,

C(n,e,P) > % logn + S(P)Q '(e)* + B(P) + O (%)
(93)
C(n,e,P) < % logn + S(P)Q '(e)* + B(P) + O (%) ,
94)
where
6+ 6P + 4P% + P3
S(P) = 6(1+ P)2(2+ P) (%)
B(P) = % + %log(%rV(P)) (96)
__PGBP+9) 1 21 P
BP) =gasperp T3 ((1+P)2> - O7)

Proof: The achievability bounds in (93), [11, eq. 58], and
[12, Th. 17] are fourth-order asymptotic expansions. They
analyze the same non-asymptotic achievability bound in [11,
eq. (19)]. The difference is that we analyze the tail probability
of the noncentral ¢-distribution in the CLT regime while [11]
and [12] analyze it in the LD regime. Our derivation uses the
Cornish-Fisher expansion of the noncentral ¢-distribution in
the CLT regime [41].

The converse bound (94) analyzes the novel meta-converse
bound from [13, Th. 3]

log M*(n, e, P)

< inf —log B (N (VPL 1), N(0,0°1)). (98
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Fig. 2. Type-I vs. Type-II error probability for BHT: The expansion from Theorem 4, excluding the O(+) terms, is shown for P; = Bern(0.6), Q; = Bern(0.2),
i =1,...,n, n € {100,250,500}. Our skewness approximation is compared with the true values obtained by the Neyman-Pearson lemma, the CLT
approximation from [4, Lemma 58], which consists of the terms up to % logn, and the first-order LD approximation from [17, Th. 11.7.1].

Since 02 = 1+ P is optimal for codes whose rate approaches
the capacity (see, e.g., [4]), we first let 0?2 =14 P+34,, where
0, is a sequence that approaches 0. Then we optimize the
value of J,, with respect to (98) by analyzing the /3, function
in the CLT regime using [19, Th. 18]. Not setting J,, = 0 is
crucial to prove the tightness of the skewness S(P). The ¢,
that achieves the minimum in (98) is

o Q70 [P
-89, [ 2P

N
Recall that [19, Th. 18] is the CLT version of Theorem 4.
Therefore, replacing [19, Th. 18] with Theorem 4 shows that
the expansion in (94) holds in the MD regime as well up to
the skewness term S(P)Q ! (e,)?.

See Section VI for the proof details. [ |

Theorem 5 yields the channel skewness of the Gaussian
channel as S(P) since the lower and upper bounds on the
Q1(¢)? term in (93)—(94) match.

In Fig. 3, the skewness approximations in Theorem 5 are
compared with Shannon’s non-asymptotic bounds and the LD
approximations from [11], the CLT approximation from [4]
using the achievability bound proved in [22], and Vazquez-
Vilar’s novel non-asymptotic converse bound [13, Th. 3]. For
the shown (n, e, P) triples, our skewness approximation (94)
is the closest to the novel non-asymptotic converse bound in
[13, Th. 3]; our skewness approximation (93) is the closest to
Shannon’s non-asymptotic achievability bound for € Z 10™%;

(99)

for € 3

closest.

Since the noncentral ¢-distribution is not a sum of indepen-
dent random variables, Petrov’s MD expansion in Theorem 6
below, does not apply. The proof of Theorem 6 relies on all
moments of the random variable being finite; however, the n-
th and higher order moments of the noncentral ¢-distribution
with n degrees of freedom are undefined. Therefore, one needs
to find another method to derive the asymptotic expansion of
the CDF of the noncentral ¢-distribution in the MD regime.
However, since the Cornish-Fisher expansions in general have
the same skewness term in the CLT and MD regimes (see
Lemma 1, below), we conjecture that the achievability bound
in (94) holds up to the S(P)Q~!(e,)? term in the MD regime.

In [4, Th. 41], Polyanskiy et al. show the converse in (98)
for codes with an equal-power constraint, i.e., each codeword
has power nP exactly; where o2 is set to the capacity-
achieving output variance, 02 = 1 4+ P. Then, Polyanskiy et
al. invoke the inequality (see [11, eq. (83)])

104, Shannon’s LD approximation becomes the

M*(n,e, P) < M* (n+1,¢,P) (100)

to get a converse bound for the maximal-power constraint,
where M (n, €, P)eq is the maximum achievable message set
size for the equal-power constraint.’ Since Vazquez-Vilar’s

SIn [13, eq. (23)], a slightly tighter version, which states that

M*(n,e, P) < M* <n+ 1,6 ﬂ)

n ) o’ is proved.



converse (98) does not need to apply (100), it is a refinement
to that of Polyanskiy et al. for the maximal-power constraint.

Shannon’s non-asymptotic cone-packing converse in [11,
eq. 15] is the tightest known converse bound under the equal-
power constraint (see, e.g., [13]). It coincides with Polyanskiy
et al.’s meta-converse [4, Th. 28] applied with the optimal aux-
iliary output distribution [42, Sec. VI-F]. The converse bounds
in [11], [12] both analyze Shannon’s cone-packing converse in
[11, eq. (20)]. Analyzing Shannon’s cone-packing converse in
combination with the inequality in [13, eq. (23)] using the CLT
approximation for the noncentral ¢-distribution tails, we derive
a converse bound with S(P) in (94) unchanged and B(P)
replaced with B(P)sy, = B(P) + 1+ C(P) — 2(1—1113); note
that B(P)sy, > B(P) for all P > 0. This result implies that in
the CLT regime, Vazquez-Villar’s converse for the maximal-
power constraint is sharper than Shannon’s converse combined
with the inequality in [13, eq. (23)].

IV. PROOFS OF THEOREMS 1 AND 2

We begin by giving the preliminary definitions for quantities
related to the moments of a random variable X.

A. Moment and Cumulant Generating Functions

Below, we dedicate the letters s and ¢ to real scalars and z
to complex scalars. The moment generating function (MGF)
of X is defined as

#(2) £ Elexp{zX}], ze€C. (101)
The j-th central moment is denoted by
p; 2 E[(X -E[X]Y]. (102)

The cumulant generating function (CGF) of X is defined as

R(2) 2 log ¢(2) = anji!,

J=1

(103)

where r; is called the j-th cumulant of X, and there exists a
one-to-one relationship between r; and the central moments
up to the order j. For example,

k1 = E[X] (104)
K2 = [l2 (105)
K3 = [13 (1006)
Ka = iy — 33 (107)

We use ¢(X)(-) and x(X) () to denote the MGF and CGF of
X when the random variable is not clear from context. The
j-th cumulant of c¢X is given by Ii;-cx) = ¢ K§X), and the
CGF of X +Y, where X and Y are independent, is

KXY (2) = k) (2) + k) (2). (108)

The MGF and CGF are naturally extended to d-dimensional
random vectors. Let S be a d-dimensional random vector. The
MGEF and CGF of S are denoted by

#(z) = Elexp{(z,S)}], (109)
#(z) = log ¢(z). (110)
Next, we present the supporting results used to bound the

probability terms that appear in the proofs of Theorems 1
and 2.

z € C?,
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B. MD Asymptotics

Theorem 6, stated next, is an MD result that bounds the
probability that the sum of n independent but not necessarily
identical random variables normalized by a factor % deviates
from the mean by o(y/n). The resulting probability is an SMD
sequence (12).

Theorem 6 (Petrov [36, Ch. 8, Th. 2]): Let Xq,...,X,
be independent random variables. Let E[X;] = 0 for i =
L...n, k; = 250, mgxi) for 5 > 2, and Sk = ;-;?2'
Define ’

&
S, & N ; X; (111)
F,(z) 2 P[S, <z]. (112)
Suppose that there exist positive constants g and Hy, ..., H,
such that the MGF satisfies
oI (1) < H; (113)
for all £ € R such that —{g <t <tpandi=1,...,n,
1imsupliHi3/2 < (114)
n—oo M AT
liminf ko > 0. (115)

n—oo

Let 2z > 0 and & = o(y/n). Then, it holds that

1 - Fy(z) = Q(x) exp {\%A" (%)} (1 e (HT??Q

- (0 () (0 (55)

(117)
where
An(@) 23 aia’ (118)
i=0
is Cramér’s series whose first two coefficients are
Sk
ag = 5 (119)
Kiko — 3&%
= 120
“ 24K3 (120)

The condition in (113) is called Cramér’s condition. Petrov
presents (113) for complex functions as “in the circle {z €
C: |z| < to}, ¢X)(2) is analytic and |¢X)(2)| < H;”
However, this is equivalent to (113) (see e.g., [43, Th. 1.7.1]).
Note that Cramér’s condition also implies that all moments of
X, are finite.

Let X1,..., X, be supported on a common finite alphabet
with Var [X;] > 0% > 0 for all i € [n]. Then, there exists an
H > 0 such that (113) is satisfied with H; < H for all i € [n];
and ko > 02 > 0. Therefore, the conditions of Theorem 6 are
satisfied for this class of random variables, which is the case
in the application of Theorem 6.

The O(-) terms in (116)—(117) constitute a bottleneck in
deriving the O(1) terms in (59) and (66); that is, one needs
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Fig. 3. Achievable rate vs. average error probability for a Gaussian channel: The expansions from Theorem 5, excluding the O(-) term, are shown for the
Gaussian channel with P = 10, n = 400, and ¢ € [10~°,10~3]. Shannon’s non-asymptotic bounds are from [11, eq. (20)]; Vazquez-Vilar’s non-asymptotic
bound is from [13, Th. 3] where the variance of the auxiliary output distribution is optimized numerically; Shannon’s LD approximations are from [11,
eq. (51), (58)]; Polyanskiy er al.’s CLT approximation that takes ((n, e, P) = %logn is from [4], [22].

to compute the leading term of the O(:) terms in (116)-
(117) in order to compute the O(1) terms in our achievability
and converse bounds. In the CLT regime, ie., z = O(1),
Theorem 6 reduces to the Berry-Esseen theorem for the sum
of independent random variables without explicitly giving
the constant, that is, the (1 +0 (% ) term in (116)=(117)

dominates the exp{-} term.

Inverting Theorem 6 (that is, obtaining an expansion for x
in terms y where F,, (—x) = Q(y)) is advantageous in many
applications. For Q(y) = e,, where {€,}°2, is an SMD
sequence of probabilities (12), Lemma 1, below, gives the
corresponding sequence of quantiles. In the CLT regime, in
which F,(—z) € (0,1) is equal to a value independent of
n, that expansion is known as the Corner-Fisher theorem [44,
Sec. 8], which inverts the Edgeworth expansion. Note that [44,
Sec. 8] applies under the assumption that the elements in the
sum are i.i.d. and strongly non-lattice random variables; these
assumptions need not hold for our application.

