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Transport effects in non-Hermitian nonreciprocal systems: General approach
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In this paper, we present a unifying analytical framework for identifying conditions for transport effects such as
reflectionless and transparent transport, lasing, and coherent perfect absorption in non-Hermitian nonreciprocal
systems using a generalized transfer matrix method. This provides a universal approach to studying the transport
of tight-binding platforms, including higher-dimensional models and those with an internal degree of freedom
going beyond the previously studied case of one-dimensional chains with nearest-neighbor couplings. For a
specific class of tight-binding models, the relevant transport conditions and their signatures of non-Hermitian,
nonreciprocal, and topological behavior are analytically tractable from a general perspective. We investigate this
class and illustrate our formalism in a paradigmatic ladder model where the system’s parameters can be tuned to
adjust the transport effect and topological phases.
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I. INTRODUCTION

In recent years, the study of topological models has been
extended to non-Hermitian Hamiltonians, which appear as
effective Hamiltonians of open systems or wave systems with
gain and loss [1–3]. The appearance of nonreciprocity in-
troduces another non-Hermitian extension, which gives rise
to novel phenomena such as the non-Hermitian skin effect
(NHSE) [4–10] and the recently identified edge burst effect
[11]. In the former effect, the bulk states become localized at
the edge of a finite system with open boundary conditions, a
behavior that is drastically different from its periodic counter-
part. In the latter effect, a substantial portion of loss occurs at
the system boundary.

In addition, incorporating non-Hermitian topological mod-
els into photonics systems has introduced novel platforms
known as topological photonics [12–14], which can induce a
rich diversity of transport phenomena such as lasing [15–19],
coherent perfect absorption [20–22], reflectionless scattering
[23], invisibility [24], and transparency [25].

Hence, developing a formulation for the distinct transport
effects in non-Hermitian nonreciprocal systems paves the way
toward investigating interesting phenomena in such platforms.
Following this motivation in our previous paper, we studied
(i) conditions for variant transport effects, (ii) their compat-
ibility with each other, and (iii) their adjustment by tuning
suitable parameters facilitated by symmetry or topology [26].
We then found distinct transport signatures of non-Hermitian,
nonreciprocal, and topological systems. For instance, (i) the
direction of reflectionless transport depends on the topologi-
cal phases, (ii) invisibility coincides with the non-Hermitian
skin-effect phase transition of topological edge states, and
(iii) a unidirectional transparent coherent perfect absorption
emerges.
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Our previous study considered a generic one-dimensional
chain with nearest-neighbor couplings. However, this study
can be further generalized to more involved models. Here,
we address this generalization to analytically formulate the
spectral conditions for a range of distinct phenomena and
identify their interdependence.

Our method is based on exploiting the transfer matrix [27]
to characterize the transport boundary conditions. Along with
the scattering matrix [28], the transfer matrix is a prominent
mathematical instrument to study transport in finite-range
scattering potentials. Recently, a developed version of the
transfer matrix method has established itself as an analytic
approach in non-Hermitian tight-binding models to study
topological [29,30] and localization phenomena [31].

In Ref. [26], we employed the transfer matrix to define
transport boundary conditions and their connection. Follow-
ing the same formulation, we can extend the derivation of
the transfer matrix describing transportation in a general
nonreciprocal lattice. This approach can provide a universal
characterization of various transport phenomena.

We then consider a class of nonreciprocal tight-binding
systems whose transport signatures are described by a 2 × 2
transfer matrix. We will show that our conclusions in [26] for
the transport effects and their compatibility can be retrieved in
a general context for all those models settled in this specific
category.

The rest of this paper is organized as follows: we describe
our method for constructing the transfer matrix for a general
tight-binding model in real and propagating space in Sec. II,
where we present a global scheme of the leads in Fig. 1. We
then determine the boundary conditions of distinct transport
effects and their interplay in Sec. III with a general attitude.
In Sec. IV, we investigate our general formalism for a class
of systems whose transfer matrix reduces to a 2 × 2 matrix
that is familiar in the photonics models. For these models, we
can categorize the transport boundary conditions as implicit
equations in terms of the parameters, possibly associated with
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FIG. 1. A schematic diagram of the recursion relations (10) and
(11) describing non-Hermitian nonreciprocal systems with q internal
degrees of freedom and range of interaction r. This diagram repre-
sents a general tight-biding model connecting to the featureless leads
(with coupling w < 0).

the topology and reciprocity of the system. To demonstrate
our approach, we investigate the transport effect of the Lad-
der lattice. We then show that by generalizing the coupling
parameters, the system can be tuned to be reflectionless in the
nontrivial topological phase. This suggests that our research
can be used to determine an appropriate set of system param-
eters for building a platform with specific transport effects in
different topological phases.

