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ABSTRACT. We study inverse boundary problems for semilinear Schrodinger
equations on smooth compact Riemannian manifolds of dimensions > 2 with
smooth boundary, at a large fixed frequency. We show that certain classes of
cubic nonlinearities are determined uniquely from the knowledge of the non-
linear Dirichlet—to—Neumann map at a large fixed frequency on quite general
Riemannian manifolds. In particular, in contrast to the previous results avail-
able, here the manifolds need not satisfy any product structure, may have
trapped geodesics, and the geodesic ray transform need not be injective. Only
a mild assumption about the geometry of intersecting geodesics is required.
We also establish a polynomial resolvent estimate for the Laplacian on an arbi-
trary smooth compact Riemannian manifold without boundary, valid for most
frequencies. This estimate, along with the invariant construction of Gaussian
beam quasimodes with uniform bounds for underlying constants and a station-
ary phase lemma with explicit control over all involved constants, constitutes
the key elements in proving the uniqueness results for the considered inverse
problems.

1. INTRODUCTION AND STATEMENT OF RESULTS

The anisotropic Calderén problem seeks to determine the electrical conductivity
matrix of a medium by performing electrical measurements along its boundary,
see [5, 46]. To state the geometric version of this problem, let (M, g) be a smooth
oriented compact Riemannian manifold of dimension n > 2 with smooth bound-
ary. Associated to the metric g, we have the Laplace operator —A, given in local
coordinates by

—Ay == gl 70, (l9|"*970,,),

jk=1

where (g/%) = (g;1)~" and |g| = det(g;x). Let us introduce the Cauchy data set

on OM of harmonic functions on M,

Cy = {(uloar, Ooulons) - w € C°(M) such that — Aju = 0 in M™},
1
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where v is the unit outer normal to the boundary of M and M™ = M\OM stands
for the interior of M. In the geometric version of the anisotropic Calderén prob-
lem, one wishes to recover the Riemannian manifold (M, g) from the knowledge
of the Cauchy data set Cy on 9M. Because Cy-, = Cy for any smooth diffeomor-
phism ¢ : M — M such that ¥|sy = Id, see [29], one can only hope to recover
a Riemannian manifold from C, up to this isometry. In dimension n = 2, this
problem, with an additional obstruction arising from the conformal invariance of
the Laplacian, is solved in [34] for the case of Riemannian metrics on bounded
domains in the plane, and in [27] for the case of Riemannian surfaces. In dimen-
sions n > 3, the anisotropic Calderén problem is widely open. It is solved for
real analytic manifolds in [29, 27, 26], see also [16], and in the C'™ case in [8, 10],
for metrics in a fixed conformal class on a conformally transversally anisotropic
(CTA) manifold, assuming that the geodesic X-ray transform on the transversal
manifold is injective. In the latter case, the anisotropic Calderén inverse problem
can be reduced to an inverse boundary problem of recovery of the potential in the
Schrodinger equation from the knowledge of the Cauchy data of its solutions on
the boundary. The approach of the works [8, 10] relies on a construction of special
solutions to the Schrodinger equation, called complex geometric optics solutions.
The requirement that the manifold should be CTA guarantees the existence of
so-called limiting Carleman weights on such manifolds, which are important to
construct such solutions using the technique of Carleman estimates. However, a
generic manifold of dimension n > 3 does not admit limiting Carleman weights,
see [30, 1]. Also, there are examples of manifolds for which the geodesic X-ray
transform is non-injective, see [20, Example 1.7]. Thus, it is of great significance
to try to remove the assumption of the injectivity of the geodesic X-ray trans-
form on the transversal manifold in the case of CTA manifolds, or even to try
to remove the assumption that the manifold is CTA altogether when solving the
anisotropic Calderén problem.

In this direction, the works [25, 14, 13, 21] demonstrated that when solving
inverse boundary problems for semilinear Schrodinger equations, no assumption
on the transversal manifold is required, while still keeping the assumption that
the manifold should enjoy a CTA structure, see also [23, 32, 6, 11].

The recent work [47] demonstrated that the recovery of certain classes of po-
tentials in the Schrodinger equation at a large fixed frequency did not require
the manifold to be CTA. The work [31] extended the result of [47] and showed
that the manifold only needed to be non-trapping, and the geodesic X-ray trans-
form needed to be stably invertible and continuous. We refer to the recent work
[42], where inverse problems of the recovery of connections from the Dirichlet—
to—Neumann maps at a large fixed frequency were studied.

Motivated by [47, 31|, the purpose of this paper is to show that an inverse bound-
ary problem for a semilinear Schrodinger equation for a certain class of cubic
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nonlinearities, at a large fixed frequency, can be solved in quite general geome-
tries. Specifically, we do not require our manifold to be non-trapping and we do
not need any assumption related to the geodesic X-ray transform on it. Only a
mild assumption about the geometry of geodesics is needed.

To state the inverse problem, let A > 0 be a frequency and let us consider the
Dirichlet problem for the semilinear Schrodinger operator,

—Aju—Nu+qut=0 in M™, (1.1)
u=f on OM, '

where ¢ € C%*(M) with some 0 < a < 1. Here and in what follows C*<(M),
k € N, stands for the Holder space on M. Assume that

(A) A? is not a Dirichlet eigenvalue of —A, on M.

It follows from [21, Theorem B.1], see also [14, Proposition 1] and [25, Proposition
2.1], that under the assumption (A), there is § > 0 and C' > 0 such that when
f € Bs(OM) = {f € C**(OM) : || fllcze@m) < 0}, the problem (1.1) has a
unique solution u = uy € C**(M) satisfying |Jul|c2a) < Co. Associated to the
problem (1.1), we define the Dirichlet-to-Neumann map at the frequency A as
follows

A;f = al/”f’@M?
where f € Bs(0M). The inverse problem that we are interested in is to determine
q from the knowledge of the Dirichlet—to-Neumann map A{Z\ for a large but fixed
frequency A.

First, motivated by [9, Definition 1.2] and [20, Definition 2.1], we impose the
following geometric condition on the manifold (M, g):

(H) for every point 2o € M™, there are two non-tangential unit speed geode-
sics, passing through xg, such that they do not have self-intersections at
2o and xg is their only point of intersection.

Our first main result is as follows, where |- | denotes the Lebesgue measure on R.

Theorem 1.1. Let (M, g) be a smooth compact oriented Riemannian manifold
of dimension n > 2 with smooth boundary, satisfying the condition (H). Let
0 <a<1andletq,qg € COM). Then for any § > 0, there exists a set
J C [1700)7 J = J<M7g76)7 Satzsfymg |J| < 5; and )\O = )\O(M79757 q1 — Q2) >0
such that if for some X > Xo, A & J, and X satisfying the assumption (A), we
have A{Z\I = AfI‘Q then g1 = qo in M.

Remark 1.2. In contrast to most prior results concerning elliptic partial differ-
ential equations in dimensions n > 3, the manifolds considered in Theorem 1.1
are not limited to having any specific product structure. They may contain trapped
geodesics, and the geodesic X-ray transform is not required to be injective.
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Let us proceed to make some comments regarding the geometric assumption (H).

Example 1.3. If the manifold (M, g) is simple, i.e. a compact simply connected
Riemannian manifold with strictly convex boundary so that no geodesic has con-
jJugate points, then the geometric assumption (H) holds. This follows directly
from the fact that the exponential map exp, is a diffeomorphism onto M for any
x € M [35], and hence any two geodesics exp,(tv) and exp,(tw) where v # w,
lv| = |w| =1, will satisfy (H).

Example 1.4. If the manifold (M, g) satisfies the strict Stefanov—Uhlmann reg-
ularity condition at every point (zo,&) € S*M™, see [20, Definition 1.8], then
the assumption (H) holds, see [9, Lemma 3.1]. As an example of such manifolds,
consider M to be the closure of a meighborhood of a geodesic arc from the north
pole to the south pole of the unit sphere S* C R*, see [9] and [20, Example 1.10].
Note that the manifold M contains conjugate points so it is not simple.

Example 1.5. Let M = S' x[0,a], a > 0, be a cylinder with its usual flat metric
g. The geodesics on M are straight lines, circular cross sections, and helices that
wind around the cylinder. It is shown in [20, Appendix A] that (M, g) satisfies
the assumption (H). Furthermore, the geodesic X-ray transform is not invertible
on M, since the kernel contains functions of the form f(e® s) = h(s) where
h € C5°((0,a)) integrates to zero over [0,al, and (M, g) has trapping.

We shall next propose a geometric condition on the manifold (M, g) which guar-
antees that the assumption (H) holds for almost every point in M™ and which
might be of independent interest. To motivate the proposed geometric condition,
we first note that the fact that all the geodesics on spheres intersect twice can be
attributed to the high order of conjugacy of the sphere S™. To state our result, we
shall introduce some definitions, following [28, Section 10], [7, Chapter 5, Section
3]. Given a geodesic v : I — M, and two points p = y(a), ¢ = v(b), a,b € I, we
say that p and ¢ are conjugate along ~ if there is a Jacobi field along ~ vanishing
at t = a and t = b but not identically zero. The order of conjugacy of p relative
to ¢ along v denoted conj,(p,q), is the dimension of the space of Jacobi fields
along v that vanish at a and 0. Note that conjv(p, q) < n —1, and that equality
is achieved on the sphere S™ by taking p and ¢ to be antipodal points, and v any
great circle connecting them, see [28, Section 10, page 299]. We define the order
of conjugacy of p € M as the maximal value of conj, (p,q) over all other points
q € M and geodesics v connecting p to ¢. Similarly, the order of conjugacy of
M is the maximal order of conjugacy of all points in M. We have the following
result.

Theorem 1.6. Let (M, g) be a smooth compact Riemannian manifold of dimen-
sion n > 3 with smooth boundary. Suppose that the order of conjugacy of M is
at most n — 3. Then the assumption (H) holds for almost all z € M™.
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Example 1.7. Let (M;,g;) be a smooth compact Riemannian manifold of di-
mension n; > 1 without boundary, j = 1,2,3. If My has order of conjugacy k;
and My has order of conjugacy ko, then My x My has order of conjugacy ki + k.
Indeed, if J is a Jacobi field vanishing at p = (p1,p2) € My X M,y, then

J(t) = d(exD(p, py)) (tvr,t0) (W1, twa) = d(exp,, )w, (tw1) & d(exp,y, ) v, (tw2)

decomposes as the direct sum of Jacobi fields J, and Jo on My and My vanishing
at p1 and po respectively, see [28, Proposition 10.10]. Hence, J vanishes at q =
(1, q2) if and only if J; and Jy vanish at ¢, and g respectively. Since the manifold
M; has order of conjugacy at most n; — 1, the product of three manifolds M; x
My x M3 has order of conjugacy at most ny +mnq+ns —3, where ny+nq+nsg s the
dimension of My x My x Ms. Hence, any smooth compact Riemannian manifold
with smooth boundary that can be isometrically embedded as a codimension 0
submanifold (also known as a regular domain) of a product of three manifolds
My x My x Ms satisfies the assumption of Theorem 1.6.

Next, we let 0 < a < 1 be fixed and following [31], for any nonzero p € C%*(M),
we introduce the frequency function N(p) by

Ipllcvequ
Nip) =

pllzeon”
and we set N(p) = 0if p =0. When B > 0, we define the set A(B) of admissible
perturbations by

A(B) = {p € C**(M) : N(p) < B}.

