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Based on a general transport theory for nonreciprocal non-Hermitian systems and a topological model
that encompasses a wide range of previously studied examples, we (i) provide conditions for effects such as
reflectionless and transparent transport, lasing, and coherent perfect absorption, (ii) identify which effects are
compatible and linked with each other, and (iii) determine by which levers they can be tuned independently.
For instance, the directed amplification inherent in the non-Hermitian skin effect does not enter the spectral
conditions for reflectionless transport, lasing, or coherent perfect absorption, but allows to adjust the transparency
of the system. In addition, in the topological model the conditions for reflectionless transport depend on the
topological phase, but those for coherent perfect absorption do not. This then allows us to establish a number
of distinct transport signatures of non-Hermitian, nonreciprocal, and topological behavior, in particular (1)
reflectionless transport in a direction that depends on the topological phase, (2) invisibility coinciding with
the skin-effect phase transition of topological edge states, and (3) coherent perfect absorption in a system that is
transparent when probed from one side.
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I. INTRODUCTION

Effectively non-Hermitian models have a long tradition in
the description of states with a finite lifetime, with applica-
tions ranging from scattering resonances over quasiparticle
dephasing to classical wave propagation with gain and loss
[1–3]. Over the last few years, these endeavors have received
substantial impetus by the realization that non-Hermitian
physics can equip existing topological states with unique
physical features, and also function as a source of topolog-
ical effects in themselves [4–19]. A particularly prominent
manifestation is the non-Hermitian skin effect, in which the
bulk states become localized at an edge of a finite system,
resulting in a behavior that is drastically different from its pe-
riodic counterpart [20–33]. While traditional non-Hermitian
physics is mostly captured in imaginary scalar potentials that
describe local gain and loss, the non-Hermitian skin effect
relies on imaginary vector potentials [34], making the system
nonreciprocal. Recent experiments on electronic systems and
mechanical robotic metamaterials have shown how this can
be achieved in practice by inducing asymmetrical couplings
between discrete components of an active system [35–38].
The unidirectional distortion can induce a dynamical phase
transition, which can be utilized for unidirectional amplifica-
tion and sensing applications [39–43].

This rich diversity of phenomena leaves the natural ques-
tion of how the different effects are interlinked—specifically,
whether different effects are compatible with each other, and
can be achieved simultaneously by tuning suitable parameters,
possibly facilitated by symmetry or topology. In reciprocal
systems, this line of thought has already proved highly fruit-
ful, as is testified by the example of a laser absorber—a lasing
device that simultaneously can absorb a prescribed coherent

signal at the lasing frequency, which is facilitated by parity-
time symmetry [44,45].

Here, we address these connections for the general, nonre-
ciprocal, and non-Hermitian case. Aiming at a description that
is physical and flexible, we adopt the unifying perspective of
transport, which has been instrumental to identify the specific
signatures of individual physical effects in Hermitian [46,47]
and non-Hermitian settings [44,45,48–62]. This perspective
allows us to analytically formulate the spectral conditions for
a range of distinct physical phenomena, such as reflectionless
scattering [49,52], transparency [56], coherent perfect absorp-
tion [44,45,50], and lasing [50,51,63,64], and contrast these
with the quantization conditions of finite systems with open or
periodic boundary conditions. From this, we can then identify
the interdependence of these phenomena.

Thereby, we find that reflectionless scattering, coherent
perfect absorption, and lasing occur independently of the
nonreciprocity in the system and, hence, can be achieved
irrespective of the extent of the skin effect, while the trans-
parency condition involves the ensuing directed amplification
explicitly, and hence can be achieved by utilizing this effect.

We further illuminate these findings in a flexible model
that reveals the relevance of topological edges states for each
of these physical settings. This allows us to identify three
particular combined effects, where we (1) establish a direct
link between the topological phase of the system and whether
it can be reflectionless from one side, (2) relate invisibility
to the skin-effect phase transition of the edge states, and (3)
design a coherent perfect absorber that is transparent from a
given side, irrespective of the topological phase.

In Sec. II we collect the key elements of our theoretical
description, which is based on a flexible tight-binding descrip-
tion and its corresponding transfer and scattering matrix. In
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FIG. 1. We study the compatibility of transport effects through
non-Hermitian nonreciprocal systems, and identify by which pa-
rameters they can be adjusted. Our theory is based on a general
one-dimensional description (top), where a chain segment (couplings
vn �= u∗

n+1, complex on-site energies Vn, length N) is connected to
featureless leads (couplings w < 0), as described by model (1). The
elementary transport processes are captured by the scattering matrix
S (middle) and the transfer matrix M (bottom). This serves to for-
mulate boundary conditions for a wide range of effects (see Fig. 2
and Table I), and study their interplay in general terms and concrete
settings.