II. MATHEMATICAL SETUP

A. Model of supercells

To extend the theory of transport from a rather simple
one-dimensional chain to a more complicated structure, we
consider a system that is described by a tight-binding model
whose Hamiltonian is given by

H =
N∑

n=1

q∑
α,β=1

[
r∑

l=1

(c†n,α
[
tLl

]
αβ
cn+l,β + c†n+l,α

[
tRl

]
αβ
cn,β

+ c†n,α[t0]αβcn,β )

]
, (1)

where tL(R)l denotes the hopping matrix to the left (right), and
t0 is the intra-unit-cell term. Also, in the Hamiltonian (1), the
parameter r is the range of hopping, and q determines the
number of internal degrees of freedom, e.g., spin, orbital, or
sublattice, per unit cell.

Following the main idea developed in [29,30], for the
construction of the transfer matrix, we consider a bundle of
r adjacent sites, which reduces the model with N cells to a
supermodel with L supercells, each containing n = qr degrees
of freedom. Thus, the Hamiltonian of the superchain is given
by

H =
2L∑
n=1

[c†nJLcn+1 + c†nKcn + c†n+1JRcn]. (2)

Here, we introduce JL (JR) and K, respectively, as the cor-
responding left (right) hopping and on-site matrices. The
single-particle Schrödinger equation (H� = E�) is reduced
to the following recursion relation:

E�n = K�n + JR�n−1 + JL�n+1, (3)

with �n = (ψ2n−1, . . . , ψ2n+r−1)T ∈ Cn defining the wave
function for each supercell. In the case of reciprocal trans-
port, one has JR = J†L, and the system is governed by a

Hermitian Hamiltonian with the real-valued spectrum pro-
vided that K = K†.

One can reduce the relation (3) by applying the reduced
singular value decomposition (SVD) method [32] on both JL
and JR. This reduction results in

JL = VXLW
†, JR = WXRV

†, (4)

where XL/R = diag{ξ 1
L/R, . . . , ξ r

L/R} is a diagonal matrix of

singular values (ξ 1,2,...,r
L/R ) with r := rank(JL), which is defined

by the number of its independent rows. The columns ofV and
W are called the left- and right-singular vectors of JL [33].
We further require the size of the supercells to be big enough
such that JL/R becomes nilpotent of degree 2, i.e., J2L/R = 0. It
then follows that r � qr [29,30]. This condition leads to the
following relations for left- and right-singular vectors:

V †V = W †W = 1r, V †W = 0, (5)

where 1r is an r × r identity matrix. According to the above
relation, span {V } and span {W } provide an orthonormal basis
of Cn such that �n can be expanded in the following form:

�n = Vαn +Wβn + Y ζn, (6)

with Y defined analogous to V andW ,

V †Y = W †Y = 0, Y †Y = 1r, (7)

and coefficients α, β, and ζ are

αn = (αn,1, αn,2, . . . , αn,r ),

βn = (βn,1, βn,2, . . . , βn,r ),

ζn = (ζn,1, ζn,2, . . . , ζn,r ). (8)

By substituting hopping matrices (JL,R) and superstate (�n),
respectively, from Eqs. (4) and (6), the right side of recursion
relation (3) reduces to

E�n = K[Vαn +Wβn] +WXRαn−1 +VXLβn+1. (9)

Here, we assume that the only relevant direction here is span
{V } and span {W }. The relation above can be reduced further
by multiplying W † and V † from the left and making use of
orthonormal relations (5). Then, we obtain

E1rβn = Kwwβn + XRαn−1 + Kwvαn, (10)

E1rαn = Kvvαn + XLβn+1 + Kvwβn, (11)

where Kab := A†KB ∈ Mat(r,C) with A,B ∈ {V,W }. In this
formulation, the superlattice is restricted to the region 0 �
n � 2L, while the remaining sites represent the lead structure.
Similar to the approach presented in [26], we model the lead’s
structure in the featureless wide-band limit, which is obtained
by setting Kvw = Kwv = XR = XL = w1r with w < 0 for n �
0 (left lead), and n � 2L (right lead). In addition, for each
supersite in the lead, we tune the potential energy to the band
center (i.e., Kww = Kvv = E1r). Then, we can introduce the
propagating modes, such as

βn = φ(+)in−nβ
+ , αn = φ(+)in−nα

+ (right),

βn = φ(−)(−i)n−nβ
− , αn = φ(−)(−i)n−nα

− (left), (12)

where the amplitude φ(±) = (φ(±)
1 , . . . , φ(±)

r ) are position-
independent scattering modes throughout the lead’s structure.
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The possible noninteger offsets nα,β
± can be chosen separately

in each lead and account for the U (1) gauge freedom. We
schematically demonstrate the lead’s structure in Fig. 1.