Note that for any qi,qs € C%*(M), there exists a constant B > 0 such that
¢1 — q2 € A(B). Recall that in Theorem 1.1, the frequency \g depends on the
difference ¢; — ¢2. Specifically, it follows from the proof of Theorem 1.1 that the
value of )\ is contingent on the following factors:

e the constant B > 0 such that ¢; — ¢» € A(B),

e the specific point xy € M where sup,¢,; |¢1(x) — ¢2(x)| is reached,

e the choice of two non-tangential geodesics passing through x( and fulfilling
the assumption (H), including their lengths and the angle between them.

Our next result aims to improve Theorem 1.1 by eliminating the dependency
of the frequency Ay on a specific point xy and the particular choice of two non-
tangential geodesics passing through zy and satisfying assumption (H). To achieve
this, we will impose the following geometric condition on the manifold (M, g),
which will replace the condition (H). To state this condition, we let 4 SM be a
part of the boundary of the unit sphere bundle SM, consisting of inward vectors,
see Section 4.1 below. For (z,w) € 0.5M, we let v = 7,4, : [0, 7(z,w)] — M be
the unit speed geodesic such that y(0) = z, and §(0) = w.
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(H1) There are constants 7" > 0, 0 < 6y < 7/2, 0 < r < Inj(M)/2, and
co > 0, such that for almost every point z, € M™, there exist two
non-tangential unit-speed geodesics v = Yy, ., © [0, 7(z1,w1)] — M and
N = Nugaw : |0, 7(22, w2)] = M, (21, w1), (x2,ws) € 04 SM such that

(1) (to) = 77(70) Zo, ty € (O T(l‘l,wl)> Ty € (O,T(l’g,wg)),

(ii) the length of v and 1 does not exceed T,

(iii) v and n form an angle 6 at xy belonging to the interval [0y, 7 /2],

(iv) if d(vy(t),n(7)) < r, then |t — to| < cod(v(t),n(7)) and |7 — 1| <

cod(y(t),n(7)).

Here, Inj(M) denotes the injectivity radius of M, defined as follows. Let (S
be a closed extension of (M, g), see [35, Lemma 3.1.8|, and we assume that (.5,
is fixed once for all. We write Inj(M) := Inj(S), and we have Inj(M) > 0 as S
is compact, see [28, Lemma 6.16]. We denote the Riemannian distance as d(-,-).
The angle between v and 7 at the point x( is denoted by 6, where 0 < 0§ < 7
and cos€ = g(¥(t9),7(70)). Our next main result is as follows.

Q <«
~— —

Theorem 1.8. Let (M, g) be a smooth compact oriented Riemannian manifold
of dimension n > 2 with smooth boundary. Assume that (M, g) satisfies the
condition (H1) with some constants T > 0,0 < 0y < 7/2, 0 <r < Inj(M)/2, and
co > 0. Let B> 0. Assume that qi,q, € C%*(M) are such that ¢ — ¢ € A(B).
Then for any § > 0, there exists a set J C [1,00), J = J(M,g,0), satisfying
|J| <6, and \g = MNo(M, g,d,B,T,00,7,¢c0) > 0 such that if for some A > A,
A & J, and \ satisfying the assumption (A), we have A’\ = A)‘ then q1 = ¢
m M.

Let us make some comments regarding the geometric assumption (H1). The
condition 7 < Inj(M)/2 ensures that the geodesics v and 7 in assumption (H1)
do not have self-intersections for [t—to| < r and |7—7y| < r, respectively. The first
three conditions are straightforward. As for condition (iv), it is a quantitative
way to state that the geodesics v and 7 intersect only at xy and they do not have
self-intersections at xy. Proposition D.1 in Appendix D shows that condition (iv)
locally follows from condition (iii).

Example 1.9. If the manifold (M, g) is simple then the geometric assumption
(H1) holds, see Appendiz D for the details.

Example 1.10. The condition (H1) holds for the cylinder M = S'x [0, a], a > 0,
with its usual flat metric, see Appendiz D for the details.

Let us next make some comments about the class of potentials in the cubic
nonlinearity considered in Theorem 1.8. The assumption that p € A(B) is similar
to the assumption that the perturbation is angularly controlled in [37, Theorem
2] or horizontally controlled in [36]. In particular, the assumption p € A(B) is
always satisfied for some B if p lies in a finite-dimensional space. We refer to
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Appendix C for an example of an infinite set of linearly independent admissible
perturbations.

Let us proceed to discuss the main ideas in the proof of Theorem 1.1 and Theorem
1.8. The crucial ingredient in both proofs is the polynomial resolvent estimate
for the Laplacian on a smooth compact Riemannian manifold without boundary;,
valid for most frequencies, established in Theorem 2.1 below. This resolvent
estimate could also be of independent interest. Its proof is quite simple and uses
only the self-adjoint resolvent bound, see (2.2), and a rough version of the Weyl
law, see (2.4). We refer to [24], see also [44, 43], for polynomial resolvent bounds
for most frequencies in the black box scattering.

Once the polynomial resolvent estimates have been established, the proof of The-
orem 1.1 proceeds as follows. First, using the third order linearization of the
problem (1.1), we derive the integral identity (3.8) valid for four solutions of the
Helmholtz equation (—A, — A\?)v = 0 in M™. The construction of such solutions
is based on Gaussian beam quasimodes to the Helmholtz equation. To convert
these approximate solutions into exact solutions, we rely on the solvability re-
sult which is a consequence of the polynomial resolvent estimate of Theorem 2.1.
Substituting the constructed solutions into the integral identity (3.8) and using
a rough stationary phase argument combined with the boundary determination
of the potential, allows us to complete the proof of Theorem 1.1.

The proof of Theorem 1.8 follows a similar approach to that of Theorem 1.1.
However, we introduce a crucial new element that allows us to remove the de-
pendence of the frequency A\g on a specific point xy and the specific choice of
two non-tangential geodesics passing through this point. This crucial element
involves the invariant construction of Gaussian beam quasimodes, with uniform
bounds for the underlying constants, as recently established in [31, Theorem 6.2],
see also [42]. Additionally, we conduct a more thorough analysis of all constants
involved during the proof.

The paper is organized as follows. Section 2 contains the proof of polynomial
resolvent estimates for the Laplacian on a smooth compact Riemannian manifold.
The proof of Theorem 1.1 is given in Section 3. Section 4 is devoted to the proof
of Theorem 1.8. The proof of Theorem 1.6 is presented in Section 5. Appendix
A discusses a standard rough version of the stationary phase lemma required for
the proofs of Theorem 1.1 and Theorem 1.8. A boundary determination of a
potential from the integral identity (3.8), used in the proofs of Theorem 1.1 and
Theorem 1.8, is presented in Appendix B. Appendix C contains an example of an
infinite set of linearly independent admissible perturbations. Finally, Appendix
D provides examples of manifolds that satisfy the assumption (H1).
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2. POLYNOMIAL RESOLVENT ESTIMATES FOR THE LAPLACIAN ON A SMOOTH
COMPACT RIEMANNIAN MANIFOLD

Let (N, g) be a smooth compact Riemannian manifold of dimension n > 2 without
boundary. Let —A, be the positive Laplace operator on N, associated with the
metric g. It is a self-adjoint operator on L?(N) with the domain H?(N), the
standard Sobolev space on N, and it has a discrete spectrum Spec(—A,) C [0, 00).
When A > 0, \? ¢ Spec(—4A,), the resolvent (—A, — A\*)~!: L?(N) — L*(N) is
a bounded operator. Motivated by [24, Theorem 1.1, Theorem 3.3|, we have the
following result establishing a polynomial resolvent estimate for the Laplacian on

N, valid for most frequencies. In what follows we let | - | stand for the Lebesgue
measure on R.

Theorem 2.1. Given 6 > 0 and € > 0, there exist C = C(N,g,d,¢) > 0 and a
set J = J(N,g,0,e) C[1,00) with |J| <& such that

(=g = X) Ml ez vy, c2vy) < CX'F, (2.1)
for all X € [1,00) \ J.

Proof. We shall first consider the resolvent of the semiclassical Laplacian —h2A,,
0 < h < 1. When z ¢ Spec(—h?A,), by the spectral theorem we have
1

I(=h*Ag = 2) "l eavy,reovy = dist(z, Spec(—h?A,))’ (22)

We shall first work on the frequency interval [1,2]. Let 7(h) > 0 be an arbitrary
function of h € (0,1]. Then it follows from (2.2) that

1
I(=h*Ag = 2) "Ml ez, 2v) < 7
r(h)
for all z € [1,2] \ J(h), where
J(h) = {z € [1,2] : dist(z, Spec(—h*A,)) < r(h)}.
To bound the measure of the set J(h), we observe that
J(h) C U (2j(h) = r(h), zj(h) +r(h)), (2.3)
zj(h)€Spec(—h2A4)N[1,2]

where z;(h), j = 1,2,..., stand for the eigenvalues of —h?A,. It follows from
the Weyl law that the number of the eigenvalues of —h?A, on the interval [1, 2],
counting with multiplicities, is given by

H(Spec(—h*A,) N[1,2]) = O(~™), (2.4
for all 0 < h <1, see [48, Theorem 14.11]. Thus, it follows from (2.3), (2.4) that
[J(h)] < > 2r(h) < O(h™")r(h),

zj(h)€Spec(—h2A4)N[1,2]



INVERSE PROBLEMS FOR SEMILINEAR SCHRODINGER EQUATIONS 9

for all 0 < h < 1. Letting ¢’ > 0 and ¢’ > 0 be fixed to be chosen later, we set
r(h) = &'h™*e
so that
|J(h)] < &OhT) — 0, (2.5)
as h — 0. Summarizing the discussion so far, we have shown that for all 0 < h <
1, there exists a subset J(h) C [1, 2] satisfying (2.5) such that

I(=h*Ay = 2) "l een 2y < (8)7Th7, (2.6)
for all z € [1,2]\ J(h).
Next, we shall obtain the bound (2.1) for the nonsemiclassical resolvent
(<8 = N2)7 = (2, — 1)
for A € [1,00), outside some set of small measure, containing the spectrum of

v/—4,. In doing so, we shall follow the proof of 24, Theorem 3.3|, and [41, page
767]. We write

1,00) = 12 27,
1=0
Now if A € [1,00) then A2 € [2,2/*1) for some unique [ = 0,1,2, ..., and there-
fore, 27\ € [1,2) C [1,2]. Letting h = 272 € (0, 1], and using (2.6), we obtain
that
(=g ) ey £y = A2 205g — K2 aomy oy

, , , 2.7
< (6/)71h27n75 < (5/)7121/2(n+5 -2) < (6')71)\n72+6 ( )

Y

for all A2 € [2!,20F1)\ Ji. Here we let J; := 2.J(27/2) N (2 20+1). We set
7= )7
1=0

so that the bound (2.7) holds for all A2 € [1,00) \ J. Letting £ > 0 be arbitrary
fixed, choosing

g=2+e¢, (2.8)
and using (2.5), we get
B oo ~ , 00 1 l , 00 1 l )
71 3 21e ) £ 00 ) (377 ) =00 (5) <00

(2.9)
Letting 6 > 0 be arbitrary fixed, and choosing ¢’ = §'(d,e) > 0 so that O.(¢) <
29, we get from (2.9) that

=)

J| < 26. (2.10)
It follows from (2.7), (2.8), and (2.10) that
(=g = X))l L2ymr2vy < CA™F,
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for all A2 € [1,00) \ J, where C' = C(8,¢) > 0 and J satisfies (2.10). We define
the set J C [1,00) so that A € [1,00) \ J if and only if \* € [1,00) \ J. Letting
xs and x5 be the characteristic functions of J and J, respectively, we get

7] = / Vi{y)dy = / V5 (a?)20de = / () 2ede > 21J].
1 1 1

and therefore, |J] < |.J]/2 < 6. O

Remark 2.2. A result similar to Theorem 2.1 is valid when —A, is replaced by
the Schrédinger operator —A,+ q with ¢ € L*(N;R). We refer to [33, Theorem
10.1, Remark 10.2] for the Weyl law for —A, + gq.