Sec. III we classify a wide range of physical effects in terms of
their boundary conditions, and describe how they depend on
the non-Hermiticity and nonreciprocity of the system. The in-
terplay of the effects is then illustrated in detail in Sec. IV, for
a model where they are facilitated by topological edge states.
Our conclusions are collected in Sec. V. For convenience
and completeness, we provide detailed Appendixes on the
relations between the utilized transfer and scattering matrices,
as well as on the derivations of all boundary conditions.

II. GENERAL SETUP

A. Model

To develop the general theory, we consider transport
through a generic one-dimensional chain, as illustrated in

Fig. 1. This is described by a tight-binding model

Eψn = Vnψn + unψn−1 + vnψn+1, (1)

where Vn are on-site potentials, un are nearest-neighbor cou-
plings from left to right, and vn are nearest-neighbor couplings
from right to left. These parameters describe features of
discrete components of the system, which could constitute
resonators or waveguides in the optical case, while in other
settings they may represent, for instance, electronic or robotic
elements [35–38]. As we are interested in the case of non-
reciprocal non-Hermitian transport, we allow for situations
where at least some of the couplings obey un+1 �= v∗

n , vn,
1 and

also allow the on-site potentialsVn to be complex. The system
is confined to the region 1 � n � N , while the remaining sites
describe the leads. We model these leads in the featureless
wide-band limit, which is obtained from constant couplings
un = vn = w < 0 (n � 0, left lead, or n � N , right lead) with
the potential energy tuned to the band center (Vn = E ). The
propagating waves then have the simple form

ψn = ψ (+)in−n+ (propagating to the right),

ψn = ψ (−)(−i)n−n− (propagating to the left), (2)

where the amplitudes ψ (±) are position independent through-
out a given lead. The possibly noninteger offsets n± can be
chosen separately in each lead, and account for the U (1)
gauge freedom. We assume that the boundary couplings from
the leads to the system match perfectly, u1 = vN ≡ w, which
does not imply any restrictions as one can always include
the first site of the lead into the system. Thereby the only
parameter characterizing the leads is w, which controls the
transparency of the contacts.

B. Transport framework

To characterize the system from a transport perspective,
our main building blocks are the one-step real-space transfer

1If un+1 = vn �= v∗
n , the system is non-Hermitian but reciprocal; see

for instance Ref. [65].

TABLE I. Comparison of boundary conditions (BCs) and energy constraints in different physical situations. In all cases, the transfer
matrixM and scattering matrix S have to be taken as functions of energy E . When energies are stipulated as real this is to guarantee stationary
situations, while complex energies refer to quasistationary behavior.

Situation Transfer BC Scattering BC Energy constraints

Transport
(ψ+

R

ψ−
R

) = M
(ψ+

L

ψ−
L

) (ψ−
L

ψ+
R

) = S
(ψ+

L

ψ−
R

)
real, given

Open (i 1)M
(−i
1

) = 0 det(S − i1) = 0 discrete, complex

Periodic det(M − eik1) = 0 det[S − σx diag (eik, e−ik )] = 0 complex function of real k
Quasibound M22 = 0 det S−1 = 0 discrete, complex
Lasing M22 = 0 det S−1 = 0 discrete, real
Scattering zero M11 = 0 det S = 0 discrete, complex
Coherent perfect absorption M11 = 0 det S = 0 discrete, real
Reflectionless M21 = 0 or M12 = 0 r = 0 or r′ = 0 real
Transparent (M−1)11 or M22 = (−i)N t = iN or t ′ = iN real
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matrix

Mn =
(
(E −Vn)/vn −un/vn

1 0

)
, (3)

the resulting real-space transfer matrix

M = MN · · ·M3M2M1 (4)

of the complete system, the corresponding transfer matrix

M = 1

2

(−i 1
1 −i

)
M

(
i 1
1 i

)
(5)

in the propagating-state basis, and, finally, the scattering ma-
trix

S ≡
(
r t ′
t r′

)
= 1

M22

(−M21 1
detM M12

)
. (6)

The chain of expressions relates the scattering matrix to the
underlying model (1). Furthermore, this relation can also be
expressed more directly as

S = −i1 + 2w(E − Heff )
−1
{1,N}, (7)

Heff = H + w diag (i, 0, . . . , 0, i), (8)

where the indices indicate a 2 × 2 matrix formed of the
corner elements of an N × N matrix, which here represents
the Green’s function of the open system with an effective
Hamiltonian Heff that includes the self-energy of the leads
(see Appendix A for further details). These matrices capture
the transport features in terms of linear relations between the
propagating wave amplitudes in the leads, as illustrated in
Fig. 1.