B. Transport framework

As the main step to characterize the transport properties of
the system, we construct the transfer matrix in the space of the
real and propagating state. By introducing 	n = (βn, αn−1)T ,
we can define the transfer matrixM that connects the states in
an adjacent supercell through the following relation:

	n+1 = Mn	n. (13)

In light of recursion relations (10) and (11), one can find the
explicit form of the real-space transfer matrix as

Mn =
⎛⎝X−1

L [GvvK−1
wvGww − Kvw] −X−1

L GvvK−1
wvXR

K−1
wvGww −K−1

wvXR

⎞⎠,

(14)

whereGab = A†(E1r − K)B ∈ Mat(r,C) with A,B ∈ {V,W }.
The size of the transfer matrix depends on the rank of the
hopping matrix JL. Then, the 2r × 2r transfer matrix for the
whole system can be given as

M = ML · · ·M3M2M1. (15)

By considering the propagating mode (12) of the superlat-
tice, the transfer matrix in the propagating-state basis is then
defined by (

φ(+,R)

φ(−,R)

)
= M

(
φ(+,L)

φ(−,L)

)
, (16)

where L and R refer to the left and right lead. This trans-
fer matrix captures the transport features in terms of linear
relations between the propagating wave amplitudes in the
leads. It is given by invoking the wave-matching condition of
propagating waves. We then obtain

M = 1

2

⎛⎝−i1r 1r

1r −i1r

⎞⎠M

⎛⎝i1r 1r

1r i1r

⎞⎠. (17)

In the next step, we can find the r × r right and left reflec-
tion and transmission matrices in terms of the entries of the
transfer matrix M in the propagating-state basis as(
r t′
t r′

)

=

⎛⎜⎜⎜⎜⎝
−M−1

22 M21
M̃22 − M̃21M̃−1

11 M̃12

|M|

M11 − M21M−1
22 M21 −M̃−1

11 M̃12

|M|

⎞⎟⎟⎟⎟⎠,

(18)

where M̃i j are the entries of the adjugate matrix of M, and
|M| is the determinant.

III. BOUNDARY CONDITIONS: GENERAL APPROACH

The transfer matrix approach in a real-space (M) and a
scattering-state (M) basis provides us with a comprehensive
algorithm describing different boundary conditions for a vari-
ety of physical effects for the supermodel depicted in Fig. 1.
This section defines various physical transport phenomena in
the supermodel and demonstrates how we can characterize
them using the transfer matrix method.

A. Periodic boundary conditions

The periodic boundary conditions for the system with L
supercells require �n+N = eikx�n. By considering decompo-
sition of � (6) and the definition of the transfer matrix (13), it
leads to

M(E , k⊥)	n = eikx	n. (19)

Here, we consider a system in d spatial dimensions with
open boundary conditions along the x-coordinate and periodic
boundary conditions along the remaining d − 1 directions,
which are parametrized by the transverse quasimomentum
k⊥ ∈ T d−1. This system can also be interpreted as a family
of one-dimensional chains parametrized by k⊥. Equation (19)
reveals that the system with periodic boundary conditions
has a state with complex energy E if and only if eikx ∈
Spec[M(E , k⊥)]. The complex spectrum of the system forms
a closed curve in the complex plane, satisfying the following
implicit dispersion equation:

det (M(E , k⊥) − eikx1r ) = 0. (20)

In the propagating-wave space, by considering the unitary
transformation (17), the form of the implicit dispersion equa-
tion turns into

det (M(E , k⊥) − eikx1r ) = 0. (21)

B. Open boundary conditions

For the truncated system, the open boundary conditions can
be fulfilled by setting �0 = �N+1 = 0, which leads to α0 =
βL+1 = 0 at the first sites of the leads. In terms of the real-
space transfer matrix, the open boundary conditions imply(

0
αN

)
= M(E , k⊥)

(
β1

0

)
, (22)

which corresponds to

M11 = 0r, (23)

where 0r is an r × r null matrix. The above relation can be
read as r2 separate implicit equations for the bound-state en-
ergies En, whose solutions are generally discrete but possibly
complex.

C. Quasibound state and lasing

We define a quasibound state as a solution in which there
only exists a purely outgoing wave (incoming waves are ab-
sent). This state can be achieved by setting φ(+,L) = 0 into
the left lead and φ(−,R) = 0 into the right lead. In light of
definition (16), to achieve a quasibound state,M22 component
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needs to fulfill

M22(E ) = 0r . (24)

Generally, those solutions that satisfy the quasibound bound-
ary conditions are discrete and complex. In a special case,
these solutions present a stationary lasing state when their
imaginary part is zero, i.e., Im(En) = 0.

D. Coherent perfect absorption

For the coherent perfect absorption (CPA), there is only a
purely incoming wave (this corresponds to the time reversal of
stationary lasing). Following the footsteps of the quasibound
state boundary conditions, the CPA is achieved by setting
φ(−,L) = 0 into the left or φ(+,R) = 0 into the right lead, which
conduces to

M11(E ) = 0r . (25)

E. Reflectionless, transparency, and invisibility

We define a reflectionless system from the left or right if
the reflection matrix satisfies

r(E ) = 0r or r′(E ) = 0r . (26)

In terms of the transfer matrix, it can be expressed as

M−1
22 M21 = 0r or M̃−1

11 M̃12 = 0r . (27)

For the transparency condition, we consider just a phase shift
for a probing wave passing through the system. In the lan-
guage of the transmission matrix, depending on the side from
which the system is probed, we have

t(E ) = 0r or t′(E ) = 0r, (28)

where in the context of the transfer matrix, it leads to

M11 − M21M−1
22 M21 = (−i)N1r or

M̃22 − M̃21M̃−1
11 M̃12

|M| = (−i)N1r . (29)

The system is invisible to the left (right) source if it is simulta-
neously reflectionless and transparent under illumination from
that side. To be invisible to the detector, one needs to make
the system reflectionless under illumination from that side and
transparent under exposure from the other side.