Let H*(N), s € R, be the standard Sobolev space on N, equipped with the norm
o) = (1= Ag)*ul 2wy,

lul

where the Bessel potential (1 — Ag)s/ 2 is defined by the self-adjoint functional
calculus. Note that

lullzn ey = (1= Ag)u, ) 2wy = I Vgull Ty + lullz2(v). (2.11)
We have the following consequence of Theorem 2.1.

Corollary 2.3. Given 6 >0 and € > 0, there exists C' = C(N,g,d,e) > 0 and a
set J = J(N,g,0,e) C [1,00) with |J| <& such that

(=g = X)) 2vmm vy < CAFFE,
for all X € [1,00) \ J.

Proof. The result follows by multiplying the equation —A,u — Au = f by 7,
integrating by parts, using (2.11), and Theorem 2.1. O

Let (M, g) be a smooth compact Riemannian manifold of dimension n > 2 with
smooth boundary and let A > 1. In the proofs of Theorem 1.1 and Theorem 1.8,
we shall construct complex geometric optics solutions to the Helmholtz equation
—Ayu — Nu =0 in M™. In doing so, we shall need the following consequence
of the resolvent estimates of Theorem 2.1. To state the result, for convenience,
we use the semiclassical notation and write » = A~!. Assume, as we may, that
(M, g) is embedded in a compact smooth Riemannian manifold (NN, g) without
boundary of the same dimension. Let U C N be open such that M C U. Let
H*(N), s € R, be the standard Sobolev space on N, equipped with the natural
semiclassical norm,

ullms, vy = ([ Ju] 2w, (2.12)

where the Bessel potential J¢ = (1 — h2A,)*? is defined by the self-adjoint func-
tional calculus on L2(N).

HS



INVERSE PROBLEMS FOR SEMILINEAR SCHRODINGER EQUATIONS 11

Proposition 2.4. Let s € R. Given § > 0 and € > 0, there exists C =
C(N,g,0,e) >0 and a set J = J(N,g,d,e) C [1,00) with |J| < such that

we, vy < Ch72 8 (=h2 Ay = Dullgs, vy, w € CgE(M™), (2.13)

[l

for all h > 0 small enough such that h™' € [1,00) \ J.

Proof. We shall follow [8, Lemma 4.3], see also [22, Proposition 2.2], [31, Lemma
3.2]. First it follows from Theorem 2.1 that

HUHLQ(N) S ChiziniEH(—thg — 1)11,”[/2(]\[), u e CSO(U), (214)
for all h > 0 such that h™! € [1,00) \ J.

Now note that J° is a semiclassical pseudodifferential operator of order s on NV,
ie. J* € Op,(S*(T*N)), see [40, Proposition 16.1.1], and see [22, Section 2]
for the definition of the symbol class S*(T*N) and the standard h-quantization
Op,(S*(T*N)). Therefore, we have the following pseudolocal estimates: if ¢, y €
C*®(N) with x = 1 near supp(¢) and if «, 5 € R then

(1—=x)J°Y =0O(h™): HS

scl

(N) — H”

scl

(N). (2.15)

all 0 < h < 1. Let x € C§°(U) be such that x = 1 near M. Then using
(2.14), (2.12), and (2.15), we get for for all i > 0 such that h~! € [1,00) \ J and
u € Cg°(M™) that

ull s, vy < XS ull 22wy + [[(1 = X) w2 ()
< O 28| (=h2Ay = D) (xJ*u) | 2wy + Oh™) [[ull s, (v)
< Ch2 2 (Ix(=h* Ay = D(*u) [ 2wy + IR Ag, XI(Tu)| 22 )
+ Oh™)[|ull s, vy
< Ch2 (=020 — D u)ll 22wy + O (%) lullms, ()
< Ch72 [ T3 (=R Ay — Dull g2y + O (%) lullms, vy
< Ch72 (=R Ay — Dullaz, vy + O(h%) |Jul

HS

scl

H:CI(N)
(2.16)
Here we have used that

11220 () ) < O]

Hs

scl

(N)>»

which is a consequence of (2.15), and the fact that [—-h?A,, J*| = 0. Absorbing
the error term O(h™)|ul|g= (v in the left hand side of (2.16), we get the estimate
(2.13) for h small enough such that h=! € [1,00) \ J. O

Using a standard argument, see [8], we convert the a priori estimate (2.13) into
the following solvability result.
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Proposition 2.5. Let s € R, § > 0 and ¢ > 0. Then if h > 0 is small enough
such that h™' € [1,00)\ J, |J| < 8, then for any v € H*(M™), there is a solution
u € H(M™) of the equation

(=h*A, —Du=v in M™,
which satisfies

Hsscl(Mmt) S Oh_2_n_€ ||U |

||U,| Hsscl(Mmt), C = C(M,g, 6, 5) > 0

Here .
HS(M”“) ={Vl]ym : V€ H*(N)}, seR,

with the norm

||U||H:C1(Mint) = 1nf ||V|

HS,(N)-
VEH?(N),v=V],int (V)

3. PROOF OF THEOREM 1.1

3.1. Gaussian beam quasimodes and solutions to Helmholtz equations.
Let (M, g) be a smooth compact oriented Riemannian manifold of dimension
n > 2 with smooth boundary. Let v :[0,7] — M, 0 < T < oo, be a unit speed
non-tangential geodesic on M. Here following [10], we say that a unit speed
geodesic v : [0,T] — M, 0 < T < oo, is non-tangential if v(0),v(7) € OM,
y(t) € M™ for all 0 < t < T, and §(0),+(T) are non-tangential vectors on M.

We shall need the following well-known result concerning the construction of
Gaussian beam quasimodes on M, localized to the non-tangential geodesic v, see
[10, 14, 25]. As in [25], it will be convenient to normalize our quasimodes in
LA(M), as later we have to work with products of four such quasimodes.

Proposition 3.1. For any k € NU{0} and R > 1, there exist N € N and a family
of Gaussian beam quasimodes v(-; ) € C*®°(M), A > 1, such that supp(v(-; \)) is
confined to a small neighborhood of v(]0,T]) and

1(=2g = X0 (s M)l e agmy = O(ATF), (3.1)

n—1

[o(s Mllesan = OQ), v M)l = O(AF),
as A — oo. The local structure of the family v(-; \) is as follows: let p € v(]0,T))
and let ty < --- < ty, be the times in [0,T] when y(t;)) =p, I =1,...,N,. In a
sufficiently small neighborhood U of a point p, we have

'U|U = 'U(l) + PN + U(NP)’
where each v has the form
v (x;\) = A%eiA‘P(l>($)a(l)(x; A).
Here ¢ = o) € C®(U;C) satisfies for t near t,,
p(r®) =t Ve(y(t) =4(t), Im(Ve(r(t) =0, Im(Vi)|541 >0,
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and a € C®(U) are of the form,
N y
—_qi (1
aD () = < E A Jag-))x(—a/),
=0

where a(()l)(t,y) = a(()lg(t) + O(ly|) with a(()lg(t) # 0 for all t. Here (t,y) are the
Fermi coordinates for v when t near t;, x € CC(R"™1) is such that 0 < x < 1,
x =1 for|y| <1/4 and x =0 for |y| > 1/2, and §' > 0 is a fized number that
can be taken arbitrarily small.

Let A > 1. Next, we shall construct complex geometric optics solutions to the
Helmholtz equation

—Agu—Nu=0 in M™, (3.2)
based on the Gaussian beam quasimodes of Proposition 3.1. Specifically, we look
for solutions to (3.2) in the form,

u(A) = v A) +r(5A),

where v(-; A) is the Gaussian beam quasimode given in Proposition 3.1, and r(+; A)
is the remainder term. Hence, u solves (3.2) provided that r satisfies the equation,

(=A, = N)r = —(=A, — \)v, in M™, (3.3)

Let £ € N and R > 1 be large. Letting h = A7, it follows from Proposition
2.5 that for all & > 0 small enough such that h=! € [1,00) \ J, |J| < 6, there is
r € HE(M™) satisfying (3.3) such that

||T||H§Cl(Mint) < O(h_Q_n_E)H(_hQAg - 1)U||H§d(Mint) < O(hfm7e). (3.4)
Here we have used (3.1). Thus, for any K and k, there is R large enough such
that (3.4) gives that
71| e (aimey < h_k”’r“HSkd(Mint) = O(h").
We summarize the discussion above in the following proposition.

Proposition 3.2. Let k € N, K > 1, and 6 > 0. Then for A > 1 large enough
such that X € [1,00) \ J, |J| < 6, there is u = u(;\) € HF(M™) solving
(—=A, — N)u =0 in M™ and having the form

u(5A) = v(5A) +7(5A),
where v(; \) € C*°(M) is the Gaussian beam quasimode given in Proposition 3.1
and r(-; X) € HE*(M™) such that ||r|| grppmy = OATE), as X — oo.
Remark 3.3. Taking k > n/2+ 3 and using the Sobolev embedding H*(M™) C
C3(M), we conclude that u € C3(M) with
Irllcacan = O(ATF),

as A — o0.
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3.2. Main part of the proof of Theorem 1.1. Following [14, 25, 21], we start
by performing the third order linearization of the problem (1.1) and the Dirichlet—
to-Neumann map. To that end letting € = (g1, ¢€9,€3) € C3 and f;, € C**(OM),
k =1,2,3, we consider the Dirichlet problem

{—Aguj — Nuj + qj(z)ud =0 in MM, (3.5)

uj =e1f1 +eafo+esfs on OM,

j =1,2. Tt follows from [21, Theorem B.1], see also [14, Proposition 1] and [25,
Proposition 2.1], that for all |¢| sufficiently small, the problem (3.5) has a unique
small solution u; = u;(x, ), which depends holomorphically on e € neigh(0, C?).
Differentiating (3.5) with respect to ¢;, [ = 1,2,3, and using that u;(z,0) = 0,
we get

(3.6)

—Agvj(-l) — )\zvﬁ-l) =0 in M™
Uj('l) = fl aM’

where vj(-l)
have v := o\ = o{? € C22(M), 1 = 1,2,3, see [15, Theorem 6.15]. Applying
Ocy 02y 0=y |e=0 t0 (3.5), we get the third order linearization,

= 0.uj|.—o. By the uniqueness and elliptic regularity for (3.6), we

{—Agwj—/\2wj+6qj(x)v(1)v(2)v(3):O in Mint, 57)

w; =0 on OM,

where w; 1= 0;, 0z, 0=,uj|.—o.

The fact that for some X € [1,00) \ J sufficiently large, we have A} (e1f1 +e2f2+
esfs) = A (e1f1 + e2fo + e3f3) for all small € and f; € C**(OM) yields that
Oyurlon = Oyuslan. Therefore, O,wi|on = Oywe|ons. Multiplying the difference
of two equations in (3.7) by v™® € C?*(M) such that —A o™ — \2v® = 0 in
M and using Green’s formula, we get

/Mpv(l)v(2)0(3)v(4)d% = 0. (3.8)
Here p = q; — g2. Note that (3.8) holds for all v € C?*(M) such that —A v®) —

No® =0in M™ [ =1,... 4.
We shall next show that p = 0. To that end, let g € M be such that

Sup Ip(z)| = [p(x0)|- (3.9)

Assume first that zo € M™. By the condition (H), there are two non-tangential
unit speed geodesics v : [0,7] — M and n : [0,S] — M, 0 < T,S < oo, such
that v and 77 do not have self-intersections at xy and xq is the only point of their
intersections.
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Furthermore, there is a constant B > 0 such that p € A(B). Throughout the
following discussion, it is important to note that all implicit constants might rely
on several factors, such as the manifold (M, g), the constant B ensuring p € A(B),
the point z(, and the specific geodesics v and 7, including their lengths and the
angle between them. Since in Theorem 1.1, we simply assert that the frequency
Ao is dependent on (M, g) and p, without specifying the precise nature of this
dependence, to avoid clutter, we will not explicitly state the dependence on these
factors in the implicit constants mentioned below.