III. CLASSIFICATION OF TRANSPORT EFFECTS

A. Boundary conditions

Equipped with these expressions, we can formulate, as our
first main goal, a comprehensive set of boundary conditions
for a range of physical effects, as summarized in Table I (see
Fig. 2 for illustration of the physical effects, and Appendix B
for detailed derivations). In these conditions, the transfer ma-
trix M and scattering matrix S have to be taken as functions
of energy E , which links transport and spectral features.

In stationary transport settings, the energy is real and
given, while in other situations the conditions have to be read
as implicit equations, and typically lead to a discrete com-
plex spectrum describing quasistationary behavior. Examples
of stationary behavior are systems that are reflectionless or
transparent when probed from one side (the stated condition
is for strict transparency, both for the intensity as well as the
phase of the transmitted signal).

A system that is both reflectionless and transparent from
certain sides is invisible with respect to a suitably placed
source (if the sides are the same) or detector (if they are
opposite).

Complex energies describe quasistationary behavior,
where solutions with Im E < 0 describe resonant modes with
a finite lifetime, while for Im E > 0 the modes display a tran-
sient exponential growth that physically can only be sustained
until nonlinear saturation effects set in.

open

periodic

quasibound/
lasing

scattering zero/
CPA

reflectionless
(from left)

transparent
(from left)

invisible
(to source 
on the left)

invisible
(to detector 
on the right)

FIG. 2. Illustration of transport effects and their boundary con-
ditions. The red arrows indicate forbidden processes, while the red
line in the transparent system highlights that there, the transmitted
signal is identical to that obtained bypassing the system.We study the
relations between these effects, identify the parameters they depend
on, and describe how they can be combined.

For quasibound states, the corresponding quasistationary
wavefunctions fulfill purely outgoing conditions. If this is
achieved at a real energy, the system serves as a stationary
emitter of coherent radiation, as encountered in a laser. In
both cases, the energies are determined by the poles of the
scattering matrix, which by Eq. (8) furthermore coincide with
the eigenvalues of the effective Hamiltonian.

Interchanging the role of incoming and outgoing states, we
arrive at the spectrum of scattering zeros, which when real
allow the system to realize coherent perfect absorption (CPA).

Table I also contains entries for finite open and periodic
systems, where the leads are fictitious elements in the con-
struction of the conditions. The quantization condition for a
finite open system can be derived in the limit of quasibound
states with pinched-off leads, w → 0, and corresponds to
vanishing amplitudes on the first site in each fictitious lead.
For periodic systems, energies become parametrized by the
Bloch wave number k.

B. Conditions for nonreciprocal and non-Hermitian transport

Our second main goal is to investigate how these condi-
tions of various specific physical transport effects relate to the
general physical features of non-Hermiticity and nonreciproc-
ity. We base this on the following general definitions, which
at the same time help to quantify these effects.

Nonreciprocal transport is defined by

S �= ST , (9)
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so that t �= t ′. For the transfer matrices, this implies

D ≡ detM = detM =
∏
n

(un/vn) �= 1. (10)

Furthermore, in a non-Hermitian system the scattering matrix
is no longer unitary,

SS† �= 1, (11)

which implies

M†σyM �= σy, (12)

M†σzM �= σz. (13)

In the derivations of the boundary conditions in Table I,
we took care that they do not imply any of these relations.
Therefore, equipped with these additional definitions, we can
now highlight whether they provide any further constraints, or
indeed matter at all.

To do so, we define the reciprocal counterpart of a system
by setting its couplings to v̄n = ūn+1 = √

vnun+1. Accounting
also for the boundary conditions at the leads, the correspond-
ing reciprocal transfer matrix then becomes expressed as
M = M/

√
D,M = M/

√
D. It then becomes apparent that all

conditions from Table I where transfer matrix elements have
to vanish are identical in both variants of the system.

The significance of this observation is further clarified
when we consider the system to be periodic, where we allow
the unit cell to have arbitrary length. Setting the transfer
matrix of the unit cell to Mc and Mc = Mc/

√
d where d =

detMc, the transfer matrix of the system with L unit cells can
be written as

M(E ) = dL/2[UL−1(z)Mc −UL−2(z)1], (14)

where Ul (z) are the Chebyshev polynomials of the second
kind and z = trMc/2. This clearly separates out the effect
of directed amplification, which scales the transport from left
to right by a factor dL/2, while in the opposite direction it is
scaled by d−L/2. In contrast, all characteristics that rely on
vanishing matrix elements are the same in the nonreciprocal
and reciprocal variant of the system.