IV. SPECIAL CASE: r = 1

A. Classification of transport effects

In this section, we focus on a specific case in which the
rank of each of the hopping matrices JL,R is 1 (i.e., r = 1), rep-
resenting a family of tight-binding models, the most famous of
which are two-band lattices, such as the Su-Schrieffer-Heeger
(SSH) model. Other examples are the Chern insulator [34],
2D Dirac semimetal, and the Hofstadter model [35]. In such
a special family, various qualitative topological properties of
these systems can be extracted from the 2 × 2 transfer matrix
[29,30]. Our approach can be extended to r �= 1 models, but
presenting an analytic framework will be challenging. In the

Appendix, we derive a 4 × 4 transfer matrix for one of these
models.

For r = 1, the entries of the transfer matrix are given by
complex-valued numbers, where the determinant is

d = KvwXR

KwvXL
. (30)

From now on, Kab, Gab, and XL,R represent complex-valued
numbers instead of matrices. For the Hermitian case [i.e.,
K†(E∗) = K(E ) and XR = XL], one can show that the de-
terminant transforms to d = Kvw(E )/K∗

vw(E
∗). Therefore, in

the Hermitian system, for the real energies, the determinant
lies on the unit circle since d = exp[2i argKvw(E )]. One can
reach the same result when the system is non-Hermitian, but
couplings and on-site matrices are invariant under the parity
(P) and time-reversal (T ) operator. Then the determinant lies
on the unit circle in the PT -unbroken phase. If we consider
the system to be periodic, then by setting the unit-cell transfer
matrix of the superlattice to Mc, the transfer matrix of the
whole system with L supercell can be written as

M(E , k⊥) = dL/2[UL−1(z)Mc −UL−212×2], (31)

where Mc = Mc/
√
d , UL(z) are the Chebyshev polynomials

of the second kind, and

z = trMc/2 = t

2
√
d

= GvvGww − KvwKwv − XLXR

2
√
KwvKvwXLXR

. (32)

As a first consequence of the general formalism we introduced
in this paper, one can formulate a set of boundary conditions
for the particular case r = 1. In Table I, we characterize the
transport properties of the system in terms of the entries of the
transfer matrix and give the corresponding implicit equations.

In stationary transport phenomena such as reflectionless,
transparency, and invisibility, real-valued energy is given.
Hence the corresponding implicit equations in Table I can
define the possible range of couplings or on-site potential for
the given energy (or frequency) in which the system is in a
stationary transport state. For other boundary conditions, the
solutions of the corresponding implicit equations lead to a dis-
crete complex spectrum describing quasistationary behavior.

There exists an alternative approach to obtain the spectrum
related to open, quasiband, and scattering zero boundary con-
ditions. Consider eigenstates and eigenenergies of the transfer
matrix satisfying

Mc(E )ϕ1,2 = ρ1,2ϕ1,2. (33)

In the case of diagonalizable Mc, ϕ1,2 form a basis of C2 in
which one can expand 	N , and the coefficients can be defined
by considering stationary boundary conditions [36]. For in-
stance, the open boundary conditions (22) can be translated
to (

β1

0

)
= a1ϕ1 + a2ϕ2,

(
0
αN

)
= a1ρ

N
1 ϕ1 + a2ρ

N
2 ϕ2. (34)

These equations reduce to a set of two complex homogeneous
linear equations in terms of two variables a1 and a2, satisfying

2∑
l=1

alP+ϕl =
2∑

l=1

alρ
N
l P−ϕl = 0, (35)
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TABLE I. The second row of the table compares distinct boundary conditions (BCs) for a general model illustrated in Fig. 1 where
the transfer matrix has to be taken as functions of energy E . For those models with r = 1, the third row of the table characterizes implicit
equations in terms of energy E for transport effects listed in the first row. The stationary situations correspond to given real energy, while those
equations resulting in complex energies refer to quasistationary effects.

Boundary conditions Characterization (arbitrary r) Implicit equation (r = 1)

open M11 = 0r

√
d

κ

[
GvvGww

w2
− κ

]
= UL−2(z)

UL−1(z)

periodic det(M − eikx12r×2r ) = 0 t − de−ikx − eikx = 0

quasibound M22 = 0r UL−1(z)

√
d

κ
[(Gvv − iw)(Gww − iw) − w2κ] − 2w2UL−2(z) = 0

CPA M11 = 0r UL−1(z)

√
d

κ
[(Gvv + iw)(Gww + iw) − w2κ] − 2w2UL−2(z) = 0

right-reflectionless M̃−1
11 M̃12 = 0r UL−1(z)[(Gww − iw)(Gvv + iw) − w2κ] = 0

left-reflectionless M−1
22 M21 = 0r UL−1(z)[(Gww + iw)(Gvv − iw) − w2κ] = 0

right-invisible

{
M̃−1

11 M̃12 = 0r,

M11 − M21M−1
22 M21 = (−i)N1r

⎧⎨⎩
√
d

κ
[(Gvv − iw)(Gww − iw) − w2κ] = (−i)Nd − 2w2UL−2(z)