Using Proposition 3.2 and Remark 3.3, for A € [1,00) \ J large enough, we have
D e C3(M) solving —A, 0 — A2 =0 in M™, [ = 1,2, of the form

S NG (3.10)

where v = v(; \),w = w(-; A) € C°(M) are Gaussian beam quasimodes concen-
trating near the geodesics v and 7, respectively, given in Proposition 3.1, and

17| Loe ary = O(ATF), (3.11)
as A — 0o, K > 1. We set
A e .12

It follows from Proposition 3.1 that in a sufficiently small neighborhood of the
point xg, we have

o(z A) = AT eM@a(z ), w(a ) = A eMEp(a; ), (3.13)
where
p(v(t) =t Ve(y(t) =4(), Im(VZe(y(1) 20, Im(Vi¢)l54: >0,
Y(n(r) =7, Vi(n(r) =n(r), Im(V*(n(7))) >0, Im(V*)];me >0,
(3.14)
and
= )
a(t, y; A Z Ta;(ty), aty) = aj(t,y)x(g),
R i ] (3.15)
b(T, 21 \) :; bi(T,2) = by(7, 2) (5—)
Here
G/O(tu y) = aOO(t) + O<|y’)7 aOO(t) 7é 07 Vta
bo(T, Z) = boo(T) + O(‘Z‘)a bOO(T) 7£ O, VT,
(t,y) and (7, 2) are the Fermi coordinates for v and n, x € C§°(R™™!) is such that
0<x <1, x=1for|y <1/4and x =0 for |y| > 1/2, and ¢ > 0 is a fixed
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number that can be taken arbitrarily small. We also have

|vl|Lsry = O1),  |Jw|| ey = O(1), (3.16)
0]z ary = ONF ), |Jw|lpeary = ONF ),

as A — oo. Now thanks to the bounds (3.11), (3.16), for any L > 0, we can find
K large so that we have

vWey@9®y® = |y ?|w|* + R, (3.17)
where
IR]| = ary = O(NTE). (3.18)
Substituting (3.17) into the integral identity (3.8), and using (3.18), we get

[ oPlatay,
M

Now recall that z, is the only intersection point of the geodesics v and 7. Let
d > 0. Taking ¢’ > 0 in (3.15) to be sufficiently small but fixed, we could achieve
that the support of the product |v[*|w|? is contained in an open geodesic ball

Bs(xo) in M of radius § centered at xo. In Bj(x¢), using (3.13) and (3.15), we
get

< O pll e ary. (3.19)

n—1

|v|2|w|2 -\ 6—2A(Im¢+lm¢)(|ao|2|gol2 +OL°°(B5(IO))(>\_1)>- (320)

Letting
U =2(Imp+Imey) >0, (3.21)
we have from (3.21) and (3.14) that
U(wg) =0, d¥(xg) =0, V2W(xy)>0. (3.22)

The latter inequality follows from the fact that the Hessians of Im ¢ and Im ¢ at
xo are positive semidefinite and positive definite in the directions orthogonal to
v and 7, respectively. If z = (z1,..., 2,) are normal coordinates centered at xo,
we have

U(z) = SW(0)z -2 + O ),

where the Hessian W”(0) > 0. Thus, by choosing 5 small enough, we get
U(z) >clz|* in  Bz(o), (3.23)

for some ¢ > 0.
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Substituting (3.20) into (3.19), we obtain that

A@'/‘ Mo o 2V, | <O Ipll 1 ar
Bg(wo)

+0u%1mmmwm/ av,
Bs(o)

(3.24)
Writing the integral in the normal coordinates, using dV,(z) = |g(z)|*/?dz and
(3.23), we get

/ e Mdv, < (’)(1)/ e gz = O, (3.25)
Bx(zo) n

Thus, fixing
L =32, (3.26)
we obtain from (3.24) and (3.25) that

AE‘/ e (a2 [bo[*dV,
Bg(mo)

Next, we shall use the rough stationary phase Lemma A.1 in the integral in (3.27).
To that end, we shall write the integral in the normal coordinates z centered at
xg, and redefine § > 0 to be smaller if necessary. We get

Ag/ pewlaoflgolzd%:ﬂ/ p(z)e " Oao(2)*[bo(2)lg ()| *d
Bg(x())

B;3(0)

< O Ipllz=(ary- (3.27)

(20
~ (detV2U(z

DEE [p(z0)llao (o) |bo(wo)[* + QLA™ 2 [[pllco.ean).

(3.28)
Here we have also used (A.1) and the fact that |g(0)] = 1 in the normal coordi-
nates. Combining (3.27) and (3.28), we obtain that

1 —a
(et ()12 [p(0)]lao (o) *|bo(z0) > < OA?)|Ipllco.c(an)- (3.29)
Therefore, using that ag(z) # 0, and by(xo) # 0, we get from (3.29) that
[p(0)] < ON)Ipllcoqar) (3.30)

for A € [1,00) \ J large enough, satisfying the assumption (A).
It follows from (3.9) and (3.30) that

1Pl 2= ar) < O 2)l[pll o ary. (3.31)
Since p € A(B), get from (3.31) that

Ipllz=ary < BOA?)Ipl| =(ar) (3.32)
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Now choosing A € [1,00) \ J large enough, satisfying the assumption (A) and
depending on B, we conclude from (3.32) that p =0 in M.

If xg € OM then (3.8) and Proposition B.1 imply that p(xg) = 0, and therefore,
(3.9) yields that p = 0 in M. This completes the proof of Theorem 1.1.

4. PROOF OF THEOREM 1.8

4.1. Gaussian beam quasimodes and solutions to Helmholtz equations
with uniform constants. Let ()M, g) be a smooth compact oriented Riemann-
ian manifold of dimension n > 2 with smooth boundary, and let T, M be the
tangent space at the point x € M. We write (-,-) = (-,), = g(+, -) for the g-inner
product for tangent vectors and |- | = |- |, = \/(, )y for the norm of tangent
vectors. The unit sphere bundle SM of M is defined as

SM = U$6M5$M7 S:EM = {(wi) € TIBM : |w|g = 1}

The boundary of SM is given by 9(SM) = {(z,w) € SM : x € OM}. Tt is the
union of the sets of inward and outward pointing vectors,

0:SM = {(z,w) € 0(SM) : £(w,v) < 0},
where v is the outward unit normal to the boundary of M.

Let (z,w) € 0;SM, and let v = v,4,(t) : [0,7(z,w)] — M be the maximally
extended unit speed geodesic such that v(0) = = and 4(0) = w.
Let T > 0 be fixed. Following [31, Theorem 6.2], we allow the manifold (M, g)

to have trapped geodesics, i.e. 7(z,w) maybe +oo for some (z,w), but we shall
only work with (z,w) € Gr where

Gr ={(z,w) € 0,SM : 7(z,w) < T}.
Note that 7(z,w) is the length of the geodesic 7y 4.

We will utilize a recently established result, see [31, Theorem 6.2}, concerning the
construction of Gaussian beam quasimodes on M, localized to v, ,,, with uniform
bounds over (z,w) € Gr.

Theorem 4.1. Let T > 0, k € NU{0}, and R > 0 be given. There are constants
C=C(M,q,T,k,R) >0,C=C(M,g,T,k,R) >0, and N=N(M,qg,T,k,R) €
N such that for any (x,w) € Gr, there exists a family of Gaussian beam quasi-
modes v = v(;A) = V(3 A) € C®(M), X > 1, associated to v = Yy, and
satisfying

1(=2g = A)0(5 M) [ (arimgy < CATH, (4.1)

loC; Mllzson < O ol Mllz=@n < CAS



INVERSE PROBLEMS FOR SEMILINEAR SCHRODINGER EQUATIONS 19
as X\ — oo. There is also a symmetric complex (1,1)-tensor H(t) = H,.,(t) on
TyyM, depending smoothly on t € [0,7(x,w)| and satisfying

Im (H(t)’) >0, TIm(H(t)")y0: > C 'y
The local structure of the family v(-; \) is as follows: if p € ([0, 7(z,w)]) and
ty < --- <tn, are the times in [0, 7(x,w)|] when y(t;)) =p, L =1,...,N,, then in
a small neighborhood U of p, we have
’U|U — fu(l) + “oe + rU(NP)7
where each v has the form
v (z; \) = A5 2@ g0 (g \).
Here ¢ = o) € C=(U;C) satisfies for t near t,,

(1) =t Ve(y(t) =4(t), V(1) =HE', llelerg <C, (42)
and a) € C(U) are of the form,

aO(:; ) = (ﬁ: )\‘jay)) P, (4.3)

where p is a smooth cutoff function supported near v when t is near t;, and

00 = e[~ 3 [ mtarnas] (1.4

One also has ||a§*l)Hok(U) <C,l= 1,...,N,, j=0,...,N.

Remark 4.2. According to the proof presented in [31, Theorem 6.2], the cut-
off function p = p) used in the amplitude o) in (4.3) is selected as p(t,y) =
x(|y|/61), where 6y = 61(M,g,T,k,R) > 0 is small, see [31, formula (6.6) and
discussion before it]. Here, (t,y) are the Fermi coordinates for v when t near
ti, and the function x is fized and belongs to the space C§°(R), satisfying the
properties: 0 < x <1, x(t) =1 for |t| <1/2, and x(t) =0 for |t| > 2/3.

Remark 4.3. While the constant C' in Theorem 4.1 depends on 01, the constants

C and N are independent of 61. The independence of C' of 6, will be crucial in
the proof of Theorem 1.8 below.

Remark 4.4. If (M, g) is non-trapping, i.e. 7(x,w) < oo for all (x,w) € 0.SM,
then Gr = 0, SM for sufficiently large T', see [31, Remark 6.1].

Let K > 1. Through a similar line of reasoning as in establishing Proposition
3.2 and Remark 3.3, fixing ¢ in Proposition 2.5 and k > n/2 + 3, and letting
R =K+ k+n+ ¢, we arrive at the following result regarding the construction
of complex geometric optics solutions for the Helmholtz equation with uniform
constants based on the Gaussian beam quasimodes of Theorem 4.1.
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Proposition 4.5. Let K > 1 and § > 0. Then for A € [1,00) \ J large enough,
|J| < 6, there is u = u(;\) € C*(M) solving (—A, — A)u = 0 in M™ and
having the form
u(;A) = v(5A) +r(5N),

where v(;A) € C*(M) is the Gaussian beam quasimode constructed in The-
orem 4.1 with the constants C = C(M,g,T,K,d0,), C = C(M,q,T,K), N =
N(M,g,T,K), and r(;\) € C3*(M) such that ||r|caory < CiA™E, as X — o0
with C = Cl(M,g,(g,T, K, 51) > 0.

4.2. Main part of the proof of Theorem 1.8. Let 7" > 0, 0 < 6y < 7/2,
0<r< % and ¢o > 0 be constants given in the condition (H1). Let Erg, ¢,

be the set of points z € M satisfying the condition (H1).