Lemma 1: Let Xy, ...,X, satisfy the conditions in Theo-
rem 6. Let y = Q7 !(e,) = o(y/n). Suppose that F,,(—z) =
Q(y) = €, then

boy?  biy? 4 1
y—ﬂ+i+0<z—/g>+o<—>, (121)
n n

= Jn Jn
where
by = S—;‘ (122)
—4g2
by & Brakz — Ans (123)

Proof: See Appendix A. [ |
A weaker version of Lemma 1, with only the first two terms in
(121) and with €,, decaying polynomially with 7, is proved in
[26, Lemma 7]. We use Theorem 6 and Lemma 1 to bound the
probability P [+(X;Y) < 7], where 7 is a threshold satisfying
the condition in Theorem 6, and the resulting probability is
an SMD sequence (12). Although the MD approximation to
the CDF of the normalized sum in Theorem 6 is seemingly
different than the CLT approximation to the same CDF (the
Edgeworth expansion), their inverted theorems, i.e., Lemma 1
and the Cornish-Fisher theorem [44, Sec. 8], respectively, have
similar forms; for continuous random variables, the Cornish-

Fisher theorem admits the formula in (121), where O ﬁ

is replaced by % +0 (%) This is the main reason why the
channel skewness bounds computed in the CLT regime extend
to the MD regime without change.

C. Strong LD Asymptotics

For the results in this section, we consider a sequence of
d-dimensional random vectors S,, = (Sp.1,...,5.4), n =
1,2,.... Let ¢, (-) denote the MGF of S,,, and let x,(-) be
the normalized CGF of S,, denoted by

n(2) £ 15" (2) (124)
kin(z) = % log ¢, (z). (125)

The Fenchel-Legendre transform of x,,(+) is given by
An(x) = sup {(t,%) = rin(t)}, (126)

teRrd



where x € R?. The quantity (126) is commonly known as the
rate function in the LD literature [23, Ch. 2.2].

Theorem 7, below, is a strong LD result for an arbitrary
sequence of random vectors S,, in RY; here, strong refers to
the fact that Theorem 7 characterizes the exact prefactor in
front of the LD exponent.

Theorem 7 (Chaganty and Sethuraman [37, Th. 3.4]): Let
{a,}22, be a bounded sequence of d-dimensional vectors.
Assume that the following conditions hold.

Smoothness (S): x,(z) is bounded below and above, and is
analytic in D%, where D £ {z € C: |z| < ¢} and c is a finite
constant.

Non-Degenerate (ND): There exist a real sequence {s,}52,
and constants ¢y and c; that satisfy

(127)
(128)

VEn(sn) = a,
0<cy<sp;<c<cforall je[d andn > 1,

where c is the constant given in condition (S), and the Hessian
matrix V2k,,(s,), which is a covariance matrix of a tilted
distribution obtained from S,,, is positive definite with a
minimum eigenvalue bounded away from zero for all n.
Non-Lattice (NL): There exists 6g > 0 such that for any given
01 and & such that 0 < 81 < dg < I

On(sp +it) —d/2
Gn(sn) ‘:"(" "),

where i = y/—1 is the imaginary unit. Then,

sup (129)

t: 61 <||t]lo0 <62

P[S, > na] = ok exp{-niy(a)} (1 +o(1), (130)

where
1

(2m)d/2 (ﬁ sn,j> det(V2k,(sp))

e

A
Ent =

(131)

Condition (S) of Theorem 7 is a smoothness assumption
for the CGF k,,, which is a generalization of Cramér’s con-
dition that appears in the LD theorem for the sum of i.i.d.
random vectors [23, Th. 2.2.30]. Condition (S) implies that
all moments of the tilted distribution obtained from S,, are
finite. Condition (ND) is used to ensure that S,, is a non-
degenerate random vector, meaning that it does not converge
in distribution to a random vector with ¢ < d dimensions, and
that the rate function A, (a,) is bounded and does not decay
to zero. The latter follows from the boundedness condition
in (128), and implies that the probability of interest is in
the LD regime. The ratio % in (129) is equal to the
characteristic function of a random vector that is obtained by
tilting S,, by s,, [37]. A random variable is non-lattice if and
only if its characteristic function satisfies |p(it)] < 1 for all
real t # 0 [38, Ch. XV, Sec. 1, Lemma 4]. Therefore, since
tilting does not affect the support of a distribution, condition
(NL) requires S,, to be a non-lattice random vector. Condition
(NL) is used to guarantee that the absolute value of that
characteristic function decays to zero quickly enough outside
a neighborhood of the origin, which makes the random vector
S,, behave like a sum of n non-lattice random vectors.
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Let X be a random codeword that is independent of both
the transmitted codeword X and the channel output Y. If
1(X;Y) and +(X;Y) are non-lattice, we apply Theorem 7
to the sequence of 2-dimensional non-lattice random vec-
tors (2(X;Y),1(X;Y) — 1(X;Y)) to bound the probability
P [«(X;Y)) > «(X;Y) > 7,] for some sequence .

When applied to the sum of n i.i.d. random variables S,, =
S Ai, Ky in (125) reduces to the CGF of A; as

k(z) = logE [exp{(z, A1)}].

In our application, since A; = (u(X1;Y1),2(X1;Y1) —
1(X1;Y1)) has a finite support, the expectation in (132) is
bounded, and all moments of A, are finite; therefore, condi-
tion (S) of Theorem 7 is satisfied. Further, the characteristic
function of the sum of n ii.d. random vectors is equal
to n-th power of the characteristic function of one of the
summands. Therefore, the left-hand side of (129) decays to
zero exponentially quickly for the sum of i.i.d. non-lattice
random vectors. This means that in our application, condition
(NL) of Theorem 7 is satisfied with room to spare.

We use the following strong LD result to bound the proba-
bility PP [z(i; Y)) > uX;Y) > Tn] with lattice +(X;Y) and
1X;Y).

Theorem 8: Suppose that S,, = (Sn1,...,5..4), and
Sp,; is a lattice random variable with span h, j;, ie.,
P[S,,; € {bn,; + khy, ;: k € Z}] = 1 for some b,, ;, such that
there exist positive constants /; and h; satisfying hj <hnj<
hj for all j € [d], n > 1. Assume that conditions (S) and
(ND) in Theorem 7 hold, and replace condition (NL) by the
following.

Lattice (L): There exists A > 0 such that, for any given §
satisfying 0 < & < A,

(132)

sup

t: 5j<\tj\§,“’l'j

%‘ =o(n ). (33)

If na,, is in the range of the random vector S,,, then

for je[d]

Ey,
P[S, > na,] = —s exp{—nA,(a,) 1+ 0(1)), (134)
where
d
1 ho i
B2 .
- (2m)4/2/det(V2kn(sn)) 71;[1 1 — exp{—sn,jhn,;}
(135)
Proof: The one-dimensional lattice case, i.e., d = 1, is

proved in [45, Th. 3.5]. The proof of the d-dimensional lattice
case follows by inspecting the proofs for the d-dimensional
non-lattice random vectors in [37, Th. 3.4] and the one-
dimensional lattice random variables in [45, Th. 3.5]. Specif-
ically, in the proof of [37, Th. 3.4], we replace [37, Th.
2.4] by extending the lattice result in [45, Th. 2.10] to d-
dimensional random vectors. The modification in the proof
yields Theorem 8. The full proof of Theorem 8 appears in
Appendix B. [ |

IfS,, = (Sn.1,--.,5,4) is asum of n i.i.d. random vectors,
where

Snj=> Aij, jeld, (136)
=1



and A; ; is a lattice random variable with span h; for j € [d],
then it holds that

j € ld].

sup |20 + ity)
05 <[t 1<

e | oTGsy)

The bound (137) follows from [38, Ch. 15, Sec. 1, Lemma
¢ A13) (s +ity)
A1) (s5)
random variable with span h;. The condition in (133) modifies
the condition in (129) for lattice random vectors by consider-
ing a single period of that characteristic function. If S,, is an
1.i.d. sum, then the left-hand side of (133) decays exponentially
with n, and condition (L) is satisfied. Note that if A, ; — 0
for all (n, j) pairs, then S,, converges to a non-lattice random
vector, and the prefactor F, converges to the prefactor for the

non-lattice random vectors, Fnr,.

Although the strong LD theorems (Theorems 7 and 8) are
used only for the sum of independent random variables in this
paper, their applications extend to Gaussian-like distributions
that do not necessarily arise from a sum, and to the sum
of weakly dependent random vectors. An example in the
first distributional family is the multidimensional noncentral
t-distribution, which appears in the analysis of the Gaussian
channel. In [37], the multidimensional F'-distribution is also
given as an example. Examples in the second family include
the information density ¢(X;Y) for constant-composition
codes. One drawback of the use of Theorems 7 and 8 is that
they require knowledge of an expansion of the MGF of the
random vector, which might not be available in some cases.

In [7, Lemma 3], Altug and Wagner derive a non-asymptotic
upper bound on the probability P[S,, > na,] as

EAW e ep{—nAn(an)},
n

where S, = Z?:l A, is a sum of n ii.d. 2-dimensional
random vectors; the random variables A;; and A; o satisfy
max{|A4;1],|4: 2|} < B almost surely for some B < oo and
can be either lattice or non-lattice. Comparing (138) to (130)
and (134), we see that (138) is asymptotically tight in the order
of the prefactor. However, the constant Eaw depends on an
unspecified universal constant. Since our achievability proof
in Section IV-D relies only on the fact that the prefactor in
the LD bound is a bounded constant (see (156), below) and
that +(X;Y") is bounded for DMCs, (138) is also applicable in
our achievability proof. If one seeks to derive the O(1) term
in (59), the tightness of the prefactor used in the probability
bound is important.

<1, (137)

4] since is a characteristic function of a lattice

P[S, > na,] < (138)

D. Proof of Theorem 1

The proof consists of two parts and follows steps similar
to the achievability proof in [19]. First, we derive a refined
asymptotic achievability bound for an arbitrary input distribu-
tion Px € P. Then, we optimize that achievability bound over
all Px € P.