UL−1(z)
,

UL−2(z) = −(−i)Nd

left-invisible

⎧⎨⎩
M−1

22 M21 = 0r,

M̃22 − M̃21M̃−1
11 M̃12

|M| = (−i)N1r

⎧⎨⎩
√
d

κ
[(Gvv − iw)(Gww − iw) − w2κ] = (−i)N − 2w2UL−2(z)

UL−1(z)
,

UL−2(z) = −(−i)N

where P± : C2 → C are projection operators that are defined
as P+ = (0, 1) and P− = (1, 0). They inject the state 	 into
the subspaces β and α, respectively. Indeed, the open bound-
ary condition (35) can be interpreted as the Dirichlet condition
on the left edge, which is equivalent to the statement that 	

belongs to the range of P+, while the right edge is equivalent
to the statement that the state 	 belong to the range of P−
[29].

One can recast (35) in a matrix equation, which, according
to Cramer’s rule, has a nontrivial solution if

det
(
RN

1 ϕ1 RN
2 ϕ2

) = 0, (36)

where

Rl =
(

ρl 0
0 1

)
. (37)

Equation (36) can be solved to get the set of energies for which
the system with open boundary conditions has eigenstates.

Following the same approach for the quasibound and CPA
boundary conditions, we obtain

2∑
l=1

alP∓ϕ̃l =
2∑

l=1

alρ
N
l P±ϕ̃l = 0, (38)

where the negative (positive) sign in each term refers to quasi-
bound (CPA) boundary conditions, and ϕ̃l are the eigenstates
of the transfer matrix in a propagating state, M. They are
given by

ϕ̃l = 1√
2

(
i 1
1 i

)
ϕl . (39)

The corresponding energies can be obtained by finding the
solutions of

det
(
RN

1 ϕ̃1 RN
2 ϕ̃2

) = 0 (40)

for the CPA and

det
(
R̃N

1 ϕ̃1 R̃N
2 ϕ̃2

) = 0 (41)

for the quasibound, where

R̃l =
(
1 0
0 ρl

)
. (42)

B. Compatibility of transport effects

In this section, we take a look at some of the aspects driven
by the corresponding boundary conditions in the context of the
transfer matrix. In addition to the determinant d , we introduce
the following parameter:

κ = KvwKwv

w2
. (43)

As shown in Ref. [26], the two parameters d and κ play
an important role in specifying the reciprocity and topology
signature in the one-dimensional SSH model. Indeed, d quan-
tifies the amount of nonreciprocity where the system becomes
reciprocal and the non-Hermitian skin effect disappears for
the parameter in which the transfer matrix is unimodular.
The parameter κ represents the topological characteristic, with
κ = 1 corresponding to the topological phase transition.

The transfer matrix (14) of the unit cell can be written in
therms of the these parameters such as

Mc =
√
d

κ

⎛⎜⎜⎜⎝
GvvGww

w2
− κ −Gvv

w

Gww

w
−1

⎞⎟⎟⎟⎠. (44)

Following the corresponding implicit equations from Table I
for the right- and left-reflectionless transport yields

FUL−1(z) = 0, (45)

with

F = GvvGww + w2(1 − κ ) ∓ iw(Gww − Gvv ), (46)
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where the minus (plus) sign applies to probing the system
from the left (right). Condition (45) represents two differ-
ent types of solutions where we interpret [UL−1(z) = 0] as a
global and (F = 0) as a local mechanism. The solutions of
the global mechanism given by the Chebyshev nodes depend
on the length of the system L. If we set E = Kvv or E = Kww,
which corresponds to Gvv = 0 or Gww = 0, respectively [37],
then from Eq. (32) one can find

z = −1

2

(√
κ + 1√

κ

)
. (47)

It is easy to check that z remains intact under the transfor-
mation κ → 1/κ showing that the global mechanism for the
reflectionless boundary conditions is also invariant under this
transformation.

This is in contrast with the local mechanism. To reveal
the difference between global and local mechanisms, consider
probing the system from the left (right). Then the local condi-
tion leads to

w(1 − κ ) = ±i(Kww − Kvv ), (48)

where the plus (minus) sign gives left (right) -reflectionless.
According to (48), in the local mechanism, κ shows up as
an essential parameter for both left- and right-reflectionless
boundary conditions.

To study other transport effects, we express the transfer
matrix in the following form:

M̃ =

⎛⎜⎜⎜⎜⎝
κ+ + iκ−K̃

w(κ − 1)
−iκ−

[
1 − iK̃

w(κ − 1)

]

iκ−

[
1 + K̃

w(κ − 1)

]
κ+ − iκ−K̃

w(κ − 1)

⎞⎟⎟⎟⎟⎠,

(49)
where κ± := (κL ± 1), K̃ := Kww − Kvv , and also we con-
sider the normalized transfer matrix M̃ := 2κL/2

(−1)LdL/2M.
In particular, keeping the system reflectionless [i.e., re-

quiring relation (48) to be satisfied], we can make it strictly
transparent from the right (left) by setting d = κ (d = 1/κ).
The system is then invisible to a source (detector) placed to
the system’s reflectionless side.