Based on the proof of Theorem 1.1, we begin with the integral identity (3.8). We
shall show that p = 0. If sup,,, [p(x)] is attained at some point on the boundary
of M then by Proposition B.1 we conclude from (3.8) that p = 0 at this point,
and we are done. Thus, we only need to consider the case when sup,c,, [p(z)] is
not attained at any boundary point, and therefore, sup, ¢, [p(x)| is achieved at
some point in M™. In this case, sup e, |p(z)| = supyeppme [p(@)] = [Pl L)
Let ¢ > 0. The fact that Erg, ., is dense in M int and continuity of p implies
that there is xy € Erg, ¢, such that

Ip(zo)| > IpllLee(ar) — € (4.5)

As g € Erg,r.c, there are two non-tangential unit-speed geodesics v = Yz, u, :
0, 7(x1,w1)] = M and 7 = Mgy : [0, 7(22, wa)] = M, (x1,w1), (X2, w2) € Gr,
such that v(ty) = n(10) = xo, to € (0, 7(x1,w1)), 70 € (0, 7(x2, wy)). Furthermore,
both v and n adhere to all other requirements outlined in (H1).

Let 6 > 0 and K > 1. By Proposition 4.5, for A € [1,00) \ J large enough,
|J| <6, we have v 0@ € C3(M) solving (—A, — A2)o® =0 in M™ | = 1,2,
of the form

@ = w + 7y, (4.6)

where v = v(;A),w = w(;A) € C®°(M) are the Gaussian beam quasimodes
concentrating near the geodesics v and 7, respectively, given in Theorem 4.1, and
r;, | = 1,2, satisfies

v =v+r, v

71l Loeary < CLATE, (4.7)
as A — oo, with C; = C1(M, g,0,T, K,01) > 0. It follows from Theorem 4.1 that

lollzson < € Nl <G, olliman < CAS, wllpean < CAS,
(4.8)
as A — oo, where C' = C(M, g, T, K,6;) > 0. We let

W@ Z D, ) — 5@, (4.9)
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Utilizing (4.9), (4.7), and (4.8), we get
vWy@9®y® = |y?|w|* + R, (4.10)

where ||R|| o) < C A~K+*5 and the dependence of the implicit constant is

as follows: C' = C(M,g,6,T,K,0y), cf. (3.17) and (3.18).

Motivated by (3.26), we fix K = @ + 2 so0 that [|R|[per) < CA~2 with

C=C(M,g,6,T,d;). Therefore, by substituting (4.10) into the integral identity

(3.8), we arrive at
[ ol
M

wherein the implicit constant C' = C(M, g,d,T,d1) > 0, cf. (3.19) and (3.26).

_3
< CA2||pllLe oy, (4.11)

Let us mention that, since K is fixed, the only dependence in the constants C'
C, and N in Theorem 4.1 is as follows: C' = C(M, g,T,6,), C = C(M,g,T), and
N = N(M,g,T). Furthermore, the only dependence in ¢; in the cutoff function
p used in the amplitude of the Gaussian beam quasimodes v and w is as follows:
0 = 61(M,g,T), see Remark 4.2.

We have that the supports of v and w are contained within tubular neighborhoods
with radius d; of v and 7, that is,

supp(v(-;A)) C {y € M : d(y,v([0, 7(w1,w1)])) < 1},
supp(w(-; M) C{y € M : d(y,n([0, 7(z2, ws)])) < 61},
for all A > 1.

Next, we will demonstrate that if §; < min{r/2,Inj(M)/(1+ 2¢y)}, the condition
(iv) in assumption (H1) implies that for all A > 1,

supp(v(-; M)w (5 A)) C Biyacy)s (o) N M. (4.13)

(4.12)

Here, B(142¢,)5, (%0) is an open geodesic ball in S centered at x, with a radius of
(14 2¢9)d1, where (S, g) is the closed extension of (M, g).

Indeed, if y € supp(v(; A)w(-; X)) C supp(v(-;A)) Nsupp(w(+; A)) then it follows
from (4.12) that d(y,~(t")) < 61 and d(y,n(7")) < é; for some t' € [0, 7(z1,w;)]
and 7" € [0,7(z9,wy)]. By the triangle inequality, we obtain d(y(t'),n(7")) <
26, < r, and therefore, condition (iv) in assumption (H1) implies that

[t" — to] < 2¢o0;. (4.14)
Hence, since v is a unit-speed geodesic, we have
d(y, o) < d(y,y(t')) + d(y(t'), o) < d1 + 2co61. (4.15)
Therefore, y € B(142¢,)5,(%0) and this establishes the claim (4.13).
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If we take 7 = 79 in condition (iv) of assumption (H1), we see that if d(y(t), o) <
r, then [t — to| < cod(7y(t), o). Let

p = min <7“, Inj(M)). (4.16)

Co

If d(v(t),z0) < p then |t — to| < Inj(M), and therefore, d(y(t),v(to)) = |t — tol.
A similar statement also holds for 7.

We now claim that if 6, < £, the Gaussian beams v and w take the simple form
given by (4.21) within By (z9) N M, where Bg(zo) is an open geodesic ball in S
centered at x with a radius of £. Indeed, first, let us show that the set

{y € M :d(y,~(t)) < 01 for some t € [0, 7(z1,w1)], [t —to| > p} N Be(zo) (4.17)

is empty. To prove this, we assume the contrary, that there exists a point y in
the intersection of the sets in (4.17). Then, we can find a value ¢’ in the interval
[0, 7(21,wy)] with [t — 29| > p such that d(y,y(t')) < 01 and d(y, zo) < §. Using
the triangle inequality and the fact that §; < £, we obtain d(v(t'), z¢) < p. Given
the equation (4.16), as reasoned in the preceding paragraph, we can conclude
that d(v(t'),z9) = |t — to| > p. This contradiction proves that the set in (4.17)
is empty.

Moreover, using the same logic, we can show that

Y0, 7(@r, wi)]) O Bp(xo) € {(t) -t € [0, 7 (w1, wi)], [t —to| < p}. (418

Since p < r < w, the geodesic () does not exhibit self-intersections when

|t —to| < p. This, in combination with (4.17) and (4.18), establishes the claim for
the Gaussian beam quasimode v. Similarly, we can demonstrate the same claim
for the Gaussian beam quasimode w.

Hence, we can redefine §; as d; = §1(M, g, T, 7, co) to ensure that it is sufficiently

small, such that
(P P
- — . 4.1
51<m1n(2,2<1+260>> (4.19)

This condition guarantees that

supp(vw) C B(i42¢)s, (€0) N M C Be (o) N M. (4.20)

According to Theorem 4.1, see also the proof of [31, Theorem 6.2], within B, (20)N
M, the Gaussian beam quasimodes v and w take on a simple form, i.e.

v(x; ) = /\nT_lei)‘@(m)a(x; A),  w(z;A) = )\nT_leiM’(m)b(x; A), (4.21)
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where

p(1()) =t, V(1)) = 3(t), Ve(1(1)) = Hayn (¢), lelles @y o) < C,

Y(n(r) =7, Vo(n(r) = 0(r), VH0(T) = Hepao (1) V]l o3, oy < C-

4.22
Here H,, ., (t) and H,,.,(7) are symmetric complex (1,1)-tensors on T )M
and T,y M, depending smoothly on ¢t € [0, 7(x1,w)] and 7 € [0, 7(22, w2)] and
satisfying

I\J

—~
~—

Im<HI1,w1 (t)b) > 0, Im<HI1,w1 (t)b)H(t)l > 0_197

) ~ (4.23)
Im(Hm wz( ) ) >0, Im(HSEQ,U&(T) )|7’7(7’)J- >C g,
respectively. We also have in Bg () N M,
N N N
CL( 7)‘> :Z/\_ a]? aj = a;p, b<a>‘) :Z)\_ b]: b] = a;p, (4 24)
=0 =0
and
HachS(B%(mo)mM) <C, ||ijC3(B§(zo)ﬂM) <C, j=0,...,N. (4'25>
Furthermore,
1 t
o) =exp | = 5 [, (575
. 0 (4.26)

The implicit constants in (4.22), (4.23), (4.24), and (4.25) are expressed as C =
C(M,g, T)>0and N=N(M,g,T) € N.

Now in Be(zo) N M, in view of (4.21), we have

[of*wl* =
Letting
U =2(Imep +Imy) >0,
we deduce from equations (4.22) and (4.23) the following properties:
U(xg) =0, d¥(xg) =0, V>U(xg) > cg, (4.27)

where ¢ = ¢(M, g,T,0y) > 0. To show the last inequality in (4.27), first in Fermi
coordinates along ~ near xy, we have

n(V2(y(1))): = (8 1m<Hm,£<t>>|W>L) (1.28)

where the block decomposition of the matrix is understood with respect to the
decomposition T, M = R(t) & (¥(t))*.
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We have a similar decomposition for Im(V2t(n(7)))? in Fermi coordinates along
n. Let ty and 79 be the unique times such that (tg) = n(7) = o, and let
W = (5(to))t N (N(10))*+ C TpyM™. We can write any v € T, M™ uniquely as
v = v,(to) + vyn(70) +w with vy, v, € R, and w € W. By using that (o) is
in the kernel of Im(V?p(xq))* and 7(7g) is in the kernel of Im(V?2t(x))*, we can
expand

(VAU (z0)*0,v) = (2Im(V2p(20))* (v,1(70) + w), vyn(10) + w) +
+ (2Im(V?4(20))* (057 (to) + w), v47(to) + w).

Here and in what follows (-,-) = (-,:),. We can decompose v,n(m) + w with
respect to Ri(to) & (3(fo))"

v,1(70) +w = (v, cos B)y(ty) + (4.30)

for some unique @ € (§(ty))* with cos8 = (¥(to),n(T )) Taking norms on both
sides of (4.30), we see that |@|* = v2sin® 0 + |w|?* since w is orthogonal to 7(7).

Moreover, as Im(V2p(z0))*(to) = 0, we get
(Im(V2p(20))* (vy1(70) + w), v,1(10) + w) = (Im(VZp(x0))*w, W) > Ca)?
by (4.23), since w € (§(tp))*. By working analogously with the second term in
(4.29) and combining, we get
(V20 ()P0, v) > 25’_1((02 + 112) sin? 0 + 2|wl?).

As 0> = 02 + 02 4 20,0y cos 0 + [w]? and 02 + 02 > £ (02 4 V2 + 2v v, cos0), i

follows that VZ\I/(mO) > (C'sin?6)g > (C'sin?6y)g, since 6 € [0, 7/2]. This
shows the last inequality in (4.27).

(4.29)

Now if z = (21, ..., 2,) are normal coordinates centered at xy € M™ we have
1
=-U"(0)z -z + ¥3(z2),

v

()= 1
where W"(0) > ¢l, ¢ = ¢(M, g,T,0y) > 0, in view of the last inequality in (4.27).
Thanks to (4.22), we get |U3(z)| < C|z|® for 2 € exp, ' (Bs(x9) N M) C Bg(0)

with C'= C(M,g,T) > 0. Here the exponential map exp,, : B2(0) = B (xo) is
a diffeomorphism.