Lemma 2: Suppose that €, is an SMD sequence (12). Fix
some Px € P such that (Px, Py | x) is a nonsingular pair and
Va(Px) > 0 for all n. It holds that

log M™*(n, €,)

16

> nl(Px) — /nVu(Px)Q (en) + %logn

Sk (POVTRBY) | 1 n(Py)
e (E’”( o 2<1+n<5§<>>>
+0 (%) +0(1). (139)

We require V;,(Px) > 0 in order to apply Theorems 6-8.

Proof of Lemma 2: We generate M i.i.d. codeword ac-
cording to the input distribution P% and employ a maximum
likelihood decoder. Let W be the transmitted message that is
equiprobably distributed on [M], and let T be the decoder
output. Define the random variables

Z 2 4(X;Y) (140)
Z £(X;Y), (141)
where  (X,X,Y) is distributed according to

PX,Y,Y(Xviv y) = P}g(x")P}g(i)Pglx(yb{). The random
variable Z represents the information density obtained from
a random codeword that is independent of both transmitted
codeword X and the received channel output Y.

1) Error analysis: Fix a threshold value 7,

T 2 nl(Px) — /nVa(Px)tn, (142)
with ¢,, to be specified in (149), below. Define the event
D2{Z <7} (143)

We weaken the RCU bound from [4, Th. 16] and bound the
average error probability as

P[W;&W}

<E[min{l,M-1P[Z > Z|X,Y|}] (144)
<SPD+(M-1)P[Z>Z>1,]. (145)

Define the function

1 Q '(x)? }
h(z) = exp{ ———— 146
(2) Nor Xp{ 5 (146)
and the sequences
h, & ;h(en) (147)
nVu(Px)

En 2 ep — . (148)

Below, we show that the first and second terms in (145) are
bounded by €, and h,,, respectively. Here, h,, is chosen so
that log M is maximized up to the O(Q~!(¢,,)?) term given
that the right-hand side of (145) is equal to ¢,.

We set t,, in (142) as

Z —nl(Px)
\/TLVu(Px)

Since the channel is a DMC, the random variables (X;;Y;)
are supported on a finite alphabet, thereby satisfying Cramér’s
condition in (113). Further, since, by assumption, V;,(Px) > 0,
Theorem 6 and Lemma 1 are applicable. Applying the MD
result in Lemma 1 to (149), we get

_ Sku(PX)Qil(gn)z
6v/n

P[D] =P (149)

< _tn] .

tn = Qil(gn)



+0 (W) +0 (%) . (150)

We compute the first two derivatives of the Q ~!(z) function as

VN 1 _ -1
(@) (x) Q,(g_l(x)) ) (151)
(Q)'(a) = —%(x()f). (152)

By taking the Taylor series expansion of @~1(-) around e,
and using (150)—(152), we get

= - Sl

so (Tl o).

Next, we bound the probability [P [7 > 7 > Tn]. Define the
random vector U £ (Uy,Us) = (Z,Z — Z). and the sequence

T
an = (an,laan,Q) - (Znao) .

Applying Theorems 7 or 8 (depending on whether +(X;Y") is
non-lattice or lattice), we get

(153)

(154)

P|[Z>Z>7,)=P[U>na,] (155)
< Zexp{-nA(a)}(1 +o(1)), (156)
where
B Exr, %f 1(X;Y) %s non.-lattice (157)
Er,  if o(X;Y) is lattice.

Aan) = sup {(an,sn) — #(sn)} (158)

s, ER2

1

K(sp) = - log E [exp{(sn, U)}]. (159)

Note that the functions x(-) and A(-) do not depend on n
since U is an i.i.d. sum. The rate function A(a,) has the
Taylor series expansion

(any — I(Px))?

AMan) = I(Px) + (an1 = I(Px)) + 770 by 5y

+O(|an1 — I(Px)?) (160)

- 1 Qil(en)Q Qil(en)g 1
= ot iy O (Fee) o (3):
(161)

In the application of Theorems 7 and 8, conditions (S),
(NL), and (L) are already satisfied since U; and Uz have finite
supports. The verification of condition (ND) and the derivation
of (161) appear in Appendix C.

We set
log M = nI(Px) — \/nVa(Px)Q (en) + %1ogn
_ Sky(Px )/ Va(Px) 1 —n(Px)
O o)
Q_l(én)?’
+0 <7\/ﬁ ) +0(1). (162)
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We put (142) into (153), and then (154) into (156) to bound the
probability P [Z > Z > 7,,]. Then, from the expansion (161),
we get

MP|Z > Z > 1,] < h, (163)
where h,, is defined in (147). Combining (145), (149), and
(163) completes the proof of Lemma 2. [ |

To complete the proof of Theorem 1, it only remains to
maximize the right-hand side of (139) over Px € P. The
following arguments extend the proof of [19, Lemma 9] to
the MD regime. Define

G(Px) 2 - V Vu(PX)Q_l(En)'
Let h be a vector whose components approach zero with a
rate O SL\/E—:”) satisfying h"1 = 0. Let f(h) be the right-
hand side of (139) evaluated at Px = Py + h € P for some
Py € P*. We expand f(h) by using the second-, first-, and
zeroth-order Taylor series expansions of I(Px), G(Px), and
Sky (Pyx) and n(Px), respectively

(164)

F(h) 2 nI(P%) +nh VI(PL) + ghTVQI(P§)h
+O0(n|h||%) + VnG(PY) + v/nh " VG(P)
1
£ VRO(Ih) + 3 logn

“1 e Ska(PX)VVa(PY) | 1—n(Pg)
#Q e (R )
Qfl(en)g
+0 <7\/ﬁ ) +0(1) (165)
= nh VI(PL) + ghTVQI(P)*()h
+vnh'VG(P%) +b, (166)

where b is the right-hand side of (139) evaluated at Px = P%.
Here, the terms involving the first derivatives of Sk, (Px) and
n(Px) are absorbed in the O(-) terms in (165).

For every h such that Py + h is a valid probability
distribution, h"VI(P%) < 0 by (49) and [6, Th. 4.5.1];
equality holds if and only if h is supported on X'T. Therefore,
for any valid h and n large enough,

f(h)

< sup { - gh’TJth’ +vnh' 'VG(PL) + b}.
h':h'T1=
supp(h/)lgﬂSJT
hle\x* 20

(167)

Instead of maximizing over all valid h as in (167), we further
restrict supp(h) to X*, which yields the optimization problem

sup
h':h'T1=0
supp(h’)Cx*

n
{ - §h’TJX*h’ +vnh' 'VG(PE) + b}.

(168)

The following arguments follow from the proof of [19,
Lemma 9]. For any h’ in the kernel of Jy-, the first two
terms in (167) are zero. Therefore, the optimal h* must lie in
the row space of Jy-. From [19, eq. (2.48)], h’TVVu(P)*{) =



h’ TVV(P;}) for any feasible h’. Thus, the problem captured
by (168) reduces to (65), whose solution is given in (63). See
Appendix D for details. Notice that if XT = A* holds, then
the right-hand sides of (167) and (168) are equal, meaning that
for DMCs with XT = X*, (63) yields the optimal direction
(up to the skewness term) with respect to maximizing the RCU
bound.

Combining the value of b and the value of (65) gives the
maximum of (139) over all input distributions Py € P and
completes the proof of Theorem 1.

E. Proof of Theorem 2

The proof analyzes Tomamichel and Tan’s non-asymptotic
converse bound from [14, Prop. 6] using techniques from [19].

The main difference between our proof and Moulin’s proof
in [19] is that while Moulin analyzes the meta-converse bound
[4, Th. 27], we analyze a relaxation of the meta-converse
given in Lemma 4, below. In general, the analysis of the
meta-converse is more involved since it requires splitting the
code into subcodes according to the types of the codewords
and then carefully combining the bounds for each subcode.
The advantage of Lemma 4 over the meta-converse bound
is that the optimization problem in Lemma 4 can be con-
verted into a simpler single-letter minimax problem as we
show in Lemma 3, and the type-splitting step is avoided. A
similar simplification to a single-letter problem using the meta-
converse is possible (i) under the average error probability
criterion for channels that satisfy certain symmetry conditions
[4, Th. 28] (e.g., Cover—Thomas-symmetric channels satisfy
these symmetry conditions) and (ii) under the maximal error
probability criterion for arbitrary DMCs [4, Th. 31]. While
both approaches yield the same upper bound S on the skew-
ness (in the CLT regime in Moulin’s work and in the MD
regime in our work), we note that Lemma 4 is not tight enough
to obtain the tightest O(1) term in the converse (66), which
we do not focus on here.

We define the divergence spectrum [46, Ch. 4], [14], which
gives a lower bound on the minimum type-II error probability
of the binary hypothesis test, 81_(P, @),

DL(P|Q) 2 sup{v ER: P [1og < ”y] < } (169)

where € € (0,1), P,Q € P, and X ~ P.

We define the function £#: P x P — R in (172) below,
where P)((O) — Pyix — Pl(/o). The function £ is related
to the asymptotic expansion of the divergence spectrum. In

particular, for Px € P and Py € P*, it evaluates to

fE"(Px,Px)—TLI PX \/nV PX Q

N Sk(PX)6 V(PX)Q_l(En)Q (170)
£ (Px, Px) =
— Ve, Q7 (en) + % vVé"Q—l(en)?. (171)

Note that by [19, Lemma 2], Sk, (P%) = Sk(P%).
The main tools to prove Theorem 2, presented below,
are Lemma 3, which gives an asymptotic expansion of the
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divergence spectrum in the MD regime and Lemma 4, which
gives a channel coding converse based on the divergence
spectrum.

Lemma 3: Let a > 0. Define Q(a) £ {Qy € Q: Qv (y) >
aVy € Y and 3Qx € P such that Qx — Py|x — Qv}.
Assume that {€,}5° ; is an SMD sequence (12).

(i) Then, for n large enough, there exist constants K; and
K that depend only on Py x and a such that
D;n (PY\X:XHQ?/) - gen (an QX)

max
xeX"
Qy€Q(a)

Q" (en)l®
vn
(ii) Let Px — Pyjx — Qx for all x € X" For n large
enough, there exist constants K3 and K, that depend only on
Py |x such that

< K, + K>, (173)

}{Ielf}(ﬂD (Pyx=x[Q%) = £ (P, P)|
IQ Hen)?
K 174
\/ﬁ + £y (174)
Proof: See Appendix E. u

Note that the argument of the absolute value on the left side
of (173) depends on x only through its empirical distribution
Py € P,. By Lemma 3 (i), for P°) such that P

A YO)(?J) >
0 for all y € Y, £ (Py, PY) = D (Pyjxes | (PY)™) +
S} +00).