In practice, this implies that when a system is tuned to ex-
hibit effects such as reflectionless transport, coherent perfect
absorption, or lasing, its amount of directed amplification can
still be independently modified. On the other hand, given that
detM is finite, it is not possible to make a laser or coherent
perfect absorber reflectionless from any side. We give practi-
cal examples of compatible combinations in the next section,
where we discuss a topological model system.

IV. APPLICATION AND INTERPLAY OF EFFECTS

A. Illustrative model system

As our third main goal, we illustrate our general statements
for a complex nonreciprocal dimer chain, defined by alternat-
ing complex on-site potentials

V2l−1 = iγ , V2l = iγ ′, (15a)

and asymmetric alternating couplings

u2l−1 = u, u2l = u′, v2l−1 = v, v2l = v′, (15b)

u'

v'v

u
1 N

ii

E1

E2

Re E

Im
 E

FIG. 3. Complex energy spectrum of a finite system with closed
boundary conditions, based on model (1) with parameters as de-
fined in Eqs. (15) and (16). The two states with purely imaginary
energies E1 and E2 arise from the topological edges states of the
system, which exist for dimerization parameter κ < 1, and are well
isolated from other states on the imaginary axis as long as the
gain-loss contrast |γ − γ ′| < |2w(1 − κ )|. In the figure, κ = 0.4 and
γ − γ ′ = w(κ − 1). Notably, this spectrum is independent of the
nonreciprocity parameter d , which, however, determines the edge
where these states are localized (see phase diagram in Fig. 4).

where l = 1, 2, . . . ,L enumerates the unit cells of a sys-
tem with N = 2L sites (see Fig. 3). Keeping all param-
eters real, this model encompasses a range of special
cases exhibiting different symmetries of topological signif-
icance, with the Hermitian limit u = v′, v = u′, γ = γ ′ =
0 defining the Su-Schrieffer-Heeger (SSH) model [66],
non-Hermitian cases with complex scalar potentials includ-
ing parity-time-symmetric and charge-conjugation-symmetric
[4,6–8,18,63,64,67–72] systems, and nonreciprocal variants
with imaginary vector potentials encompassing those at the
heart of the study of the non-Hermitian skin effect [20–32,35–
38,40]. For our discussion, we employ a nonunitary similarity
transformation within each unit cell to set v′ = u = w, with
the latter equality corresponding to ballistic coupling to the
leads. Given that mirror-reflecting the system corresponds
to the transformation (u, u′, γ ) ↔ (v′, v, γ ′), we furthermore
assume γ � γ ′. The key parameters of the system then are

d = u′

v
, κ = vu′

w2
, (16)

where d quantifies the amount of nonreciprocity and κ cap-
tures the topological characteristics inherited from the SSH
limit.

As shown in the phase diagram in Fig. 4, topological edge
states exist for κ < 1, and then take the form of spectrally
isolated, sublattice-polarized zero modes with energies pinned
to E1 = iγ and E2 = iγ ′, hence ReE = 0. For κd < 1, the
state with energy E1 is localized at the left edge, while for
κd > 1 it is localized at the right edge; the latter situation can
only occur in the nonreciprocal system. The state with energy
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 0

 1

 0  1  2  3d

transparent 
CPA

invisible

FIG. 4. Relation of transport effects to the skin effect of topo-
logical zero modes in the model of Fig. 3. The topological phase
κ < 1, where the finite system displays edge states, is further broken
down into three phases with transitions at nonreciprocity parameter
d = κ, 1/κ . These denote the critical parameter where the edge states
relocalize from one edge to the other by means of the non-Hermitian
skin effect, as illustrated in the inset. In the central phase, the edge
states are localized at opposite edges, as is also the case in the
Hermitian limit. In the other two phases, both states are localized
at the same edge. The superimposed curves highlight the relation
to combined transport effects in the system connected to leads, as
further detailed in the text. At the skin-effect phase transition and its
extrapolation (thin solid curves) the edge state can be made invisible
to either a source or detector. The thick curves indicate conditions
where one can combine transparency with coherent perfect absorp-
tion in a system of length L = 10.

E2 is localized at the right edge when κ < d , and localized at
the left edge when κ > d , where the latter case is again only
attainable in the nonreciprocal system.

These relocalization phenomena are a manifestation of
the skin effect for the topological modes, and can be made
physically visible, e.g., by probing the finite system via
external driving [40]. The stated conditions apply to the
mathematically spoken “right” eigenvectors. External driving
also reveals the role of the biorthogonal “left” eigenvec-
tors, which here are obtained by the transformation (u, u′) ↔
(v′, v) while keeping γ and γ ′ unchanged. The biorthogonal
eigenstate with energy E1 is therefore localized at the left
edge if κ < d and at the right edge if κ > d; the biorthogonal
eigenstate with energy E2 is localized at the right edge if
κd < 1 and at the left edge if κd > 1.