For the CPA, employing the condition (M11 = 0) results
in the following equation:

i(Kww − Kvv ) = −ωκ+(κ − 1)

κ−
, (50)

which is independent of the parameter d , and also invari-
ant under the replacement κ → 1/κ . One can simultaneously
make the system transparent from the left by setting

d = (κL/2 + κ−L/2)2/L, (51)

while it becomes transparent from the right if

d = (κL/2 + κ−L/2)−2/L. (52)

These results, we find in this section, have been spelled out
in [26] for a one-dimensional nonreciprocal lattice, where the
parameter d quantifies the amount of nonreciprocity and κ

captures the topological characteristics in the SSH version.
We present here a general version of the compatibility and

independence of transport effects for all those models cate-
gorized in the class of r = 1. Hence, we can reexpress the
transport behavior in more general terms such that (i) the di-
rection of reflectionless transport depends on the parameter κ ,
(ii) invisibility coincides with the phase transition correspond-
ing to d = κ (d = 1/k), where d measures the nonreciprocity
of the system, and (iii) the coherent perfect absorption is
compatible with the transparent effect.

C. Creutz ladder model

A general form of the nonreciprocal one-dimensional lat-
tice is studied in [26] described by

Eψn = Vnψn + unψn−1 + vnψn+1, (53)

where Vn are on-site potentials, un are nearest-neighbor cou-
plings from left to right, and vn are nearest-neighbor couplings
from right to left. In our formalism and notations, the hopping
JL,R and on-site K matrices are given by

JL =
(
0 0
vn 0

)
, JR =

(
un−1 0
0 0

)
,

K =
(
Vn−1 un
vn−1 Vn

)
, (54)

which leads to the same transfer matrix expressed in relation
(3) of Ref. [26]. We comprehensively explored the transport
effect of this model in [26]. In this paper, we investigate
the non-Hermitian one-dimensional Creutz ladder model de-
picted in Fig. 2. This model was introduced in [38] and has
been studied in other subsequent papers [39–41]. Recently,
a novel boundary-induced dynamical phenomenon, dubbed
“edge burst,” has been observed in the ladder lattice that
possesses pure gain [11], which makes this model an inter-
esting platform to be explored in both classical and quantum
regimes.

A tight-binding lattice describes the Creutz ladder model
with the following recursion relations:

Eψn = iγψn + uψn+1 + u′

2
(ψn−1 + ψn+3)

+ iu′

2
(ψn−2 − ψn+2), (55)

Eψn+1 = iγ ′ψn+1 + uψn − iu′

2
(ψn−1 − ψn+3)

+ u′

2
(ψn−2 + ψn+2). (56)

The coupling and on-site matrices are then given by

JL =
(

iu′
2

u′
2

u′
2

−iu′
2

)
, K =

(
iγ u
u iγ ′

)
, (57)

where one can see r = 1. Expanding in terms of orthonormal
basis by using relation (6) gives

�n =
(

ψ2n−1

ψ2n

)
= 1√

2

(
1
i

)
αn + 1√

2

(
i
1

)
βn. (58)
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FIG. 2. The Creutz ladder model of recursion relations (55)
and (56), which is connected to featureless leads from both sides.
The lead’s structure in the diagram can be achieved by following
the relation (58) that transforms the Creutz ladder model to the
non-Hermitian SSH model. This transformation reveals that the fea-
tureless leads ballistically attach to the Creutz model with the same
structure by setting u = u′ = w. In the case of balanced gain and
loss (i.e., γ = γ ′), the system is in the nontrivial topological phase
if |u| < |w| and it supports a pair of degenerate zero edge modes
shown by a green point in the complex energy spectrum of a finite
ladder system with closed boundary conditions.

It transforms the recursions relations (59) and (60) to

Eβn = i(γ + γ ′)
2

βn + wαn−1 +
[
u + (γ − γ ′)

2

]
αn, (59)

Eαn = i(γ + γ ′)
2

αn + wβn−1 +
[
u + (γ − γ ′)

2

]
βn, (60)

which can also be achieved by making use of the general
recursion formulas given in (10) and (11). Interestingly, the
above equations describe a one-dimensional SSH model in
Fig. 2. This unitary transformation has been discussed in
other literature [6]. In fact, the reduction formalism leading
to Eqs. (59) and (60) reveals that the transport properties of a
non-Hermitian ladder model are given by those in a generic
one-dimensional tight-binding lattice studied in [26] with the
following on-site potentials:

V2n−1 = V2n = i(γ + γ ′)
2

, (61)

and couplings

u2n = v2n−1 = u′,

v2n = u − (γ − γ ′)
2

, u2n = u + (γ − γ ′)
2

. (62)

In the following, we explore the transport effects and their
compatibility in detail, but before that, we make a comment
on the featureless leads attached to the ladder system.

At the beginning of this section, we remarked on the char-
acteristics of the attached leads in a general formalism. This
will give us a clue about the lead’s structure. We consider
a lead with a tight-binding structure similar to the ladder
model whose parameter can be read from the projected one-
dimensional SSH model. It then turns out that to make the
featureless lead attached ballistically to the system, we need
to set E = iγ = iγ ′ and u = u′ = w for the lead’s sites. This
is illustrated in Fig. 2.