Lemma 4 ( [14, Prop. 6]): Let €, be any sequence in (0, 1)
and Py x be a DMC. Then, for any d,, € (0,1~ €n), wWe have

O(Q \/(in

log M*(n, €,)

< min max D& (Pyx— QY —log s, (175)
Q(n)egnxeX"
where PY\X:x = Hi:l PY\X:zi'
Define
A c|@ '(en)|  log’(n) }
pn = Max ) (176)
{ v VnQ7 e

where co > 0 is a sufficiently large constant that will be
determined later. Define the set of input distributions

P*(v) £ {Px € P: |[Px — P%||,, <v for some Py € P*}.
177)

The auxiliary output distribution
Q4 (Qy+h) 2 2 ¢ (178)

P€73

which is a convex combination of product distributions, is
inspired by Hayashi [5, Th. 2] and Tomamichel and Tan
[14, eq. 6]. Here, Q)3 is the unique capacity-achieving output
distribution, and Px — Py‘ x = Qx. The vector fl, supported
on )Y, is intended to be optimized under the constraints that
its entries sum to 0 and h — 0. The first term in (178) targets
the sequences x € X" in the maximization in (175) such that
the corresponding empirical distribution is close to P% in the
sense that Px € P*(pn), where p,, is given in (176). The
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g (PO, P 2 nD(Pyix | PE1PP) = \/nV (Prx | PO PP )Q (e0)

N SK(Py x||PE POV (Py x| P PY)

Q_l(én)2

: (172)

second term in (178) targets the sequences x € X" that are
far away from P%, ie., Py ¢ P*(pn)-

We upper bound the right-hand side of £ 175) by setting the
auxiliary output distribution ng ) to ng )" and get

log M™(n, €,) < max DEnton (Py|X:x||Q§:I)*) —log dy,.
(179)

To bound the right-hand side of (179), we present three
auxiliary lemmas.

The following lemma by Tomamichel and Tan bounds
Der (P]|Q) where @ is a convex combination of distribitions.

Lemma 5 ( [14, Lemma 3]): Let €, be any sequence in
(0,1). Let Z be a countable index set. Let ¢ be a distribution
on Z. Let P,{Q%};c7 be distributions on a common alphabet.

Let Q@ = > ;.7 q(i)Q". Then,

DY (Pl|Q) < inf{Df" (P|Q") — logg(i)}- (180)
Define
Ay £ D(Pyix—.||Qy)—C YazeX (181)
n® 2 pl _ pr (182)
h© £ pY _ py (183)
Ve 2V (Pyix—|lQy) VzeX (184)
g= —21—2)?(%) (185)
Sy
g= ‘%V (186)
P(h(), h()) 2 %h«ﬂ Jy-h© + g h)
“n® 7 (Jh© —g), (187)

where P5 is a dispersion-achieving input distribution, and
V(P ) is defined in (53). Recall the definitions of J and J from
(51) and (56). The quadratic form I'(h(), h(®)) arises after
taking the second-order Taylor series expansion of the function
&en (P)(g)7 P)((O)) around the point (P%, Py ). Lemma 6, below,
gives the saddlepoint solution to the minimax of I'(h(®) h(®)),
where the maximization is over h() and the minimization is
over h(®),

Lemma 6 ( [19, Lemma 14]): Consider the minimax prob-
lem

min  max DD n@).  (188)
h(: supp(h®)Cx* h®: supp(h@)cxt
h© T1=0 h®T1=0
(o) 1)
h'® erow(J ) hXJ(\X* >0

The point (h®" h(©)"), where h) = Jg and h(®) = Jg, and
g = g + g, admits the saddlepoint property

P(h® h©") =T h@") <m0 n®)  (189)

for all feasible Nh(i) and h(®). The value of the saddlepoint is
38 g — 38" g

In (188), the constraints h(i)Tl = 0 and h(O)Tl = 0 are
due to P)((i), P)((O ), and P% being distributions. The constraints
supp(h(i)) C X' and hg?T\ +- = 0 are due to the optimality of
P3. The constraints supp(h(®)) C X* and h(®) € row(Jx-)
are by our choice.

Define the function

P (PY) £ 67 (P, PX) + Q en)*(Ao(Px) — Ai(Px)).
(190)

The following lemma bounds £ (P, Px ) for Px € P that
are sufficiently far away from the set of dispersion-achieving
input distributions.

Lemma 7: Let €, be an SMD sequence. There exist con-
stants ¢o > 0 and ¢; > 0 such that for all p,, > CO‘Q%L(E")I
and for all Px ¢ P* (pn),

gén(PX’PX)

< nax ¢ (PY) — c1v/npn|Q7 (en)|(1 + o(1)). (191)

Proof: The proof extends the result in [19, Lemma 9 (iii)]
to SMD sequences and uses the quadratic decay property of
mutual information, which is formalized in [47, Th. 1]. See
Appendix F for details. [ |

We bound the right-hand side of (179) in two steps.

1) We optimize the value of the perturbation h in the
auxiliary distribution given in (178). To do this, we take
the Taylor series expansion of £ (P)((l), P)((O )) around the
point (P%, P%) and then use Lemma 6.

2) We bound the right-hand side of (179) separately depend-
ing on whether P, € P*(p,) or Px ¢ P*(py). For the
case I:’x € P*(pn), we apply Lemmas 5, 3, and 6 in
order. For the case P, ¢ P*(p,), we apply Lemmas 5,
3, and 7 in order.

In the following, we detail these two proof steps.

1) Optimization of the value of h: The minimax of the first
term n.D(Py| X|\P3(,O)|P)((l)) in (172) satisfies the saddlepoint
property (e.g., [48, Cor. 4.2])

D(Py|x||Qy|Px) < D(Pyx||Q%|PY) < D(Py x| Qy|Pk)
(192)

for all Px € P,Qy € Q, where P;( € P! is a capacity-
achieving input distribution, and Q)3 is the capacity-achieving
output distribution; the minimax solution for the first term in
(172) is P = P’ = P}, and the saddlepoint value is
D(Py x|lQy|PT) = C.



Let Py € P* be a dispersion-achieving input distribution.
To set the perturbation h in (175), we consider the problem

min max ¢n(PY, P, (193)
P)((O)GP: P)((‘)EP:

To be able to apply Lemma 6, we further restrict the per-
turbation P)((O ) P% € row(Jx~), which yields the minimax

problem
min ma & (P)((l),P)((O)).
PO ep: ||PE <pn PYep:
> (1) *
supp(PY) Py )CX™ HPX ~Px||  spn

P)((O) —Pyerow(Jyx)
(194)

Note that (194) gives an upper bound on (193).

Assume that ||h )|| ||h(°)||OO < p, and
supp(h(®) C x*. In [19, Lemma 12], Moulin derives the
Taylor series expansion of & (P)((i),P)((O )) around the point

(P%, P%) and obtains

gon(PY, POy = g0 (PL, PE) +nh® T A + gh(o)TJX*h(‘))
+viig b — vah® (Jxv/ah© - g)
+ 0(p2vV/nQ *(en)). (195)

The term O(p2/nQ t(en)) in (195) is bounded by

0 (el o).
The following arguments follow the steps in the proof of
[19, Prop. 30]. We decompose h() as h() = h(l) + hg?\xf'

Then, the right-hand side of (195) becomes
£ (Py
+ —h © 7 Jy.h

£ (Px, Px) + h(;()\XfTA
o)_'_\/ﬁg—l'ho
—f (b + B ) Ui vnh® — g)
+0<7Q 1(6")3> +0(1)

N0 .

Consider the maximization of the right-hand side of (196)

over h(). Note that max,ex\xi Az < 0 and h(x)\/w > 0.
The term nhg?\ Xt (X)\ i

o(1), it dominates the term —\/ﬁ(h(;{)T +

)T (Jxty/nh(®) — &) for n large enough. This means

(i) P(O))

(196)

A is negative for any nonzero h

Since p, =

@
hX\XT :
that, for n large enough, the maximizer h() must satisfy

h(;{)\ v+ = 0. Therefore, we have
g (PY, YY) < €0 (P, P + T(VihV, /ih(®))

+0 (M) +0(1). (197)

NG

Lastly, we apply Lemma 6 to T'(y/nh®, {/nh(®). A saddle-
point solution to the right-hand side of (197) ignoring the O(-)
terms is given by

R GOy
24/nVe,

v(PL) (198)
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Q7 en) 5g
2./nVe,

where v(P%) and v are defined in (52) and (184), respectively.
Notice that h(®” is uniquely defined even if the dispersion-
achieving Py is not unique in general. The value of the
saddlepoint without the O(-) terms is )»*(P%), which is
defined in (190). We set the perturbation vector h supported
on Y such that h©)" Py x — h.

2) Bounding the right-hand side of (179): We bound the
right-hand side of (179) separately for x € &A™ whose
empirical distribution is close to some Px and far away from
all P%.

Case 1: P, € P*(p,). For this case, we apply Lemma 5
to the function D¢ (Py|X:x||Q§7)*) with Q7 = (Q% + h)”

and ¢(i) = 1 and get

h©" = - (199)

D& (Pyx—x Q)

< DS (Pyjx—[(Q} +h)") + log 2 (200)

€n (0)* Qil(en)g
<& (P, Py +h@7) 10 =) +om @
< max ¥ (P*)+O (M) +O(1) (202)
Py P X NG ’

where (201) follows from Lemma 3 (i) and the fact that
Q3 (y) > 0 for all y € Y, and (202) follows since (190)
is the saddlepoint value for P € P*(pn). Note that in (202),
the maximization over dispersion-achieving input distributions
is needed in case there are multiple dispersion-achieving input
distributions.

Case 2: P, ¢ P*(p,). For thlS case, we apply Lemma 5 to
the function D§" (Py|x— x||QY ) with Q% = Q" and ¢(i) =
2‘71%' and get

D& (Pyx— Q)
< D& (Pyjx—x|Q) + (1X] = 1) log(n + 1) +log 2 (203)

€n Q—l(en)?; ogn
<& (Py )+O<7\/ﬁ )+O(1)+O(1g );204)

where in (203), we use the well-known bound on the number
of types |P,| < (n 4 1)I¥I1=1, Inequality (204) follows from
Lemma 3 (ii).