Now, if 0 < 5 < £ is small enough to satisfy the condition
Ch < c/4, (4.31)
then we have
1 ~ o
U(z) > 50\2\2—C|z]3 > (c/2—06)|z)* > 2\2]2, z € exp, (Bs(zo) N M) C B;(0).

o N (4.32)
Note that 6 = §(C, ¢, p) = 6(M, g, T, 09,7, co).
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In light of (4.31) and (4.19), we can redefine 6, = §1(M, g, T, 6,7, ¢co) > 0 to be
sufficiently small, ensuring that

(P p ¢
01 <min | =, ,——= . 4.33
e (2 2(1+2¢0) 4C(1 + 2c0)> (433

By letting 0 := (1 + 2c0)é;, we can see from (4.33) and (4.20) that
supp(vw) C Bi(zo) N M C Bs(xo) N M,

and (4.32) holds. It is essential to emphasize that the independence of the con-
stant C' from ¢; in Theorem 4.1 is crucial for (4.33).

This choice of §; will remain fixed in the subsequent discussion. As a consequence,
the constants, previously dependent on d;, will now depend on M, g, T, 0y, T,
and ¢g.

We shall proceed to thoroughly examine the rest of the proof of Theorem 1.1,
with a specific focus on controlling the dependencies of all the constants involved.
Throughout this examination, we will represent all constants as C', and it is
important to note that these constants might change from line to line.

Using the fact that the support of the product |v|?|w|? is entirely confined within
Bj;(zo) N M and (4.25), we obtain (3.20), where the implicit constant is denoted
as C' =C(M,g,T) > 0.

Now, (4.11) and (3.20) imply that the bound (3.24) holds with L = 3/2, and
the implicit constant is denoted as C = C (M, g,0,T, 6y, 7, co) > 0. Moreover, the
integrals in (3.24) are taken over Bj(xo) N M. By using (4.32), we obtain (3.25),
where the implicit constant is expressed as C' = C(M, g,T,0y,7,¢9) > 0. Thus,
we get (3.27) with an implicit constant of C' = C(M,g,9,T,0y,7,¢0) > 0, and
with the integral taken over Bx(zo) N M.

Assume first that Bj(zo) € M™. Thanks to (4.31), we can now apply the
rough stationary phase Lemma A.1 to the integral in (3.27). This allows us to
obtain (3.28), where the implicit constant is C' = C(M,g,T,00,7,¢c9) > 0. If
Bs(z9) N OM # (0, then first, by Proposition B.1, we conclude from (3.8) that

plom = 0. Extending p := plag|?|bo|* by zero to Bz(xo) \ (Bs(xo) N M) and
denoting this extension by p again, we see that p € C%*(Bj(z)), and supp(p) C
Bj(xo) is compact, see Lemma A.3. In view of Remark A.2, applying Lemma
A.1 to the integral in (3.27), we obtain (3.28), where the implicit constant is
C =C(M,g,T,6y,7,¢0) > 0. Consequently, in both cases, we arrive at (3.29),

with the implicit constant expressed as C'= C'(M, g,9,T, 00,7, co) > 0.
Next, it follows from (4.26) that

1 [t
aop(zo) = exp [— 5/ try(Hyyu, (8))ds |,
0
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where 0 < tg < 7(x1,w;) < T. Working with the open cover of 7 consisting
of N = N(M,g,T) elements, and using (4.2) in each element of the cover, we
conclude that |ag(zo)| > C, where C' = C(M, g,T) > 0. We refer to the proof of
[31, Theorem 6.2] for the existence of such a cover. Similarly, we have |by(xo)| >
C. Furthermore, |detV?¥(zo)| < C, where C' = C(M,g,T) > 0, due to (4.22).
Hence, from (3.29) and the fact that p € A(B), we deduce that

p(0)| < CBA™2||p|| oo ar), (4.34)

for A € [1,00) \ J large enough, satisfying the assumption (A). Here, C' =
C(M,g,6,T,00,7r,¢0) > 0.

By combining (4.34) with (4.5), we obtain the inequality
Ipllzn (1 = CBA™?) <,

for all e > 0. Now, by letting ¢ — 0 and choosing A = \(M, g,d,T, 6y, B,r,¢cy) €
[1,00) \ J large enough, satisfying the assumption (A), we conclude that p = 0.
This completes the proof of Theorem 1.8.

5. PROOF OF THEOREM 1.6

5.1. Existence of non-tangential geodesics between boundary points.
We start by showing that almost all points in M™® lie on a non-tangential geo-
desic. We will follow the approach used in [38, Lemma 3.1], but modify it as we
do not want to require strict convexity of the boundary.

Lemma 5.1. Let (M, g) be a smooth compact Riemannian manifold of dimension
n > 2 with smooth boundary. Then almost every point of M™ lies on some non-
tangential geodesic.

Before giving the proof of Lemma 5.1, let us do some preparations. Let (M, g)
be embedded in a closed manifold (N, g). Let SM™ and SN denote the unit
sphere bundle of M and N respectively and let ¢, denote the geodesic flow on
SN. For (z,v) € SM™, we define the future and past exit times respectively as

I (z,v) =sup{T > 0: ¢;(x,v) € SM™ for all 0 < t < T},
I_(z,v) =inf {T < 0: ¢ (z,v) € SM™ for all T < t < 0}.
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Consider the following sets of good and bad directions,
G = {(z,v) € SM™ :1_(x,v) and I, (z,v) are finite with transversal
intersections},
By = {(z,v) € SM™ : exactly one of I.(x,v) is finite},
By = {(z,v) € SM™ :|_(z,v) and I, (x,v) are infinite},
Bs = {(z,v) € SM™ :|_(z,v) and I, (z,v) are finite with a tangential
intersection}.

In the definition of GG, by transversal intersections, we mean that the unit speed
geodesic going through (z,v) at time 0 intersects OM transversally at times
[_(z,v) and [ (x,v). On the opposite, in the definition of Bz, by a tangen-
tial intersection, we mean that the unit speed geodesic going through (z,v) at
time 0 intersects OM tangentially at least once at times [_(z,v) or [, (z,v).

Let m denote the Riemannian volume measure on (M, g) and let u denote the
Liouville measure on SN, see [35, Section 3.6.2].

Lemma 5.2. The sets By and Bs have Liouville measure 0.

Proof. 1t follows directly from [38, Lemma 3.2] that u(B;) = 0. For Bs, let
E = {p(z,v): (z,v) € 0pSM and 0 <t < 1},

where 0gpSM = SOM. We have p(E) = 0 as dim(9pSM) = 2n — 3 and
dim(SN) = 2n — 1. By invariance of the Liouville measure, p(¢:(E)) = 0
for all t € R. If (x,v) € Bs, the unit speed geodesic going through (z,v) at
time O intersects OM tangentially at least once at times [_(z,v) or I (z,v),
that is, ¢ (2, v) € OSM or ¢,z (x,v) € 0pSM. It follows that Bs C
Ure_ . ¢x(E) and so p(Bs) = 0. O

Proof of Lemma 5.1. Consider the set
A ={x € M™ : for any v € S, M™, either I_(z,v) = —o0, or I (x,v) = oo,
or l_(z,v) and I (z,v) are finite with a tangential intersection}.

Here, as before, by a tangential intersection, we mean that the unit speed geodesic
going through (z,v) at time 0 intersects OM tangentially at least once at times
[_(z,v) or [ (xz,v). The claim will be proved if we can show m(A4) = 0.

Suppose that A has positive measure. By the Lebesgue density theorem, we can
find a point xg € A such that
lim m(AN Be(xg))
=0 m(B:(x0))

By [19, Lemma 2.10], there exists vy € S, M™ such that the geodesic 7. .v,
minimises the distance between xq and OM. As OM is closed, such a vy always

=1.




28 KRUPCHYK, MA, KUMAR SAHOO, SALO, AND ST-AMANT

exists, although it might not be unique. By minimality, as OM is smooth, this
geodesic exits M normally. Therefore, there is vy € S,, M™ such that [, (zg,vy) <
oo and the geodesic through (xg,vy) exits M normally.

The implicit function theorem guarantees the existence of a neighborhood U of
(wg,v0) in SM™ for which [, (z,v) < oo and the geodesic through (z,v) exits M
transversally for all (x,v) € U. Following the notation in [38, Section 3|, we can
find g and sets Sp.(z),w C U, € < &¢, for which

(ﬁ, U) € SBE(:,;()%W NSA — (l‘,’l)) € (Bl @) Bg) NSA.

Since by Lemma 5.2 pu(B; U B3) = 0, it follows by the same reasoning as in [38,
the proof of Lemma 3.1] that m(A N B.(z9)) = 0, € < &y, contradicting the fact
that xy was a point of density one in A. O

5.2. Perturbation of pairs of geodesics. For (z,v) € SM™, we denote by
Yoo ¢ =11, T2) — M, 0 < T7,T, < oo, the unique unit-speed geodesic such
that v,,(0) = x and 4,,(0) = v. We say that the smooth family of geodesics
(”ys)se(,&g), is a variation through geodesics of 7, , with variation field J if vy =

Voo and J(t) = % oo Vs(t)-

Lemma 5.3. Let v, : [Ty, Tu] = M and vy, @ =10, T,] — M be geodesic
segments intersecting only at x and let vs be a variation through geodesics of vy,
with variation field J. Suppose there are nonzero sequences s;,t; — 0 such that
s, intersects 7y, at the point vy, (t;) for all j € N. Then,

J(0) € span({u, v}) = span({¥e.u(0), Yo (0)})-

Proof. Let (1,y) be Fermi coordinates about x adapted to the geodesic v;,. The
coordinates induce the frame a%, 8%1, e %. In these coordinates, 7, ,, is given
by {y = 0} and hence u = 4,,(0) = Z. We can express 7,(t) as (7,(t),ys(t)).
Let J(t) and Aﬁ/x,v(t) be the respective components of J(t) and 4, ,(¢) in the y
coordinates. We have

ys(t) = yo(t) + sJ(t) + O(s?).

Since s, intersects 7, at the point v, (t;), we have y,, (t;) = 0 = y0(0). Plugging
this in the above expression and rearranging gives
Y(0) —wlt) t; — ~
= =)+ 0(s)): (5.1)
J J

The right-hand side converges to J(0) as j — oo. As for the left-hand side, the
first fraction converges to —7, ,(0). It follows that ¢;/s; has to converge since

%LU(O) is nonzero, and so J(0) is a multiple of fvvxv(()) As u = Z generates the
first components of both J(0) and v, the result follows. O
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Lemma 5.4. Let (M, g) be a smooth compact Riemannian manifold of dimension
n > 3 with smooth boundary. Let x € M™ be such that there exist distinct
directions u,v € S, M™ such that the geodesics Vo ONd Yy, are non-tangential.
Suppose that the order of conjugacy of x is at most n — 3. Then, there is a
sequence (Vp)neny C SeM™ v, — v, such that for all n € N sufficiently large,
Vaw, does not intersect .., (except at x) and 7, ., does not self-intersect at x.

Remark 5.5. The non-intersection result of Lemma 5.4 is global, while that of
Lemma 5.3 1s only local.

The main idea of the proof of Lemma 5.4 is to find a direction towards which
we can perturb v,, away from 7,,. We wish to use Lemma 5.3. Say that
both geodesics intersect at ¢ € M, that is, we have ¢ and r such that 7, ,(t) =
Yeu(r) = q. If we can find a variation through geodesics v, of 7, , with variation
field J such that J(t) is transversal to span({;. (), ¥z.(7)}), then Lemma 5.3
guarantees that s and 7, , do not intersect for all nonzero s small enough. The
condition on the order of conjugacy allows us to do this around every point of
intersection between v, , and 7,,. The sequence v, is then obtained from the
different values of 45(0).