For this system, the transfer matrix of the unit cell (44) is

Mc =
√
d

κ

⎛⎜⎜⎜⎝
(E − iγ̄ )2

w2
− κ

−(E − iγ̄ )

w

E − iγ̄

w
−1

⎞⎟⎟⎟⎠, (63)

where γ̄ := (γ + γ ′)/2, and d and κ are defined as

d = 2u − (γ − γ ′)
2u + (γ − γ ′)

, κ = 4u2 − (γ − γ ′)2

4W2
. (64)

One can see that for γ = γ ′, the system has a unimodular
transfer matrix. In this case, the system becomes reciprocal,
and the non-Hermitian skin effect vanishes.

To study the transport properties of this model, we start
with reflectionless transport. The corresponding boundary
conditions are expressed by Eq. (45). As we showed, the
global mechanism is independent of transforming κ to 1/κ ,
which connects the regions (κ < 1) and (κ > 1) in the ladder
model. One then recalls that the system is topologically non-
trivial with a pair of degenerate in-gap topological edge modes
when [38] √∣∣∣∣u2 − (γ − γ ′)2

4

∣∣∣∣ < |w|, (65)

which become zero modes for γ = −γ ′, or equivalently γ̄ =
0. This shows that the phase (κ < 1) is a nontrivial topological
phase where edge states do exist. Therefore, we realize that the
global mechanism is essentially independent of the existence
of edge states. This is analogous to what we found in [26] for
the SSH model.

Now, let us turn to the local mechanism

0 = F = (E − iγ̄ )2 + w2(1 − κ ). (66)

Interestingly, the local mechanism yields the same relation for
the left and right reflectionless conditions. If we set energy
to the on-site potential, i.e., E = Ē = iγ̄ , we then find that
the system becomes reflectionless from both sides if κ = 1,
corresponding to the topological phase transition√∣∣∣∣u2 − (γ − γ ′)2

4

∣∣∣∣ = |w|. (67)

Also, analogously to our findings in [26], the parameter d is
absent in condition (67), which implies that the reflectionless
transport is independent of nonreciprocity. In other words,
the ladder model is reflectionless in both directions when
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degenerate edge states relocalize via the skin effect to any
edge of the system.

However, this termination might be different for other
transport effects. To see this, we rewrite the total transfer
matrixM in the following form:

M = (−1)LdL/2

2κL/2

⎛⎝ κL + 1 −i(κL − 1)

i(κL − 1) κL + 1

⎞⎠. (68)

Let us assume a system in the topological phase transition
that is also reflectionless from both sides. Now, one can
make it transparent from the right (left) by setting d = κ

(d = 1/κ). This condition also corresponds to γ − γ ′ = u

(γ − γ ′ = −u) with u = |u − w| showing that the invisibil-
ity direction can be changed by interchanging γ ↔ γ ′. This
coincides precisely with the skin effect phase transition of a
topological state. For CPA, applying the condition M11 = 0
yields κ = (−1)1/L. The transport effects can be tuned by
manipulating the parameters of the model. We show this by
considering an extended version of the Creutz ladder model,
with coupling u′e−iθ /2 and u′eiθ /2 between adjacent sites in
the different unit cell and u ± u1 between sites in a unit cell
[41] (see Fig. 3). In this model, for the lattice with pure gain or
loss (i.e., γ = γ ′), the transfer matrix is unimodular (d = 1),
while for the PT -symmetric system (i.e., γ = −γ ′), one can
find

d = u − γ sin θ

u + γ sin θ
. (69)

If |d| = 1, there is no skin effect meaning that the “bulk
states” decay into the bulk. These states are localized on the
left boundary via the non-Hermitian skin effect for |d| < 1,
which results in 2γ sin θ < 0. For γ > 0, this corresponds to
θ ∈ [π, 2π ]. For localizing on the right boundary, the determi-
nant needs to satisfy |d| > 1, leading to 2γ sin θ > 0, which
includes θ ∈ [0, π ]. For the reflectionless transport, applying
local mechanism F = 0 in Eq. (46) gives

w2(1 − κ ) ± 2wu1 sin θ

+
(
u cos θ − E − i(γ + γ ′)

2

)2

+ u21 sin
2 θ = 0.

(70)

For a better illustration, let us again set E = Ē . Then we find
that the system becomes reflectionless when

w2(1 − κ ) = u2(x2 − 1) ∓ 2wu1x − u21x
2, (71)

where x := sin θ . For the reciprocal intercell coupling, i.e.,
u1 = 0, the local mechanism gives

w2(1 − κ ) = u2(x2 − 1). (72)

The left-hand side is positive in the nontrivial topological
phase (i.e., κ < 1). This requires x2 > 1, implying that no
solution exists for θ . Therefore, the system can only be made
reflectionless in the trivial topological phase.