We set the constant ¢y > 0 in (176) as dictated by Lemma 7.
Then, for all P, ¢ P*(pn)s

€n (D > < €n * *

—C1 \/_pn|Q_1(6

By (176), v/1pn|Q " (€,)| > log® n. Hence, the O(log n) term
in (204) is dominated by the —civ/np,|Q 1 (€,)]|(1 + o(1))
term in (205). This property, together with (204), ensures that
for all Py ¢ P*(py,),

n)|(1+0o(1)).  (205)

D& (Pyjx=xllQ{"") < Apax v UD@J@(%)

+O(1). (206)



From (202) and (206), we conclude that

(n) < en*(pE
max DY (Pyxx Q) < mas " (P%)

Q_l (En)3
+0 ( NG +0(1).
(207)
Finally, we set the parameter 6,, in (179) so that
—1 " 2 1
log d,, = —w ~3 logn. (208)

We replace €, in (207) with €, + §,,. Expanding the Taylor
series of @ ~!(-) around €,, completes the proof of Theorem 2.

V. PROOF OF THEOREM 4

Assume that the random variable Y ;" | Z; is lattice with
span i > 0. Let v and 7 satisfy

Z iz =l-g>1-c (209)
Z =1-%¢,<1—en, (210)
where 7 and 7 are in the range of S Zi Y — Y = h, and
€, < €, <&, Let A € [0, 1] satisfy
PN Zi>vy|A+P | Zi>7|(1-A) =1—¢,
i=1 i=1
(211)
By the Neyman-Pearson Lemma (see [4, eq. (101)]),
Bi-c, (P™,Q™)
=P > Zi>y|A+P | Zi>F| (1-)). 212)
i=1 i=1
Define the asymptotic expansion
Sk\/_
1\ Lo '(e)?
u4—3V2 V — 443 Q ()
72V5/2 n3/2
—1 4 1
+O<Q §€> )+O<—>. 213)
n n

By conditions (A) and (B) of Theorem 4, the conditions
of Theorem 6 are satisfied for the sum .., Z;. We apply
Lemma 1 to (209)—-(210), and get the asymptotic expansions

(214)
(215)

7 = nx(€,)
5 = nx(€n).
From the Taylor series expansion of x(-) around €,, (214)-
(215), and 7 — v = O(1), it holds that
7 = nx(ea) +O(1)
7 = nx(ea) + O(1).
The arguments above also hold in the non-lattice case (i.e.,
h = 0) with y =7.
Next, we evaluate the probability PP [Z?:l Z; > ﬂ in (212)
separately in the lattice and non-lattice cases.

(216)
217)

21

1) Lattice case: We here apply Theorem 8 to evaluate the
probability of interest. By [19, Appendix D],

k(1) =0 (218)
k(1) =D (219)
K'(1)=V (220)
(1) = pa. (221)

From (216), we have —”y = D + o(1). Therefore, by (219),
condition (ND) of Theorem 7 is satisfied with s = 1+ o(1).
Condition (S) of Theorem 7 is satisfied by condition (C) of
Theorem 4. Therefore, it only remains to verify condition (L)
of Theorem 8 in the one-dimensional case. Since Y ;- , Z; is
lattice with span h, each Z; is also lattice with a span that is
a multiple of h. By [45, p. 1687], we have

(s +it)
bi(s)
%, where ¢;(-) is the MGF of Z,. Since

sup
O<[t|<F;

’gcl <1, ien] (222

forevery 0 < § < ¥

Zy,... Ly are ii. d the MGF ¢(-) of >_i" | Z; satisfies
.t n i .t
sup 9ls 1) )’ = sup $ilo + 1) (223)
s<|t|<x P(s) S<|t|<Z ;5 bi(s)
< =o(n"Y?). (224)

Therefore, condition (L) of Theorem 8 is satisfied. Applying
Theorem 8 to P [Y_7" | Z; > 7|, we have

P ;71- >q| = exp{—nA(an) - %logn—i—O(l)} ,
(225)
where
A(ay,) = sup{ta, — k(t)} (226)
teR
an = X(€,) + O <%) . (227)
We expand the Taylor series of A(-) around D as
Y
Aan) = A(D) + (a, — D)A' (D) + MA”(D)
)3
+ZPEA (D) 4 0an - DY), @29)
[19, Appendix D]
A(D)=D (229)
N(D) =1 (230)
" _ l
(D) = < (231)
1 H3
N"(D) = ~vs (232)

Combining (225) and (229)-(232), we get
—1 2 —1 4
Aay) = a, + S22 (Q (c0) ) Lo (1) ,
2n n n
(233)

By (216)-(217), the asymptotic expansion on the right-hand
side of (225) also holds for the probability P [Z?:l Z; > ﬂ.
Combining (212), (225), and (233) completes the proof for the
lattice case.




2) Non-lattice case: The proof for the non-lattice case
is identical to the proof for the lattice case except for the
verification of condition (NL) in Theorem 7. Define

i€L;

(234)

where S are non-lattice by condition (D) of Theorem 4. By
[45, p. 1687],

bj(s +it)

&;(s)

for every 0 < < A, where ¢, denotes the MGF of S;. Since

sup sup
JE[wR] S|t <A

<cy <1

(235)

Z1,y..., 4y are ii.d., we have
.t Wp 7 . .t
sup M = sup H M 1 (236)
s<|t]<A o(s) S<t<A 55 ®;(s)
<cy" (237)
= o(n~Y?), (238)

where (236) follows since i(s+it)

of a non-lattice random variaf)le [45], (237) follows from
(235), and (238) follows from condition (D) and c3 < 1. This
verifies condition (NL) of Theorem 7. Applying Theorem 7 in
a way that is similar to (225) completes the proof.

is a characteristic function

VI. PROOF OF THEOREM 5

We begin by presenting the preliminary definitions of the
subsets of an n-dimensional sphere. A centered, unit sphere
embedded in R"™ (the manifold dimension is n — 1) is defined
as

St A Ix e R™: |Ix|| = 1}. (239)

A centered, unit-radius spherical cap embedded in R" is
defined as

cap(x,a) £ {y e R": (x,y) > a,|lyl, =1},  (240)

where x € S"~! is the center point of the cap, and a € [—1,1]
defines the size of the cap, which is equal to the cosine of
the half-angle of the cap. For example, cap(x, —1) = S~}
and cap(x,0) is a half-sphere. We use Area(-) to denote the
surface area of an (n — 1)-dimensional manifold embedded in
R™. For example, the surface area of a unit sphere is

Area(S" 1) = (241)

where T'(+) denotes the Gamma function. Below, we use X £

ﬁ to denote the projection of X onto S™~1.
2

A. Shannon’s Random Coding Bound

Shannon’s random coding bound from [11] can viewed as
a relaxation of the RCU bound (144), but the relaxation is
different than the one in (145). We generate M indepen-
dent codewords uniformly distributed on the power sphere
V/nPS™~1. Since all codewords lie on the power sphere and
since the maximum likelihood decoding rule is equal to the
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minimum-distance decoder for the Gaussian channel, (144) is
equivalent to

M
e<P [U {{(X(m),Y) > (X(1),Y)}|W = 11 .4
m=2

We bound the right-hand side of (242) by

i [<X,Y> < a} + MP [<K ) > (X, Y) > a] (243)
for some a € [—1,1] to be determined later. Here, X is uni-
formly distributed on vnPS" ', Y = X + Z, Z ~ N(0,1,,)
and is independent of X, and X is distributed identically to
X and is independent of X and Y. The bound in (243) is
exactly equal to [11, eq. (19)] and [12, eq. (61)]. Both of [11]
and [12] set the threshold a to satisfy

P[X,Y) >0 = (244)

to analyze the bound in the LD regime. We here set a slightly
differently for the CLT regime, namely, as

1

R S { Qe }
2V (p) T 2 J
(245)

P[<X,?><a} —f=e—

which is the same choice that we make in (148).

Using the same steps as [11, eq. (16)-(17)] and [12, Ap-
pendix G], we express the probability (245) in terms of a CDF
of a noncentral ¢-distribution with noncentrality parameter
VnP and n — 1 degrees of freedom as®

P [<X,Y> < a} —P [p < ML} . (246)

V1—a?
where p ~ noncentral—t(n — 1, v/nP), which is defined as
Ay +VnP
LV (247)

VT Y A7
., Ay are iid. N(0,1).
‘Due to spherical symmetry, (X,Y) is independent of
(X,Y), and from [11, Sec. IV],

where Ay, ..

Area(cap(xg, b))

i [(iw > b} = @y frbe (-1,

(248)

where x is any point on the unit-sphere. Shannon proves the

following asymptotic expansion of (248)
1 Area(cap(xo, b))

(b L~ gg A P

on(b) n o Area(Sn—1)

1
=3 log(1 — b?)

(249)

ﬁ .
(250)
To find the value of a in (245) as a function of e, we first

derive a Cornish-Fisher expansion of the random variable p.
Fisher and Cornish [41] extend the Cornish-Fisher expansion

1 1 1
~ 5, logn — o log(27b*(1 — b)) + O (

To see this, set X to (v/nP,0,...,0) and use spherical symmetry.



of the random variables with known cumulants that do not
need to be sums of independent random variables; they give
the expansions for ¢ and chi-squared distributions as examples.
Van Eeden [49] uses the same technique for the noncentral ¢-
distribution, where the noncentrality parameter is fixed and
the number of degrees of freedom approaches infinity. In our
application, p has a noncentrality parameter v/nP growing to
infinity.

To extend [49] to the case where the noncentrality parameter
also grows with n, we realize that a sufficient condition
for the expansion in [41] to be valid is that the random
variable is continuous and its first s + 1 cumulants satisfy
kj = O ( ), j < s+ 1, which holds in our application

(see (253)— (255)) Therefore, the expansion in [49] extends to
the case with a noncentrality parameter v/nP with the change
of corresponding cumulant expansions.

The version that we are interested in is studied in a recent
paper [50, Th. 6.2], where an asymptotic expansion of the tail
probability of the noncentral ¢-distribution with noncentrality
parameter v/nP is provided. Inverting that result using the
Lagrange inversion theorem also verifies the following result.

From [41], [44], [49], the quantile ¢ of p at the value €
admits the expansion

e=Plp <t (251)
1 Sk, 1
t=m v (@O - S @@ -1)+0(z),
(252)
where k1 = E|[p], k2 = Var[p], and Sk = w is the

2
skewness.