We find that additional bulk zero modes with ReE = 0
appear if the gain-loss contrast (γ − γ ′)2/w2 > 4(1 − √

κ )2;
furthermore, bulk states become dynamically unstable if κ

(and hence also d) is negative, where the mapping to Hermi-
tian couplings breaks down. In the remainder we focus on the
situation with two clearly defined edge states, so that we can
directly examine their relevance and influence on the physical
transport characteristics of the system.

Given our assumption γ � γ ′, the edge mode with energy
E1 is then the most stable mode in the system, once it exists,

and the other edge mode is the least stable mode in the system.
Overall, the system is then dynamically stable for Im E �
γ , and so effectively we are permitted to set the energy to
E = E1, which we will do as soon as we have established the
conditions for each physical scenario.

While the system can be easily studied numerically, it can
also be conveniently analyzed based on the exact expression
(14) for the transfer matrix of the whole system, where now

Mc =
√
d

κ

( (E−iγ )(E−iγ ′ )
w2 − κ − (E−iγ ′ )

w
(E−iγ )

w
−1

)
, (17)

z = d−1/2trMc/2, and d and κ as defined in Eq. (16).

B. Effect I: Reflectionless transport via edge states
and the role of the topological phase

We start with reflectionless transport, where we establish a
link to the topological phase of the system. With the help of
Eq. (17), the corresponding boundary condition from Table I
can be rephrased as

FUL−1(z) = 0 (18)

with

F = (E − iγ )(E − iγ ′) + w2(1 − κ ) ∓ (γ − γ ′)w, (19)

where the upper (lower) sign applies to probing the system
from the left (right). Given that condition (18) factorizes, we
find two different types of solutions, which we can naturally
interpret as a local and a global mechanism for reflectionless
transport. The global mechanism arises from the Chebyshev
nodes, UL−1(z) = 0, and hence depends on the length of the
system, but is independent of the side from which one probes
the system. Indeed, we find that this global mechanism is
essentially independent of the existence of edge states: At
E = E1 and E = E2, z is invariant under the transformation
κ → 1/κ , which connects the topological phase (κ < 1) and
nontopological phase (κ > 1) where edge states do or do
not exist at these energies. This is in contrast to the local
condition, F = 0, where κ enters as an essential parameter.
For illustration, let us again set E = E1, hence, to the energy
of the most stable edge state when it exists, and consider
to probe the system from the left. We then find that the
system is reflectionless when the gain-loss contrast takes the
specific value

γ − γ ′ = w(1 − κ ). (20)

Recalling that we formulated all conditions for w < 0, the
right-hand side is negative in the topological phase, mean-
ing that this would require γ < γ ′, in contradiction with our
assumption; therefore, the system can only be made reflection-
less from this side in the nontopological phase. However, the
system can indeed be made reflectionless in the topological
phase when we probe it from the right, where we require the
opposite gain contrast

γ − γ ′ = −w(1 − κ ). (21)

Thus, the conditions for reflectionless transport leave a clear
physical signature of the topological phase we operate in.

In all these reflectionless scenarios, the roles of left and
right are interchanged when we instead assume γ < γ ′.
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Therefore, in more general terms, and taking the Hermitian
limit as the reference point for the localization of these states,
this means that reflectionless transport can be achieved in the
topological phase when we place the more instable of the two
edge states at the near end of the system, and the more stable
one at the far end.

C. Effect II: Invisibility at the skin-effect phase transition

As condition (21) is independent of the nonreciprocity
parameter d , the reflectionless transport from the right is
maintained even when any of the edge states relocalizes via
the skin effect to the other edge of the system. This parameter
can therefore be tuned to achieve other compatible transport
effects. In particular, keeping the system in the topological
phase, and reflectionless from the right according to Eq. (21),
we can make it strictly transparent from the right (left) by
setting d = κ (d = 1/κ), so that the system is then invisible
to a source (detector) placed to the right of the system. These
conditions of κ and d coincide exactly with the skin-effect
phase transition of the topological states, which thereby form
naturally transparent channels exactly at this transition. This
uncovers a direct transport signature of the skin effect.

D. Effect III: Transparent coherent perfect absorber

As stated above, the parameter d also drops out of other
transport conditions, such as for lasing and for coherent per-
fect absorption. These conditions can again be made explicit
by utilizing Eq. (17). For coherent perfect absorption, this
results in the following equation for the required gain contrast:

γ − γ ′ = −w
(κ − 1)(κL + 1)

κL − 1
. (22)

This is always positive (recalling again w < 0), independent
of d , and invariant under the replacement κ → 1/κ , so that
stable CPA conditions can be achieved irrespective of the
topological phase or the extent of the directed amplification.
With this CPA condition in place, we can still make the sys-
tem simultaneously transparent from the left by setting d =
(κL/2 + κ−L/2)2/L, while it is transparent from the right for
d = (κL/2 + κ−L/2)−2/L, demonstrating also for this combina-
tion that compatible effects can indeed be tuned independently
in a specific model. In Fig. 4, the thick curve illustrates this
condition for L = 10. Notably, for L → ∞, the condition
coincides again with the skin-effect phase transition.