In the case of an extra degree of freedom u1 �= 0, the right-
hand side of Eq. (71) is a quadratic equation whose behavior
is determined by its discriminant

� = 4u21(w
2 − u2) + 4u4. (73)

FIG. 3. The possible range for parameter θ = arcsin x, where the
finite system displays left or right reflectionless boundary conditions
in the nontrivial topological phase for the extended Creutz ladder
illustrated schematically in the upper diagram. The blue curves locate
the roots xl1,2 of Eq. (71) for the left reflectionless, while purple ones
define the roots xr1,2 for the right reflectionless. The green and orange
regions present a possible range for θ in terms of the nonreciprocity
parameter u1 where the system behaves reflectionless for the probe
located on the right and left side, respectively. This plot shows that
for a given u1 ∈ [−2, 2]/{0}, one can find a possible range of θ

that satisfies the local reflectionless condition. Those points along
u1 = 0 are excluded since the system cannot satisfy the reflectionless
boundary conditions in the nontrivial topological phase.

If � > 0, then there are two distinct real-valued roots x1 and
x2, and the right-hand side of Eq. (71) admits positive values
for x > x2 and x < x1 where we supposed x1 < x2. For −1 <

x1 and x2 < 1, one can find a possible range for θ such that
the system satisfies the reflectionless boundary conditions. In
Fig. 3, we plot a range of possible θ in which the system is
reflectionless for the incoming wave from the left (right) in its
nontrivial topological phase.

V. CONCLUSIONS

To summarize, we introduce a general formalism to es-
tablish transport effects and their interplays in a wide range
of non-Hermitian, nonreciprocal, and potentially topological
systems from a unifying scattering perspective. This work
extends our previous work [26] to a general formalism appli-
cable in concrete platforms with internal degrees of freedom
or in higher dimensions.

For specific models, we reach a global characterization of
transport boundary conditions presented in Table I, where we
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FIG. 4. A SSH model with alternating u1, u2 couplings and a
non-Hermitian u3 ± δ

2 coupling fitting in r = 2 class.

can retrieve our findings for the compatibility of transport
properties up to a system’s parameters. The model’s transport
behavior can be predicted based on how those parameters are
interpreted in different systems. The practical realization of
these systems can be investigated in nonreciprocal photon-
ics structures such as coupled resonant optical waveguides
[16,42] where asymmetric coupling can be achieved by in-
serting an optical gain and loss medium into the link ring
[43]. Furthermore, the method described in this paper can be
used to tune the parameters of the topological system in order
to obtain a specific transport effect. We demonstrated this by
considering a generalized version of the ladder lattice in which
one of the parameters can be set to a specific range to make it
reflectionless in a nontrivial topological phase. A perspective
of this approach can be studied in a two-dimensional lattice
such as a non-Hermitian Chern insulator, a non-Hermitian 2D
Dirac semimetal, or a non-Hermitian Hofstadter model. Also,
a nonlinear extension version of the transfer matrix can be
considered for studying the transport effect in the nonlinear
SSH model [44].
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APPENDIX: TRANSFER MATRIX IN r = 2 CLASS

In this Appendix, we study the transfer matrix of a
specific non-Hermitian Su-Schrieffer-Heeger (SSH) model
whose rank of its hopping matrix is r = 2. The Bloch
Hamiltonian of this model, which is depicted in Fig. 4,

reads [45]

H (k) = dx(k)σx + dy(k)σy, (A1)

where σx,y are Pauli matrices and

dx(k) = u1 + (u2 + u3) cos k + i
δ

2
sin k, (A2)

dy(k) = (u2 − u3) sin k + i
δ

2
cos k. (A3)

One can read the hopping (JL,R) and on-site (K) matrices as
coefficients of eik and 1 in the Bloch Hamiltonian (A1), so
that

JL =
(
0 u3 + δ

u2 0

)
, JR =

(
0 u2

u3 − δ 0

)
,

K =
(
0 u1
u1 0

)
. (A4)

The SVD results in (4) for JL,R with

V =
(
0 1
1 0

)
, W =

(
1 0
0 1

)
,

XL =
(
u2 0
0 u3 + δ

)
, XR =

(
u2 0
0 u3 − δ

)
. (A5)

It meets the requirement of our formalism in which the hop-
ping matrices JL and JR differ only in their singular values
[33]. The decomposition leads to the following entries of the
unit-cell transfer matrix (14):

M11 =
(

E2

u1u2
−2E
u2−2E

u3+δ
E2

u1(u3+δ)

)
, M12 =

( −E
u1

− u3−δ
u2

u2
u3+δ

−(u3−δ)E
u1(u3+δ)

)
,

M21 =
(

E
u1

−1
−1 E

u1

)
, M22 =

(
− u2

u1
0

0 −u3+δ
u1(u1 )

)
. (A6)

The determinant of the transfer matrix is

d = u3 − δ

u3 − δ
, (A7)

where the transfer matrix is unimodular for the vanishing
nonreciprocal parameter δ, and the non-Hermitian skin effect
vanishes [6]. To find the reflection and transmission matrices
of the system in the propagating-state basis (16), one needs
to attach the entire system to the leads from both sides. We
demonstrated the structure of the leads in Fig. 4 using the
formalism presented in this paper.
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