From the moments of the noncentral t¢-distribution [51]
and Taylor series expansions, we calculate the asymptotic
expansions for k1, ko, and Sk as

P
K1 = VnP + %/— ) (n*3/2) (253)
2 19P
Ko = (1+ 5) 42T +o( *3/2) (254)
2
12y/P + 5P3/2 3
Sk— Y- O L (32 255
Van (2 1 Py () (255)

and check that the fourth cumulant satisfies k4 = O(n™1).
Applying the Taylor series expansion to Q~1(€), we get

1 1
1@ =Q (e +7+O<—). 256
@O=Q O+ ==+0(; (256)
Juxtaposing (246) and (251), we note
t
a=—Y1=t (257)
L+ ntjl

Substituting (253)—(256) into (252), and the latter into (257),
we get

" VP 1 V2FPQTY(e)
TVI+ P Vn V2(1+ P2
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1 18V/P +28P3/2 4+ 10P%/?

n 12(1+ P)5/2(2+ P)

Q7 (€)2 24VP +19P3/2 - 4P5/2
n 12(1+ P)%/2(2 + P)

1 V2+P

n+/2(1+ P)3/2,/V(P)

It only remains to find the asymptotic expansion of the prob-
ability P [<X, Y) > (X,Y) > a} . Note that this probability is
in the LD regime. Qsing the analysis in [12, Sec. V-B], we
find the density of (X,Y) as

(258)

fx v (a) = exp{nun(a)} (259)
logn  wui(a) o
n = - 2
un(a) = ugp(a) + o o™ +0(n™7) (260)
1
up(a) = B log(1 — a?) — 20 + (aa)? 4+ aa/1 + (aa)?
+log(aa + /1 + (aa)?) (261)
u1(a) = log(1 + (aa)? + aa/1 + (aa)?)
+ 3log(1 — a?) + log(27), (262)
where o £ %
In [12], the asymptotic expansion to the probability
P [(K, Y) > (X,Y) > a} is derived using the Laplace inte-

gration method as
P[<§Y>><X ?>>a}
Area(cap(xo, b))
f (X Y)

 Area(Sn-1)
= / exp{ngn(b)}db

—explngnfa) £0().

where ¢, (b) = un(b) + v,(b) and g/,(a) is the derivative of
gn(+) evaluated at a.

TP, ) qp (263)
(264)

(265)

—ng;,(a)

Finally, equating the second term in (243) to
1 _Q’l(e)z} i
CrmTo) exp{ 5 , giving
1 1 Ql(E)Q}
M exp{ng,(a = expy ———— ¢,
P(0u(0)} s = s p{ .

(266)

and using (258)—(262) along with several Taylor series expan-
sions, we complete the proof for the lower bound (93).

B. Vazquez-Vilar’s Converse

We here analyze the meta-converse bound in (98) in the
CLT regime. The arguments of the 3, function in (98) satisfy

the conditions of [19, Th. 18]. Let Py = N (v/P, 1), §f"> —
N(0,1+ P +46,), and Z = log dlZ{l) (Y), where Y ~ Py.
We compute
)
D(P,6,) £ E[Z] =C(P +0,) — —————— (267
(P0n) 2E[Z) = C(P +60) = 5 pss (267
P2 1 2P§, + 2P + 62
P 6,) & Z) = . n 2
V(P,6,) = Var [Z] 21 L P Lo (268)



P3P +3)

(269)
S(P,6,) 2 vﬂ(iyjs’j)z)/z (270)

Note that D(P,0) = C(P) and V(P,0) = V(P). Putting
(267)~(270) in [19, Th. 18] gives

F(6,) 2 —log B1_(PE", (Q3)®™)
=nD(P,6,) — VV(P,6,)Q () + %1ogn

. (S(P,én) V(P,&n)> (

271)

Q (e - 1)

6
+ %Q_l(e)z + %10g(27rV(P, 5n)) +o(1). (272)

Next, we take the Taylor series expansion of (272) around
0, = 0 and get

F(6,) = nC(P) — \/nV(P)Q ' (e) + % logn

1 VPQ™!(e)

n
+ =62 +v/ndy,
v (1+ P)2,/2(P +2)

27" 2(1 + P)?
P(P +3) .
* <_3(1+P)(2+P)> @ @*-1)

+ %Q‘l(e)2 + %10g(27rV(P)) +o(1) + 0(5,). (273)

Setting gTF = 0 shows that the ¢ that minimizes F'(,) is

given by
s Q70 [2P
o yn VP42

Evaluating F'(0;)) completes the proof of (94).

(274)

C. Shannon’s Cone-Packing Converse

In [11, eq. (15)], Shannon derives a converse bound for the
Gaussian channel with an equal-power constraint using a cone-
packing idea, which is equal to Polyanskiy’s later minimax
bound [4, Th. 28]. Shannon’s bound is still the tightest known
bound for any error probability. We here analyze [11, eq. (15)]
in the CLT regime.

Shannon’s cone-packing converse for the equal-power case
is given by

e>P [<X,Y> < a*} : (275)

where a* satisfies

1 Area(cap(xq,a*))

M Area(Sr—1) (276)
To evaluate (275), we express a* in terms of e using the
Cornish-Fisher expansion in (252). Then, we plug the value
of a* into (276) and write the right-hand side of (276) using
the asymptotic expansion in (250). After several Taylor series
expansions, combining (275) and (276) yields the bound on
the right-hand side of (94) for the equal-power constraint
with S(P) unchanged and B(P) replaced with B(P) + 1.
Combining this converse with [13, eq. (23)], which is a
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refinement of (100), we get a converse bound for the mayimal-
power constraint with S(P) in (94) unchanged and B(P)

replaced with B(P) + 1+ C(P) — 2(11-T—P)‘

VII. CONCLUSION

This paper investigates the third-order characteristic of
nonsingular DMCs, the Gaussian channel with a maximal-
power constraint, and binary hypothesis tests, defining a new
term, the channel skewness for this purpose. Since the channel
skewness is multiplied by Q~1(¢)? in the asymptotic expan-
sion of the logarithm of the maximum achievable message
set size, including the channel skewness term in the approx-
imation is particularly important to accurately approximate
non-asymptotic bounds in the small-e regime. In most of the
paper (except the Gaussian channel extension), we derive tight
bounds on the non-Gaussianity (4) in the MD regime. We show
in Theorems 1-2 that Moulin’s CLT approximations in (6)—
(7) up to the skewness terms remain valid when the constant
e is replaced by an SMD sequence ¢,, (12). For a BSC(0.11)
and most pairs (n,€) pairs satisfying ¢ € [10719,107!] and
n € [100,500], we observe that our skewness approximation
in Theorems 1-2 is more accurate than the CLT approximation
from [4] and the state-of-the-art LD approximations from [9],
[10]. While the prefactor in those LD approximations requires
solution of a different optimization problem for each (n,¢)
pair, our skewness approximations are easily computable, and
the skewness term informs us about the accuracy of the CLT
approximation for a particular channel. For Cover—Thomas-
symmetric channels, our bounds determine the channel skew-
ness S exactly; in Theorem 3, we refine Theorems 1-2 by
computing the term that is one order higher than the channel
skewness.

By analyzing Shannon’s random coding bound in [11]
and Vazquez-Vilar’s meta-converse bound in [13] in the CLT
regime, we exactly compute the channel skewness for the
Gaussian channel with a maximal-power constraint. Theo-
rem 4 implies that the converse bound generalizes to SMD
sequences. We leave to future work the MD analysis of the
achievability bound for the Gaussian channel, which calls
for new tools for approximating the probabilities of sums of
dependent random variables.

Our techniques also apply to BHT in the MD regime,
where the third- and fourth-order terms in the type-II error
probability exponent have forms similar to the third- and
fourth-order terms in the expansion of the logarithm of the
maximum achievable message set size for Cover—Thomas-
symmetric channels. For example, the skewness of the log-
likelihood ratio in BHT plays the role of information skewness
in channel coding. Using our new MD approximations to
BHT, several information-theoretic results that rely on BHT
asymptotics such as [29], [31]-[33] can be extended to the
MD regime.

The asymptotic expansions in (130) and (134) for the tail
probability of the d-dimensional Gaussian-like random vectors
(Theorems 7 and 8, respectively) are quite useful and may
find many applications within and beyond information theory.
For example, together with Theorem 6, one can prove an MD



version of the asymptotics of the rate-distortion function in
[31]. A lossless source coding asymptotics result is already
proven in [26] by applying Theorem 6, which was one of the
motivations for the analysis in the current paper. Theorems 7—
8 can also be used to refine the asymptotic expansions for
several network information theory problems, including the
characterization of the performance of the multiple access
channel; for these problems in particular, the challenging
task for the extension to the MD regime is to prove the d-
dimensional version of Theorem 6. As Theorems 7-8 apply
to Gaussian-like distributions that are not necessarily the
sum of independent random vectors, they could allow the
refinements of the performance of constant-composition codes
and universal codes (e.g., the maximum empirical mutual
information decoder) in channel coding.

APPENDIX A
PROOF OF LEMMA 1

For y = O(1), Lemma 1 states that F,(—z) =
Q(x) (1 +0 (\/Lﬁ ) By the Taylor series expansion of Q(y),
we solve

1
= O — 277
T=y+ ( \/ﬁ) ; 277)
which confirms the statement of the lemma for finite y.
Next, we focus on the cases y — oo or y — —oo with
y € o(y/n). We here prove the case where y — co. The case

y — —oo follows similarly using (116). From (117), we have

a3 xt
Fu(—2) = Q() exp{ —alral
25
~o(m) o)}
Let = y+9 where 6 /y — 0. Substituting F,(—z) = Q(y)
into (278), we get

Qy +9)
Qy)
_ exp{aoj; 2 2 o ( Z;) 40 <%)} (279)

As y — oo, we have the asymptotic expansion [52, eq.
26.2.12]

av - {2} (1-0(3))

Substituting (280) into the left-hand side of (279) and taking
the logarithm of both sides of (279), we get

52 6 52
wE-eof)

(280)

2 Yy
3 326 352 63 4
=ao%+ao\y/—+ o\i—-i-ao\/ﬁ—al%

() o) o)

Equating the coefficients of < \F and U of both sides of (281),
we get

(281)

bo = Qg (282)

25

5
by = —at + a1, (283)

2

which completes the proof.