V. CONCLUSIONS

In summary, we established relations and distinctions be-
tween a range of discrete transport effects in non-Hermitian,
nonreciprocal, and potential topological systems, which we
characterized from a unifying scattering perspective. This
allowed us to identify effects that are compatible and indepen-
dent of each other and, hence, can be achieved simultaneously
by tuning suitable parameters. The parameter determining
directed amplification due to non-Hermitian nonreciprocity
plays a distinguished role as it modifies the transparency of
the system independently from the conditions for a wide range
of other effects. In a concrete model system we showed how
these signatures are further linked to other characteristics,

such as the existence of topological edge states. As we showed
for three effects, this perspective can be usefully applied to
concrete models, and then utilized to design devices that com-
bine specific characteristics.

The provided framework should prove useful as a starting
point for further investigations, including specific systems,
related transport effects, or extended settings. In particular,
while we illustrated here that these effects can be achieved
already in one-dimensional tight-binding models, we note
that this approach can be extended to quasi-one-dimensional
systems, allowing also to explore topological models in higher
dimensions [59], and further be enriched by considering sym-
metry constraints on the scattering description [61]. For the
reader who would like to apply or transfer our insights to spe-
cific settings, the key results are in Table I, where we collect
the boundary conditions for the studied range of effects (illus-
trated in Fig. 3), and Sec. III B, where we discuss their relation
to precisely defined transport notions of non-Hermiticity and
nonreciprocity. For a key illustration of the resulting physical
interplay of the effects with topological states, we refer to the
phase diagram of Fig. 4. In particular, experimentalists should
feel encouraged to consider if the combined effects in Sec. IV
can be realized on their platform.
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APPENDIX A: TRANSFER SCATTERING AND MATRICES

Here we collect the specific definitions and relations be-
tween transfer and scattering matrices for the case of the
featureless leads defined in the main text, allowing to ensure
that we adopt expressions that remain valid for systems with
complex scalar and vector potentials.

1. Real-space transfer matrix

We start with the conventional one-step real-space transfer
matrix, defined through the relation(

ψn+1

ψn

)
= Mn

(
ψn

ψn−1

)
, (A1)

which for model (1) of the main text implies

Mn =
(
(E −Vn)/vn −un/vn

1 0

)
. (A2)

For the complete segment, the real-space transfer matrix is
defined as (

ψN+1

ψN

)
= M

(
ψ1

ψ0

)
, (A3)

giving

M = MN · · ·M3M2M1. (A4)

Equation (A3) not only involves the sites at the end of the
system, but also the first sites in the leads. This facilitates the
formulation of a wide range of boundary conditions, including
for closed systems where the sites are fictitious.
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2. Propagating-state transfer matrix

We next formulate the transfer matrix in the propagating-
wave basis, denoted by M. This transfer matrix can then
be used to formulate the general scattering boundary condi-
tions that are central to the description of transport, which
is followed by a discussion of the relation to other boundary
conditions.

As in the main text, we adopt featureless leads in the wide-
band limit and assume uniform couplings w < 0. The sign of
w can be chosen freely by exploiting the Z2 gauge freedom
ψ ′

n = (−1)nψn. While this changes the sign of the group
velocity, and thereby reverts the propagation directions, this
freedom leaves the transport characteristics invariant. Tuning
the leads to the band center ensures that the self-energy of
the leads is energy independent, so that the leads are indeed
featureless, and using identical couplings in both leads gives
propagating waves that carry the same flux, so that further flux
normalization is not required.

In the propagating-state basis of Eq. (2) of the main text,
the transfer matrix is then defined by the relation(

ψ (+,R)

ψ (−,R)

)
= M

(
ψ (+,L)

ψ (−,L)

)
, (A5)

where L and R refer to the left and right leads. For this, we
invoke the wave-matching condition of propagating waves in
real space,(

iψ (+,R) + ψ (−,R)

ψ (+,R) + iψ (−,R)

)
= M

(
iψ (+,L) + ψ (−,L)

ψ (+,L) + iψ (−,L)

)
, (A6)

which is obtained using convenient offsets in Eq. (2). Using(
iψ (+) + ψ (−)

ψ (+) + iψ (−)

)
=

(
i 1
1 i

)(
ψ (+)

iψ (−)

)
, (A7)

we then obtain

M = 1

2

(−i 1
1 −i

)
M

(
i 1
1 i

)
, (A8)

where the matrix elements follow the pattern

Mab = 1
2 (Mab + Māb̄ + iMāb − iMab̄), (A9)

with 1̄ = 2 and 2̄ = 1.
To illustrate the consistency of the featureless wide-band

limit, note that the leads are themselves described by real-
space transfer matrices M (lead) = −iσy, so that translating the
propagating states by one site amounts to

M(lead) = iσz. (A10)

This indeed corresponds to the phase factors picked up by the
propagating waves according to Eq. (2).