Proof. To simplify notation, we write 7,, = 7, as all the geodesics will start at
x. Let 7, : [=T1, T3] - M be maximal and intersect 7, at the points ¢; at times
(tj,7;) with

T <ty <<t <0<ty <<y, <Tp

and r; < r;41 whenever t; = ¢4, that is, v,(t;) = v.(r;) = ¢;. Without loss of
generality, we can assume that the geodesics do not intersect at the boundary.
Otherwise, we can make M slightly larger and extend the geodesics by adding
a small open neighborhood of OM in N. We denote v; = t;v € T,M™ so that
exp,(vj) = Y(t;). The behaviour of the differential of the exponential map at
v; € T,M™, d(exp,),, : T,,TyM™ — T, M™ is closely related to the order of
conjugacy of M at z. Indeed, denoting the restriction of -, to [0,¢;] as ~;, we
have
dim ker d(exp,.),, = conj,, (z,q;),

see [7, Proposition 3.5, page 117].
Consider the linear spaces

E; ={¢ € T, T,M™ : d(exp,)., (§) is parallel to ,(r;)}.

Note that the kernel of d(exp,),, is a subspace of E; and it is the whole space
unless 7,(r;) is in the range of d(exp,).,;, in which case the dimension of Ej is
conj, (r,q;) + 1. Through the identification of T, T, M™ with T,M™, we can
identify £; with the affine plane

P={v;+&: € B} CT,M™.
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Because the order of conjugacy at z is at most n — 3, the dimension of the affine
plane P; is at most n — 2. Moreover, the planes P; are transversal to v;.

Let m : T,M™ — S, M™" be the natural projection from the tangent space to
the unit sphere bundle at z. For j > 1, we have m(v;) = v while for j < —1,
m(v;) = —v. In any case, near 7(v;), the image of P; through 7 is an immersed
submanifold P C S,M™ of codimension at least 1. Hence, T, P] is a proper
subspace of T, S M™ and since a vector space over an mﬁmte field cannot be
realized as the finite union of proper subspaces, there is a € T,,S, M™ such that
a & U T, P Similarly, we may also require that —a ¢ Uk’ s P_J, where
—a € T_US M is obtained through the identification with T M int

We claim that

v, = exp’ (a/n)
is the desired sequence, where exp? is the exponential map on T,S,M™ taking
values in the sphere S, M™*.

As n goes to 0o, it is clear that v,, converges to v. It remains to show that ~,,
does not intersect 7, for all n sufficiently large. Consider the variation through
geodesics of 7,
7s(t) = exp, (t exp; (sa)).
Note that 7, is non-tangential for sufficiently small values of s as it is a variation
of the non-tangential geodesic v,. Since exp?(sa) is equal to v+ sa to first order,
we have
o d _d g
T = | 0= 7| e, tv+ s0)) = dexp,)ulta)
which is a normal Jacobi field along ~,.

For > 0, consider the pairs of geodesic segments %|[tj_57tj+5] and %|[rj—6,rj+5}'
Choosing § small enough, we can guarantee that all such pairs intersect exactly
once at ¢;. By compactness, there is 6 > 0 such that for all small enough
variations s, the only possible intersections between ~ and =, have to occur
between the segments s, —s5¢,+5) and Vulfr;—s.r;+6). We can see Yg|it,—st,+6) as a
variation through geodesics of v, i, 5,45 With variation field J|, _s;,1s. At the
points ¢t = t; where 1, intersects v,, we have

J(t;) = d(exp, ), (tja).
By the choice of «, we know that ¢;« is not in E;. Hence, J(t;) is nonzero and
transversal to span({7,(¢;), Ju(r;)})-
We claim that there is some ¢; > 0 such that 75|[tj,5,tj+5] does not intersect
Yaulr;—sr;+5) for all s € (—¢;,¢;) \ {0}. If such a g; did not exist, there would be a
sequence s; — 0 and times t;; € [t; —9,t; + 9] such that ~,, intersects 'yu][rj 80 +0]

at the point 7y, (¢;;). By compactness, tjl would admit a convergent subsequence
which must converge to t; by continuity and because it is the only time when
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Yolit;—o.t,+6) intersects |, —sr,+6). But then, by Lemma 5.3, this would imply
J(t;) € span({7,(t;), Ju(r;)}) which contradicts the above choice of a.

As we accounted for all the pairs of segments that could intersect and there are
finitely many such pairs, we know that 7, does not intersect 7, (except at = at
time 0) for all nonzero s small enough. Moreover, for such s, v, does not self-
intersect at = as it would then intersect v,. The claim follows since taking s small
corresponds to taking n large enough. 0

5.3. Proof of Theorem 1.6. By Lemma 5.1, almost every point of M™ lies on
some non-tangential geodesic. Let x € M™" be such a point and let ~,,, be a non-
tangential geodesic passing through x. As 7, , is non-tangential, we can perturb
v in some open neighborhood to get another non-tangential geodesic v, , passing
through . By Lemma 5.4, we can perturb v, , to obtain «; that intersects 7,.,,
only at x and does not self-intersect at z. If 7, ,, does not self-intersect at x, then
we set 72 = 7, and we are done. Otherwise, we can again apply Lemma 5.4
to get a geodesic ¥, that only intersects 7, at x and does not self-intersect at x.
The proof of Theorem 1.6 is complete.

APPENDIX A. A ROUGH STATIONARY PHASE ARGUMENT

Let U C R™ be an open set and let 0 < o < 1. We define the space C%*(U) of

the Holder continuous functions to be the subspace of C'(U) consisting of those
functions u for which sup, ey, % is finite. The space C%%(U) is a
Banach space with norm given by

uw(z) — uly
lullgoa =  sup Ju(z) —u(y)|

z,yeU,z#y ‘x_y‘a + ||U||L0<>(U)

We note that C%*(U) is an algebra under pointwise multiplication, and

lutllgoa@) < C(lullna 0lzm@ + Nulle@ el coa), v € CO(T),
(A.1)
see [18, Theorem A.7].

In the proofs of Theorem 1.1 and Theorem 1.8, we need a version of the sta-
tionary phase lemma with quite explicit control of all the constants involved.
Furthermore, note that in our applications, amplitudes have compact supports
in a geodesic ball. To state the required result, let B, = {x € R" : |z| < r} be
an open ball centered at 0 of radius r > 0, and let a € C%*(B,) be such that
0 € supp(a) and alpp, = 0. Let ¥ € C=(B,;R) be such that

(0)=0, ¥(0)=0, v'(0)>0. (A.2)

Thus, we have
v’(0) > ¢, (A.3)
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with some ¢ > 0. Taylor expanding the phase function ¥ and using (A.2), we get
1
U(x) = 5\11”(0)37 -+ Us(x), (A4)

where
Ws(z)| < Clz®, z € B, (A.5)
with some C > 0.

Lemma A.1. Let r > 0 be such that

Cr < 2 (A.6)
Then for A > 1, we have
z - T (271-)% -2
A3 / (e = sz a(0) + Oce(DN E ey (AT

Here the implicit constant depends on C' and ¢ only and is independent of a.

Proof. First, let us extend a by zero to R™ \ B, and still denote this extension by
a. By Lemma A.3, as alsp, = 0, we conclude that a € C%*(R") and

H@Hco,a(w) = H@’|cova(3i)- (A.8)
Using (A.4), we write

/ e”\ql(x)a(x)dx =i+ o+ Js,

r

where

nim [ O, pi= [ O ) - ao),
I ::/ e*%‘l’"(o)x'x(e*)“l’?’(’”)—1)a(a:)dx.

Making the change of variables x — Azz in the integral J;, we obtain that
(2m)}

_ -5 —%\Il”(O)z-a: — -5
Ty = a(0)A / K o = o e ON . (A9)
To bound |.J5|, first using that a € C**(R") and (A.8), we get
la(z) = a(0)| < llallcoamyl2|®, =€ R™ (A.10)

Then using (A.10), (A.3), and making the change of variables 2 — A2z, we obtain
that

n

|J2| < HaHCo,a(BT)/ e*%mzmaday = ]la\|co,a(&)A2§/ e’g‘x|2|x|adx
Rn Rn

= Oc(D)A™27%|all con 5;)-
(A11)
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To bound |J3], in view of (A.5), we first observe that
1 d )
le=Ae@) _ 1) = ‘/ Eew?’(x)tdt‘ < AWy (z) [NV @ < ON |z PN (A12)
0

for x € B,. Then using (A.3), (A.12), (A.6), and making the change of variables
T )\%x, we get

T

S ||a||CO’a(Br)/R 6_)‘£|$|20)\|l‘|3d{[’ = ||CL||CO’Q(BT)C)\_TQL_%/ 6_§|$‘2|$|3dm

_n_1 _n_a
= Oc(1)A 2 2||0L||co,a(BT) < Oc,e(1)A2 2||a||CDva(E)7
(A.13)
for A > 1. Combining (A.9), (A.11), and (A.13), we obtain (A.7). O

Remark A.2. Lemma A.1 also holds under the following assumptions: a €
C%%(B,) is such that supp(a) C B, is compact, 0 € supp(a), ¥ € C*®(supp(a); R)
satisfies (A.2), and there exists a constant C' > 0 such that (A.5) holds for all
x € supp(a).

The following result is standard and is presented here for the completeness and
convenience of the reader only.

Lemma A.3. Let a € C%(B,) be such that alsp, = 0. The extension of a to
R" \ B, by zero, denoted also as a, belongs to the class C**(R™), and we have

Ha”COvQ(R") = "a"COvQ(E)'

Proof. Let L =sup, ,cp, 4y lalo)=eW)| - Gince a € C(B,), we have

lz—yl*
la(x) —a(y)| < Lz —y|*, (A.14)

for all z,y € B,. Let 2,y € R", and let us show (A.14). First if both x,y € B,
or both z,y € R"\ B,, (A.14) clearly holds. The only case we have to consider
is when z € B, and y € R"\ B,. In this case, we consider the straight-line
segment connecting x and y. It intersects 0B, at some point z € JB, so that
|z — z| < |z —yl|. Using (A.14), we get

la(z) —a(y)| = la(z) —a(z)| < L|z — 2|* < Llz —y|*.

The result follows. O

APPENDIX B. BOUNDARY DETERMINATION

In the proofs of Theorem 1.1 and Theorem 1.8 we need the following boundary
determination result, which is essentially known, see [3], [4], [17, Appendix], [12,
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Appendix A], [21] and references therein, and presented here for the completeness
and convenience of the reader.

Proposition B.1. Let (M, g) be a compact smooth Riemannian manifold of di-
mension n > 2 with smooth boundary. Let ¢ € C(M), A > 0, and assume that
A% is not a Dirichlet eigenvalue of —A, in M. If

/ quitauzusdVy = 0, (B.1)
M
for all u; € C**(M) such that

(A, = N)u; =0 in M™, (B.2)

j=1,...,4, then qlops = 0.

Proof. We shall follow [3], [4], constructing an explicit family of functions v,,
whose boundary values have a highly oscillatory behavior as p — 0, while be-
coming increasingly concentrated near a given point on the boundary of M, and
we shall follow [12, Appendix A], correcting v, into an exact solution to (B.2).