APPENDIX B
PROOF OF THEOREM 8

First, for lattice random vectors, we prove two auxiliary
results that are similar to those in [37], [45].

Lemma 8: Let Y,, € R? be a lattice random vector taking
values in the d-dimensional lattice 119_, {kh, ;: k € Z},
where h, ; > 0 is the span in coordinate j. Assume that
hn,j — 0 for all j € [d] as n — oo. Let b, be a sequence
satisfying 0 < liminf, .o bpyh,; < oo for all j € [d].
Suppose that Y,, converges in distribution to a random vector
Y with a well-defined probability distribution function fy
satisfying
P [Yn =Yy ] <M

sup ! (284)

n>1,ycRd ]_[J L h

for some M < oo, and if y,, is in the range of Y, and y,
converges to y, then

1
H?:l hnyj
Then, as n — oo
d
Hl—exph{ b h ,J}]E exp _anYn7 1{Y >O}
=1 2 7j=1
= fy(0)(1 +o(1)). (286)

Proof of Lemma 8: The proof extends [45, Th. 2.10] to the
multidimensional scenario. We use arguments similar to those
in [45, Th. 2.10]. Let

d
I, 2E |exp —anYn_j 1Y, >0} (287)
j=1
Z Zexp —bp, Zkh "y
k1—0 k}d 0
P[Y, = (kihna,---, kdhmd)] . (288)
Fix some integer N > 0. We bound /,, as
Z Zexp —b, Zk P j
k}l 0 ]i}d 0
PY, = (kihn1,..., kdhnyd)] . (289)
Using the assumption in (285), we get
d 1 —exp{—bphn ;}
lim nlin,j i
1H}lmf H o 1
Jj=1 b
d
> fy(0)liminf [ [ (1 — exp{—=Nbnhn ;}). (290)
j=1



Similarly, using assumption (284) from the same statement of
the lemma, we bound I,, as

gz Zexp —by, Zkh,,

k}l 0 k}d 0
PY, = (kihn1,-.., kdhnyd)] 291)
+M][i=1%n; Y exp{-—kbuhn;},  (292)
k=N
giving
d
) 1 —exp{—bnhn;}
lim s I,
1mnsup H o 1
j=1 -
d
< fx(0 )+MhmsupMHeXp{ Nbphnj}.  (293)
Jj=1

Letting N — oo and using the fact that 0 < liminf,, b, h,, ; <
oo for all 7, we conclude that

d
lim | J] L eplizbalngt | (o p 0y, (204

n—00 i n,j

|

Lemma 9: Let Y,, be a lattice random vector as defined in

Lemma 8. Let Y,, converge in distribution to Y. Let ¢, (-)

and ¢(-) be the MGF of Y, and Y, respectively. Assume that
there exists an integrable function f* such that

sup [y, (it)[1{|[tl]l o, < Bn} < f7(t) (295)
for each t € R?, and
sup | (it)] H P j (296)

Br,j<tj<m/hn;: jed

for some 3, ; — oo for all j € [d]. Then, the conditions in
(284)—(285) hold for Y,, and Y.

Proof of Lemma 9: The proof follows steps identical to the
proof of [45, Th. 2.9], where the inversion formula for the one-
dimensional case is replaced by the one for the d-dimensional
case. |

We are now equipped to complete the proof of Theorem 8.
Using the identity in [37, eq. (3.6)], we get

P[S, > na,] = exp{—nA,(a,)}

d
\/ﬁzyn,]l{Yn > 0} )

j=1

E |exp{ — 297)

where Y, = (Y1, ..,

Yp.a), Yo = Dy SZ;;‘*", D,, is the

diagonal matrix with the diagonal entries s, 1, ..., Sy, 4, and
Sy is the tilted version of S,,, defined as
ex Ts,
dFs; (y) = %)}dan (y) VyeRL (298

It follows that Y, is also lattice with a span vector
\}—(sn 1Ay« Sn.ahn,q). From [37, Lemma 3.1] and Con-
ditions (S) and (ND) in Theorem 7, it follows that Y,
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converges to Y ~ N(0,D,,V?k,(s,)D,,) in distribution.
Therefore, the density of Y satisfies

1 1
(2m)d/2 H?:l Sn.j det(V2n(sn))

Applying Lemma 8 with fv(0) from (299), b,

hy,; replaced with —=s,, jhy, ;, we obtain (134).
To complete the proof it only remains to verify the condi-

tions of Lemma 8. By Lemma 9, (295)—(296) are sufficient.
The condition in (295) holds with 3, = /nd for some

0 > 0 by [37, Lemma 3.1] and Conditions (S) and (ND).
From [37, eq. (3.8) and (3.21)], we have

& (Sy + 1Dyt /\/n)

¢n(sn) ’
where ¢,, denotes the MGF of S,,. Rewriting Condition (L)
implies that (300) is bounded by of nd/2) for t such that
Vnd; < |t < S:fn
O ( \/_) the o ( - /2) bound verifies (296), which completes
the proof.

fy(0) = (299)

= /n, and

o) (it)] <

(300)

Since the span of Y, scales as

APPENDIX C
PROOF OF (161)

From (142) and (154), we get a,, — (I(Px),0) as n — oo.
To evaluate the gradient and the Hessian of A(a, ), we start

from the equation in condition (ND)
VE(sn) = ay,. (301)

Viewing a,, as a vector-valued function of s,, and differenti-
ating both sides of (301) with respect to s,,, we get

Js, (an) = V2k(s,), (302)
8‘171 1 8‘171 1

where Js, (a,) £ lgf;; L gem2 | is the Jacobian of a,, with
Osn,1 asn 2

respect to s,,.

Differentiating the equation A(a,,) = (s, VK(s,)) — k(sy)
with respect to s,,, we get a 2-dimensional row vector
T, (A(ay)) = s} V2k(sy). (303)

Applying the function inversion theorem and using (302), we
reach

Ja, (A(an)) = Js, (A(an)) Ja, (sn) (304)
=5, V2k(s,)(VZk) 1 (s,)  (305)
=5, (306)
equivalently

VA(a,) = s,. (307)

Differentiating (307) with respect to a,,, we get
VZA(a,) = V(VA(ay)) (308)
= Ju(sn) (309)
= (V2K) " (sn). (310)



We would like to obtain the Taylor series expansion of A(-)
around a = (I(Px),0). By direct computation, we get

A(a) = I(Px) (311)
VA(a) = (1,1) (312)
Ve((1,1)) = a, (313)
giving s,, — s = (1, 1), which verifies condition (ND). Define
T £ (11, Ty) (314)
Pyx(Y]X)
T, 21 1
1 = log Py (V) (315)
Y[X)
Ty 2 10g XXX (316)
’ Pyx(Y]X)
where Py %y (2,7, y) = Px (2)Px (T) Py x (y|z). We have
V2k(s) = Cov(T) L, (317)
where T is distributed according to the tilted distribution
Py x(Y]X)
Ps = T)}Pr=———"P 1
r=ep{(s T Pr= “p P 618

and Pr denotes the distribution of T. We compute the inverse
of the covariance matrix of T as

2 1
~ 1
COV(T)_l _ | 4m(Px)  1+n(Px) ) (319)
L+n?Px> =) Va(Px)
From (311), (312), and (319), we get
Alan) = I(Px) + (an,1 — I(Px))
1 ~
+5(an1 — I(Px))*Cov(T) 11 + Olan,1 — I(Px)[*)
(320)
1 Q Q '(en)? Q‘l(e ) 1
(321)
APPENDIX D

SOLUTION OF (65)

We solve the convex optimization problem in (65) by
writing the Lagrangian

L(hyA)=h'g— %hTJX*h —Ah'1. (322)

The Karush—Kuhn-Tucker condition VL(h, \) = 0 gives

Jy-h=g— )1 (323)
h'1 =0, (324)

where J is given in (51). Since h belongs to row(Jy-)
by assumption, the Lagrangian in (322) depends on g only
through its projection onto row(J x+ ). Therefore, without loss
of generality, assume that g € row(Jy~).

The equation (323) has a solution since both g and 1 are
in the row space of Jy-. Solving the system of equations in
(323) and (324), we get the dual variable

L1038
17Jh.1

(325)
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Plugging (325) in (324), we get

h* = Jg

Q_l(en)
24/nVe,
where J and v are given in (56) and (52). An equivalent

characterization of (327) in terms of the eigenvalue decom-
position of Jy« is given in [19, Lemma 1 (v)]. The value of

(326)

- - jV(P)*()v

(327)

the supremum in (65) is 1g"Jg = Ao(P%)Q ' (€)% where
Ap(+) is given in (54).
APPENDIX E
PROOF OF LEMMA 3
Define
Dx.gy £ D(Py x| Qv |Py) (328)
Viay = V(Pyx|lQy|Px) (329)
Tx.ov = T(Py x| Qy|Px). (330)

(i) First consider the case Vi g, = 0. In this case, the ran-

dom variable logL(’{{(;() =" log %’;(7@;7;), where
Y ~ Pyjx—x, i almost surely equal to nDy ., and the
inequality in (173) trivially holds for any SMD sequence ¢,,.

Next, consider the case Vi g, > 0. The random variable
Z?:llogw is a sum of n independent, but not
necessarily identically distributed random variables. Since
Qv (y) > a > 0 for all y € Y, it follows for each z € X

that log gxig;)x is a bounded random variable, hence all of

its cumulants are finite.
Notlce that the distribution of the random variable

Lyl % depends on x only through
its type Py, Let ki(Px,Qy) be k-th cumulant of
15" log 1”;5’;(7(’;‘;” and let wy(z,Qy) be the k-th
cumulant of log P’”‘Xig‘)) Then, we have
#(Pe,Qy) = > Pe(z)rin(z, Qy) (331)
reX
Hence, there exist constants ¢ such that
max (P Qy)| e k21 (3
Qy €Q(a)
In particular,
n Py x (Yi|z;
k1 (P, Qy) = [Zl vix( ')) = Dxqy (333)
n Py x (Yi|z;
(quQY ——Var ZIOg Y|X |;C )‘| = Vx,Qy
(334)
3
n P (Yi|z;
ks (P, Qy) = ( Zl Y'X "”)—Dx>
=T%,Qy- (335)

Note that Cramér’s condition (113) in Theorem 6 is satisfied

since log PYQ"’fig;x) is a bounded random variable for all z €



X, and (119) is satisfied since Vi ¢, > 0. Applying Lemma 1
by setting X; to log M gives (173). The universality
of the constants in (173) fol ows from the uniform bound on
the cumulants in (332).