3. Scattering matrix

Given the described transformation to propagating waves
in featureless leads, scattering boundary conditions can now
be implemented as in a space-continuous system, where they
are captured by the scattering matrix(

ψ (−,L)

ψ (+,R)

)
= S

(
ψ (+,L)

ψ (−,R)

)
. (A11)

Here r and t are the reflection and transmission amplitudes
for an incoming wave from the left lead, while r′ and t ′ are
the corresponding amplitudes for the right lead. (Note that
we here exploit that the propagating states in both leads carry
the same flux, and that the couplings from the system to the
leads are the same. If the couplings wL and wR in both leads
differ, but the wide-band limit remains applied, the scattering
amplitudes have to be scaled by factors

√|wl,R| to reflect the
different group velocities.)

To relate the scattering matrix to the transfer matrix, we
demand

(
t
0

)
= M

(
1
r

)
,

(
r′
1

)
= M

(
0
t ′

)
, (A12)

which gives

S ≡
(
r t ′
t r′

)
= 1

M22

(−M21 1
detM M12

)
. (A13)

The apparently asymmetric form of these relations arises from
the sense of direction embodied in the transfer matrix. That
the physical symmetry is fully respected follows when we
straightforwardly rewrite the components in terms of the in-
verted transfer matrix, such as t = 1/(M−1)11.

Equation (A13) can be inverted to give

M = 1

t ′

(− det S r′
−r 1

)
. (A14)

Furthermore, using the rule (A9), the scattering amplitudes
can be expressed directly in terms of the real-space transfer
matrix or vice versa, where one can conveniently employ
detM = detM.

These expressions relate the scattering matrix to the under-
lying model (1). However, exploiting the composition rules of
the scattering matrix from different segments, this relation can
also be expressed more directly as

S = −i
1 + iw(E − H )−1

{1,N}
1 − iw(E − H )−1

{1,N}
, (A15)

where the indices indicate a 2 × 2 matrix formed of the
corner elements of an N × N matrix, which here represents
the Green’s function of the closed system. Resummation
of the corresponding power series then results in Eq. (7) from
the main text, where we now encounter the Green’s function
of the open system with an effective Hamiltonian Heff that
includes the self-energy of the leads.

APPENDIX B: DETAILED FORMULATION
OF BOUNDARY CONDITIONS

Equation (A11) encompasses very general scattering
boundary conditions, which can be further specified depend-
ing on the nature of the source, such as for scattering from the
left lead. Here, we describe in detail how this can be employed
to arrive at the boundary conditions collected in Table I of the
main text, including for open and periodic systems where the
leads are fictitious.
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1. Open boundary conditions

For a closed system with open boundary conditions, the
bound states are the eigenvalues of the Hamiltonian H of
the truncated system. In our setting, these boundary condi-
tions can be implemented by setting ψ0 = ψN+1 = 0 on the
first sites in the leads, which then are fictitious. In terms
of the real-space transfer matrix, these boundary conditions
correspond to

M11(E ) = 0, (B1)

which has to be read as an implicit equation for the bound-
state energies En, where the solutions are in general discrete,
but possibly complex. One can check that, as required, this
form of the quantization condition is still independent of the
values w for the couplings to the then fictitious leads. In terms
of the propagating waves, this condition reads

M11(E ) + M22(E ) − iM21(E ) + iM12(E ) = 0, (B2)

which in Table I we have written in a more compact form. In
terms of the transport coefficients we can formulate this as a
standard scattering quantization condition,

det(S(E ) − i1) = 0, (B3)

which in both cases again are implicit equations for the
bound-state energy. From Eq. (A15), we furthermore see that
condition (B3) is equivalent to finding the poles of the resol-
vent [E − H]−1

{1,N}, which are indeed the eigenvalues of H .