Let o € OM and let (z1,...,x,) be the boundary normal coordinates centered
at o so that in these coordinates, xy = 0, the boundary OM is given by {x, = 0},
and M™ is given by {z,, > 0}. In the local coordinates, T,,0M = R""! equipped
with the Euclidean metric. The unit tangent vector 7 is then given by 7 = (7/,0)
where 7/ € R"™! |7/| = 1. Let n € C5°(R™; R) be such that supp(n) is in a small
neighborhood of 0, 7(0) # 0, and

/ n(x',0)%dx’ = 1.
Rn—1

Let 5 < o < 1, and following [4], we let
v(x;p) = ,u—a(nz_l)—én(£> eﬁ(T/'xl+ix”), 0<pukl, (B.3)
/4[/0(

in the boundary normal coordinates, so that v € C*(M), with supp(v) in O(u®)
neighborhood of xy = 0. Here 7’ is viewed as a covector. A direct computation
gives that

lv(-; )| 20y = O(1), (B.4)
as u — 0. We look for a solution u; to (B.2) in the form
uy (5 ) = o5 p) + 75 ), (B.5)

where r is the solution to the Dirichlet problem,

(A, = N)r = (=4, — X\)v in MM, (B.6)
T|8M = 0. ’



INVERSE PROBLEMS FOR SEMILINEAR SCHRODINGER EQUATIONS 35

By boundary elliptic regularity, we have r € H}(M™)NC>(M). By [12, Theorem
A.3], we get

HTHLQ(M) < HTHHl/Q“(M“‘t) < CH(—Ag — )\2)U‘|H73/2+6(Mint)

) (B.7)
< CllAgv|| g-s/2+eariny + CN ||| -1 (agimey,
for 0 < e < 1/2. It is shown in [12] that with a = 1/3 and € = 1/12,
“AQUHH*3/2+E(Mi“°) = O(N1/12)7 (B.8)
see formula (A.14) in [12], and that
loll -1 aamy = O(u' =) = O(??), (B.9)

see formula (A.19) in [12] and discussion after it. Combining (B.7), (B.8), and
(B.9), we get

I7[lz2ar) = O(p!*2). (B.10)
Substituting u; given by (B.5) and us = @y into the integral identity (B.1), and
using (B.4), (B.10), we obtain that

[ sl av, = = [ (qua)er 45+ PV, =o(.  (B11)

as u — 0. It is computed in [12], see formula (A.24), that

. 1
tim [ (quaugloPav, = 5q

50(0)us(0)us(0). (B.12)

It follows from (B.11) and (B.12) that

q(0)us(0)us(0) = 0, (B.1
where uz,uy € C**(M) are any solutions of (B.2). Letting u3(-;h) = v(;h)
r(-;h), 0 < h < 1, where v(-; h) is given by (B.3) with u replaced by h, r(+;
is the solution to (B.6) with v = v(+; h), and letting us = uz, we get from (B.1
that ¢(0) = 0. Here we have used that 1(0) # 0.

w

)

+
h)
3)
0

APPENDIX C. EXAMPLE OF AN INFINITE SET OF LINEARLY INDEPENDENT
ADMISSIBLE PERTURBATIONS

Let M be a smooth compact Riemannian manifold of dimension n > 2 with
boundary. We write C%*(M), 0 < a < 1, for the space of Holder continuous
functions on M, equipped with the norm,

lo(x) — @(y)|
lellcoean = llellnsan + sup ——F—4,
oD DT verary  d(z,y)°

where d(x,y) is the Riemannian distance between = and y, see [2, Chapter 2, §3,
§9], [45, Section 13.8]. We define the C'-norm on M by

Iellerany = el @n + [Vop(@) |l e ary,
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where V, is the gradient with respect to the Riemannian metric g. We have the
continuous embedding C'(M) C C%*(M), 0 < a < 1, i.e. there exists B > 0
such that

lellcoan < Bligleran, ¢ € CHM). (C.1)

In what follows we refer to the definition and properties of simple manifolds to
[35, Section 3.8]. We have the following result.

Proposition C.1. Let (M,qg) be simple. The set of admissible perturbations
A(2B), with B given in (C.1), contains an infinite set of linearly independent
admissible perturbations.

Proof. First we have (M,g) CC (U, g) where (U, g) is simple. Let w € U\ M
and let (r,0), r > 0 and 6 € S"~!, be the polar normal coordinates in (U, g) with
center w. In these coordinates the metric g has the form,

o(r,0) = (é . (S’ 6)) | (C.2)

where g;(r, ) is some (n — 1) X (n — 1) positive definite matrix. Consider the
polynomial
N

p(r,0) = Zakrk e C™(M),

k=0
where ap >0, k=0,1,... N,

k‘ak S Ap_1, k= 1, .. .N, (CS)

and N € N. It follows from (C.2) that V,p = (9,p,0,...,0). Thus, using (C.2)
and (C.3), we get

N N
[Vgplg = [0rp| = Zakkrk_l < Zak_lrk_l <np.
k=1 k=1

Hence, ||p[lciary < 2[|p||ze(ar). Combining this with (C.1), we get ||p||co.«r) <
k

2B||p|| e (a), showing that p € A(2B). Thus, in particular, we have {Zg:o o
N=12,...} C A(2B).

[l

APPENDIX D. DISCUSSION OF THE GEOMETRIC ASSUMPTION (H1) IN
THEOREM 1.8

D.1. Local result. The following result demonstrates that locally, condition (iv)
in assumption (H1) can be derived from condition (iii).
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Proposition D.1. Let (N, g) be a smooth compact Riemannian manifold without
boundary whose sectional curvatures are bounded from above by k > 0. Let p <
min(Conv(N), Z=), where Conv(N) > 0 is the convezity radius of N. There is
a constant C' = C(N,g,p) such that for all xy € N and all pairs of geodesics

v.m: (=p,p) = N with v(0) = n(0) = o,
d(y(t),n(7)) = Clt|sinb, d(y(t),n(r)) = C|r[sinb, t,7€ (=p,p),

where 6 is the angle of intersection between v and 7.

Proof. Let (z%) denote normal coordinates around x, with respect to the metric
g on U = B,(xg). In these coordinates, the geodesics v and 7 are simply given
by lines through the origin. Let « : [0,7] — U be the shortest path between ~(t)
and n(7), which is unique and entirely contained in U since p < Conv (V). The
distance between «y(t) and n(7) is then

0, (1(t). (7)) = / 6t

We parametrise o by arclength with respect to the coordinates (x') equipped
with the standard flat metric gy of R™, so that |&(t)|,, = 1. With respect to go,
the shortest path from ~() to n intersects n at a right angle. Therefore,

T = dyy(1(1), (7)) 2 dgy(v(). ) = [t sin 0

for all t € (—p,p). Let g, be a metric of constant sectional curvature x on U
which exists since p < \/lg The manifold (U, g,,) is isometric to a spherical cap,
and hence g, can be extended to the closure of U. By compactness, there is a
constant C' = C'(k) > 0 such that g, > Cygy as bilinear forms. By [28, Theorem
11.10], we have g > g, on U since p < \/lg Therefore,

d,(/(1), n(r)) = / ()], dt > C / 6(1) gyt > Clt]sin.

O

D.2. Discussion related to Example 1.9. Let ()M, g) be a simple Riemannian
manifold. We shall demonstrate that it satisfies the geometric assumption (H1).
Indeed, consider the bundle

SM x. SM = {((z,v), (y,w)) € SM x SM : x = y}.

As M is a simple manifold, by applying the stopped geodesic flow in backward and
forward time, we can see SM x,SM as a parameter space for pairs of geodesics on
M that intersect at a single point. Indeed, to each pair ((z,v), (z,w)) = (x, v, w),
we associate the two non-tangential geodesics v, , and vy 4.
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For 0 < 0y < /2, let Ep, C SM X SM be the set of pairs (z,v,w) such that
|g= (v, w)| > cosBy. The set Ey, is compact and consists of geodesics that intersect

at an angle 0 € [0y, 7/2].

For each zy € M™, choose a pair (g, v,w) € Eg, and let v = 7,0, and 7 = Va1
Let us show that such pairs of geodesics satisfy the assumption (H1).

First, v(0) = n(0) = o and so (i) holds (with shifted times so that to = 79 = 0).
As M is simple, it is non-trapping and there exists a T' > 0 such that all geodesics
have length at most 7" so (ii) holds. By our choice of pairs within Ej,, (iii) holds
with 8y as above.

It remains to show (iv). Embed (M, g) in a smooth compact Riemannian manifold
without boundary (N, g) whose sectional curvatures are bounded above by x > 0.

Let p be as in Proposition D.1 and consider the function F' : Ey, — [0, 00] given
by

F(z,v,w) = dist(Ve,0 (Lo, \ (=05 0))s Vo, (Low))
where I, , is the closed interval on which ~,, is defined in M, F(z,v,w) = o0
if I,, C (—p,p), and dist(A, B) = inf{d,(a,b) : a« € A,b € B} for any pair
of subsets A and B of M. By continuous dependence of the geodesics 7,, on
(x,v) € SM, the set

V, ={(z,v,w) € Ey, : I, C (—p,p)}

is open and F' is continuous on Ey, \ V,. It follows that the sets F~((y, cc]) are
open for all y € R, that is, F' is lower semicontinuous.

The function (x,v,w) — min(F(z,v,w), F(z,w,v)) is then also lower semicon-
tinuous. Therefore, by compactness of Ejy, and the fact that geodesics in M
intersect at most once, there is ¢ = ¢(M, g, p) > 0 such that

d(%ﬁ,v(t)v 'Vz,w(T)) >c

whenever |t| > por |7| > pfor all (x,v,w) € Ep,. This holds because F(x,v, w) >
c if and only if d(v;.(t), Vaw(T)) > ¢ for all |t| > p. Hence, by choosing r <
min(c, Inj(M)/2), we see that if d(v(t),n(r)) < r, then [t| < p and |7] < p.
Proposition D.1 then guarantees there is C' = C(M, g, p) > 0 such that

) < 208n) 40, 0(m)
B CSiIl(go ’ - CSiHQO .

Here we have also used that 6 € [0y, 7/2]. Condition (iv) follows from choosing r
as above and ¢y = (C'sinfy)~!. Since p only depends on (M, g), the constants 7,
o, and 6y can be chosen uniformly.

D.3. Discussion related to Example 1.10. Let M = S! x [0,a], a > 0, be
the cylinder with the usual flat metric. We shall show it satisfies the geometric
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assumption (H1). Indeed, let 2y = (€0, s9) € M™ and for 6 € (0,7/2), consider
the geodesics

Yoo (1) = (e0,1), t €[0,a,

0 _ (pi(to—sotan0+7sin0) 0 c [0 a ] )
(1) = (e reost). 7 e 0.

The geodesics 7,, and nf intersect at the point zo = 7u,(s0) = 1%, (s0/ cos )
with an intersection angle of 6. If | — s tan + 7sin 6| < 27 for all 7 € [0, =%],

the geodesics v,, and ngo do not intersect at any other points. This condition is
guaranteed if we require

| — sotanf + Tsinf| < 2atanf < 27,

which implies that 0 < 6 < arctan(Z).

Let 0y = jarctan(Z). If 6 € [0p,20p), then n rotates at most half a turn
around the cylinder. Unwrapping that half of the cylinder into [0,7] x [0, al,
we see that the distance between 7., (t) and 7% (7) is the same as the Euclidean
distance. The shortest path from 7., (t) to the curve 7 intersects n at a right
angle and therefore d(7v,,(t),n%,) = |t — so|sin@ since v,,(so) = . Similarly,
d(v,n% (1)) = |7 — 50/ cos 0] sin @ since 1 (so/ cos ) = xo. Therefore,

d (e (1), 7720(7')) > sin @ max(|t — sol|, |7 — so/ cos b)),

for all ¢ € [0,a] and 7 € [0, =2].

? cos @

Therefore, if we choose a pair of geodesics v = 7., and n = ngo with 6 € [0, 26)
for every point xy € M, we get a family of pairs of geodesics that satisfies

assumption (H1) with 6 as above, T' = 7=, 0 <7 < /2, and ¢y = (sin 6o)~t.
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