(i1) Similar to part (i), the case where V(I:’x) = 0 trivially
follows. Suppose that V(Py) > 0. Let ;(Py) be the i-th

cumulant of 13" log W, which is a sum of n
independent random variables. We compute
w1(Py) = D(Py x[[Qx|P) = I(Px)  (336)
ko (Px) = V(Pyx||Qx|Px) = V(Px) (337)
K3 (Px) :T(PY\XHQX|PX) =T(Px). (338)

Next, following the steps in the proof of [4, Lemma 46]
and using the notation || Z||, = E [|Z|*] 1/k, we get for every

Px eP

Py x(Y]X)

log ——— — D(P; Py |P 339

0w P - DRy Px) k (339)

1 1
log——+———|| +||log ——| +I(P 340
gPY\X(Y|X) ) H P (Y) K (Px) (40)
k
<21 (£) +1ogly] <. (341)

Since the k-th cumulant is a polynomial function of the first
k central moments, (341) implies that there exist constants dy,
such that

max |kg(Py)| < dp, k>1. (342)
Px€Py
Applying Lemma 1 by setting X; to logw gives

(174). The universality of the constants in (174) “follows from
the uniform bound on the cumulants in (342).

APPENDIX F
PROOF OF LEMMA 7

The proof follows the proof of [19, Lemma 9 (iii)] closely.
The difference is that we consider SMD sequences ¢,,, which
means that Q! (e,) is not necessarily O(1). Fix any sequence
of distributions Px,,, ¢ P*(p,) such that Px, — Py € P.
Define

Pyn = arg min ‘PX n— PX H (343)
Pxept
P2 arg i ‘PXH - PXH (344)
' EP*
Py = arg min ‘Po " PXH (345)
' EP*
Un = ”PX,n_Pl,n”OO (347)
and
—/V(Px,) ife, <42
G(Px,) 2 (Pxn) 1fen < g (348)
' V(Px.n) otherwise
S(Px.)\/V(Px.n
L(Px ) & ST Pin) (349)

6
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Note that

Pn (350)
gen(PX,mPX-,n)

=nl(Pxn)+ \/EG(PX,n)|Q71(6n)|
+ L(Px7n)Q_l(6n)2.

We analyze £ (Px ,,) according to cases based on the value
of v,.

Case 1: v, > a for some constant a > 0, equivalently,
P ¢ P*. There are two sub-cases.

Case l.a: §,, > b for some constant b > 0, equivalently,
Pi ¢ PT. Then, by the continuity of I(-), I(Px) < C’ for
some C’ < C. Hence,

£ (Px) <nC' + o(n),

and the claim in (191) holds.
Case 1.b: 6, — 0 and v, > a, equivalently, P} € PT
but P% ¢ P*. In this case, by the continuity of V(-), there

Un

56" (PX,n)

> 1V

(351)

(352)

exists some V' such that V' >V, if €, < &, and V' <V,
if €, > 3.7 Hence,
£ (Px) <nC = vVnV'Q ™ en) + o(v/nQ (ey)), (353)

and the claim holds.

Case 2: v, — 0, equivalently Py € P*. There are two
sub-cases depending on whether Fy ,, € P*.

Case 2.a: Py, € P*, which implies d,, = v,. By the
quadratic decay property of mutual information from [47,
Th. 1] and the fact that ||z||, > ||=||, there exists a constant
o > 0 such that

I(Px,) <C —av?. (354)

The property in (354) is claimed in the proof of [4, Th. 48].
In [47, Th. 1], Cao and Tomamichel close a gap in the proof
of (354). From the Taylor series expansion of G(Px ) and
L(Px,,) around P, we get

G(Px,n) < G(Pon) + IVG(Pon)ll, v +o0(vn)  (355)

L(Px.n) = L(Py.n) + o(vy). (356)
Then,

£ (Pxyn) <nC — \/nVEnQ (357)

—navy, +/n HVG(Po,n)Hl valQ™ (en)]
+ L(Pon)Q ™ (en)? (358)
+o(vnv, Q7 (en))- (359)
The terms in (358) form a second-order polynomial of v,, with

a strictly negative leading coefficient. We fix a constant ¢; > 0

to be determined later. Then, there exists a constant cg; > 0

such that for all v,, > M\/ni(é”)‘,

—nav; +v/n|[VG(Pou)|l; vnlQ " (en)]
+L(P0 n)Q (en)2

< (o (0P + A0(P) = A (5 ) @ en)?

Plife, =1.

"The case €, = % belongs to Case l.a since P* = 5



- Cl\/ﬁVn|Q_1 (En)lv

and the claim holds for ¢g > c¢g1.

Case 2.b: Py ,, ¢ P*. The analysis of this sub-case is from
[19, eq. (B.9)—(B.14)]. This sub-case implies that P* # PT.
Since V(Px) = P;fr for all Px € PT, where v is defined
in (184), the projection of VG(P%) onto ker(Jy+) is a vector
go # 0 independent of Py € P*. By the extremal property
of P*, there exists a constant ¢ > 0 such that

(360)

(Pon — Pan) 80 < = llgolly [Pon — Pamll, - (361)
By the triangle inequality,
Vn S ”PX,n - sz"”oo (362)
S ||PX,n_PO,n||OO+HPO,n_P2,nHOO (363)
Let
el  ligoll, . (O 1) |
2 |golly + /X[ maxpy ep~ [VG(PY) |, 2

(364)

Then, one of the following two statements is true.
1) |Px.n — Ponll > Avy: In this case, Py is sufficiently far
away from P1.
2) HPO,n - P2,nH > (1 - )\)I/n > )\I/n > ”PX,n - PO,n”OO
In this case, Px , may be arbitrarily close to P*, but it
is sufficiently far away from P*.

In case 1), by [47, Th. 1],

I(Px,) <C —a\V?, (365)

and from the Taylor series expansion
G(Px,n) < G(Prn) + [IVG(PLa)ll, vn +o(vn)  (366)
L(Px,) = L(P1,) +o(1). (367)

Applying the arguments in Case 2.a with (365)—(367), we
conclude that there exists a constant cgo > 0 such that for
vy > 6"2‘@;\/%(6")‘, the claim holds for co > cpe.

In case 2), we expand G(Px ;) as

G(PX,n) = G(PQ,n) + (PX.,n - PO,n + PO,n

— Py,,) ' VG(Py) + o(vn) (368)
SG(PQn) (POn_PZn)T
+ IVG(Pon)ly |1Px,n — Ponlly +o0(vn) (369)
< G(PZ n) ( /”gOHQHPO.,n_PQ,n”Q
= IVG(Pon)lly 1Px,n — Ponlly) + o(vn)
(370)
< G(PZ,H) —Un (C/(l - )‘) HgOHQ
—AVIX] max IVG(PL)Il,) +olvn)  (B7D)
C/
= G(P2,n) D) HgOHQ Vn + 0(vy). (372)
Here, (370) follows from (361). (371) follows since
|Pon — Ponlly, = |[Pon — Ponll, = (I — ANv, and

|1 Pxn — Ponlly < VIX[Px.n — Ponll,,. and (372) follows
from (364).
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From I(Px ,) < C, L(Px ) = L(P1 )+ 0(1), and (372),
we get

gen (PX n < nC — \/ n‘/enQ En + L Pl n)Q (En)z
m/ni ol |Q71(6n)| + O(ﬁVnQil(en))'

(373)

Since the right-hand side of (373) decays linearly with v,
with the scaling \/nQ (e, ), there exists a constant cp3 > 0
COS‘LWIL(E"”, the claim in (191) holds for
co > cop3 and some constant ¢; satisfying 0 < ¢; < %/ llgoll5-

By setting ¢p = max{co1, co2, o3} and p, > CMQ;;(“‘)',
we conclude that (191) holds for all Px ., & P*(py,).

such that for v,, >

APPENDIX G
PROOF OF THEOREM 3
Proof of the achievability: To prove the achievability, we
derive the coefficient of O (< \/(%") ) in Lemma 2, and

invoke the refined Lemma 2 with Px = P%. For this purpose,
we need to modify the proof of Lemma 2 at two steps. First,
using Lemma 1, the expansion for ¢, in (153) is refined as

Sku —1 " 2

tn — Q_l(en) _ Cé\/T_EE )

3(pa = 3VA)V — 4p3 Q' (en)®
72V3 n

o 415)co( )

Second, we refine the expansion in (161) by computing the
third-order gradient V2A(a,,). Taking the gradient of (310),
we get

VA (an)ijh = —

(374)

Z VSK(SW)%Z),C(sz)_l(Sn)a,z

(a,b,c)€[2]?
'(vzﬁ)_l(sn)b,j (v2f€)_l(sn)c,ku (iaju k) € [2]3 (375)

In the case n(P%) = 0, the inverse of the Hessian (V2) ! (s)
in (317) becomes

2 1|1
(V2R) " (s) = [1 1] v (376)
and we compute
V3k(s)1,11 = ps (377)
V3k(8)1,1,0 = —p3 (378)
V2k(8)1,2.2 = p3 (379)
V3k(s)a,22 =0 (380)

Note that (377)—(380) is sufficient to determine V?k(s) since it
is a symmetric order-3 tensor. From (375)—-(380), we compute

2
V3A(a)1)171 = —%. (381)
Using (376) and (381), we refine (161) as
(ang —I(P%))* 1 2u3
Aay,) = an1 + #X - g(an,l - I(Px))gﬁ
+O(lan, — I(PY)[") (382)



Q_lff")z +0 (Q_;f")él) 40 (%) .
(383)

:an—|—

Following the steps in the proof Lemma 2 and using (374)
and (383) completes the proof. [ ]

Proof of the converse: Set Qgﬁl) = (Q3%)"™, where Q5%
is the equiprobable capacity-achieving output distribution.
Since Cover-Thomas-symmetric channels have rows that are
permutation of each other, we have that 81 ., (Py|x—x; Qgﬁl ))
is independent of x € A™. By [4, Th. 28], we have

log M*(n, €,) < —log 81—, (Py|x—x: @),

where x = (xq,...,x9) for some zy € X. Applying The-
orem 4 to the right-hand side of (384) completes the proof.
|

(384)
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