2. Periodic boundary conditions

In a periodic system we require ψn+N = eikψn where k is
real. In terms of the eigenvalues λl (l = 1, 2) of the matrixM,
this amounts to the implicit equations

|λ1(E )| = 1 or |λ2(E )| = 1 (B4)

for the energy E . (At degeneracies, including exceptional
points, we set λ1(E ) = λ2(E ), reflecting the algebraic multi-
plicity of the eigenvalues, but not necessarily their geometric
multiplicity.) In general, the solutions form curve segments in
the complex plane, where the phase k varies along the seg-
ment. Therefore, we can interpret Eq. (B4) as a condition for
the dispersion relation E (k), which is more directly obtained
from the implicit dispersion equation

det(M(E ) − eik1) = 0. (B5)

In systems with some internal periodicity, one can furthermore
either restrict the segment to a single unit cell, or interpret
the result as a folded band structure in the reduced Brillouin
zone. The result is then identical to the eigenvalues of the
corresponding Bloch Hamiltonian

H (k) = H + we−ik�(1N ) + weik�(N1), (B6)

where �(kl )
nm = δknδlm.

As Eq. (A8) is a unitary transformation, the eigenvalues of
M and M are identical, so that condition (B4) also applies
to the propagating-wave basis, while the implicit dispersion
equation (B5) takes the analogous form

det(M(E ) − eik1) = 0. (B7)

From the scattering perspective, periodic boundary conditions
are more intricate. The functions λl (E ) appearing in Eq. (B4)
are then obtained from the condition

det[S(E ) − σx diag (λ, 1/λ)] = 0, (B8)

while the implicit dispersion equation (B5) can then be written
as

det[S(E ) − σx diag (e
ik, e−ik )] = 0. (B9)

To verify this relation, we note that starting from Eq. (A15),
we can express

S − σx diag (e
ik, e−ik )

= −
(

i e−ik

eik i

)
1

1 + w

(−i e−ik

eik −i

)
(E − H (k))−1

{1,N}

,

(B10)

where we used the exact Dyson equation[
(E − H )−1

{1,N}
]−1 =[

(E − H (k))−1
{1,N}

]−1 + w diag (eik, e−ik ).
(B11)

It follows that the solutions (B9) indeed coincide with the
eigenvalues of the Bloch Hamiltonian (B6).

3. Quasibound states

Quasibound states are defined as solutions without in-
coming wave components. This is most straightforwardly
formulated for the propagating-wave transfer matrix, which
then has to fulfill

M22(E ) = 0. (B12)

As for the bound states in a closed system with open boundary
conditions, the solutions En are generally discrete and com-
plex. In the special case of a real-valued solution, Im En = 0,
the solution can be interpreted as a stationary lasing state.

In terms of the real-space transfer matrix, rule (A9) gives
the condition

M11(E ) + M22(E ) + iM12(E ) − iM21(E ) = 0. (B13)

Furthermore, expression (A13) implies that the quasi-bound-
state energies coincide with the poles of the scattering matrix,
which can be conveniently expressed as

det S−1(E ) = 0. (B14)

Equation (7) furthermore shows that these poles coincide with
the eigenvalues of the effective Hamiltonian Heff given in
Eq. (8).

4. Coherent perfect absorption

For coherent perfect absorption (CPA), we require a sta-
tionary state with purely incoming boundary conditions. This
is the time reversal of a stationary lasing state, which fulfills
the equivalent conditions

M11(E ) = 0, (B15)

M11(E ) + M22(E ) + iM21(E ) − iM12(E ) = 0, (B16)

det S(E ) = 0, (B17)
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at an energy E that has to be real. This implies in particular
that coherent perfect absorption is related to the zeros of the
scattering matrix, which are defined as the energies where at
least one of its eigenvalues vanishes.

5. Reflectionlessness, transparency, and invisibility

By definition of the transport coefficients, the system is
reflectionless from the left or right if

r(E ) = 0 or r′(E ) = 0. (B18)

For the transfer matrix, this can be written as

M21(E ) = 0 or M12(E ) = 0. (B19)

Furthermore, the system is transparent when a probing
wave passes through with the same phase shift iN as if it was
replaced by a lead segment of the same length. Therefore,
depending on the side from which the system is probed, we
have

t (E ) = iN or t ′(E ) = iN , (B20)

which for the transfer matrices amounts to

M22(E )

Det(M)
= (−i)N or M22(E ) = (−i)N . (B21)

We note that M22(E )
Det(M) = (M−1(E ))11, which confirms that the

conditions respect symmetry when one reformulates the trans-
fer matrix by iteration from the right to the left lead. In Table I,
for conciseness we specify the condition in this alternative
form.

By taking the modulus of these conditions on both sides,
they can be relaxed to transparency in terms of the intensity
only.

Finally, we note that a system is invisible to a source placed
on a given side when it is both reflectionless and transparent
under illumination from that side, while it is invisible to a
detector placed on a given side when it is reflectionless under
illumination from that side and transparent under illumination
from the other side.
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